
Estimating GARCH-type models with symmetric stable
innovations: Indirect inference versus maximum likelihood

Giorgio Calzolari a, Roxana Halbleib b,∗, Alessandro Parrini c

a Department of Statistics, University of Firenze, Italy
b Department of Economics, University of Konstanz, P.O. Box 124, Universitaetstrasse 10, 78464, Konstanz, Germany
c Department of Econometrics, VU University Amsterdam, Netherlands

Keywords:
Symmetric α-stable distribution
GARCH-type models
Indirect inference
Maximum likelihood
Leverage effects
Student’s t distribution

a b s t r a c t

Financial returns exhibit conditional heteroscedasticity, asymmetric responses of their
volatility to negative and positive returns (leverage effects) and fat tails. Theα-stable distri-
bution is a natural candidate for capturing the tail-thickness of the conditional distribution
of financial returns, while the GARCH-type models are very popular in depicting the con-
ditional heteroscedasticity and leverage effects. However, practical implementation of
α-stable distribution in finance applications has been limited by its estimation difficulties.
The performance of the indirect inference approach using GARCH models with Student’s
t distributed errors as auxiliary models is compared to the maximum likelihood approach
for estimating GARCH-type models with symmetric α-stable innovations. It is shown that
the expected efficiency gains of the maximum likelihood approach come at high computa-
tional costs compared to the indirect inference method.

1. Introduction

Most of the financial returns exhibit conditional heteroscedasticity and heavy-tailedness. While conditional het-
eroscedasticity is standardly captured by means of GARCH or stochastic volatility (SV) models (e.g. Bollerslev (1986) and
Ghysels et al. (1996)), depicting the empirically observed fat-thickness of financial returns is not always straightforward.
Although theoreticallymost of the GARCH and SV specifications can accommodate for fat-tailedness through their specifica-
tion, in practice, in most of the cases, there is still excess kurtosis left in the standardized residuals. A very common solution
to this problem is to assume a fat-tailed distribution for the standardized innovations of the conditional heteroscedasticity
models, and the Student’s t is a natural candidate (e.g., Calzolari et al. (2003)). However, one drawback of the Student’s t
distribution is that it lacks in stability under aggregation, which is of particular importance in portfolio applications and risk
management. A fat-tailed distribution that overcomes the drawbacks of the Student’s t is the α-stable. Its theoretical foun-
dations lay on the generalized central limit theorem. Moreover, similar to the Student’s t distribution, the α-stable can be
easily adapted to account for asymmetry in the underlying series. The main drawback of this specification is its estimation.
The fact that, for most of the parameters constellations, the α-stable does not have a closed-form density specification or
the theoretical moments simply do not exist, makes the estimation of its parameters a cumbersome task and limits the in-
terest among academics and practitioners. Proposals of likelihood-free inference are only recently available in the Bayesian
context: e.g., Peters et al. (2012).
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In this paper we focus on estimating GARCH-type models with symmetric α-stable innovations by means of the indirect
inference (IndInf) method proposed by Gouriéroux et al. (1993) andmaximum likelihood (ML) as described in Nolan (1997).
The indirect inference estimation approach has already proved its adequacy in estimating the parameters of the stable
distribution in Lombardi and Calzolari (2008) and Lombardi and Veredas (2009) and Garcia et al. (2011). Lombardi and
Calzolari (2009) use the indirect inference approach to estimate a SVmodelwithα-stable innovations. Differently from their
approach,we focus on comparing the estimation results stemming from IndInf andMLwhen estimatingGARCH-typemodels
with symmetric α-stable innovations. We focus on estimating GARCH-type specifications due to their popularity among
practitioners and academics. The popularity of GARCHmodels over SVmodels originates in their ability of straightforwardly
capturing empirical features of financial volatilities, such as: asymmetric responses to negative and positive returns, known
in literature as leverage effects, high persistence or long memory as well as causality and correlation effects with further
economic variables such as: Volatility Index (VIX), inflation, etc.. To illustrate this, we estimate, besides simple GARCH
specifications, also Threshold GARCH (TGARCH) models as introduced by Glosten et al. (1993) that capture leverage effects,
which are highly relevant in financial applications.

In the GARCH context, the α-stable distribution is first mentioned by de Vries (1991) and Ghose and Kroner (1995), while
the GARCHmodel with α-stable innovations is first proposed byMcCulloch (1985) within a restricted framework and by Liu
and Brorsen (1995b) within a more general context. The theoretical stationarity properties of GARCH models with α-stable
innovations are studied by Panorska et al. (1995) and Mittnik et al. (2000, 2002). In what regards the estimation, Liu and
Brorsen (1995a) propose the ML approach, however for very specific values of the parameters and GARCH specifications.

The aim of our paper is to alleviate the estimation problems in implementing GARCH-type models with symmetric
α-stable innovations under a very general parameter setting. Our implementation does not impose any parameter or
model specification constraints. The IndInf estimation method uses GARCH-type specifications with Student’s innovations
as auxiliary models. The choice of the auxiliary model is motivated by the fact that there is a rather natural correspondence
between the two models: besides having the same number of parameters and common GARCH-type specifications for
the conditional heteroscedasticity, the degrees of freedom in the Student’s t distribution is the direct counterpart of
the parameter of stability or characteristic exponent in the stable distribution, as both measure the tail-thickness of the
distribution. In what regards the ML implementation, we apply the method described by Nolan (1997) and Matsui and
Takemura (2006) based on the numerical evaluation of the symmetric stable density and its derivatives for a wide range of
parameter constellations. Furthermore, we adapt their procedure to estimate both the parameters of the symmetricα-stable
distribution and of the GARCH specifications. As an alternative to Nolan’s (1997) approach, one can consider the approach
of Chenyao et al. (1999) that uses fast Fourier transforms to approximate the stable density functions.

Thus, our paper, besides contributing to the existing literature for implementing further types of GARCHmodels, such as
TGARCHmodels with symmetric α-stable innovations, it also directly compares the performance of standard ML and IndInf
when estimating a wide range of GARCH-type models with symmetric α-stable innovations.

Within a thoroughMonte Carlo experiment and an empirical application to twelve time series of financial returns of DJIA,
SP500, IBM and GE, sampled at different frequencies (daily, weekly, monthly), we provide valuable empirical evidence in
favor of applying IndInf over ML under a very general model specification and parameter settings. We show that, although
both methods provide accurate estimates, the expected efficiency gain of ML comes at high computational costs: besides
being easier to implement, IndInf reports estimation results up to ten times faster than ML.

The rest of the paper is organized as follows: Section 2 gives a short introduction to the symmetric α-stable distributions,
Section 3 focuses on describing the models of interest, namely GARCH and TGARCH with symmetric α-stable innovations,
Section 4 shortly introduces the estimationmethods and describes their practical implementation for estimating themodels
of interest. Section 5 presents the results of a Monte Carlo experiment, while Section 6 shows results from estimating the
models on real data. Section 7 concludes.

2. Symmetric α-stable distributions

The stable family of distributions, which is also known under the name α-stable, constitutes a generalization of the
Gaussiandistributionby allowing for asymmetry andheavy tails. In this paper,we focus on the symmetric stable distribution,
which is a subclass of the stable family of distributions with no asymmetry. From a theoretical point of view, the use
of models based on stable distributions is justified by the generalized version of the central limit theorem, in which the
condition of finite variance is replaced by a much less restricting one concerning a regular behavior of the tails. It turns out
that stable distributions are the only possible limiting laws for normalized sums of iid random variables (Feller, 1966). The
lack of closed formulas for density and distribution functions (except for a few particular cases) has been, however, a major
drawback of the stable distributions in applied fields.

