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Abstract
A rigorous methodology is proposed to study cell division data consisting in several ob-

served genealogical trees of possibly different shapes. The procedure takes into account missing
observations, data from different trees, as well as the dependence structure within genealogical
trees. Its main new feature is the joint use of all available information from several data sets
instead of single data set estimation, to avoid the drawbacks of low accuracy for estimators or
low power for tests on small single-trees. The data is modeled by an asymmetric bifurcating
autoregressive process and possibly missing observations are taken into account by modeling
the genealogies with a two-type Galton-Watson process. Least-squares estimators of the un-
known parameters of the processes are given and symmetry tests are derived. Results are
applied on real data of Escherichia coli division and an empirical study of the convergence
rates of the estimators and power of the tests is conducted on simulated data.

1 Introduction
Cell lineage data consist of observations of some quantitative characteristic of the cells (e.g. their
length, growth rate, time until division, . . . ) over several generations descended from an initial cell.
Track is kept of the genealogy to study the inherited effects on the evolution of the characteristic. As
a cell usually gives birth to two offspring by division, such genealogies are structured as binary trees.
Cowan and Staudte (1986) first adapted autoregressive processes to this binary tree structure by
introducing bifurcating autoregressive processes (BAR). This parametric model takes into account
both the environmental and inherited effects. Inference on this model has been proposed based
on either a single-tree growing to infinity, see e.g. Cowan and Staudte (1986), Huggins (1996),
Huggins and Basawa (2000), Zhou and Basawa (2005) or for an asymptotically infinite number of
small replicated trees, see e.g. Huggins and Staudte (1994), Huggins and Basawa (1999).

More recently, studies of aging in single cell organisms by Stewart et al (2005) suggested that
cell division may not be symmetric. An asymmetric BAR model was therefore proposed by Guyon
(2007), where the two sets of parameters corresponding to sister cells are allowed to be different.
Inference for this model was only investigated for single-trees growing to infinity, see Guyon (2007),
Bercu et al (2009) for the fully observed model or Delmas and Marsalle (2010), de Saporta et al
(2011), de Saporta et al (2012) for missing data models.

Cell division data often consist in recordings over several genealogies of cells evolving in similar
experimental conditions. For instance, Stewart et al (2005) filmed 94 colonies of Escherichia coli
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cells dividing between four and nine times. We therefore propose a new rigorous approach to take
into account all the available information. Indeed, we propose an inference based on a finite fixed
number of replicated trees when the total number of observed cells tends to infinity. We use the
missing data asymmetric BAR model introduced by de Saporta et al (2011). In this approach,
the observed genealogies are modeled with a two-type Galton-Watson (GW) process. However,
we propose a different least-squares estimator for the parameters of the BAR process that does
not correspond to the single-tree estimators averaged on the replicated trees. We also propose an
estimator of the parameters of the GW process specific to our binary tree structure and not based
simply on the observation of the number of cells of each type in each generation as in Guttorp
(1991), Maaouia and Touati (2005). We study the consistency and asymptotic normality of our
estimators and derive asymptotic confidence intervals as well as Wald’s type tests to investigate
the asymmetry of the data for both the BAR and GW processes. Our results are applied to the
Escherichia coli data of Stewart et al (2005). We also provide an empirical study of the convergence
rate of our estimators and of the power of the symmetry tests on simulated data.

The paper is organized as follows. In Section 2, we describe a methodology for least-squares
estimation based on multiple data sets in a general framework. In Section 3, we present the BAR
and observations models. In Section 4 we give our estimators and state their asymptotic properties.
In Section 5, we propose a new investigation of Stewart et al (2005) data. In Section 6 we give
simulation results. The precise statement of the convergence results, the explicit form of the
asymptotic variance of the estimators and the convergence proofs are postponed to the appendix.

2 Methodology
We work with the following general framework. Consider that several data sets are available,
obtained in similar experimental conditions and then assumed to come from the same parametric
model. Suppose that there exists a consistent least-squares estimator for the parametric model.
This estimator can be computed on each individual data set, but we would like to take into account
all the data at disposal, which should improve the accuracy of the estimation.

To this aim, we assume that the different data sets are independent realizations of the parametric
model. A natural idea is to average the single-set estimators. It may be a good approach if the
single-set estimators have roughly the same variance, which is usually the case when the data sets
have the same size. However, if the data sets have very different sizes, the single-set estimators
may have variances of different orders and this direct approach becomes dubious.

Instead, we propose to use a global least-squares estimator. Suppose that we have m data sets.
Let θ be the (possibly multivariate) parameter to be estimated, and θ̂j,n the least-squares estimator
build with the j-th data set for 1 ≤ j ≤ m. The global least-squares estimator θ̂n decomposes as

θ̂n =
( m∑
j=1

Σj,n

)−1 m∑
j=1

Vj,n,

where Σj,n is a normalizing matrix and Vj,n a vector of the same size as θ, involved in the
decomposition of the single-set least-squares estimator θ̂j,n as follows

θ̂j,n = Σ−1j,nVj,n.

Note that the estimator θ̂n thus constructed is neither an average nor a function of the θ̂j,n.
Hence, the asymptotic behavior of the global estimator θ̂n cannot be deduced from that of the
single-set estimators θ̂j,n. Nevertheless, the asymptotic behavior of θ̂j,n is often obtained through
the convergence of the normalizing matrices Σj,n and of the vectors Vj,n separately, which gives
the convergence of the global estimator θ̂n as the number m of data sets is fixed. Note that the
asymptotic is not the number m of data sets.

The aim of this paper is to apply this methodology to cell division data with missing data.
In this special case, the convergence of the global estimator θ̂n is not straightforward, because we
have to prove it on a set where the convergence of each Σj,n and Vj,n is not ensured.
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3 Model
Our aim is to estimate the parameters of coupled BAR and GW processes through m i.i.d. real-
izations of the processes. We first define our parametric model and introduce our notations. The
BAR and GW processes have the same dynamics as in de Saporta et al (2011), the main difference
is that our inference is here based on several i.i.d. realizations of the processes, instead of a single
one. Additional notations together with the precise technical assumptions are specified in A.

3.1 Bifurcating autoregressive model
Consider m i.i.d. replications of the asymmetric BAR process with coefficient θ =(a0, b0, a1, b1) ∈
R4. More precisely, for 1 ≤ j ≤ m, the first cell in genealogy j is labelled (j, 1) and for k ≥ 1,
the two offspring of cell (j, k) are labelled (j, 2k) and (j, 2k + 1). As we consider an asymmetric
model, each cell has a type defined by its label: (j, 2k) has type even and (j, 2k + 1) has type odd.
The characteristic of cell k in genealogy j is denoted by X(j,k). The BAR processes are defined
recursively as follows: for all 1 ≤ j ≤ m and k ≥ 1, one has{

X(j,2k) = a0 + b0X(j,k) + ε(j,2k),
X(j,2k+1) = a1 + b1X(j,k) + ε(j,2k+1).

(1)

Let us also define the variance and covariance of the noise sequence

σ2
0 = E[ε2(j,2k)], σ2

1 = E[ε2(j,2k+1)], ρ = E[ε(j,2k)ε(j,2k+1)].

Our goal is to estimate the parameters θ =(a0, b0, a1, b1) and (σ2
0 , σ

2
1 , ρ), and then test if (a0, b0) = (a1, b1)

or not.

3.2 Observation process
We now turn to the observation process (δ(j,k)) that encodes for the presence or absence of cell
measurements in the available data

δ(j,k) =

{
1 if cell k in genealogy j is observed,
0 if cell k in genealogy j is not observed.

To take into account possible asymmetry in the observation process, we use a two-type Galton-
Watson model. The relevance of this model to E. coli data is discussed in section 5. Again, we
suppose all the m observation processes to be drawn independently from the same two-type GW
process. More precisely, for all 1 ≤ j ≤ m, we model the observation process (δ(j,k))k≥1 for the
j-th genealogy as follows. We set δ(j,1) = 1 and draw (δ(j,2k), δ(j,2k+1)) independently from one
another with a law depending on the type of cell k. More precisely, for i ∈ {0, 1}, if k is of type i
we set

P
(

(δ(j,2k), δ(j,2k+1)) = (l0, l1)
∣∣∣ δ(j,k) = 1

)
= p(i)(l0, l1),

P
(

(δ(j,2k), δ(j,2k+1)) = (0, 0)
∣∣∣ δ(j,k) = 0

)
= 1,

for all (l0, l1) ∈ {0, 1}2. Thus, p(i)(l0, l1) is the probability that a cell of type i has l0 daughter of
type 0 and l1 daughter of type 1. And if a cell is missing, its descendants are missing as well. Figure
1 gives an example of realization of an observation process. We also assume that the observation
processes are independent from the BAR processes.

4 Inference
Our first goal is to estimate the reproduction probabilities p(i)(l0, l1) of the GW process from the m
genealogies of observed cells up to the n-th generation to be able to test the symmetry of the GW
model itself. Our second goal is to estimate θ = (a0, b0, a1, b1)t from all the observed individuals
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Figure 1: A tree of observed cells.

of the m trees up to the n-th generation. We then give the asymptotic properties of our estimator
to be able to build confidence intervals and symmetry tests for θ.

Denote by |T∗n| the total number of observed cells in the m trees up to the n-th generation of
offspring from the original ancestors, and let

E = { lim
n→∞

|T∗n| =∞}

be the non-extinction set, on which the global cell population grows to infinity. Thus, our asymp-
totic results only hold on the set E . This global non-extinction set is the union and not the
intersection of the non-extinction sets of each single-tree. It means that some trees may extinct,
which allows us to take into account trees with a different number of observed generations. We
are thus in a case where averaging single-tree estimators is not recommended. The possibility of
extinction for some trees is also the reason why the convergence of the multiple-trees estimator
θ̂n is not straightforward from existing results in the literature. Conditions for the probability of
non-extinction to be positive are given in A.

4.1 Estimation of the reproduction law of the GW process
There are many references on the inference of a multi-type GW process, see for instance (Guttorp,
1991) and (Maaouia and Touati, 2005). Our context of estimation is very specific because the
information given by (δ(j,k)) is more precise than that given by the number of cells of each type in
a given generation that is usually used in the literature. Indeed, not only do we know the number
of cells of each type in each generation, but we also know their precise positions on the binary tree
of cell division. The empiric estimators of the reproduction probabilities using data up to the n-th
generation are then, for i, l0, l1 in {0, 1}

p̂(i)n (l0, l1) =

∑m
j=1

∑
k∈Tn−2

δ(j,2k+i)φl0(δ(j,2(2k+i)))φl1(δ(j,2(2k+i)+1))∑m
j=1

∑
k∈Tn−2

δ(j,2k+i)
,

where φ0(x) = 1− x, φ1(x) = x, and if the denominator is non zero, the estimator equalling zero
otherwise. Note that the numerator is just the number of cells of type i in all the trees up to
generation n − 1 that have exactly l0 daughter of type 0 and l1 daughter of type 1 in the n-th
generation. The denominator is the total number of cells of type i in all the trees up to generation
n− 1. Set also

p(i) = (p(i)(1, 1), p(i)(1, 0), p(i)(0, 1), p(i)(0, 0))
t
,

the vector of the 4 reproduction probabilities for a mother of type i, p = ((p(0))t, (p(1))t)t the
vector of all 8 reproduction probabilities and p̂n its empirical estimator.
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4.2 Least-squares estimation for the BAR parameters

For the parameters of the BAR process, we use the standard least-squares (LS) estimator θ̂n with
all the available data from the m trees up to generation n. It minimizes

∆n(θ) =

m∑
j=1

∑
k∈Tn−1

δ(j,2k)(X(j,2k) − a0 − b0X(j,k))
2 + δ(j,2k+1)(X(j,2k+1) − a1 − b1X(j,k))

2.

Consequently, for all n ≥ 1 we have θ̂n = (â0,n, b̂0,n, â1,n, b̂1,n)t with

θ̂n = Σ−1n−1

m∑
j=1

∑
k∈Tn−1

(
δ(j,2k)X(j,2k), δ(j,2k)X(j,k)X(j,2k), δ(j,2k+1)X(j,2k+1), δ(j,2k+1)X(j,k)X(j,2k+1)

)t
(2)

where, for i ∈ {0, 1} we defined

Σn =

(
S0
n 0

0 S1
n

)
, Sin =

m∑
j=1

∑
k∈Tn

δ(j,2k+i)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
.

