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Abstract

The main purpose is to estimate the regression function of a real ran-
dom variable with functional explanatory variable by using a recursive
nonparametric kernel approach. The mean square error and the almost
sure convergence of a family of recursive kernel estimates of the regres-
sion function are derived. These results are established with rates and
precise evaluation of the constant terms. Also, a central limit theorem
for this class of estimators is established. The method is evaluated on
simulations and real data set studies.
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1 Introduction

Functional data analysis is a branch of statistics that has been studied fre-
quently and developed over recent years. This type of data appears in many
practical situations such as continuous phenomena. Thus, the possible ap-
plication fields that favor the use of functional data are broad and include
the following: climatology, economics, linguistics, medicine, and so on. Be-
cause the pioneering work of authors such as Ramsay and Dalzell (1991) and
Frank and Friedman (1993), many developments have been investigated
to build theories and methods regarding functional data; for instance, how
can the mean or the variance of functional data be defined? What type of
model can be considered with functional data? These papers also empha-
size the drawback of merely using multivariate methods with this type of
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data; rather, they suggest considering these data as objects that belong to a
specific functional space. The monographs of Ramsay and Silverman (2005,
2002) provide and overview of both the theoretical and practical aspects of
functional data analysis.

Regression is one of the most studied functional models. In this model,
the variable of interest Y is real and the covariate X belongs to a functional
space E endowed with a semi-norm ‖·‖. Thus, the regression model is written

Y = r(X ) + ε, (1)

where r : E −→ R is an operator and ε is the random error term. Much
research has investigated this model when the operator r is supposed to be
linear, which has contributed to the popularity of the so-called functional
linear model. In this linear context, the operator r is written as 〈α, .〉 where
〈., .〉 denotes the inner product of the space E and α belongs to E . Thus, the
goal is to estimate the unknown function α. We refer the reader to Cardot et
al. (2003) and Crambes et al. (2009) for different methods of estimating α.
Another way to approach the (1) model is to think in a nonparametric way.
Many authors have also investigated this direction. Recent advances on the
topic have been the subject of a bibliographical review in Gonzàlez Manteiga
and Vieu (2007) and monographs by Ferraty and Vieu (2006), Ferraty and
Romain (2010), thereby providing the theoretical and practical properties
of a kernel estimator of the operator r. Specifically, if (Xi, Yi)i=1,...,n is a
sample of independent and identically distributed couples with the same law
as (X , Y ), then, this kernel estimator is defined for all χ ∈ E by

rn(χ) :=

n∑
i=1

YiK

(
‖χ−Xi‖

h

)
n∑
i=1

K

(
‖χ−Xi‖

h

) , (2)

where K is a kernel and h > 0 is a bandwidth. Masry (2005) considered
the asymptotic normality of (2) in the dependent case, while Ling and Wu
(2012) obtained almost sure convergence. This nonparametric regression
estimator raises several problems because the choice of the semi-norm ‖·‖ of
the space E and the choice of the bandwidth, . . . . With regard to bandwidth,
many solutions have been considered when the covariate is real (e.g., cross
validation). Recently, Amiri (2012) studied an estimator using a sequence of
bandwidths in the multivariate setting that allowed the computation of this
estimator in a recursive way thereby generalizing previous research (Devroye
and Wagner (1980) and Ahmad and Lin (1976)). This estimator has accept-
able theoretical properties (from the point of view of the mean square error
and almost sure convergence). It is also of practical interest: for instance,
it presents a computational time gain when researchers want to predict new
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values of the variable of interest when new observations appear. This case
is not true for the basic kernel estimator, which must be computed again
using the whole sample. The purpose of the current study is to adapt the
recursive estimator studied in Amiri (2012) to a case in which the covariate
is functional.

The remainder of the paper is organized as follows. Section 2 defines the
recursive estimator of the operator r when the covariate X is functional and
presents the asymptotic properties of this estimator. Section 3 evaluates the
performance of our estimator using a simulation study and a real dataset.
Finally, the proofs of the theoretical results are presented in Section 4.