In general a random variable X is said to have a stable distribution if and only if, for any positive numbers c1 and c2, there
exists a positive number k and a real number d such that

kX + d
d= c1X1 + c2X2, (1)

where X1 and X2 are independent and have the same distribution as X and
d= stands for equality in distribution. If d = 0,

X is said to be strictly stable. In order to show that the stable distribution is a generalization of the normal, let the variable
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X ∼ N(μ, s2). The sum of n independent copies of X is N(nμ, ns2) distributed and [X1 + X2 + · · · + Xn]/k − d
d= X , where

k = √
n and d = (

√
n − 1)μ.

The most concrete way to describe all possible stable distributions is by means of their characteristic function. Confining
to the symmetric case, the characteristic function of a stable random variable is of the form

φ(t) := exp {iδt − σα|t|α} , (2)

where α ∈]0, 2] is the index of stability or characteristic exponent that describes the tail-thickness of the distribution (small
values correspond to thick tails), σ ∈ R

+ is the scale parameter and δ ∈ R is the location parameter. This representation is a
slight variation of parameterization (M) in Zolotarev (1986), adapted to the symmetric stable distributions. The symmetric
stable distribution is, thus, characterized by three parameters (α, σ , δ) and is denoted as S(α, σ , δ).

Let Z ∼ S(α, 1, 0). Then:

X = σZ + δ (3)

is S(α, σ , δ) distributed. Z is thus the ‘‘standardized’’ version of X . The characteristic function of a standardized symmetric
α-stable distribution reduces to

φ(t) = exp{−|t|α}.
The symmetricα-stable density functions admit closed formonly in a very few special cases: ifα = 2, then the symmetric

stable distribution coincides to a normal distribution with mean parameter δ and variance parameter 2σ 2; if α = 1, then
the stable distribution coincides to a Cauchy distribution with location parameter δ and scale parameter σ .

A further nice property of the stable distribution is that one can simulate pseudo-randomnumbers. Chambers et al. (1976)
develop an algorithm by starting from two independent variables V andW , with V uniformly distributed on (−π

2
, π

2
) andW

exponentially distributed with mean 1, and 0 < α ≤ 2. Thus, symmetric stable pseudo-random numbers can be obtained
as follows

Z =
⎧⎨
⎩

sinαV

(cos V )1/α

[
cos((α − 1)V )

W

](1−α)/α

if α �= 1

tan V if α = 1.

(4)

Z has a S(α, 1, 0) distribution. Pseudo-random numbers containing the location and the scale parameters δ and σ may be
straightforwardly obtained using the standardization given in Eq. (3). One should notice that most of computer packages
using Eq. (4) do not generate ‘‘standardized’’ stable random numbers in the classical sense. For instance, when α = 2, the
generated normal random variables have variance 2. Thus, in order to get variables ‘‘standardized’’ in the ordinary sense,
we divide them by 21/α .1

3. Symmetric α-stable GARCH-type models

Several studies have highlighted the fact that heavy—tailedness of asset returns can be the consequence of conditional
heteroscedasticity. The GARCH models of Bollerslev (1986) have become very popular for their ability to account for
volatility clustering and heavy tails. However, some empirical studies (e.g., Yang and Brorsen (1993)) indicate that the tail
behavior of GARCH models remains too short even with Student’s t distributed error terms. Furthermore, the Student’s t
distribution lacks the stability-under-addition property. Stability is desirable because stable distributions provide a very
good approximation for large classes of distributions. To overcome these weaknesses, one can apply GARCH models with
α-stable innovations.

GARCH models with symmetric stable innovations were first proposed by McCulloch (1985). However, the model in-
troduced by McCulloch (1985) is restricted to absolute values and to an integrated conditional standard deviation model.
Here we adopt the model introduced by Liu and Brorsen (1995b), which is more general, and adapt it to a standard GARCH
specification with symmetric stable innovations.

In the context of stable distributions, the GARCH specificationsmodel the squared of conditional scale of the distribution.
Thus, due to the fact that, for these distributions, the secondmoments do not exist, using the term ‘‘conditional heteroscedas-
ticity’’ is not entirely correct. However, for convenience, we still use it in what it follows.

We define the variable Yt to follow a symmetric α-stable GARCH(1, 1) if:

Yt = c + εt , εt = ztσt , (5)

σ 2
t = ω + aε2

t−1 + bσ 2
t−1 (6)

with ω > 0, a � 0, b � 0 and zt being identically and independently distributed as a standard symmetric α-stable variable.
The model from above could be easily generalized to a GARCH(p, q) model by including additional lags. For α = 2, it

1 Here we would like to thank one of the referees for suggesting to us this standardization. This will always be done implicitly in what follows. Thus, for
α = 2, the ‘‘standardization’’ is given by

√
2.
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collapses to the GARCH-normal model of Bollerslev (1986). Without loss of generality, we assume c = 0. Thus the unknown
parameters of the model are: α, ω, a, b.

As already mentioned by Liu and Brorsen (1995a), the stationarity conditions for a symmetric α-stable GARCH model
are stricter than the conditions for the normal GARCH. However, by applying Lyapunov type exponents, one can obtain
the necessary and sufficient conditions for assuring the strictly stationarity of the stable GARCH process. Thus, the top-
Lyapunov condition E log(az2t + b) < 0 is the necessary and sufficient condition for the existence of a strictly stationary
solution to Eqs. (5)–(6) (Mittnik et al., 2002). This result was first established by Nelson (1990) under the assumption that
max(E log z2t , 0) < ∞ and ω, α > 0 (see Francq and Zakoian (2010), for a more detailed discussion on the stationarity
of GARCH). The top-Lyapunov condition given above is numerically verified within the empirical applications described in
Sections 5 and 6.

The standard GARCH model described so far ignores the information on the direction of returns and how they affect
volatility. In practice the volatility responds asymmetrically to positive and negative returns. More precisely the reaction to
negative returns is greater than the reaction to positive returns. This effect, first identified by Black (1976) and known in
literature as the leverage effect, can be captured within the GARCH framework by so called Threshold GARCHmodel, which
was proposed by Glosten et al. (1993).

We define here the variable Yt to follow a symmetric α-stable TGARCH(1, 1) if:

Yt = c + εt , εt = ztσt , (7)

σ 2
t = ω + aε2

t−1 + γ ε2
t−11[εt−1<0] + bσ 2

t−1 (8)

where 1[·] is the indicator function,ω, a, b follow the assumptions of the GARCHmodel described above and zt is identically
and independently distributed as a standard symmetric α-stable variable. By introducing an interaction term of the lagged
squared shocks with a dummy for the sign of the shock, TGARCH manages to account for the leverage effect. In particular,
if γ > 0, then the impact of a negative shock in t − 1 on the ‘‘conditional variance’’ in t is larger compared to the impact
of a positive shock. Clearly, the slope from a positive to a negative shock is not smooth, but discrete. Similar to the standard
GARCH model, TGARCH can be easily generalized to TGARCH(p, q) by including additional lags. Moreover, we set c = 0.
Thus the unknown parameters of the model are: α, ω, a, b, γ .

The necessary and sufficient conditions for assuring the strict stationarity of the stable TGARCH process can be derived
similar to theGARCHprocess from the top-Lyapunov condition. Thus, the necessary and sufficient condition for the existence
of a strictly stationary solution to Eqs. (7)–(8) is given by E log(az2t + γ z2t 1[zt<0] + b) < 0 under the same assumptions as
for the GARCH model (see Francq and Zakoian (2012)). Similar to the GARCH case, we verify this condition numerically in
Sections 5 and 6.