Note that in the normalizing matrices Sin the sum is over all observed cells for which a daughter
of type i is observed, and not merely over all observed cells. To estimate the variance parameters
σ2
i and ρ, we define the empiric residuals. For all 2` ≤ k ≤ 2`+1 − 1 and 1 ≤ j ≤ m set{

ε̂(j,2k) = δ(j,2k)(X(j,2k) − â0,` − b̂0,`X(j,k)),

ε̂(j,2k+1) = δ(j,2k+1)(X(j,2k+1) − â1,` − b̂1,`X(j,k)).
(3)

We propose the following empirical estimators

σ̂2
i,n =

1

|T∗in−1|

m∑
j=1

∑
k∈Tn−1

ε̂2(j,2k+i), ρ̂n =
1

|T∗01n−1|

m∑
j=1

∑
k∈Tn−1

ε̂(j,2k)ε̂(j,2k+1),

where |T∗in | is the set of all cells which have at least one offspring of type i, for i ∈ {0, 1} and |T∗01n |
is the set of all the cells which have exactly two offspring, in the m trees up to generation n.

4.3 Consistency and normality
We now state the convergence results we obtain for the estimators above. The assumptions (H.1)
to (H.6) are given in A.2. These results hold on the non-extinction set E .

Theorem 4.1 Under assumptions (H.5-6) and for all i, l0 and l1 in {0, 1}, p̂(i)n (l0, l1) converges
to p(i)(l0, l1) almost surely on E. Under assumptions (H.0-6), θ̂n, σ̂2

0,n, σ̂2
1,n and ρ̂n converge to θ,

σ2
0, σ2

1 and ρ respectively, almost surely on E.
The asymptotic normality results are only valid conditionally to the non-extinction of the global
cell population.

Theorem 4.2 Under assumptions (H.5-6) we have√
|T∗n−1|(p̂n − p)

L−→ N (0,V),

and under assumptions (H.0-6), we have√
|T∗n−1|(θ̂n − θ)

L−→ N (0,Γθ),
√
|T∗n|(σ̂2

0,n − σ2
0 , σ̂

2
1,n − σ1

0)t
L−→ N (0,Γσ),√

|T∗01n−1|(ρ̂n − ρ)
L−→ N (0, γρ),

conditionally to E. The explicit form of the variance matrices V, Γθ, Γσ and of γρ is given in
Eq. (6), (7), (9) and (10) respectively.

The proofs of these results are given in B.2 and B.3 for the GW process and in C.2 and C.3 for
the BAR process. From the asymptotic normality, one can naturally construct confidence intervals
and tests. Their explicit formulas are given in B.4 and C.4.
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5 Data analysis
We applied our procedure to the Escherichia coli data of Stewart et al (2005). The biological issue
addressed is aging in single cell organisms. E. coli is a rod-shaped bacterium that reproduces by
dividing in the middle. Each cell has thus a new pole (due to the division of its mother) and an
old one (one of the two poles of its mother). The cell that inherits the old pole of its mother is
called the old pole cell, the other one is called the new pole cell. Therefore, each cell has a type:
old pole or new pole cell , inducing asymmetry in the cell division. On a binary tree, the new pole
cells are labelled by an even number and the old pole cells by an odd number.

Stewart et al (2005) filmed 94 colonies of dividing E. coli cells, determining the complete lineage
and the growth rate of each cell. The number of divisions goes from four to nine. The 94 data
sets gather |T∗9| = 22394 data (11189 of type even and 11205 of type odd). Not a single data tree
is complete. Missing data mainly do not come from cell death (only 16 cells are recorded to die)
but from measurement difficulties due mostly to overlapping cells or cells wandering away from the
field of view. Note also that for a growth rate to be recorded, the cell needs to be observed through
its whole life cycle. If this is not the case, there is no record at all, so that a censored data model is
not relevant. The observed average growth rate of even (resp. odd) cells is 0.0371 (resp. 0.0369).
These data were investigated in (Stewart et al, 2005; Guyon et al, 2005; Guyon, 2007; de Saporta
et al, 2011; de Saporta et al, 2012).

Stewart et al (2005) proposed a statistical study of the averaged genealogy and pair-wise com-
parison of sister cells. They concluded that the old pole cells exhibit cumulatively slowed growth,
less offspring biomass production and an increased probability of death whereas single-experiment
analyses did not. However they assumed independence between the averaged couples of sister cells,
which does not hold in such genealogies.

The other studies are based on single-tree analyses instead of averaging all the genealogical
trees. Guyon et al (2005) model the growth rate by a Markovian bifurcating process, but their
procedure does not take into account the dependence between pairs of sister cells either. The
asymmetry was rejected (p-value< 0.1) in half of the experiments so that a global conclusion
was difficult. Guyon (2007) has then investigated the asymptotical properties of a more general
asymmetric Markovian bifurcating autoregressive process, and he rigorously constructed a Wald’s
type test to study the asymmetry of the process. However, his model does not take into account
the possibly missing data from the genealogies. The author investigates the method on the 94
data sets but it is not clear how he manages missing data. More recently, de Saporta et al (2011)
proposed a single-tree analysis with a rigorous method to deal with the missing data and carried
out their analysis on the largest data set, concluding to asymmetry on this single set. Further
single-tree studies of the 51 data sets issued from the 94 colonies containing at least 8 generations
were conducted in de Saporta et al (2012). The symmetry hypothesis is rejected in one set out
of four for (a0, b0) = (a1, b1) and one out of eight for a0/(1− b0) = a1/(1− b1) forbidding a global
conclusion. Simulation studies tend to prove that the power of the tests on single-trees is quite low
for only eight or nine generations. This is what motivated the present study and urged us to use
all the data available in one global estimation, rather than single-tree analyses.

In this section, we propose a new investigation of E. coli data of (Stewart et al, 2005) where for
the first time the dependence structure between cells within a genealogy is fully taken into account,
missing data are taken care of rigorously, all the available data, i.e. the 94 sets, are analyzed at
once and both the growth rate and the number/type of descendants are investigated. It is sensible
to consider that all the data sets correspond to BAR processes with the same coefficients as the
experiments where conducted in similar conditions. Moreover, a direct comparison of single-tree
estimations would be meaningless as the data trees do not all have the same number of generations,
and it would be impossible to determine whether variations in the computed single-tree estimators
come from an intrinsic variability between trees or just the low accuracy of the estimators for
small trees. The original estimation procedure described in Section 2 enables us to use all the
information available without the drawbacks of low accuracy for estimators or low power for tests
on small single-trees.
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5.1 Symmetry of the BAR process
We now give the results of our new investigation of the E. coli growth rate data of (Stewart et al,
2005). We suppose that the growth rate of cells in each lineage is modeled by the BAR process
defined in Eq. (1) and observed through the two-type GW process defined in section 3.2. The
experiments were independent and lead in the same conditions corresponding to independence and
identical distribution of the processes (X(j,·), δ(j,·)), 1 ≤ j ≤ m.

We first give the point and interval estimation for the various parameters of the BAR process.
Table 1 gives the estimation θ̂9 of θ with the 95% confidence interval (CI) of each coefficient together
with an estimation of ai/(1−bi). This value is interesting in itself as ai/(1−bi) is the fixed point of
the equation E[X2k+i] = ai + biE[Xi]. Thus it corresponds to the asymptotic mean growth rate of
the cells in the lineage always inheriting the new pole from the mother (i = 0) or always inheriting
the old pole (i = 1). The confidence intervals of b0 and b1 show that the non explosion assumption
|b0| < 1 and |b1| < 1 is satisfied. Note that although the number of observed generations n = 9 may
seem too small to obtain the consistency of our estimators, Theorem 4.2 shows that their variance
is of order |T∗n|−1/2. Here the total number of observed cells is high enough as |T∗9| = 22394. In
addition, an empirical study of the convergence rate on simulated data is conducted in the next
section to validate that 9 observed generations is enough.

parameter estimation CI parameter estimation CI

a0 0.0203 [0.0202; 0.0204] a1 0.0195 [0.0194; 0.0196]
b0 0.4615 [0.4417; 0.4812] b1 0.4782 [0.4631; 0.4933]

a0/(1− b0) 0.03773 [0.03756; 0.03790] a1/(1− b1) 0.03734 [0.03717; 0.03752]

Table 1: Estimation and 95 % CI of θ and ai/(1− bi).

Table 2 gives the estimations σ̂2
i,9 of σ2

i and ρ̂9 of ρ with the 95% CI of each coefficient. The
hypothesis of equality of variances σ2

0 = σ2
1 is not rejected (p-value= 0.19). From the biological

point of view, this result is not surprising as the noise sequence represents the influence of the
environment and both sister cells are born and grow in the same local environment.

We now turn to the results of symmetry tests. The hypothesis of equality of the couples
(a0, b0) = (a1, b1) is strongly rejected (p-value = 10−5). The hypothesis of the equality of the two
fixed points a0/(1− b0) and a1/(1− b1) of the BAR process is also rejected (p-value = 2·10−3). We
can therefore rigorously confirm that there is a statistically significant asymmetry in the division
of E. coli. Biologically we can thus conclude that the growth rates of the old pole and new pole
cells do have different dynamics. This is interpreted as aging for the single cell organism E. coli,
see Stewart et al (2005); Wang et al (2010).

5.2 Symmetry of the GW process
Let us now turn to the asymmetry of the GW process itself. Note that to our best knowledge,
it is the first time this question is investigated for the E. coli data of (Stewart et al, 2005). We
estimated the parameters p(i)(l0, l1) of the reproduction laws of the underlying GW process. Table
3 gives the estimations p̂(i)9 (l0, l1) of the p(i)(l0, l1). The estimation of the dominant eigenvalue π
of the descendants matrix of the GW processes (characterizing extinction, see A.1) is π̂9 = 1.204
with CI [1.191; 1.217]. The non-extinction hypothesis (π > 1) is thus satisfied.

The means of the two reproduction laws p(0) and p(1) are estimated at m̂0
9 = 1.2048 and

m̂1
9 = 1.2032 respectively. The hypothesis of the equality of the mean numbers of offspring is not

rejected (p-value = 0.9). However, Table 3 shows that there is a statistically significative difference
between vectors p(0) and p(1) as none of the confidence intervals intersect. Indeed, the symmetry
hypothesis p(0) = p(1) is rejected with p-value = 2 · 10−5. However, it is not possible to interpret
this asymmetry in terms of the division of E. coli, since the cause of missing data is mostly due to
observation difficulties rather than some intrinsic behavior of the cells.
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parameter estimation CI

σ2
0 2.28 · 10−5 [0.88 · 10−5; 3.67 · 10−5]
σ2
1 1.34 · 10−5 [1.29 · 10−5; 1.40 · 10−5]
ρ 0.48 · 10−5 [0.44 · 10−5; 0.52 · 10−5]

Table 2: Estimation and 95 % CI of σ2
i and ρ

Table 3: Estimation and 95 % CI of p.
parameter estimation CI parameter estimation CI

p(0)(1, 1) 0.56060 [0.56055; 0.56065] p(1)(1, 1) 0.55928 [0.55923; 0.55933]
p(0)(1, 0) 0.03621 [0.03620; 0.03622] p(1)(1, 0) 0.04707 [0.04706; 0.04708]
p(0)(0, 1) 0.04740 [0.04739; 0.04741] p(1)(0, 1) 0.03755 [0.03754; 0.03756]
p(0)(0, 0) 0.35579 [0.35574; 0.35583] p(1)(0, 0) 0.35611 [0.35606; 0.35616]

6 Simulation study
To investigate the empirical rate of convergence of our estimators as well as the power of the
symmetry tests we have performed simulations of our coupled BAR-GW model. In particular,
we study how they depend both on the ratio of missing data and on the number of observed
generations.

In a complete binary tree, the number of descendants of each individual is exactly 2. In our
model of GW tree, the number of descendants is random and its average is asymptotically of
the order of the dominant eigenvalue π of the descendants matrix of the GW processes, see A.1.
Therefore π characterizes the scarcity of data: if π = 2, the whole tree is observed and there are
no missing data; as π decreases, the average number of missing data increases (we choose π > 1 to
avoid almost sure extinction). In addition, for a single GW tree, the number of observed individuals
up to generation n is asymptotically of order πn.

We have simulated the BAR-GW process for 19 distinct parameters sets, see Tables 4 and
5. Sets 1 to 10 are symmetric with decreasing π (from 2 to 1.08), sets 11 to 19 are asymmetric
with decreasing π (from 1.9 to 1.1). The parameters of the BAR process are chosen close to the
estimated values on E. coli data whereas the GW parameters are chosen to obtain different values
of π. Notice that set 18 is close to the estimated values for E. coli data. For each set, we simulated
the BAR-GW process up to generation 15 and ran our estimation procedure on m = 100 replicated
trees (m = 94 for E. coli data). Each estimation was repeated 1000 times.

set a0 b0 a1 b1 σ0 σ1 ρ
1 to 10 0.02 0.47 0.02 0.47 1.8·10−5 1.8·10−5 0.5·10−5

11 to 19 0.0203 0.4615 0.0195 0.4782 2.28·10−5 1.34·10−5 0.48·10−5

Table 4: Parameters sets for the simulated BAR processes.

We first investigate the significant level and power of our symmetry tests on the simulated data.
The asymptotic properties of the tests are given in C.4. Table 6 (resp. Table 7) gives the proportion
of reject (significant level 5%) under H0 (symmetric sets 1 to 10) and under H1 (asymmetric sets
11 to 19) for the test of symmetry of fixed points H0: a0/(1 − b0) = a1/(1 − b1) (resp. the test
of equality of vectors H0: (a0, b0) = (a1, b1)). In both cases, the proportion of reject under H0 is
close to the significant level regardless of the number of observed generations (from 5 generations
on) and of the value of π. We thus can conclude that from n = 5 on the asymptotic χ2 law is valid.
Under H1, the proportion of reject increases when the number of observed generations increases
and decreases when π decreases. Recall that the number of observed individuals up to generation
n is asymptotically of order mπn (m = 100) and the power is strongly linked to the number of
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set p(0) p(1) π
1 (1,0,0,0) (1,0,0,0) 2
2 (0.90,0.04,0.04,0.02) (0.90,0.04,0.04,0.02) 1.88
3 (0.85,0.04,0.04,0.07) (0.85,0.04,0.04,0.07) 1.78
4 (0.80,0.04,0.04,0.12) (0.80,0.04,0.04,0.12) 1.68
5 (0.75,0.04,0.04,0.17) (0.75,0.04,0.04,0.17) 1.58
6 (0.70,0.04,0.04,0.22) (0.70,0.04,0.04,0.22) 1.48
7 (0.65,0.04,0.04,0.27) (0.65,0.04,0.04,0.27) 1.38
8 (0.60,0.04,0.04,0.32) (0.60,0.04,0.04,0.32) 1.28
9 (0.55,0.04,0.04,0.37) (0.55,0.04,0.04,0.37) 1.18

10 (0.50,0.04,0.04,0.42) (0.50,0.04,0.04,0.42) 1.08
11 (0.901,0.045,0.055,0.019) (0.899,0.055,0.045,0.021) 1.9
12 (0.851,0.045,0.055,0.069) (0.849,0.055,0.045,0.071) 1.8
13 (0.801,0.045,0.055,0.119) (0.799,0.055,0.045,0.121) 1.7
14 (0.751,0.045,0.055,0.169) (0.749,0.055,0.045,0.171) 1.6
15 (0.701,0.045,0.055,0.219) (0.699,0.055,0.045,0.221) 1.5
16 (0.651,0.045,0.055,0.269) (0.649,0.055,0.045,0.271) 1.4
17 (0.601,0.045,0.055,0.319) (0.659,0.055,0.045,0.321) 1.3
18 (0.551,0.045,0.055,0.369) (0.549,0.055,0.045,0.371) 1.2
19 (0.501,0.045,0.055,0.419) (0.499,0.055,0.045,0.421) 1.1

Table 5: Parameters sets for the simulated GW processes.

observed data. For instance, it is perfect for high numbers of observed generations and high π
when the expected number of observed data is huge and it is low for low π even for high numbers
of observed generations.

Next, we investigate the empirical convergence rate of the estimation error ‖θ̂n − θ‖2 both as
a function of the number of observed generations n and of π. Figure 2 (resp. Figure 3) shows the
distribution of ‖θ̂n − θ‖2/‖θ‖2 for n = 9 (reps. n = 15) observed generations for the asymmetric
parameters sets 11 to 19. It illustrates how the error deteriorates as π decreases, i.e. as the ratio
of missing data increases. The two figures have the same scale to illustrate how the relative error
decreases when the number of observed generations is higher.

We know from Theorem 4.2 that the variance of θ̂n is of order |T∗n|−1/2 which asymptotically
has the same order of magnitude as π−n/2. In order to check how soon (in terms of the number
n of observed generations) this asymptotic rate is reached, we fitted the logarithm of the errors
‖θ̂n − θ‖2 (averaged over the 1000 simulations) to a linear function of n for each parameters set
(using the errors from generation 8 to generation 15. The results are shown on Figure 4.

We also compare the computed slopes of the linear functions to the theoretical value − log(π)/2
for the various parameters sets. The results are given in Table 8 and show that the asymptotic
rate is reached from generation 8 on. It thus validates the accuracy of the study of E. coli data
conducted in the previous section.

7 Conclusion
In this paper, we first propose a statistical model to estimate and test asymmetry of a quantitative
characteristic associated to each node of a family of incomplete binary trees, without aggregating
single-tree estimators. An immediate application is the investigation of asymmetry in cell lineage
data. This model of coupled GW-BAR process generalizes all the previous methods on this subject
in the literature because it rigorously takes into account:

• the dependence of the characteristic of a cell to that of its mother and the correlation between
two sisters through the BAR model,

• the possibly missing data through the GW model,
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generation 5 6 7 8 9 10 11 12 13 14 15
set 1 0.037 0.050 0.047 0.048 0.046 0.056 0.046 0.047 0.053 0.041 0.042
set 2 0.045 0.047 0.047 0.052 0.048 0.053 0.050 0.042 0.040 0.050 0.049
set 3 0.051 0.048 0.043 0.048 0.057 0.064 0.046 0.045 0.048 0.049 0.052
set 4 0.051 0.055 0.052 0.056 0.049 0.047 0.052 0.050 0.059 0.058 0.051
set 5 0.052 0.052 0.049 0.053 0.061 0.065 0.052 0.054 0.040 0.045 0.042
set 6 0.045 0.036 0.039 0.035 0.051 0.062 0.054 0.061 0.055 0.043 0.046
set 7 0.045 0.048 0.045 0.044 0.048 0.037 0.041 0.044 0.050 0.049 0.049
set 8 0.046 0.044 0.044 0.049 0.047 0.048 0.042 0.038 0.043 0.043 0.054
set 9 0.053 0.052 0.058 0.061 0.060 0.055 0.052 0.052 0.045 0.053 0.051
set 10 0.039 0.038 0.051 0.046 0.054 0.049 0.054 0.046 0.047 0.046 0.039
set 11 0.448 0.697 0.926 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
set 12 0.356 0.568 0.832 0.975 0.999 1.000 1.000 1.000 1.000 1.000 1.000
set 13 0.305 0.497 0.711 0.894 0.991 1.000 1.000 1.000 1.000 1.000 1.000
set 14 0.252 0.399 0.586 0.777 0.926 0.994 0.999 1.000 1.000 1.000 1.000
set 15 0.208 0.293 0.417 0.608 0.808 0.930 0.990 1.000 1.000 1.000 1.000
set 16 0.200 0.279 0.390 0.502 0.668 0.790 0.905 0.977 0.997 1.000 1.000
set 17 0.174 0.234 0.287 0.364 0.458 0.566 0.696 0.829 0.912 0.967 0.990
set 18 0.130 0.165 0.209 0.255 0.335 0.382 0.451 0.548 0.650 0.725 0.811
set 19 0.118 0.142 0.174 0.190 0.207 0.245 0.300 0.330 0.371 0.416 0.459

Table 6: Proportion of p-values ≤ 5% for the equality of fixed points test (1000 replications).

generation 5 6 7 8 9 10 11 12 13 14 15
set 1 0.045 0.062 0.038 0.051 0.051 0.051 0.040 0.033 0.060 0.036 0.049
set 2 0.036 0.055 0.049 0.054 0.044 0.048 0.032 0.037 0.039 0.047 0.041
set 3 0.040 0.044 0.045 0.053 0.057 0.042 0.050 0.039 0.053 0.045 0.039
set 4 0.053 0.058 0.055 0.047 0.053 0.056 0.061 0.049 0.052 0.048 0.043
set 5 0.050 0.050 0.049 0.052 0.056 0.049 0.047 0.052 0.044 0.048 0.044
set 6 0.058 0.043 0.040 0.043 0.052 0.053 0.057 0.056 0.048 0.043 0.051
set 7 0.032 0.048 0.042 0.032 0.044 0.040 0.046 0.035 0.041 0.052 0.047
set 8 0.059 0.052 0.058 0.055 0.052 0.050 0.053 0.044 0.050 0.052 0.050
set 9 0.054 0.049 0.046 0.042 0.048 0.042 0.044 0.050 0.042 0.047 0.045
set 10 0.042 0.049 0.045 0.044 0.045 0.053 0.051 0.046 0.043 0.044 0.037
set 11 0.414 0.678 0.920 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
set 12 0.310 0.557 0.833 0.980 0.999 1.000 1.000 1.000 1.000 1.000 1.000
set 13 0.286 0.454 0.703 0.902 0.996 1.000 1.000 1.000 1.000 1.000 1.000
set 14 0.218 0.367 0.555 0.775 0.938 0.995 1.000 1.000 1.000 1.000 1.000
set 15 0.193 0.276 0.391 0.596 0.789 0.934 0.990 1.000 1.000 1.000 1.000
set 16 0.175 0.237 0.354 0.479 0.641 0.800 0.925 0.980 0.997 1.000 1.000
set 17 0.156 0.188 0.246 0.362 0.437 0.540 0.683 0.806 0.919 0.968 0.989
set 18 0.126 0.152 0.193 0.247 0.285 0.359 0.410 0.525 0.633 0.726 0.819
set 19 0.110 0.116 0.140 0.161 0.192 0.229 0.271 0.320 0.365 0.395 0.452

Table 7: Proportion of p-values ≤ 5% for the test (a0, b0) = (a1, b1) (1000 replications).
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Figure 2: Boxplot of the estimation of the relative error ‖θ̂9 − θ‖2/‖θ‖2 for the data sets 11 to 19
(decreasing π)

set 11 set 12 set 13 set 14 set 15 set 16 set 17 set 18 set 19

0

0.05

0.1

0.15

Figure 3: Boxplot of the estimation of the relative error ‖θ̂9 − θ‖2/‖θ‖2 for the data sets 11 to 19
(decreasing π)
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Figure 4: Logarithm of the error log ‖θ̂n−θ‖2 as a function of the number n of observed generations
for the asymmetric parameters set 11 to 19 (from bottom to top: set 11-black circles, set 12-blue
squares, set 13-magenta diamonds, set 14-red triangles, set 15-black squares, set 16-blue circles,
set 17-magenta triangles, set 18-red diamonds, set 19-black stars).

set 11 12 13 14 15 16 17 18 19
empirical slope -0.3170 -0.2966 -0.2634 -0.2325 -0.2060 -0.1801 -0.1413 -0.0953 -0.0672
−log(π)/2 -0.3209 -0.2939 -0.2653 -0.2350 -0.2027 -0.1682 -0.1312 -0.0912 -0.0477

Table 8: Logarithm of empirical convergences rates vs theoretical rate

• the information from several sets of data obtained in similar experimental conditions without
the drawbacks of poor accuracy or power for small single-trees.

Furthermore, we propose the estimation of parameters of a two-type GW process in the specific
context of a binary tree with a fine observation, namely the presence or absence of each cell of
the complete binary tree is known. In the context where missing offspring really come from the
intrinsic reproduction, and not from faulty measures, the asymmetry of the parameters of the GW
process can be applied to cell lineage data and be interpreted as a difference in the reproduction
laws between the two different types of cell.

We applied our procedure to the E. coli data of Stewart et al (2005) and concluded there exists
a statistically significant asymmetry in this cell division. Results were validated by simulation
studies of the empirical rate of convergence of the estimators and power of the tests.