The specification given in Eqs. (5) and (6) is so far implemented and estimated in Liu and Brorsen (1995a) by means
of ML for very specific values of the parameters. Although very appealing, applying ML to estimate the model from above
found so far little application in the existing literature. Thismight be due to the difficulty of implementing theML approach to
estimate the parameters of the stable distribution, given that the distributionhas a closed-formdensity function only for very
specific values of α. Nolan (1997) and Matsui and Takemura (2006) implement the ML approach by numerically evaluating
the stable density function and its derivatives in order to estimate the parameters specific to the stable distribution. In this
paper we adapt their approach and integrate the GARCH and TGARCHmodels in the estimation procedure. As an alternative,
we also apply the IndInf method, which proves to be a valuable alternative to estimate the stable parameters (Lombardi and
Calzolari, 2008; Garcia et al., 2011). Section 4 gives a thorough description of the two estimation methods and of their
practical implementation when estimating the parameters of symmetric stable (T)GARCH models as specified above.

4. Estimation methods

Let yt , t = 1, . . . , T be a series of observed values of the random variable Yt defined in Eqs. (5)–(6) or (7)–(8) and
characterized by the density function f0(yt; α, σt , 0). Given the symmetry of the distribution, we have that: f0(yt; α, σt , 0) =
f0(−yt; α, σt , 0). The link to the standard symmetric stable distribution is given by: 1

σt
f0(

yt
σt

; α, 1, 0) = f0(yt; α, σt , 0).

Let’s denote the unknown parameter vector θ = (α, ω, a, b)′ if Yt has the representation given in Eqs. (5) and (6) and
θ = (α, ω, a, b, γ )′ if Yt has the representation given in Eqs. (7) and (8). Thus, θ is in the interior of the parameter set
� ∈ R

r , where r = 4, if Yt is given in Eqs. (5) and (6) and r = 5 if Yt is given in Eqs. (7) and (8). Denote θ0 to be the true
value of the parameter vector θ , which is also in the interior of �.

Maximum likelihood. The absence of the closed-form density for the stable distribution makes the estimation of the
parameters of the stable distribution by ML a very difficult task. Nolan (1997) overcomes this difficulty, by applying the
(M) parameterization of Zolotarev (1986) and derives numerical formulas for the computation of the stable density and its
derivatives. Thus, he derives the density of a standardized symmetric stable distributed variable zt = Yt

σt
, for zt > 0 and

α �= 1 to be given by:

f (zt; α, 1, 0) = α

π |α − 1|zt
∫ π

2

0

g(x; α, zt) exp{−g(x; α, zt)}dx, (9)
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where

g(x; α, zt) =
( zt cos x

sinαx

) α
α−1 cos(α − 1)x

cos x
. (10)

For α = 1, f (zt; 1, 1, 0) = 1

π(1+z2t )
. As mentioned in Nolan (1997), properties of the function given in Eq. (9) make the

numerical integration feasible, as the function g is continuous and positive, strictly increasing from 0 to ∞ for α < 1
and strictly decreasing from ∞ to 0 for α < 1. Thus g(·) exp{−g(·)} has a unique maximum attained at x1 satisfying
g(x1; α, zt) = 1. Nolan kindly provides on his webpage a useful Fortran package, called STABLE to compute ML estimates
of the parameters of a general stable distribution. Although we did not directly use this package, it extensively inspired
us in writing our procedures. Matsui and Takemura (2006) provides improvements to Nolan’s (1997) approach that help
to estimate the parameters of the symmetric stable distribution at the boundary cases, i.e., when the underlying random
variable approaches zero or ∞ and α is near the value 1 or 2. Thus, when x → 0 or x → ∞ and α �= 1, they derive specific
expressions of f (zt; α, 1, 0) based on asymptotic expansions as stated in Sections 2.4 and 2.5 of Zolotarev (1986), while for
the case α = 1 and α = 2, they use Taylor expansions of f (zt; α, 1, 0) around these values by giving specific expressions
for the partial derivatives of the function with respect to α.

Both procedures of Nolan (1997) andMatsui and Takemura (2006) are derived for ‘‘homoscedastic’’ randomvariables. For
our purposes, we adapt these procedures to incorporate the conditional scale by means of the (T)GARCH specifications, as
described in Section 3. In particular, given the range of the α-parameter values of practical interest in financial applications
(between 1.7 and 2, e.g. Mandelbrot (1967)), we choose appropriately the numerical methods to compute the density f ; for
‘‘small’’ and ‘‘large’’ values of the random variable, we adopt appropriate series expansions, while for ‘‘intermediate’’ values,
we perform numerical integration of Eq. (9) with Gaussian quadrature, with 64 points. The variance–covariance matrix of
theML estimates is obtained by numerical computation of the second order derivatives of the log-likelihood. The advantage
of ML is that it provides efficient estimates, however at the cost of some difficulties in the computational implementation.

Indirect inference. As an alternative to ML, we apply the indirect inference estimation method introduced by Gouriéroux
et al. (1993), which is a simulation-based technique suitable to solve difficult or intractable estimation problems. This
method has already proved to be a valuable candidate for the estimation of the parameters of the stable distribution in
Lombardi and Calzolari (2008) and Garcia et al. (2011). The idea behind the IndInf estimation method is to replace the
model of interest (true model) with an approximated model, which is easier to handle and estimate (auxiliary model). One
important requirement of this technique is that one can easily simulate random values from the true model. Moreover, for
identification purposes, the dimension of the parameter vector of the auxiliary model should be equal or larger than the
dimension of the parameter vector of the true model.

Thus IndInf uses an auxiliary density function f a(yt; ψ), which is easier to handle and which is characterized by the
parameter vector ψ in the set Ψ ∈ R

q, with q � r . The corresponding log-likelihood function of the auxiliary model is given
by La(y1, y2, . . . , yT ; ψ), which is available analytically.

The IndInf estimationmethod implies the following steps: firstly, compute the pseudo-ML (PML) estimator of the pseudo-
true ψ0 from:

ψ̂ = argmax
ψ

La(y1, y2, . . . , yT ; ψ). (11)

Secondly, for a given value of θ , simulate S paths of length T from the initial model: ys1(θ), . . . , ysT (θ), with s = 1, . . . , S
and estimate

ψ̂ST (θ) = argmax
ψ

1

S

S∑
s=1

La(ys1(θ), ys2(θ), . . . , ysT (θ); ψ). (12)

Thirdly, find the indirect inference estimator θ̂ such that ψ̂ and ψ̂ST (θ) are as close as possible:

θ̂ (Ω) = argmin
θ

[ψ̂ − ψ̂ST (θ)]′ Ω [ψ̂ − ψ̂ST (θ)], (13)

where Ω is a weighting matrix, which is symmetric nonnegative definite and defines the metric. Denote p(θ) =
limT→∞ ψ̂ST (θ) to be the link between θ and ψ as a binding function, such that p(θ0) = ψ0. The third step involves, in
general, numerical optimization, since, in most cases, there is no analytical correspondence between ψ and θ , i.e., there is
no analytical solution to p(θ) = ψ . Under certain regularity conditions (see, Gouriéroux et al. (1993)), the indirect inference

estimator θ̂ (Ω) is consistent and asymptotically normal for S fixed and T → ∞.
When the problem is just identified, i.e. the dimension of the two parameter vectors is equal, r = q, the results are

independent of the choice of the matrices that define the metric, Ω . On the contrary, when q > r , it would be necessary to

choose a metric Ω to measure the distance between ψ̂ and ψ̂ST (θ). The optimal choice of Ω is