A Technical assumptions and notation
Our convergence results rely on martingale theory and the use of several carefully chosen filtrations
regarding the BAR and/or GW process. The approach is similar to that of de Saporta et al (2011);
de Saporta et al (2012), but their results cannot be directly applied here. This is mainly due to our
choice of the global non-extinction set as the union and not the intersection of the non-extinction
sets of each replicated process preventing us from directly using convergence results on single-tree
estimators. We now give some additional notation and the precise assumptions of our convergence
theorems.
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A.1 Generations and extinction
We first introduce some notation about the complete and observed genealogy trees that will be used
in the sequel. For all n ≥ 1, denote the n-th generation of any given tree by Gn = {k, 2n ≤ k ≤
2n+1 − 1}. In particular, G0 = {1} is the initial generation, and G1 = {2, 3} is the first generation
of offspring from the first ancestor. Denote by Tn =

⋃n
`=0 G` the sub-tree of all individuals from

the original individual up to the n-th generation. Note that the cardinality |Gn| of Gn is 2n, while
that of Tn is |Tn| = 2n+1 − 1. Finally, we define the sets of observed individuals in each tree
G∗j,n = {k ∈ Gn : δ(j,k) = 1} and T∗j,n = {k ∈ Tn : δ(j,k) = 1}, and set

|G∗n| =
m∑
j=1

|G∗j,n| and |T∗n| =
m∑
j=1

|T∗j,n|,

the total number of observed cells in allm trees in generation n and up to generation n respectively.
We next need to characterize the possible extinction of the GW processes, that is where |T∗n| does
not tend to infinity with n. For 1 ≤ j ≤ m and n ≥ 1, we define the number of observed cells
among the n-th generation of the j-th tree, distinguishing according to their type, by

Z0
j,n =

∑
k∈Gn−1

δ(j,2k) and Z1
j,n =

∑
k∈Gn−1

δ(j,2k+1),

and we set Zj,n = (Z0
j,n, Z

1
j,n). For all j, the process (Zj,n) thus defined is a two-type GW process,

see Harris (1963). We define the descendants matrix P of the GW process by

P =

(
p00 p01
p10 p11

)
,

where pi0 = p(i)(1, 0) + p(i)(1, 1) and pi1 = p(i)(0, 1) + p(i)(1, 1), for i ∈ {0, 1}. The quantity pil is
thus the expected number of descendants of type l of an individual of type i. It is well-known that
when all the entries of the matrix P are positive, P has a positive strictly dominant eigenvalue,
denoted π, which is also simple and admits a positive left eigenvector, see e.g. (Harris, 1963,
Theorem 5.1). In that case, we denote by z = (z0, z1) the left eigenvector of P associated with
the dominant eigenvalue π and satisfying z0 + z1 = 1. Let Ej =

⋃
n≥1{Zj,n = (0, 0)} be the event

corresponding to the case when there are no cells left to observe in the j-th tree. We will denote
Ej the complementary set of Ej . We are interested in asymptotic results on the set where there is
an infinity of X(j,k) to be observed that is on the union of the non-extinction sets Ej denoted by

E =

m⋃
j=1

Ej = { lim
n→∞

|T∗n| =∞}.

Note that we allow some trees to extinct, as long as there is at least one tree still growing. This
assumption is natural in view of the E. coli data as the collected genealogies do have a significantly
different numbers of observed generations (from 4 up to 9).

A.2 Assumptions
Our inference is based on the m i.i.d. replicas of the observed BAR process, i.e. the available
information is given by the sequence (δ(j,k), δ(j,k)X(j,k))1≤j≤m,k≥1. We first introduce the natural
generation-wise filtrations of the BAR processes. For all 1 ≤ j ≤ m, denote by Fj = (Fj,n)n≥1 the
natural filtration associated with the j-th copy of the BAR process, which means that Fj,n is the σ-
algebra generated by all individuals of the j-th tree up to the n-th generation, Fj,n = σ{X(j,k), k ∈
Tn}. For all 1 ≤ j ≤ m, we also define the observation filtrations as Oj,n = σ{δ(j,k), k ∈ Tn}, and
the sigma fields Oj = σ{δ(j,k), k ≥ 1}.

We make the following main assumptions on the BAR and GW processes.

(H.0) The parameters (a0, b0, a1, b1) satisfy the usual stability assumption 0 < max{|b0|, |b1|} < 1.
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(H.1) For all 1 ≤ j ≤ m, n ≥ 0, k ∈ Gn+1, E[ε16(j,k)] <∞ and E[X16
(j,1)] <∞.

For all 1 ≤ j ≤ m, n ≥ 0, k ∈ Gn and i ∈ {0, 1}, one a.s. has

E[ε(j,2k+i)|Fj,n] = 0, E[ε2(j,2k+i)|Fj,n] = σ2
i , E[ε3(j,2k+i)|Fj,n] = λi,

E[ε4(j,2k+i)|Fj,n] = τ4i , E[ε8(j,2k+i)|Fj,n] = γ8i, E[ε16(j,2k+i)|Fj,n] = µ16
i .

For all 1 ≤ j ≤ m, n ≥ 0, k ∈ Gn, one a.s. has

E[ε(j,2k)ε(j,2k+1)|Fj,n] = ρ, E[ε2(j,2k)ε
2
(j,2k+1)|Fj,n] = ν2, E[ε8(j,2k)ε

8
(j,2k+1)|Fj,n] = η8,

E[ε2(j,2k)ε(j,2k+1)|Fj,n] = α, E[ε(j,2k)ε
2
(j,2k+1)|Fj,n] = β.

(H.2) For all 1 ≤ j ≤ m and n ≥ 0 the vectors {(ε(j,2k), ε(j,2k+1)), k ∈ Gn} are conditionally
independent given Fj,n.

(H.3) The sequences (ε(1,k))k≥2, (ε(2,k))k≥2, . . . , (ε(m,k))k≥2 are independent. The random vari-
ables (X(j,1))1≤j≤m are independent and independent from the noise sequences.

(H.4) For all 1 ≤ j ≤ m, the sequence (δ(j,k))k≥1 is independent from the sequences (X(j,k))k≥1
and (ε(j,k))k≥2.

(H.5) The sequences (δ(1,k))k≥2, (δ(2,k))k≥2, . . . , (δ(m,k))k≥2 are independent.

We also make the following super criticality assumption on the matrix P.

(H.6) All entries of the matrix P are positive: for all (i, l) ∈ {0, 1}2, pil > 0, and the dominant
eigenvalue is greater than one: π > 1 .

If π > 1, it is well known, see e.g. Harris (1963), that the extinction probability of the GW
processes is less than one: for all 1 ≤ j ≤ m, P(Ej) = p < 1. Under assumptions (H.5-6), one thus
clearly has P(E) = 1− pm > 0.

Note that under these assumptions, it is proved in de Saporta et al (2011) that the single-tree
estimators θ̂j,n are consistent on the single-tree non-extinction sets Ej . This result is based on the
separate convergence of Σj,n and Σj,nθ̂j,n. Therefore, the convergence of our global estimator θ̂n
is readily obtained on the intersection of the single-tree non-extinction sets ∩mj=1Ej , see Section 2.
However, we are interested in the convergence of the global estimator on the larger set E = ∪mj=1Ej .
This is why we cannot directly use the results of de Saporta et al (2011). We explain in the following
sections how the ideas therein have to be adapted to this new framework.

A.3 Additional estimators
From the estimators of the reproductions probabilities of the GW process, one can easily construct
an estimator of the spectral radius π of the descendants matrix P of the GW process. Indeed, P is
a 2×2 matrix so that its spectral radius can be computed explicitly as a function of its coefficients,
namely

π =
1

2

(
tr(P) +

(
tr(P)2 − 4 det(P)

)1/2)
.

Replacing the coefficients of P by their empirical estimators, one obtains

π̂n =
1

2

(
T̂n + (T̂ 2

n − 4D̂n)1/2
)
.

where

T̂n = p̂(0)n (1, 0) + p̂(0)n (1, 1) + p̂(1)n (0, 1) + p̂(1)n (1, 1),

D̂n = (p̂(0)n (1, 0) + p̂(0)n (1, 1))(p̂(1)n (0, 1) + p̂(1)n (1, 1))− (p̂(0)n (0, 1) + p̂(0)n (1, 1))(p̂(1)n (1, 0) + p̂(1)n (1, 1))

are the empirical estimator of the trace tr(P) and the determinant det(P) respectively. Finally,
to compute confidence intervals for σ2

i and ρ, we need an estimation of higher moments. We use
again empirical estimators

τ̂4i,n =
1

|T∗in−1|

m∑
j=1

∑
k∈Tn−1

ε̂4(j,2k+i), ν̂2n =
1

|T∗01n−1|

m∑
j=1

∑
k∈Tn−1

ε̂2(j,2k)ε̂
2
(j,2k+1).
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B Convergence of estimators for the GW process
We now prove the convergence of the estimators for the GW process, that is the first parts of
Theorems 4.1 and 4.2, together with additional technical results.

B.1 Preliminary results: from single-trees to multiple trees
Our objective is to show that we can adapt the results in de Saporta et al (2011) to the multiple tree
framework despite our choice of considering the union and not the intersection of the single-tree
non-extinction sets. To this aim, we first need to recall Lemma A.3 of Bercu et al (2009).

Lemma B.1 Let (An) be a sequence of real-valued matrices such that
∞∑
n=0

‖An‖ <∞ and lim
n→∞

n∑
k=0

Ak = A.

In addition, let (Xn) be a sequence of real-valued vectors which converges to a limiting value X.
Then, one has

lim
n→∞

n∑
`=0

An−`X` = AX.

The next result is an adaptation of Lemma A.2 in Bercu et al (2009) to the GW tree framework.
It gives a correspondence between sums on one generation and sums on the whole tree.

Lemma B.2 Let (xn) be a sequence of real numbers and π > 1. One has

lim
n→∞

1

πn

∑
k∈Tn

xk = x⇐⇒ lim
n→∞

1

πn

∑
k∈Gn

xk =
π − 1

π
x.

Proof: Suppose that π−n
∑
k∈Tn

xk converges to x. Then one has

1

πn

∑
k∈Gn

xk =
1

πn

∑
k∈Tn

xk −
1

π

1

πn−1

∑
k∈Tn−1

xk −−−−→
n→∞

x− 1

π
x =

π − 1

π
x.

Conversely, if π−n
∑
k∈Gn

xk converges to y, as Tn = ∪n`=0G`, one has

1

πn

∑
k∈Tn

xk =

n∑
`=0

1

πn−`
1

π`

∑
k∈G`

xk −−−−→
n→∞

π

π − 1
y,

using Lemma B.1 with An = π−n and Xn = π−n
∑
k∈Gn

xk. �

We now adapt Lemma 2.1 of de Saporta et al (2011) to our multiple tree framework.

Lemma B.3 Under assumption (H.5-6), there exist a nonnegative random variable W such that
for all sequences (x(1,n)), . . . , (x(m,n)) of real numbers one has a.s.

lim
n→∞

1{|G∗
n|>0}

|T∗n|

m∑
j=1

∑
k∈Tn

x(j,k) = x1E ⇐⇒ lim
n→∞

1

πn

m∑
j=1

∑
k∈Tn

x(j,k) = x
π

π − 1
W.

Proof: We use a well known property of super-critical GW processes, see e.g. Harris (1963): for
all j, there exists a non negative random variable Wj such that

lim
n→∞

|T∗j,n|
πn

=
π

π − 1
Wj a.s. (4)

and in addition {Wj > 0} = Ej = lim{|G∗j,n| > 0}. Therefore, one has

lim
n→∞

m∑
j=1

|T∗j,n|
πn

= lim
n→∞

|T∗n|
πn

=
π

π − 1

m∑
j=1

Wj a.s.
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The result is obtained by setting W =
∑m
j=1Wj and noticing that E = ∪mj=1Ej = {

∑m
j=1Wj >

0} = lim{|G∗n| > 0}. �

Finally, the main result of this section is new and explains how convergence results on multiple
trees can be obtained from convergence results on a single-tree. This will allow us to directly use
results from de Saporta et al (2011) in all the sequel.

Lemma B.4 Let (x(1,n)), . . . , (x(m,n)) be m sequences of real numbers such that for all 1 ≤ j ≤ m
one has the a.s. limit

lim
n→∞

1{|G∗
j,n|>0}

|T∗j,n|
∑
k∈Tn

x(j,k) = `1Ej , (5)

then under assumptions (H.5-6) one also has

lim
n→∞

1{|G∗
n|>0}

|T∗n|

m∑
j=1

∑
k∈Tn

x(j,k) = `1E a.s.

Proof: Equations (5) and (4) yield, for all j,

lim
n→∞

1

πn

∑
k∈Tn

x(j,k) = `
π − 1

π
Wj .

Summing over j, one obtains

lim
n→∞

1

πn

m∑
j=1

∑
k∈Tn

x(j,k) = `
π − 1

π

m∑
j=1

Wj = `
π − 1

π
W.