Ω∗ = J(ψ0)I(ψ0)
−1J(ψ0),

where J(ψ0) is minus the expectation of the Hessian of the log-likelihood of the auxiliary model and I(ψ0) is the Fisher

information matrix of the auxiliary model. The corresponding IndInf estimator is denoted by θ̂∗.
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Alternatively, following Gallant and Tauchen (1996), one can consider directly the score of the auxiliary model and find

the optimal θ such that the score, computed on the simulated observations and at the value ψ̂ , is as close as possible to zero:

θ̃ (Σ) = argmin
θ

∂La,s
T

∂ψ ′ (θ, ψ̂)Σ
∂La,s

T

∂ψ
(θ, ψ̂), (14)

whereLa,s
T (θ, ψ) ≡ 1

S

∑S
s=1

1
T
La(ys1(θ), ys2(θ), . . . , ysT (θ); ψ) andΣ is aweightingmatrix,which is symmetric nonnegative

definite and defines the metric. Gouriéroux et al. (1993) show that the two family of estimators, θ̂ (Ω) and θ̃ (Σ) are
asymptotically equivalent. The optimal value of Σ , namely Σ∗ is I(ψ0)

−1. Provided that a closed form for the gradient
of the auxiliary model is available, this approach has an important computational advantage: it avoids the need of repeating
the numerical optimization in Eq. (12). This is the reason why we chose to implement it in all our empirical exercises.

As derived in Gouriéroux et al. (1993), the variance–covariance matrix of the IndInf estimator from Eq. (13) is given in
the optimal case by

W (S, Ω∗) =
(
1 + 1

S

) [
∂p′

∂θ
(θ0) J(ψ0)I(ψ0)

−1J(ψ0)
∂p

∂θ ′ (θ0)
]−1

, (15)

and of the estimator from Eq. (14) is given in the optimal case by

W (S, Σ∗) =
(
1 + 1

S

) [
∂2La,s∞
∂ψ∂θ ′ (θ0, ψ0) I(ψ0)

−1 ∂2La,s∞
∂θ∂ψ ′ (θ0, ψ0)

]−1

, (16)

where La,s∞ (θ, ψ) = limT→∞ La,s
T (θ, ψ). Gouriéroux et al. (1993) show that the two estimators are equivalent and denote

them generically byW ∗
S .

Consistent estimates of W ∗
S can be obtained by numerical derivation of p(θ) with respect to θ and evaluated at θ̂∗ or by

numerical derivation of La,s∞ (θ, ψ) with respect to θ and ψ and evaluated at θ̂∗ and ψ̂ , where p(θ) and La,s∞ are numerically

computed from simulated data and by replacing I(ψ0) and J(ψ0) by their empirical counterparts evaluated at ψ̂ .
As already mentioned above, for our purposes, we implement the IndInf method by considering as auxiliary models

(T)GARCH approaches with Student’s t innovations. The choice of Student’s t distribution is motivated by the fact that its
parameters have a clear and interpretable matching to those of the α-stable distribution: the degrees of freedom parameter
ν is naturally linked to the tail parameter α, as both describe the thickness of the tail. Here we implement the Student’s t
distribution in terms of η = ν−1, which is the reciprocal of the degrees of freedom ν. Thus, the auxiliarymodel for estimating
the model given in Eqs. (5) and (6) is a GARCH(1, 1) model with Student’s t distributed innovations:

Yt = ca + ξt , ξt = ut

√
ht , (17)

ht = ωa + aaξ
2
t−1 + baht−1 (18)

withωa > 0, aa � 0, ba � 0 andut is identically and independently distributed as a symmetric Student’s t variable,ut ∼ t1/η .
Similar to Eq. (5), we set ca to 0. Thus the parameter vector ψ is given by ψ = (η, ωa, aa, ba)

′ and it has the same dimension
4×1 (q = 4) as the parameter vector of themodel given in Eqs. (5) and (6), namely θ = (α, ω, a, b)′. Thus, the dimension of
the true parameter vector and the auxiliary parameter vector is the same and, therefore, in the IndInf optimization routine
we replace the metric Σ , respectively Σ∗ by the identity matrix, I4.

The auxiliary model for estimating the model given in Eqs. (7) and (8) is a TGARCH(1, 1) model with Student’s t
distributed innovations:

Yt = ca + ξt , ξt = ut

√
ht , (19)

ht = ωa + aaξ
2
t−1 + γaξ

2
t−11[ξt−1<0] + baht−1 (20)

with ωa > 0, aa � 0, ba � 0 and ut is identically and independently distributed as a symmetric Student’s t variable,
ut ∼ t1/η . Similar to Eq. (17), we set ca to 0. Thus the parameter vector ψ is given by ψ = (η, ωa, aa, ba, γa)

′ and it has the
same dimension 5 × 1 (q = 5) as the parameter vector of the model given in Eqs. (7) and (8), namely θ = (α, ω, a, b, γ )′.
Thus, similar to the GARCH case, in the IndInf optimization routine we replace the metric Σ , respectively Σ∗ by the identity
matrix, I5.

As a result, between the true and auxiliary model there is a rather ‘‘natural’’ correspondence between the parameters
(same number of parameters; just identified case): besides the correspondence between the tail-thickness parameters
mentioned above, there is a direct correspondence between the parameters of the conditional heteroscedasticity models:
ω, a and b (γ ) are the (T)GARCH parameters of the true model, while ωa, aa and ba (γa) are the (T)GARCH parameters of the
auxiliary model.

For both models, we simply minimize the quadratic form in Eq. (14). In the just-identified case, when the minimum is in
the interior of the parameter space, the value of the function at the minimum should be zero. Thus, a great computational
benefit (at least in terms of speed) is obtained if we directly compute the estimator of θ as the solution of the equations
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Table 1
Monte Carlo results for estimating the GARCH(1, 1) model with symmetric stable innovations as given in Eqs. (5) and (6) by indirect inference: average estimates
and standard errors (in parentheses) over R = 1000 Monte Carlo replications, based on T = 10000 number of observations and S = 10 number of
simulation paths.

Parameters of the true model Estimated parameters

True model Auxiliary model

ω a b α ω a b α ωa aa ba η

.01 .20 .78

1.80
.010 .200 .780 1.798 .007 .145 .779 .235
(.0012) (.0101) (.0083) (.0168) (.0009) (.0074) (.0079) (.0122)

1.85
.010 .200 .780 1.849 .008 .153 .779 .196
(.0012) (.0102) (.0087) (.0161) (.0009) (.0078) (.0083) (.0123)

1.90
.010 .200 .779 1.899 .008 .161 .779 .153
(.0011) (.0103) (.0091) (.0149) (.0009) (.0084) (.0088) (.0127)

1.95
.010 .200 .779 1.949 .009 .172 .779 .102
(.0011) (.0104) (.0097) (.0126) (.0010) (.0091) (.0093) (.0137)

1.98
.010 .200 .779 1.980 .009 .182 .779 .060
(.0011) (.0104) (.0100) (.0094) (.0010) (.0100) (.0095) (.0155)

.01 .10 .88

1.80
.010 .100 .880 1.798 .008 .073 .879 .235
(.0017) (.0059) (.0056) (.0167) (.0012) (.0042) (.0054) (.0122)

1.85
.010 .100 .880 1.849 .008 .076 .879 .196
(.0015) (.0061) (.0061) (.0161) (.0011) (.0046) (.0058) (.0123)

1.90
.010 .100 .880 1.899 .008 .080 .879 .153
(.0014) (.0064) (.0066) (.0149) (.0011) (.0051) (.0063) (.0127)

1.95
.010 .100 .879 1.949 .009 .086 .879 .102
(.0014) (.0067) (.0072) (.0126) (.0012) (.0057) (.0070) (.0137)

1.98
.010 .100 .879 1.980 .009 .091 .879 .060
(.0014) (.0069) (.0077) (.0094) (.0013) (.0064) (.0074) (.0156)

.01 .05 .93

1.80
.010 .050 .930 1.798 .008 .036 .930 .235
(.0015) (.0035) (.0040) (.0167) (.0011) (.0024) (.0038) (.0121)

1.85
.010 .050 .930 1.849 .008 .038 .930 .196
(.0014) (.0037) (.0045) (.0161) (.0010) (.0028) (.0043) (.0123)

1.90
.010 .050 .930 1.899 .008 .040 .929 .153
(.0014) (.0041) (.0051) (.0149) (.0011) (.0032) (.0049) (.0127)

1.95
.010 .050 .930 1.949 .009 .043 .929 .102
(.0016) (.0045) (.0061) (.0126) (.0013) (.0038) (.0058) (.0137)

1.98
.010 .050 .929 1.980 .009 .045 .929 .060
(.0018) (.0049) (.0069) (.0094) (.0016) (.0044) (.0066) (.0156)

system
∂L

a,s
T

∂ψ
(θ, ψ̂) = 0 (q equations), which is the empirical counterpart of

∂L
a,s∞

∂ψ
(θ, ψ̂). The numerical solution of such a

system can be obtained using theNewton–Raphsonmethod,with numerical computation of the Jacobianmatrix
∂2L

a,s
T

∂ψ∂θ ′ . Non-
singularity of the Jacobian matrix ensures the one-to-one correspondence between θ and ψ parameters, at least in some
neighborhood of the solution. The same ‘‘numerical’’ Jacobian will be used in the estimation of the variance–covariance
matrix, as requested by Eq. (16). Although the IndInf method involves extensive simulation exercises, it is easier to
implement than ML, which involves heavy numerical integrations.

5. Monte Carlo study

A detailed set ofMonte Carlo experiments is performed to check the reliability of theML and IndInfmethodwhen applied
to (T)GARCH(1, 1) models with symmetric α-stable noise.

We adopt a moderately large length of the time series in all experiments (T = 10000, roughly comparable with the
length of the daily series in the empirical application described in Section 6). As a multiplicative length-factor to produce
simulated series, we take S = 10: thus 100,000 is in all experiments the length of the simulated series to be handled by the
auxiliary model. Each set of simulation results is obtained with R = 1000 Monte Carlo replications. In all simulations we
use the same random numbers, however, with different (T)GARCH parameterizations.

We chose the values of the parameters to mimic real-case values (the only exception being the ω parameter, which is
chosen to be larger, namely 0.01). Thus to generate symmetric stable GARCH(1, 1) processes, we have three cases with b
ranging from 0.78 to 0.93 and a ranging from 0.05 to 0.2. To generate symmetric stable TGARCH(1, 1) processes, we have also
three cases with b ranging from 0.78 to 0.93 and a and γ ranging from 0.025 to 0.1. As far as the tail-thickness parameter α is
concerned, we experiment with five different values, ranging from a ‘‘close to Gaussian’’ value (1.98) to amoderate ‘‘fat-tail’’
value (1.80).

Tables 1–4 report the results of the ML and IndInf estimation based on simulated data. More precisely, Tables 1 and 2
report the results from estimating the GARCH(1, 1) model with symmetric stable innovations by IndInf and, respectively,
ML, while Tables 3 and 4 present the results for the TGARCH(1, 1) model with symmetric stable innovations.
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Table 2
Monte Carlo results for estimating the GARCH(1, 1) model with symmetric stable innovations as given in Eqs.
(5) and (6) by maximum likelihood: average estimates and standard errors (in parentheses) over R = 1000
Monte Carlo replications, based on T = 10000 number of observations and S = 10 number of simulation
paths.

True parameters Estimated parameters

ω a b α ω a b α

.01 .20 .78

1.80
.009 .185 .780 1.801
(.0011) (.0087) (.0078) (.0140)

1.85
.010 .189 .780 1.851
(.0010) (.0089) (.0082) (.0130)

1.90
.010 .193 .780 1.900
(.0010) (.0091) (.0086) (.0114)

1.95
.010 .196 .780 1.950
(.0010) (.0094) (.0091) (.0091)

1.98
.010 .198 .780 1.982
(.0010) (.0096) (.0095) (.0062)

.01 .10 .88

1.80
.010 .093 .880 1.801
(.0015) (.0049) (.0051) (.0140)

1.85
.010 .095 .880 1.851
(.0013) (.0052) (.0055) (.0130)

1.90
.010 .096 .880 1.900
(.0013) (.0055) (.0060) (.0114)

1.95
.010 .098 .880 1.950
(.0013) (.0059) (.0066) (.0090)

1.98
.010 .099 .880 1.982
(.0014) (.0062) (.0072) (.0062)

.01 .05 .93

1.80
.010 .046 .930 1.801
(.0013) (.0029) (.0037) (.0140)

1.85
.010 .047 .930 1.851
(.0013) (.0032) (.0041) (.0129)

1.90
.010 .048 .930 1.900
(.0013) (.0035) (.0047) (.0114)

1.95
.010 .049 .930 1.950
(.0015) (.0040) (.0055) (.0090)

1.98
.010 .050 .930 1.982
(.0017) (.0044) (.0063) (.0062)

We verify numerically the strict stationarity conditions described in Section 3 and find that for all parameter combina-
tions given in the tables, the top-Lyapunov conditions are negative. However, in a very few cases (5 of the 30 cases) the
estimation results for the simulated data contain 1 up to 3 outliers that affect the mean and variances of the estimates of ω,
but not of a, b and γ . These very few outliers (which we discard in the results presented in the tables) are due to a behavior
of the simulated series similar to a ‘‘non-stationary’’ case. According to Francq and Zakoian (2012), in this case, the PML
estimator of ω is inconsistent, however the estimators of a, b and γ remain consistent. Our results show that the IndInf es-
timators follow the same pattern. However, the medians of the estimates computed on the ‘‘non-discarded’’ results, which
are better measures in the presence of outliers and which can be obtained from the authors upon request, are very close to
the true values of the parameters. Moreover, the interquartile ranges exhibit the same behavior as the standard deviations
reported in the tables.

Before commenting on the results reported in the tables, we need to point out the remarkable speed in convergence
of the IndInf method compared to ML: IndInf provides estimation results around ten times faster than the ML. Thus, for
instance, to estimate the model in Eqs. (5) and (6) on a computer with a processor Intel i7, 2.67 Ghz, for α = 1.8, a = 0.05
and b = 0.93, for each Monte Carlo replication, IndInf converges in 0.43 s, while ML needs 4.5 s to converge, while, in order
to estimate the model in Eqs. (7) and (8), for α = 1.8, a = 0.025, γ = 0.025 and b = 0.93, IndInf converges in 0.53 s,
while ML needs 5.5 s per replication. This is an additional computational advantage of IndInf over ML, besides the greater
implementation easiness.