Finally, we use Lemma B.3 to conclude. �

B.2 Strong consistency for the estimators of the GW process

To prove the convergence of the p̂(i)n (l0, l1) we first need to derive a convergence result for a sum
of independent GW processes.

Lemma B.5 Suppose that assumptions (H.5-6) are satisfied. Then for i ∈ {0, 1} one has

lim
n→∞

1{|G∗
n|>0}|T∗n|

−1
m∑
j=1

∑
k∈Tn−1

δ(j,2k+i) = zi1E a.s.

Proof Remarking that
∑m
j=1

∑
k∈Tn−1

δ(j,2k+i) =
∑m
j=1

∑n
l=1 Z

i
j,l, the lemma is a direct conse-

quence of Lemma B.4 and the well-known property of super-critical GW processes 1{|G∗
j,n|>0}|T∗j,n|−1

∑n
l=1 Zj,l →

z1E , for all 0 ≤ j ≤ m. �

Proof of Theorem 4.1, first part We give the details of the convergence of p̂(1)n (1, 1) to p(1)(1, 1), the
other convergences are derived similarly. The proof relies on the convergence of square integrable
scalar martingales. Set

Mn =

m∑
j=1

∑
k∈Tn−2

δ(j,2k+1)

(
δ(j,4k+2)δ(j,4k+3) − p(1)(1, 1)

)
.

We are going to prove that (Mn) is a martingale for a well chosen filtration. Recall that Oj,n =
σ{δ(j,k), k ∈ Tn}, and set On = ∨mj=1Oj,n. Then (Mn) is clearly a square integrable real (On)-
martingale. Using the independence assumption (H.5), its increasing process is

< M >n=

m∑
j=1

∑
k∈Tn−2

δ(j,2k+1)p
(1)(1, 1)

(
1− p(1)(1, 1)

)
= p(1)(1, 1)

(
1− p(1)(1, 1)

) m∑
j=1

n−1∑
`=0

Z1
j,`.
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Hence, Lemma B.5 implies that |T∗n−1|−1 < M >n converges almost surely on the non-extinction
set E . The law of large numbers for scalar martingales thus yields that |T∗n−1|−1Mn tends to 0 as
n tends to infinity on E . Finally, notice that

p̂(1)n (1, 1)− p(1)(1, 1) =
Mn∑m

j=1

∑
k∈Tn−2

δ(j,2k+1)
=

Mn∑m
j=1

∑n−1
`=0 Z

1
j,`

,

so that Lemma B.5 again implies the almost sure convergence of p̂(1)n (1, 1) to p(1)(1, 1) on the non-
extinction set E . �

As a direct consequence, one obtains the a.s. convergence of π̂n to π on E .

B.3 Asymptotic normality for the estimators of the GW process
As P(E) 6= 0, we can define a new probability PE by PE(A) = P(A ∩ E)/P(E) for all event A. In
all the sequel of this section, we will work on the space E under the probability PE and we denote
by EE the corresponding expectation. We can now turn to the proof of the asymptotic normality
of p̂n. The proof also relies on martingale theory. As the normalizing term in our central limit
theorem is random, we use the central limit theorem for martingales given in Theorem 2.1.9 of
Duflo (1997) that we first recall as Theorem B.6 for self-completeness.

Theorem B.6 Suppose that (Ω,A, P ) is a probability space and that for each n we have a filtration
Fn = (F (n)

k ), a stopping time νn relative to Fn and a real, square-integrable vector martingale
M (n) = (M

(n)
k )k≥0 which is adapted to Fn and has hook denoted by < M >(n). We make the

following two assumptions.

A.1 For a deterministic symmetric positive semi-definite matrix Γ

< M >(n)
νn

P−→ Γ.

A.2 Lindeberg’s condition holds; in other words, for all ε > 0,

νn∑
k=1

E
(
‖M (n)

k −M (n)
k−1‖

2
1{‖M(n)

k −M(n)
k−1‖>ε}

| F (n)
k−1

)
P−→ 0.

Then:
M (n)
νn

L−→ N (0,Γ).

Proof of Theoremn4.2, first part First, set

V =

(
V0/z0 0

0 V1/z1

)
(6)

where for all i in {0, 1}, Vi = Wi − p(i)(p(i))t, Wi is a 4 × 4 matrix with the entries of p(i) on
the diagonal and 0 elsewhere. We are going to prove that V is the asymptotic variance of p̂n − p
suitably normalized. We use Theorem B.6. We first need to define a suitable filtration. Here, we
use the first cousins filtration defined as follows. Let

Hj,p = σ{δ(j,1), . . . δ(j,3), (δ(j,4k), . . . , δ(j,4k+3)), 1 ≤ k ≤ p}

be the σ-field generated by all the 4-tuples of observed cousin cells up the granddaughters of
cell (j, p) in the j-th tree and Hp = ∨mj=1Hj,p. Hence, the 4-tuple (δ(j,4k), . . . , δ(j,4k+3)) is Hk-
measurable for all j. By definition of the reproduction probabilities p(i)(l0, l1), the processes(

δ(j,2k+i)(φl0(δ(j,2(2k+i)))φl1(δ(j,2(2k+i)+1))− p(i)(l0, l1)
)
k≥1
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are (Hk)-martingale difference sequences. We thus introduce a sequence of (Hk)-martingales
(M

(n)
p ){p≥1} defined for all n ≥ 1 and p ≥ 1 by

M(n)
p = |T∗n−1|

−1/2
p∑
k=1

m∑
j=1

D(j,k),

with D(j,k) =
(
(D0

(j,k))
t, (D1

(j,k))
t
)t and

Di
(j,k) = δ(j,2k+i)


δ(j,2(2k+i))δ(j,2(2k+i)+1) − p(i)(1, 1)

δ(j,2(2k+i))(1− δ(j,2(2k+i)+1))− p(i)(1, 0)
(1− δ(j,2(2k+i)))δ(j,2(2k+i)+1) − p(i)(0, 1)

(1− δ(j,2(2k+i)))(1− δ(j,2(2k+i)+1))− p(i)(0, 0)

 .

We also introduce the sequence of stopping times νn = |Tn−2| = 2n−1 − 1. One has

EE [D(j,k)D
t
(j,k)|Hk−1] =

(
δ(j,2k)V

0 0
0 δ(j,2k+1)V

1

)
.

Therefore the one has < M(n) >νn= |T∗n−1|−1
∑m
j=1

∑n−1
`=0

(
Z0
j,`V

0 0

0 Z1
j,`V

1

)
, so that its PE

almost sure limit is
Γ′ =

(
z0V0 0

0 z1V1

)
,

thanks to Lemma B.5. Therefore, assumption A.1 of Theorem B.6 holds under PE . The Lindeberg
condition A.2 is obviously satisfied as we deal with finite support distributions. We then conclude
that under PE one has

|T∗n−1|
−1/2

M(n)
νn = |T∗n−1|

−1/2
m∑
j=1

∑
k∈T∗

n−2

D(j,k)
L−→ N (0,Γ′).

Using the relation

p̂n − p =

(
(
∑m
j=1

∑n−1
`=0 Z

0
j,`)I4 0

0 (
∑m
j=1

∑n−1
`=0 Z

1
j,`)I4

)−1
M(n)

νn ,

Lemma B.5 and Slutsky’s Lemma give the first part of Theorem 4.2. �

B.4 Interval estimation and tests for the GW process
From the central limit theorem 4.2 one can easily build asymptotic confidence intervals for our
estimators. In our context, Yn and Y ′n being two random variables, we will say that [Yn;Y ′n] is an
asymptotic confidence interval with confidence level 1 − ε for the parameter Y if PE

(
Yn ≤ Y ≤

Y ′n
)
−−−−→
n→∞

(1 − ε). For any 0 ≤ ε ≤ 1, let q1−ε/2 be the 1 − ε/2 quantile of the standard normal
law.

For all n ≥ 2, define the 8× 8 matrix

V̂n =

(
V̂0
n

(∑m
j=1

∑
k∈Tn−2

δ(j,2k)
)−1

0

0 V̂1
n

(∑m
j=1

∑
k∈Tn−2

δ(j,2k+1)

)−1
,

)

where for all i in {0, 1}, V̂i
n = Ŵi

n − p̂
(i)
n (p̂

(i)
n )t, Ŵi

n is a 4× 4 matrix with the entries of p̂
(i)
n on

the diagonal and 0 elsewhere. Thus, |T∗n−1|V̂n is an empirical estimator of the covariance matrix
V.
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Theorem B.7 Under assumptions (H.5-6), for i, l0, l1 in {0, 1} and for any 0 < ε < 1, the random
interval defined by [

p̂(i)n (l0, l1)− q1−ε/2(V̂1/2
n )`,` ; p̂(i)n (l0, l1) + q1−ε/2(V̂1/2

n )`,`
]

is an asymptotic confidence interval with level 1− ε for p(i)(l0, l1); where (`, `) is the coordinate of
Vn corresponding to p(i)(l0, l1), namely ` = 4(i+ 1)− (2l0 + l1).

Proof This is a straightforward consequence of the central limit Theorem 4.2 together with Slut-
sky’s lemma as limn→∞ |T∗n−1|V̂n = V PE a.s. thanks to Lemma B.5 and Theorem 4.1. �

Set Ĝn = F̂tnV̂nF̂n, where F̂n is the 8× 1 vector defined by

F̂n =
1

2
(1, 1, 0, 0, 1, 0, 1, 0)

t
+

1

2
(T̂ 2
n − 4D̂n)−1/2Ĥn

and

Ĥn =



p̂
(0)
n (1, 1) + p̂

(0)
n (1, 0) + p̂

(1)
n (1, 1) + 2p̂

(1)
n (1, 0)− p̂(1)n (0, 1)

p̂
(0)
n (1, 1) + p̂

(0)
n (1, 0)− p̂(1)n (1, 1)− p̂(1)n (0, 1)

2p̂
(1)
n (1, 1) + 2p̂

(1)
n (1, 0)

0

p̂
(0)
n (1, 1)− p̂(0)n (1, 0) + 2p̂

(0)
n (0, 1) + p̂

(1)
n (1, 1) + p̂

(1)
n (0, 1)

2p̂
(0)
n (1, 1) + 2p̂

(0)
n (0, 1)

−p̂(0)n (1, 1)− p̂(0)n (1, 0) + p̂
(1)
n (1, 1) + p̂

(1)
n (0, 1)

0


.

Theorem B.8 Under assumptions (H.5-6), for any 0 < ε < 1 one has that[
π̂n − q1−ε/2Ĝ1/2

n ; π̂n + q1−ε/2Ĝ
1/2
n

]
is an asymptotic confidence interval with level 1− ε for π.

Proof This is again a straightforward consequence of the central limit Theorem 4.2 together with
Slutsky’s lemma as F̂n is the gradient of the function that maps the vector p̂ onto the estimator
π̂n. �

We propose two symmetry tests for the GW process. The first one compares the average number
of offspring m0 of a cell of type 0: m0 = p(0)(1, 0) + p(0)(0, 1) + 2p(0)(1, 1) to that of a cell of type
1: m1 = p(1)(1, 0) + p(1)(0, 1) + 2p(1)(1, 1). Denote by m̂0

n and m̂1
n their empirical estimators. Set

• Hm
0 : m0 = m1 the symmetry hypothesis,

• Hm
1 : m0 6= m1 the alternative hypothesis.

Let Y mn be the test statistic defined by

Y mn = |T∗n−1|1/2(∆̂m
n )−1/2(m̂0

n − m̂1
n),

where ∆̂m
n = |T∗n−1|dgtmV̂ndgm and dgm = (2, 1, 1, 0,−2− 1,−1, 0)

t. This test statistic has the
following asymptotic properties.

Theorem B.9 Under assumptions (H.5-6) and the null hypothesis Hm
0 , one has

(Y mn )2
L−→ χ2(1)

on (E ,PE); and under the alternative hypothesis Hm
1 , almost surely on E one has

lim
n→∞

(Y mn )2 = +∞.
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Proof Let gm be the function defined from R8 onto R by gm(x1, . . . , x8) = 2x1+x2+x3+2x5−x6−x7
so that dgm is the gradient of gm. Thus, the central limit Theorem 4.2 yields√

|T∗n−1|
(
gm(p̂n)− gm(p)

) L−→ N (0,dgm
tVdgm) = N (0,∆m)

on (E ,PE). Under the null hypothesis Hm
0 , gm(p) = 0, so that one has

|T∗n−1|(∆m)−1gm(p̂n)2
L−→ χ2(1)

on (E ,PE). Lemma B.5 and Theorem 4.1 give the almost sure convergence of ∆̂m
n to ∆m. Hence

Slutsky’s Lemma yields the expected result. Under the alternative hypothesis Hm
1 , one has

Y mn = (∆̂m
n )−1/2

(√
|T∗n−1|

(
gm(p̂n)− gm(p)

)
+
√
|T∗n−1|gm(p)

)
.