Regarding the statistical performance of the estimation methods, one may say that they are quite remarkable. With
very few exceptions, estimates of the model of interest (true model) stemming from both ML and IndInf approaches ‘‘seem
unbiased’’ (differences between the average estimates and the parameters used to generate the data are observable only
after the third digit). Moreover, the expected gains in efficiency provided by ML compared to IndInf are minimal in most
cases: the differences between the empirical standard deviations presented in parentheses are only observable after three
digits. Concerning the stability parameter, one may notice that some entries of the tables are similar (or equal) across the
GARCH parameterization. Differences would appear only if more significant digits were displayed.

The variance of ω, a, b and γ estimated by IndInf are always larger than their counterparts in the auxiliary model, but
the difference is not very large. Moreover, the estimate of b is nearly unbiased also in the auxiliary model (see ba); on the
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Table 3
Monte Carlo results for estimating the TGARCH(1, 1) model with symmetric stable innovations as given in Eqs. (7) and (8) by indirect inference: average estimates
and standard errors (in parentheses) over R = 1000 Monte Carlo replications, based on T = 10000 number of observations and S = 10 number of
simulation paths.

Parameters of the true model Estimated parameters

True model Auxiliary model

ω a b γ α ω a b γ α ωa aa ba γa η

.01 .10 .78 .10

1.80
.010 .100 .780 .101 1.799 .007 .073 .779 .072 .235

(.0009) (.0114) (.0109) (.0266) (.0169) (.0006) (.0067) (.0097) (.0107) (.0121)

1.85
.010 .100 .780 .101 1.849 .008 .076 .779 .076 .196

(.0009) (.0116) (.0116) (.0264) (.0162) (.0007) (.0072) (.0105) (.0113) (.0123)

1.90
.010 .100 .779 .101 1.899 .008 .081 .779 .080 .153

(.0010) (.0118) (.0126) (.0260) (.0150) (.0007) (.0079) (.0114) (.0120) (.0127)

1.95
.010 .100 .779 .101 1.950 .009 .086 .779 .086 .102

(.0010) (.0120) (.0139) (.0254) (.0126) (.0008) (.0087) (.0125) (.0129) (.0137)

1.98
.010 .100 .779 .101 1.980 .009 .091 .779 .091 .060

(.0011) (.0121) (.0147) (.0249) (.0094) (.0010) (.0094) (.0132) (.0138) (.0156)

.01 .05 .88 .05

1.80
.010 .050 .880 .051 1.799 .007 .036 .880 .036 .235

(.0010) (.0080) (.0077) (.0207) (.0170) (.0007) (.0039) (.0065) (.0062) (.0121)

1.85
.010 .050 .880 .050 1.849 .008 .038 .879 .038 .196

(.0011) (.0084) (.0084) (.0211) (.0162) (.0008) (.0043) (.0072) (.0067) (.0123)

1.90
.010 .050 .880 .051 1.899 .008 .040 .879 .040 .153

(.0012) (.0089) (.0094) (.0214) (.0150) (.0009) (.0049) (.0081) (.0074) (.0127)

1.95
.010 .050 .880 .051 1.950 .009 .043 .879 .043 .102

(.0013) (.0093) (.0108) (.0216) (.0126) (.0011) (.0057) (.0092) (.0082) (.0137)

1.98
.010 .050 .879 .051 1.980 .009 .046 .879 .045 .060

(.0015) (.0096) (.0120) (.0215) (.0094) (.0012) (.0063) (.0101) (.0089) (.0156)

.01 .025 .93 .025

1.80
.010 .025 .930 .025 1.799 .007 .018 .930 .018 .235

(.0011) (.0056) (.0060) (.0160) (.0170) (.0008) (.0023) (.0045) (.0036) (.0121)

1.85
.010 .025 .930 .025 1.849 .008 .019 .930 .019 .196

(.0012) (.0061) (.0068) (.0168) (.0163) (.0009) (.0026) (.0052) (.0040) (.0123)

1.90
.010 .025 .930 .025 1.899 .008 .020 .929 .020 .153

(.0015) (.0067) (.0079) (.0178) (.0150) (.0010) (.0031) (.0061) (.0046) (.0127)

1.95
.010 .025 .929 .024 1.950 .009 .022 .929 .021 .102

(.0046) (.0200) (.0295) (.0369) (.0129) (.0013) (.0038) (.0075) (.0054) (.0137)

1.98
.010 .025 .929 .025 1.979 .009 .023 .929 .023 .060

(.0032) (.0257) (.0329) (.0478) (.0185) (.0016) (.0045) (.0088) (.0062) (.0156)

contrary, ω̂, â and γ̂ are always remarkably downward biased in the auxiliary model (see ωa, aa and γa). The bias is being
adjusted by the indirect estimation procedure. Moreover, one can observe the direct correspondence between the estimates
of α and the estimates of ν: the larger the α is, the smaller the η is, which indicates a large value for the Student’s t degrees
of freedom ν.

We also try other combinations of parameters: for instance, larger values of a and b as well as smaller values of α (till
1.70), implying even thicker tails. Not all these additional experiments are successful, as the combination of GARCH and
thick-tail noise in several cases leads to ‘‘exploding’’ values of the simulated series. This is a sort of experimental evaluation
of the non-stationarity of the process for some combinations of parameter values. At the same time these parameter values
are not realistic, when compared with the values estimated from real series, thus they are not reported here for the sake of
brevity. However, they can be obtained on request from the authors. The main difference from the results presented above
regards the consistency of ω and a: both IndInf and ML methods provide inconsistent estimators of ω, as the series mimic
a non-stationary behavior. Additionally, the ML estimators of parameter a seem also not very accurate, regardless of the
choice of α < 1.80. This is not the case of IndInf that provides accurate results for all choices of α.

We also estimate series of lower length such as T = 1000. For the sake of brevity, we choose not to report the results
here. However, they can be obtained on request from the authors. Besides a lower accuracy in the estimation, the results
follow the same pattern as the one described above. The only exception is the estimation ofω, which seems to be sometimes
inconsistent. This may be due to the fact that the results have some outliers stemming from simulated data that mimic the
behavior of non-stationary series. This occursmainly for α < 1.80with the GARCH parameter values we adopt in ourMonte
Carlo experiments presented above. Lowering the value of α increases the frequency of outliers: for example, for the GARCH
parameters a = 0.10 and b = 0.88, the top Lyapunov coefficients are still negative, but very close to zero. However, when
α approaches 1.7, the top Lyapunov coefficient remains very close to zero, but becomes positive. As mentioned above, for
these ‘‘non-stationary’’ cases, Francq and Zakoian (2012) show that the PML estimators of a, b and γ are consistent, while
the estimator ofω is not. Our results show further that the IndInf estimators follow the same pattern. However, themedians
of the ω estimates are all very close to the true values and the interquantile ranges follow the same patterns as the ones of
the standard deviations reported in the paper.
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Table 4
Monte Carlo results for estimating the TGARCH(1, 1) model with symmetric stable innovations as given in Eqs. (7) and
(8) by maximum likelihood: average estimates and standard errors (in parentheses) over R = 1000 Monte Carlo
replications, based on T = 10000 number of observations and S = 10 number of simulation paths.

True parameters Estimated parameters

ω a b γ α ω a b γ α

.01 .10 .78 .10

1.80
.009 .092 .780 .093 1.801
(.0008) (.0083) (.0100) (.0131) (.0140)

1.85
.010 .094 .780 .095 1.851
(.0008) (.0087) (.0107) (.0135) (.0129)

1.90
.010 .096 .780 .097 1.900
(.0009) (.0092) (.0116) (.0138) (.0114)

1.95
.010 .098 .779 .099 1.950
(.0009) (.0096) (.0128) (.0141) (.0090)

1.98
.010 .099 .779 .100 1.982
(.0010) (.0100) (.0136) (.0140) (.0062)

.01 .05 .88 .05

1.80
.009 .046 .880 .047 1.801
(.0009) (.0048) (.0064) (.0077) (.0140)

1.85
.010 .047 .880 .047 1.851
(.0010) (.0053) (.0070) (.0081) (.0129)

1.90
.010 .048 .880 .048 1.900
(.0010) (.0058) (.0079) (.0086) (.0114)

1.95
.010 .049 .879 .049 1.950
(.0012) (.0064) (.0092) (.0091) (.0090)

1.98
.010 .050 .879 .050 1.982
(.0014) (.0068) (.0103) (.0094) (.0062)

.01 .025 .93 .025

1.80
.009 .023 .930 .023 1.801
(.0010) (.0028) (.0045) (.0046) (.0140)

1.85
.010 .024 .930 .024 1.851
(.0011) (.0032) (.0051) (.0050) (.0129)

1.90
.010 .024 .930 .024 1.900
(.0012) (.0037) (.0059) (.0055) (.0114)

1.95
.010 .024 .929 .025 1.950
(.0015) (.0043) (.0074) (.0062) (.0090)

1.98
.010 .025 .929 .025 1.982
(.0019) (.0049) (.0089) (.0067) (.0062)

6. Empirical application

The (T)GARCH(1, 1) models with symmetric α-stable noise defined in Section 3 are estimated on the series of monthly,
weekly and daily log-returns of:

1. Dow Jones Industrial Average (DJIA) stock index from May 4th, 1950 to February 14th, 2013 (753, 3275, and 16,377
observations for the monthly, weekly and daily series, respectively);

2. Standard & Poor’s 500 (SP500) index from January 1st, 1964 to February 14th, 2013 (589, 2563, and 12,817 observations,
respectively):

3. IBM share’s prices from January 1st, 1973 to February 14th, 2013 (481, 2093, and 10,467 observations, respectively) and
4. GE share’s prices from January 1st, 1973 to February 14th, 2013 (481, 2093, and 10,467 observations, respectively).

Data have been obtained from Thomson Reuters Datastream.
Indirect estimation is performed using a large value of themultiplicative length-factor for the simulated series (S = 100).

Convergence is always achieved inside the parameter space of the auxiliary model. If in the Monte Carlo exercise the choice
of the initial values for the iterative procedure in both estimation methods was unproblematic, as we knew the true values
of the parameters, in the real data application, this is no longer the case. However, the close correspondence between the
(T)GARCHparameters of the true and auxiliarymodelwithin the IndInfmethodprovides great help in this direction. Thus,we
choose as initial values in both methods the parameter values of the auxiliary model estimated in the IndInf procedure. The
only ‘‘additional’’ problem is the choice of a ‘‘good’’ initial value for the α parameter. Despite this problem, the convergence
time of the two estimation methods follows the same pattern as in the simulation exercise: e.g., on the same computer
with an Intel i7, 2.67 Ghz processor, ML applied on the series of daily returns of IBM converges in 4.60 s, while the IndInf
approach performed on S = 10 simulated series, converges in 0.65 s. When we increase the multiplicative length factor for
the simulated series to S = 100, the estimation time for the same series within IndInf becomes about 5.80 s. The additional
time for computing the variance–covariance matrix is slightly higher for the ML estimates (about 1.80 s) than for IndInf
estimates (about 1.50 s).

Tables 5–8 report the estimated values of the parameters of our models, as well as the standard deviations (in
parentheses) of the estimated parameters of themodel of interest, as given by Eq. (16) for IndInf and by the inverted Hessian
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Table 5
Empirical results for estimating the GARCH(1, 1) model with symmetric stable innovations as given in Eqs. (5) and (6) by indirect inference: standard deviations
are reported in parentheses.M stands for monthly, W stands for weekly and D stands for daily.

Data Estimated parameters

True model Auxiliary model

ω a b α ωa aa ba η

DJIA

M .193e−03 .110 .763 1.906 .172e−03 .093 .748 .144
(.754e−04) (.0344) (.0675) (.0488)

W .103e−04 .073 .894 1.941 .901e−05 .061 .894 .112
(.214e−05) (.0095) (.0125) (.0199)

D .558e−06 .053 .932 1.897 .448e−06 .042 .932 .155
(.599e−07) (.0029) (.0034) (.0097)

SP500

M .836e−04 .102 .842 1.918 .631e−04 .083 .842 .146
(.359e−04) (.0272) (.0354) (.0465)

W .927e−05 .097 .877 1.947 .742e−05 .081 .879 .110
(.235e−05) (.0140) (.0155) (.0238)

D .308e−06 .054 .937 1.896 .226e−06 .043 .937 .156
(.490e−07) (.0028) (.0029) (.0103)

IBM

M .382e−03 .097 .816 1.945 .350e−03 .084 .806 .111
(.189e−03) (.0332) (.0608) (.0527)

W .152e−04 .041 .936 1.870 .126e−04 .031 .937 .178
(.422e−05) (.0075) (.0100) (.0292)

D .125e−05 .034 .952 1.849 .981e−06 .026 .953 .195
(.176e−06) (.0023) (.0029) (.0131)

GE

M .182e−03 .128 .830 1.961 .178e−03 .116 .821 .088
(.890e−04) (.0341) (.0426) (.0484)

W .150e−04 .060 .921 1.937 .135e−04 .050 .921 .116
(.470e−05) (.0107) (.0128) (.0244)

D .126e−05 .042 .947 1.904 .106e−05 .034 .946 .147
(.194e−06) (.0029) (.0034) (.0120)

Table 6
Empirical results for estimating the GARCH(1, 1)model with symmetric stable innovations as given in Eqs. (5) and (6) bymaximum
likelihood: standard deviations are reported in parentheses.M stands formonthly,W stands forweekly andD stands for daily.

Data Estimated parameters

ω a b α

DJIA

M .228e−3 .112 .731 1.892
(.932e−4) (.0369) (.0809) (.0444)

W .105e−4 .070 .893 1.925
(.249e−5) (.0102) (.0142) (.0195)

D .515e−6 .049 .934 1.878
(.739e−7) (.0033) (.0041) (.0111)

SP500

M .914e−4 .098 .830 1.886
(.475e−4) (.0283) (.0457) (.0542)

W .105e−4 .096 .871 1.938
(.281e−5) (.0137) (.0170) (.0194)

D .277e−6 .052 .936 1.877
(.638e−7) (.0036) (.0041) (.0131)

IBM

M .361e−3 .093 .814 1.888
(.201e−3) (.0368) (.0726) (.0567)

W .143e−4 .038 .936 1.836
(.426e−5) (.0066) (.0101) (.0298)

D .116e−5 .032 .952 1.812
(.243e−6) (.0035) (.0051) (.0144)

GE

M .199e−3 .133 .816 1.944
(.935e−4) (.0346) (.0389) (.0436)

W .153e−4 .055 .924 1.918
(.484e−5) (.0090) (.0116) (.0247)

D .123e−5 .041 .946 1.869
(.276e−6) (.0056) (.0069) (.0135)

of the log-likelihood for ML. We refrain from reporting the standard deviations of the estimated parameters of the auxiliary
model, as they are of no interest for our purposes. However, they can be easily obtained in the standard way typical to
the PML procedure. Thus, Tables 5 and 6 report the results from estimating the GARCH(1, 1) model with symmetric stable
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Table 7
Empirical results for estimating the TGARCH(1, 1) model with symmetric stable innovations as given in Eqs. (7) and (8) by indirect inference: standard deviations
are reported in parentheses.M stands for monthly, W stands for weekly and D stands for daily.