The first term converges to a centered normal law and the second term tends to infinity as |T∗n−1|
tends to infinity a.s. on (E ,PE). �

Our next test compares the reproduction probability vectors of mother cells of type 0 and 1.

• Hp
0 : p(0) = p(1) the symmetry hypothesis,

• Hp
1 : p(0) 6= p(1) the alternative hypothesis.

Let (Yp
n)tYp

n be the test statistic defined by

Yp
n = |T∗n−1|1/2(∆̂p

n)−1/2(p̂(0) − p̂(1)),

where ∆̂p
n = |T∗n−1|dgtpV̂ndgp and dgp =

(
I4
−I4

)
. This test statistic has the following asymp-

totic properties.

Theorem B.10 Under assumptions (H.5-6) and the null hypothesis Hp
0 , one has

(Yp
n)tYp

n
L−→ χ2(4)

on (E ,PE); and under the alternative hypothesis Hp
1 , almost surely on E one has

lim
n→∞

‖Yp
n‖2 = +∞.

Proof We mimic the proof of Theorem B.9 with gp the function defined from R8 onto R4 by
gp(x1, . . . , x8) = (x1 − x5, x2 − x6, x3 − x7, x4 − x8)t, so that dgp is the gradient of gp. �

C Convergence of estimators for the BAR process
We now prove the convergence of the estimators for the BAR process, that is the parts of Theo-
rems 4.1 and 4.2 concerning θ̂n, σ̂2

n,i and ρ̂n, together with additional technical results, especially
the convergence of higher moment estimators required to estimate the asymptotic variances.

C.1 Preliminary results: laws of large numbers
In this section, we want to study the asymptotic behavior of various sums of observed data. Most
of the results are directly taken from de Saporta et al (2011). All external references in this section
refer to that paper that will not be cited each time. However, we need additional results concerning
higher moments of the BAR process in order to obtain the consistency of τ̂4i,n and ν̂2n, as there is no
such result in de Saporta et al (2011). We also give all the explicit formulas so that the interested
reader can actually compute the various asymptotic variances.

Again, our work relies on the strong law of large numbers for square integrable martingales.
To ensure that the increasing processes of our martingales are at most O(πn) we first need the
following lemma.
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Lemma C.1 Under assumptions (H.0-6), for all i ∈ {0, 1} one has

m∑
j=1

∑
k∈Tn

δ(j,2k+i)X
8
(j,k) = O(πn) a.s.

Proof The proof follows the same lines as that of Lemma 6.1. The constants before the terms Ain,
Bin and Cin therein are replaced respectively by (4/(1 − β))7, α8(4/(1 − β))7 and 28; in the term
Ain, ε2 is replaced by ε8; in the term Cin, β2rk is replaced by β8rk ; the term Bin is unchanged. In
the expression of E[(Y i`,p)

2], one just needs to replace τ4 by µ16
i , σ4 by γ16i and ν2τ4 by η8. Note

that the various moments of the noise sequence are defined in assumption (H.1). The rest of the
proof is unchanged. �

We also state some laws of large numbers for the noise processes.

Lemma C.2 Under assumptions (H.0-6), for all i ∈ {0, 1} and for all integers 0 ≤ q ≤ 4, one has

1

πn

m∑
j=1

∑
k∈Tn−1

δ(j,2k+i)ε
q
(j,2k+i) =

π

π − 1
WziE[εq(1,2+i)] a.s.

Proof This is also a direct consequence of de Saporta et al (2011) thanks to Lemmas B.3 and B.4.
Lemma 5.3 provides the result for q = 0, Lemma 5.5 for q = 1, Corollary 5.6 for q = 2 and Lemma
5.7 for q = 4. The result for q = 3 is obtained similarly. �

In view of these new stronger results, we can now state our first laws of large numbers for the
observed BAR process. For i ∈ {0, 1} and all integers 1 ≤ q ≤ 4 let us now define

Hi
n(q) =

m∑
j=1

Hi
j,n(q) =

m∑
j=1

∑
k∈Tn

δ(j,2k+i)X
q
(j,k),

H01
n (q) =

m∑
j=1

H01
j,n(q) =

m∑
j=1

∑
k∈Tn

δ(j,2k)δ(j,2k+1)X
q
(j,k),

and Hn(q) = (H0
n(q), H1

n(q))t.

Lemma C.3 Under assumptions (H.0-6) and for all integers 1 ≤ q ≤ 4, one has the following a.s.
limits on the non-extinction set E

lim
n→∞

1{|G∗
n|>0}|T∗n|−1Hn(q) = h(q) = (I2 − P̃q)

−1Pth̃(q),

lim
n→∞

1{|G∗
n|>0}|T∗n|−1H01

n (q) = h01(q) = p(0)(1, 1)
(
h̃0(q) + bq0

h0(q)

π

)
+p(1)(1, 1)

(
h̃1(q) + bq1

h1(q)

π

)
,

where

P̃q = π−1Pt

(
bq0 0
0 bq1

)
, h(q) =

(
h0(q)
h1(q)

)
, h̃(q) =

(
h̃0(q)

h̃1(q)

)
,

and for i ∈ {0, 1}

h̃i(1) = aiz
i,

h̃i(2) = (a2i + σ2
i )zi + 2aibih

i(1)π−1,

h̃i(3) = (a3i + 3aiσ
2
i + λi)z

i + 3bi(a
2
i + σ2

i )hi(1)π−1 + 3aib
2
ih
i(2)π−1,

h̃i(4) = (a4i + 6a2iσ
2
i + 4aiλi + τ4i )zi + 4bi(a

3
i + 3aiσ

2
i + λi)h

i(1)π−1

+6b2i (a
2
i + σ2

i )hi(2)π−1 + 4aib
3
ih
i(3)π−1.
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Proof The results for q = 1 and q = 2 come from Propositions 6.3, 6.5 and 6.6 together with
Lemma B.4. The proofs for q ≥ 3 follow the same lines, using Lemma C.2 when required and
Lemma C.1 to bound the increasing processes of the various martingales at stake. �

To prove the consistency of our estimators, we also need some additional families of laws of
large numbers.

Lemma C.4 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ p + q ≤ 4, one
has the following a.s. limits

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2k+i)X
p
(j,k)ε

q
(j,2k+i) = E[εq2+i]h

i(p)1E .

Proof The proof is similar to that of Theorem 4.1. For all 1 ≤ j ≤ m, one has∑
k∈Tn

δ(j,2k+i)X
p
(j,k)ε

q
(j,2k+i)

=

n∑
`=0

∑
k∈G`

δ(j,2k+i)X
p
(j,k)

(
εq(j,2k+i) − E[εq(j,2k+i) | F

O
j,`]
)

+ E[εq2+i]
∑
k∈Tn

δ(j,2k+i)X
p
(j,k),

as the conditional moment of ε2k+i are constants by assumption (H.1). The first term is a square
integrable (FOj,n)-martingale and its increasing process is O(πn) thanks to Lemma C.1, thus the
first term is o(πn). The limit of the second term is given by Lemma C.3. �

Lemma C.5 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ q ≤ 4, one has
the following a.s. limits

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2k+i)X
q
(j,2k+i) =

(
πh̃i(q) + bqih

i(q)
)
1E .

Proof The proof is obtained by replacing X(j,2k+i) by ai + biXk + ε2k+i. One then develops the
exponent and uses Lemmas B.5, C.2, C.3 and C.4 to conclude. �

Lemma C.6 Under assumptions (H.0-6), for i ∈ {0, 1} and for all integers 1 ≤ p + q ≤ 4, one
has the following a.s. limits

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2k+i)X
p
(j,k)X

q
(j,2k+i) = hi(p, q)1E ,

with

hi(p, 1) = aih
i(p) + bih

i(p+ 1),

hi(p, 2) = (a2i + σ2
i )hi(p) + 2aibih

i(p+ 1) + b2ih
i(p+ 2),

hi(p, 3) = (a3i + 3aiσ
2
i + λi)h

i(p) + 3bi(a
2
i + σ2

i )hi(p+ 1) + 3aib
2
ih
i(p+ 2) + b3ih

i(p+ 3),

where we used the convention hi(0) = ziπ.

Proof As above, the proof is obtained by replacing X(j,2k+i) and developing the exponents. Then
one uses Lemmas B.5, C.2, C.3 and C.4 to compute the limits. �

Lemma C.7 Under assumptions (H.5-6), one has the following a.s. limit

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2(2k+i))δ(j,2(2k+i)+1) = p(i)(1, 1)ziπ1E .
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Proof First note that δ(j,2(2k+i))δ(j,2(2k+i)+1) = δ(j,2k+i)δ(j,2(2k+i))δ(j,2(2k+i)+1). The proof is then
similar to that of Theorem 4.1. One adds and subtract p(i)(1, 1) so that a martingale similar to
(Mn) naturally appears. The limit of the remaining term is given by Lemma B.5. �

Lemma C.8 Under assumptions (H.0-6), for all integers 0 ≤ p+ q+ r ≤ 4, one has the following
a.s. limits

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2k)δ(j,2k+1)X
p
(j,k)ε

q
(j,2k)ε

r
(j,2k+1) = E[εq2ε

r
3]h01(p)1E ,

where we used the convention h01(0) = p(0)(1, 1)z0 + p(1)(1, 1)z1.

Proof The proof is similar to Lemma C.4, one adds and subtracts the constant E[εq(j,2k)ε
r
(j,2k+1) | F

O
j,`].

�

Lemma C.9 Under assumptions (H.0-6), for all integers 1 ≤ p+ q+ r ≤ 4, one has the following
a.s. limits

1{|G∗
n|>0}|T∗n|−1

m∑
j=1

∑
k∈Tn

δ(j,2k)δ(j,2k+1)X
p
(j,k)X

q
(j,2k)X

r
(j,2k+1) = h01(p, q, r)1E ,

with

h01(p, 1, 0) = a0h
01(p) + b0h

01(p+ 1), h01(p, 0, 1) = a1h
01(p) + b1h

01(p+ 1)),

h01(p, 2, 0) = (a20 + σ2
0)h01(p) + 2a0b0h

01(p+ 1) + b20h
01(p+ 2),

h01(p, 0, 2) = (a21 + σ2
1)h01(p) + 2a1b1h

01(p+ 1) + b21h
011(p+ 2),

h01(p, 3, 0) = (a30 + 3a0σ
2
0 + λ0)h01(p) + 3b0(a20 + σ2

0)h01(p+ 1) + 3a0b
2
0h

01(p+ 2) + b30h
01(p+ 3),

h01(p, 0, 3) = (a31 + 3a1σ
2
1 + λ1)h01(p) + 3b1(a21 + σ2

1)h01(p+ 1) + 3a1b
2
1h

01(p+ 2) + b31h
01(p+ 3),

h01(p, 1, 1) = (a0a1 + ρ)h01(p) + (a0b1 + b0a1)h01(p+ 1) + b0b1h
01(p+ 2),

h01(p, 2, 1) = ((a20 + σ2
0)a1 + 2a0ρ+ α)h01(p) + ((a20 + σ2

0)b1 + 2(a0a1 + ρ)b0)h01(p+ 1)

+b0(2a0b1 + b0a1)h01(p+ 2) + b20b1h
01(p+ 3),

h01(p, 1, 2) = ((a21 + σ2
1)a0 + 2a1ρ+ β)h01(p) + ((a21 + σ2

1)b0 + 2(a0a1 + ρ)b1)h01(p+ 1)

+b1(a0b1 + 2b0a1)h01(p+ 2) + b0b
2
1h

01(p+ 3),

h01(0, 2, 2) = (a20a
2
1 + a20σ

2
1 + a21σ

2
0 + ν2 + 2a0β + 2a1α+ 4a0a1ρ)h01(0)

+2(b0(a0(a21 + σ2
1) + β + 2a1ρ) + b1(a1(a20 + σ2

0) + α+ 2a0ρ))h01(1)

(b20(a21 + σ2
1) + b21(a20 + σ2

0) + 4b0b1(a0a1 + ρ))h01(2)

+2b0b1(a0b1 + b0a1)h01(3) + b20b
2
1h

01(4).

Proof The proof is obtained by replacing X(j,2k+i) by ai + biXk + ε2k+i and developing the expo-
nents. One uses Lemmas C.3 and C.8 to compute the limits. �

To conclude this section, we prove the convergence of the normalizing matrices S0
n, S1

n and S01
n

where

S01
n =

m∑
j=1

∑
k∈Tn

δ(j,2k)δ(j,2k+1)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
,

with the sum taken over all observed cells that have observed daughters of both types.

Lemma C.10 Suppose that assumptions (H.0-6) are satisfied. Then, there exist definite positive
matrices L0, L1 and L01 such that for i ∈ {0, 1} one has

lim
n→∞

1{|G∗
n|>0}|T∗n|−1Sin = 1EL

i, lim
n→∞

1{|G∗
n|>0}|T∗n|−1S01

n = 1EL
01 a.s.

where
Li =

(
hi(0) hi(1)
hi(1) hi(2)

)
, L01 =

(
h01(0) h01(1)
h01(1) h01(2)

)
.

Proof This is a direct consequence of Lemmas B.5 and C.3. �
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C.2 Strong consistency for the estimators of the BAR process
We could obtain the convergences of our estimators by sharp martingales results as in de Saporta
et al (2011), see also B.2. However, we chose the direct approach here. Indeed, our convergences
are now direct consequences of the laws of large numbers given in C.1.

Proof of Theorem 4.1, convergence of θ̂n This is a direct consequence of Lemmas C.10 and C.6.
Indeed, by Lemma C.6 one has

1{|G∗
n−1|>0}

|T∗n−1|
Σn−1θ̂n =

1{|G∗
n−1|>0}

|T∗n−1|

m∑
j=1

∑
k∈Tn−1


δ(j,2k)X(j,2k)

δ(j,2k)X(j,k)X(j,2k)

δ(j,2k+1)X(j,2k+1)

δ(j,2k+1)X(j,k)X(j,2k+1)

 −−−−→n→∞

(
L0 0
0 L1

)
θ1E .

And one concludes using Lemma C.10. �

Proof of Theorem 4.1, convergence of σ̂2
i,n and ρ̂n This result is not as direct as the preceding one

because of the presence of the ε̂k in the various estimators. Take for instance the estimator σ̂2
i,n.

For all 1 ≤ j ≤ m, one has

∑
k∈Tn−1̂

ε2(j,2k+i) =

n−1∑
`=0

∑
k∈G`

δ(j,2k+i)(X(j,2k+i) − âi,` − b̂i,`X(j,k))
2

=
∑

k∈Tn−1

δ(j,2k+i)X
2
(j,2k+i) +

m∑
j=1

n−1∑
`=0

â2i,`
∑
k∈G`

δ(j,2k+i)

+2

n−1∑
`=0

âi,`b̂i,`
∑
k∈G`

δ(j,2k+i)X(j,k) +

n−1∑
`=0

b̂2i,`
∑
k∈G`

δ(j,2k+i)X
2
(j,k)

−2

n−1∑
`=0

âi,`
∑
k∈G`

δ(j,2k+i)X(j,2k+i) − 2

n−1∑
`=0

b̂i,`
∑
k∈G`

δ(j,2k+i)X(j,k)X(j,2k+i).

Let us study the limit of the last term. One has

1

πn

n−1∑
`=0

b̂i,`
∑
k∈G`

δ(j,2k+i)X(j,k)X(j,2k+i) =
1

π

n−1∑
`=0

1

πn−1−`

(
b̂i,`

1

π`

∑
k∈G`

δ(j,2k+i)X(j,k)X(j,2k+i)

)
.

We now use Lemma B.1 with An = π−n and Xn = b̂i,nπ
−n∑

k∈Gn
δ(j,2k+i)X(j,k)X(j,2k+i). We

know from Lemma C.6 together with Lemma B.2 that π−n
∑
k∈Gn

δ(j,2k+i)X(j,k)X(j,2k+i) converges
to h0(1, 1)Wj , and the previous proof gives the convergence of b̂i,n. Thus, one obtains

1

πn

n−1∑
`=0

b̂i,`
∑
k∈G`

δ(j,2k+i)X(j,k)X(j,2k+i) −−−−→
n→∞

π2

π − 1
Wjbh

0(1, 1).

We deal with the other terms in the decomposition of the sum of ε̂22k in a similar way, using either
Lemma C.3, C.5 or C.6.Finally, one obtains the almost sure limit on E

σ̂2
i,n −−−−→

n→∞

(
h̃i(2) + b2ih

i(2)π−1 + a2i z
i + 2aibih

i(1)π−1 − 2ai
(
h̃i(1) + b2ih

i(1)π−1
))

(zi)−1

= σ2
i .

To obtain the convergence of ρ̂n the approach is similar, using the convergence results given in
Lemmas C.3, C.7, C.8 and C.9. �

Theorem C.11 Under assumptions (H.0-6), τ̂4i,n and ν̂2n converge almost surely to τ4i and ν2

respectively on E.

Proof We work exactly along the same lines as the previous proof with higher powers. �
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C.3 Asymptotic normality for the estimators of the BAR process

We first give the asymptotic normality for θ̂n.

Proof of Theorem 4.2 for θ̂n Define the 4× 4 matrices

Σ =

(
L0 0
0 L1

)
, Γ =

(
σ2
0L

0 ρL01

ρL01 σ2
1L

1

)
, Γθ = Σ−1ΓΣ−1. (7)

We now follow the same lines as the proof of the first part of Theorem 4.2 with a different filtration.
This time we use the observed sister pair-wise filtration defined as follows. For 0 ≤ j ≤ m and
p ≥ 0, let

GOj,p = Oj ∨ σ{δ(j,1)X(j,1), (δ(j,2k)X(j,2k), δ(j,2k+1)X(j,2k+1)), 1 ≤ k ≤ p} (8)

be the σ-field generated by the j-th GW tree and all the pairs of observed sister cells in genealogy
j up to the daughters of cell (j, p), and let GOp = ∨mj=1GOj,p be the σ-field generated by the union of
all GOj,p for 1 ≤ j ≤ m. Hence, for instance, (δ(j,2k)ε(j,2k), δ(j,2k+1)ε(j,2k+1)) is GOk -measurable for
all j. In addition, assumptions (H.1) and (H.4-5) imply that the process

(δ(j,2k)ε(j,2k), X(j,k)δ(j,2k)ε(j,2k), δ(j,2k+1)ε(j,2k+1), X(j,k)δ(j,2k+1)ε(j,2k+1))
t

is a (GOk )-martingale difference sequence. Indeed, as the non-extinction set E is in GOk for every
k ≥ 1, it is first easy to prove that EE [δ(j,2k)ε(j,2k)|GOk−1] = E[δ(j,2k)ε(j,2k)|GOk−1]. Then, for k ∈ Gn,
using repeatedly the independence properties, one has

E[δ(j,2k)ε(j,2k)|GOk−1]

= δ(j,2k)E
[
E[ε(j,2k)|O ∨ Fn ∨ σ(εj,p, 1 ≤ j ≤ m, p ∈ Gn+1, p ≤ 2k − 1)]

∣∣ GOk−1]
= δ(j,2k)E

[
E[ε(j,2k)|Fn ∨ σ(εj,p, 1 ≤ j ≤ m, p ∈ Gn+1, p ≤ 2k − 1)]

∣∣ GOk−1]
= δ(j,2k)E

[
E[ε(j,2k)|Fn]

∣∣ GOk−1] = δ(j,2k)E
[
E[ε(j,2k)|Fj,n]

∣∣ GOk−1] = 0.

We introduce a sequence of (GOk )-martingales (M
(n)
p ){p≥1} defined for all n, p ≥ 1 by M

(n)
p =

|T∗n|
−1/2∑p

k=1 Dk, with

Dk =

m∑
j=1

D(j,k) =

m∑
j=1


δ(j,2k)ε(j,2k)

X(j,k)δ(j,2k)ε(j,2k)
δ(j,2k+1)ε(j,2k+1)

X(j,k)δ(j,2k+1)ε(j,2k+1)

 .

We also introduce the sequence of stopping times νn = |Tn| = 2n+1 − 1. We are interested in the
convergence of the process M

(n)
νn = |T∗n|

−1/2∑|Tn|
k=1 Dk. Again, it is easy to prove that

EE [DkD
t
k|GOk−1] = E[DkD

t
k|GOk−1] =

m∑
j=1

(
σ2
0ϕ

0
(j,k) ρϕ01

(j,k)

ρϕ01
(j,k) σ2

1ϕ
1
(j,k)

)
,

where for i ∈ {0, 1},

ϕi(j,k) = δ(j,2k+i)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
, ϕ01

(j,k) = δ(j,2k)δ(j,2k+1)

(
1 X(j,k)

X(j,k) X2
(j,k)

)
.

Lemma C.10 yields that the PE almost sure limit of the process< M(n) >νn= |T∗n|
−1∑

k∈Tn
EE [DkD

t
k|GOk−1]

is Γ, as ∑
k∈Tn

EE [DkD
t
k|GOk−1] =

(
σ2
0S

0
n ρS01

n

ρS01
n σ2

1S
1
n

)
.
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Therefore, the assumption A.1 of Theorem B.6 holds under PE . Thanks to assumptions (H.1) and
(H.4-5) we can easily prove that for some r > 2, one has supk≥0 E[‖Dk‖r|GOk−1] <∞ a.s. which in
turn implies the Lindeberg condition A.2. We can now conclude that under PE one has

|T∗n−1|
−1/2 ∑

k∈T∗
n−1

Dk
L−→ N (0,Γ).

Finally Eq. (2) implies that
∑
k∈T∗

n−1
Dk = Σn−1(θ̂n − θ). Therefore, the result is a direct conse-

quence of Lemma C.10 together with Slutsky’s Lemma. �

We now turn to the asymptotic normality of σ̂2
i,n and ρ̂n. The direct application of the central

limit theorem for martingales to σ̂2
i,n and ρ̂n is not obvious because of the ε̂(j,2k+i). We proceed

along the same lines as in the proof of the convergence of σ̂2
i,n, using the decomposition along the

generations. However, this time we need a convergence rate for θ̂n in order to apply Lemma B.1.

Theorem C.12 Under assumptions (H.0-6), one has

1{|G∗
n|>0}‖θ̂n − θ‖2 = O

(
log |T∗n−1|
|T∗n−1|

)
1E a.s.

Proof : This result is based on the asymptotic behavior of the martingale (Mn) defined as follows

Mn =

m∑
j=1

∑
k∈Tn−1


δ(j,2k)ε2j,k,

δ(j,2k)X(j,k)ε(j,2k),
δ(j,2k+1)ε(j,2k+1),

δ(j,2k+1)X(j,k)ε(j,2k+1)

 .

For all n ≥ 2, we readily deduce from the definitions of the BAR process and of our estimator θ̂n
that

θ̂n − θ = Σ−1n−1

m∑
j=1

∑
k∈Tn−1


δ(j,2k)ε(j,2k)

δ(j,2k)X(j,k)ε(j,2k)
δ(j,2k+1)ε(j,2k+1)

δ(j,2k+1)X(j,k)ε(j,2k+1)

 = Σ−1n−1Mn.

The sharp asymptotic behavior of (Mn) relies on properties of vector martingales. Thanks to
Lemma B.4, the proof follows exactly the same lines as that of the first part of Theorem 3.2 of
de Saporta et al (2011) and is not repeated here. �

We can now turn to the end of the proof of Theorem 4.2 concerning the asymptotic normality
of σ̂2

i,n and ρ̂n.

Proof of Theorem 4.2, asymptotic normality of σ̂2
i,n Thanks to Eq. (1) and (3), we decompose

σ̂2
i,n − σ2

i into two parts U in and V in

|T∗in−1|(σ̂2
i,n − σ2

i ) =

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

ε̂2(j,2k+i) − ε
2
(j,2k+i) +

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

δ(j,2k+i)(ε
2
(j,2k+i) − σ

2
i )

=

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

ui(j,k) +

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

vi(j,k) = U in + V in,

with

ui(j,k) = δ(j,2k+i)
(
(ai − âi,`)2 + (bi − b̂i,`)2X2

(j,k) + 2(ai − âi,`)(bi − b̂i,`)X(j,k)

)
vi(j,k) = δ(j,2k+i)

(
2
(
(ai − âi,`) + (bi − b̂i,`)X(j,k)

)
ε(j,2k+i) + ε2(j,2k+i) − σ

2
i

)
.
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We first deal with U in and study the limit of π−n/2U in. Let us just detail the first term

1

πn/2

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

δ(j,2k+i)(ai − âi,`)2 =

n−1∑
`=0

π(`−n)/2 `

π`/2
(ai − âi,`)2

`π−`

( 1

π`

m∑
j=1

∑
k∈G`−1

δ(j,2k+i)

)

=

n−1∑
`=0

π(`−n)/2xi,`.