Data Estimated parameters

True model Auxiliary model

ω a b γ α ωa aa ba γa η

DJIA

M .299e−03 .019 .686 .211 1.923 .256e−03 .021 .685 .150 .129
(.101e−03) (.0275) (.0868) (.0824) (.0455)

W .162e−04 .013 .862 .162 1.955 .124e−04 .021 .879 .088 .103
(.285e−05) (.0124) (.0155) (.0358) (.0186)

D .761e−06 .015 .922 .092 1.912 .575e−06 .017 .929 .054 .145
(.718e−07) (.0038) (.0042) (.0122) (.0095)

SP500

M .132e−03 .002 .817 .181 1.921 .109e−03 .002 .817 .144 .138
(.552e−04) (.0069) (.0568) (.0709) (.0460)

W .120e−04 .013 .866 .187 1.962 .889e−05 .020 .883 .111 .096
(.238e−05) (.0140) (.0162) (.0444) (.0223)

D .421e−06 .016 .933 .083 1.911 .319e−06 .015 .936 .057 .145
(.574e−07) (.0042) (.0044) (.0157) (.0103)

IBM

M .697e−03 .029 .711 .247 1.960 .568e−03 .039 .732 .142 .097
(.264e−03) (.0396) (.0784) (.1003) (.0478)

W .157e−04 .035 .937 .008 1.871 .138e−04 .024 .934 .016 .176
(.493e−05) (.0154) (.0139) (.0414) (.0291)

D .153e−05 .014 .944 .057 1.860 .115e−05 .018 .948 .020 .191
(.206e−06) (.0068) (.0034) (.0165) (.0140)

GE

M .298e−03 .041 .804 .178 1.962 .293e−03 .046 .797 .127 .088
(.136e−03) (.0378) (.0558) (.0939) (.0482)

W .175e−04 .040 .922 .033 1.941 .172e−04 .030 .917 .042 .110
(.629e−05) (.0150) (.0183) (.0441) (.0240)

D .154e−05 .014 .942 .067 1.915 .122e−05 .021 .945 .028 .143
(.217e−06) (.0081) (.0036) (.0179) (.0123)

Table 8
Empirical results for estimating the TGARCH(1, 1) model with symmetric stable innovations as given in Eqs. (7) and (8) by
maximum likelihood: standard deviations are reported in parentheses. M stands for monthly, W stands for weekly and D
stands for daily.

Data Estimated parameters

ω a b γ α

DJIA

M .297e−3 .021 .694 .171 1.917
(.885e−4) (.0365) (.0722) (.0677) (.0428)

W .144e−4 .023 .878 .102 1.940
(.302e−5) (.0094) (.0153) (.0184) (.0178)

D .663e−6 .019 .930 .064 1.891
(.786e−7) (.0029) (.0041) (.0054) (.0107)

SP500

M .130e−3 .000 .815 .181 1.914
(.504e−4) (.0000) (.0451) (.0485) (.0473)

W .107e−4 .024 .880 .124 1.948
(.272e−5) (.0114) (.0160) (.0202) (.0179)

D .381e−6 .018 .936 .069 1.897
(.635e−7) (.0031) (.0041) (.0059) (.0123)

IBM

M .621e−3 .044 .733 .161 1.907
(.333e−3) (.0357) (.0978) (.0995) (.0568)

W .157e−4 .031 .934 .016 1.838
(.453e−5) (.0080) (.0105) (.0126) (.0298)

D .138e−5 .023 .948 .023 1.816
(.278e−6) (.0033) (.0056) (.0050) (.0143)

GE

M .314e−3 .056 .793 .156 1.963
(.136e−3) (.0417) (.0453) (.0714) (.0437)

W .199e−4 .034 .919 .042 1.926
(.537e−5) (.0105) (.0117) (.0165) (.0242)

D .142e−5 .026 .944 .031 1.873
(.267e−6) (.0038) (.0049) (.0058) (.0134)

innovations by IndInf and, respectively, ML, while Tables 7 and 8 presents the results for the TGARCH(1, 1) model with
symmetric stable innovations.
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One can notice that bothmethods provide similar results in what regards the estimated parameters. Moreover, we verify
numerically the strict stationarity conditions stated in Section 3 and find that all estimated parameters satisfy the negativity
condition of the top-Lyapunov exponent. Moreover, regardless of the estimation method, the parameters of the models of
interest follow the same behavior as the parameters of the auxiliary model estimated within the IndInf approach: ω, a, γ
decrease and b increases when increasing the sampling frequency of data. In the standard (T)GARCH framework, this can be
interpreted as empirical evidence of the fact that the frequency of sampling stock returns increases the clustering and the
persistence degree of their conditional volatilities. The nonexistence of the second moment within the stable distribution
makes such interpretation difficult. However, the fact that the parameters behave similar to the ones of standard (T)GARCH
models confirms the validity of our estimation results.

For a financial analyst, it can be interesting to observe that the value of the α parameter increases as a result of
aggregation. Time aggregation increases the estimated value of α: we observe within each group of the considered financial
assets that the estimated parameter α is higher for weekly andmonthly data than for daily data. This result is not surprising,
since it is awell known fact that increasing the frequency of sampling stock returns also increases the degree of fat-thickness
of their distribution: daily returns exhibit higher and more extreme values than the returns sampled at lower frequency.
Regarding the aggregation across stocks, we observe that the value of α estimated for IBM and GE are in general lower
than their counterparts estimated on indexes series. This is also an expected result, since the indexes mirror an aggregate
behavior of the composing stocks, which are differently affected by extreme financial events (e.g., Black Monday in 1987
or the previous financial crisis). This leads to thinner tails for the index return series than for a certain composing stock,
especially for large-cap stocks with high liquidity, such as IBM and GE.

For a computational econometrician, it can be interesting to observe that b in themodel of interest is usually almost equal
to its correspondent ba in the auxiliary model. The close behavior between the true and the auxiliary model is due to by the
monotonic relationship between the α parameter in the model of interest and the ‘‘degrees of freedom’’ of the Student’s t
in the auxiliary model, ν: the smaller α, the larger η = ν−1 (reciprocal of the degrees of freedom).

7. Conclusions

In this paper we apply the indirect inference andmaximum likelihood methods to estimate the parameters of (T)GARCH
models with symmetric stable innovations. As most of the financial returns exhibit conditional heteroscedasticity, leverage
effects and fat-tails, there is a common practice among scholars and practitioners to capture these features by means
of (T)GARCH models with fat-tailed distributed innovations. A standard choice is to consider Student’s t distributed
innovations, however, at the cost of lack of stability under aggregation. An alternative is to consider α-stable distributions
that remain stable under aggregation and combination, which is particularly appealing in portfolio theory. However, this
alternative comes at a large cost of estimation, due to the absence of closed form density function and of moments for most
of the parameter values. As a solution to this problem, we apply the maximum likelihood approach developed by Nolan
(1997) and Matsui and Takemura (2006) and the indirect inference method introduced by Gouriéroux et al. (1993).

The simulation study reveals very good results for a large pallet of parameter choices: in general, the estimates of the
model of interest ‘‘seem unbiased’’ regardless of the estimation method. However, the efficiency gains provided by the
maximum likelihood approach comes at some higher computational costs. The indirect inference, which is much easier to
implement, is also faster than the maximum likelihood in estimating the parameters of interest. The empirical results from
applying the method to twelve series of financial returns sampled at three different frequencies provide further empirical
evidence on the performance of the two methods when estimating the parameters of (T)GARCH models with symmetric
stable innovations.
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