On the one hand, Lemmas B.5, B.3 and B.2 imply that π−`
∑
k∈G`−1

δ(j,2k+i) converges a.s. to a
finite limit. On the other hand, thanks to Theorem C.12, one has (ai − âi,`)2(`π−`)−1 = O(1) a.s.
As a result, one obtains liml→∞ xi,` = 0 a.s. as π > 1 by assumption. Therefore, Lemma B.1 yields

lim
n→∞

1

πn/2

m∑
j=1

n−1∑
`=0

∑
k∈Gl−1

δj,2k+i(ai − âi,`)2 = 0 a.s..

The other terms in U in are dealt with similarly, using Lemma C.3 instead of Lemma B.5. One
obtains limn→∞ π−n/2U in = 0 a.s. and as a result Lemma B.3 yields limn→∞ |T∗n|−1/2U in = 0.
Let us now deal with the martingale terms V in. Set Vn = (V 0

n , V
1
n )t. Let us remark that

|T∗n|
−1/2

Vn = M
(n)
νn with M(n) = (M

(n)
p ){p≥1} the sequence of GOp -vector martingales defined by

M(n)
p = |T∗n|

−1/2
p∑
k=1

(v0k, v
1
k)t = |T∗n|

−1/2
p∑
k=1

m∑
j=1

(v0(j,k), v
1
(j,k))

t

and νn = 2n − 1 (GOp defined by (8)). We want now to apply Theorem B.6 to M(n). Using
Lemmas C.3-C.9 together with Lemma B.1 and Theorem C.12 along the same lines as above, we
obtain the following limit conditionally to E

lim
n→∞

< M >νn=

(
(τ40 − σ4

0)z0 (ν2 − σ2
0σ

2
1)h01(0)π−1

(ν2 − σ2
0σ

2
1)h01(0)π−1 (τ41 − σ4

1)z1

)
= ΓV.

Therefore, assumption A.1 of Theorem B.6 holds under PE . Thanks to assumptions (H.1) and
(H.4-5) we can prove that for some r > 2, supk≥0 EE [‖vik‖r|GOk−1] < ∞ a.s. which implies the
Lindeberg condition. Therefore, we obtain that under PE

|T∗n|−1/2Vn
L−→ N (0,ΓV).

If one sets

Γσ =

(
(τ40 − σ4

0)(z0)−1 (ν2 − σ2
0σ

2
1)h01(0)(πz0z1)−1

(ν2 − σ2
0σ

2
1)h01(0)(πz0z1)−1 (τ41 − σ4

1)(z1)−1

)
, (9)

one obtains the expected result using Slutsky’s lemma. �

Proof of Theorem 4.2, Asymptotic normality of ρ̂n. Along the same lines, we show the central limit
theorem for ρ̂n. One has

|T∗01n−1|(ρ̂n − ρ) =

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

(ε̂(j,2k)ε̂(j,2k+1) − ε(j,2k)ε(j,2k+1))

=

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

u′(j,k) +

m∑
j=1

n−1∑
`=0

∑
k∈G`−1

v′(j,k) = U ′n + V ′n,

with

u′(j,k) = δ(j,2k)δ(j,2k+1)

(
(a0 − â0,`)(a1 − â1,`) + (b0 − b̂0,`)(b1 − b̂1,`)X2

(j,k).

+((a0 − â0`)(b1 − b̂1,`) + (b0 − b̂0,`)(a1 − â1,`))X(j,k)

)
,

v′(j,k) = δ(j,2k)δ(j,2k+1)

(
((a0 − â0,`) + (b0 − b̂0,`)X(j,k))ε(j,2k+1)

+((a1 − â1,`) + (b1 − b̂1,`)X(j,k))ε(j,2k) + ε(j,2k)ε(j,2k+1) − ρ
)
.
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Thanks to Theorem C.12, it is easy to check that limn→∞ |T∗01n−1|
1/2
U ′n = 0 a.s. Let us define a

new sequence of GOp -martingales (M (n)) by

M (n)
p = |T∗01n−1|

−1/2
p∑
k=1

v′k = |T∗01n−1|
−1/2

p∑
k=1

m∑
j=1

v′(j, k).

We clearly have M (n)
νn = |T∗01n−1|

1/2
V ′n. We obtain the PE - a.s. limit

lim
n→∞

|T∗01n−1|
−1 ∑

k∈Tn

EE [v
2
k | GOk−1] = ν2 − ρ2.

So we have assumption A.1 of Theorem B.6. We also derive the Lindeberg condition A.2. Conse-
quently, we obtain that under PE , one has√

|T∗01n−1|V ′n
L−→ N (0, ν2 − ρ2).

Setting
γρ = ν2 − ρ2, (10)

completes the proof of Theorem 4.2. �

C.4 Interval estimation and tests for the BAR process

For all n ≥ 1, define the 4× 4 matrices Γ̂n and Ω̂n by

Γ̂n = |T∗n|−1
(
σ̂2
0,nS0

n ρ̂nS01
n

ρ̂nS01
n σ̂2

1,nS1
n

)
, and Ω̂n = Σ−1n Γ̂nΣ−1n .

Note that the matrix Γ̂n is the empirical estimator of matrix Γ while Ω̂n is the empirical estimator
of the asymptotic variance of θ̂n − θ.

Theorem C.13 Under assumptions (H.0-6), for any 0 < ε < 1, the intervals[
â0,n − q1−ε/2(Ω̂

1/2
n−1)1,1; â0,n + q1−ε/2(Ω̂

1/2
n−1)1,1

]
,

[̂
b0,n − q1−ε/2(Ω̂

1/2
n−1)2,2; b̂0,n + q1−ε/2(Ω̂

1/2
n−1)2,2

]
,[

â1,n − q1−ε/2(Ω̂
1/2
n−1)3,3; â1,n + q1−ε/2(Ω̂

1/2
n−1)3,3

]
,

[̂
b1,n − q1−ε/2(Ω̂

1/2
n−1)4,4; b̂1,n + q1−ε/2(Ω̂

1/2
n−1)4,4

]
are asymptotic confidence intervals with level 1− ε of the parameters a0, b0, a1 and b1 respectively.

Proof This is a straightforward consequence of the central limit Theorem 4.2 together with Slut-
sky’s lemma as limn→∞ |T∗n−1|Ω̂n−1 = Σ−1ΓΣ−1 PE a.s. thanks to Lemma C.10 and Theorem 4.1.
�

Let

ĥ01n (0) = p̂(0)n (1, 1)|T∗n|−1
m∑
j=1

∑
k∈Tn−1

δ(j,2k) + p̂(1)n (1, 1)|T∗n|−1
m∑
j=1

∑
k∈Tn−1

δ(j,2k+1)

be an empirical estimator of h01(0) and

Γ̂σ,n =

 (τ̂40,n − σ̂4
0,n)

|T∗
n|

|T∗0
n−1|

(ν̂2n − σ̂2
0,nσ̂

2
1,n)h01(0)π̂−1n

|T∗
n|

2

|T∗0
n−1||T∗1

n−1|

(ν̂2n − σ̂2
0,nσ̂

2
1,n)h01(0)π̂−1n

|T∗
n|

2

|T∗0
n−1||T∗1

n−1|
(τ̂41,n − σ̂4

1,n)
|T∗

n|
|T∗1

n−1|

 ,

be an empirical estimator of the variance term in the central limit theorem regarding σ2
i .
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Theorem C.14 Under assumptions (H.0-6), for any 0 < ε < 1, the intervals[
σ̂2
i,n − q1−ε/2

( Γ̂σ,n
|T∗n|

)1/2
i,i

; σ̂2
i,n + q1−ε/2

( Γ̂σ,n
|T∗n|

)1/2
i,i

]
,[

ρ̂n − q1−ε/2
( ν̂2n − ρ̂2n
|T∗01n−1|

)1/2
; ρ̂n + q1−ε/2

( ν̂2n − ρ̂2n
|T∗01n−1|

)1/2]
are asymptotic confidence intervals with level 1− ε of the parameters σ2

i and ρ respectively.

Proof This is a again straightforward consequence of the central limit Theorem 4.2 together with
Slutsky’s lemma as

lim
n→∞

Γ̂σ,n = Γσ, lim
n→∞

ν̂2n − ρ̂2n = ν2 − ρ2,

PE almost surely thanks to Lemma B.5 and Theorems 4.1 and C.11. �

We now propose two different symmetry tests for the BAR process based on the central limit
Theorem 4.2. The first one compares the couples (a0, b0) and (a1, b1). Set

• Hc
0: (a0, b0) = (a1, b1) the symmetry hypothesis,

• Hc
1: (a0, b0) 6= (a1, b1) the alternative hypothesis.

Let (Yc
n)tYc

n be the test statistic defined by

Yc
n = |T∗n−1|1/2(∆̂c

n)−1/2(â0,n − â1,n, b̂0,n − b̂1,n)t,

where

∆̂c
n = |T∗n−1|dgc

tΩ̂n−1dgc, dgc =

(
1 0 −1 0
0 1 0 −1

)t
.

Theorem C.15 Under assumptions (H.0-6) and the null hypothesis Hc
0 one has

(Yc
n)tYc

n
L−→ χ2(2)

on (E ,PE); and under the alternative hypothesis Hc
1, almost surely on E one has

lim
n→∞

‖Yc
n‖2 = +∞.

Proof We mimic again the proof of Theorem B.9 with gc the function defined from R4 onto R2 by
gc(x1, x2, x3, x4) =

(
x1 − x3, x2 − x4

)t, so that dgc is the gradient of gc. �

Our next test compares the fixed points a0/(1− b0) and a1/(1− b1), which are the asymptotic
means of X(j,2k) and X(j,2k+1) respectively. Set

• Hf
0: a0/(1− b0) = a1/(1− b1) the symmetry hypothesis,

• Hf
1: a0/(1− b0) 6= a1/(1− b1) the alternative hypothesis.

Let (Y fn )2 be the test statistic defined by

Y fn = |T∗n−1|1/2(∆̂f
n)−1/2

(
â0,n/(1− b̂0,n)− â1,n/(1− b̂1,n)

)
,

where ∆̂f
n = |T∗n−1|dgf

tΩ̂n−1dgf , and dgf =
(
1/(1−b̂0,n), â0,n/(1−b̂0,n)2,−1/(1−b̂1,n),−â1,n/(1−

b̂1,n)2
)t
. This test statistic has the following asymptotic properties.

Theorem C.16 Under assumptions (H.0-6) and the null hypothesis Hf
0, one has

(Y fn )2
L−→ χ2(1)

on (E ,PE); and under the alternative hypothesis Hf
1, almost surely on E one has

lim
n→∞

(Y fn )2 = +∞.
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Proof We mimic again proof of Theorem B.9 with gf the function defined from R4 onto R by
gf (x1, x2, x3, x4) =

(
x1/(1− x2)− x3/(1− x4)

)
, so that dgf is the gradient of gf . �

Finally, our last test compares the even and odd variances σ2
0 and σ2

1 of the noise sequence. Set

• Hσ
0 : σ2

0 = σ2
1 the symmetry hypothesis,

• Hσ
1 : σ2

0 6= σ2
1 the alternative hypothesis.

Let (Y σn )2 be the test statistic defined by

Y σn = |T∗n−1|1/2(∆̂σ
n)−1/2

(
σ̂2
0,n − σ̂2

1,n)
)
,

where ∆̂σ
n = |T∗n−1|dgσ

tΓ̂σ,n−1dgσ, and dgσ = (1,−1)t. This test statistic has the following
asymptotic properties.

Theorem C.17 Under assumptions (H.0-6) and the null hypothesis Hσ
0, one has

(Y σn )2
L−→ χ2(1)

on (E ,PE); and under the alternative hypothesis Hσ
1, almost surely on E one has

lim
n→∞

(Y σn )2 = +∞.

Proof We mimic one last time the proof of Theorem B.9 with gσ the function defined from R2 onto
R by gσ(x1, x2) = (x1 − x2), so that dgσ is the gradient of gσ. �
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