2 Functional regression estimation

2.1 Notations and assumptions

Let (X , Y ) be a pair of random variables defined in (Ω,A, P ) , with values on
E×R, where E is a Banach space endowed with a semi-norm ‖·‖. Assume that
(Xi, Yi)i=1,...,n is a sample of n random variables independent and identically
distributed, having the same distribution as (X , Y ). The (1) model is then
rewritten as

Yi = r(Xi) + εi, i = 1, . . . , n,

where for any i = 1, . . . , n, εi is a random variable such that E(εi|Xi) = 0
and E(ε2i |Xi) = σ2ε(Xi) <∞.
Nonparametric regression aims to estimate the functional r(χ) := E (Y |X = χ) ,
for χ ∈ E . To this end, let us consider the family of recursive estimators in-
dexed by a parameter ` ∈ [0, 1], and defined by

r[`]n (χ) :=

n∑
i=1

Yi
F (hi)`

K
(
‖χ−Xi‖
hi

)
n∑
i=1

1
F (hi)`

K
(
‖χ−Xi‖
hi

) ,
where K is a kernel, (hn) a sequence of bandwidths and F the cumulative
distribution function of the random variable ‖χ − X‖. Our family of esti-
mators is a recursive modification of the estimate defined in (2) and can be
computed recursively by

r
[`]
n+1(χ) =

[
n∑
i=1

F (hi)
1−`
]
ϕ
[`]
n (χ) +

[
n+1∑
i=1

F (hi)
1−`
]
Yn+1K

[`]
n+1 (‖χ−Xn+1‖)[

n∑
i=1

F (hi)1−`
]
f
[`]
n (χ) +

[
n+1∑
i=1

F (hi)1−`
]
K

[`]
n+1 (‖χ−Xn+1‖)

,

with

3



ϕ[`]
n (χ) =

n∑
i=1

Yi
F (hi)`

K
(
‖χ−Xi‖
hi

)
n∑
i=1

F (hi)1−`
, f [`]n (χ) =

n∑
i=1

1
F (hi)`

K
(
‖χ−Xi‖
hi

)
n∑
i=1

F (hi)1−`
, (3)

and K [`]
i (·) := 1

F (hi)`
i∑

j=1
F (hj)1−`

K
(
·
hi

)
.

More precisely, r[`]n (χ) is the adaption to the functional model of the finite-
dimensional recursive family of estimators introduced by Amiri (2012), which
includes the well-known recursive (` = 0) and semi recursive (` = 1) esti-
mators. The recursive property of this estimator class is clearly useful in
sequential investigations and for large sample sizes because the addition of
a new observation means that the non-recursive estimators must be recom-
puted. In addition, we need to store extensive data to calculate them.

We assume that the following assumptions hold:

H1 The operators r and σ2ε are continuous on a neighborhood of χ, and
F (0) = 0. Moreover, the function ϕ(t) := E [{r(X )− r(χ)}|‖X − χ‖ = t]
is assumed to be derivable at t = 0.

H2 K is nonnegative bounded kernel with support on the compact [0, 1]
such that inf

t∈[0,1]
K(t) > 0.

H3 For any s ∈ [0, 1], τh(s) := F (hs)
F (h) → τ0(s) <∞ as h→ 0.

H4 (i) hn → 0, nF (hn) → ∞ and An,` :=
1

n

n∑
i=1

hi
hn

[
F (hi)

F (hn)

]1−`
→ α[`] <

∞ as n→∞.

(ii) ∀r ≤ 2, Bn,r :=
1

n

n∑
i=1

[
F (hi)

F (hn)

]r
→ β[r] <∞, as n→∞.

Assumptions H1, H2 and the first part of H4 are common in nonparametric
regression. They have been used by Ferraty et al. (2007) and are the same as
those classically used in finite-dimensional settings. The conditions An,` →
α[`] <∞ and H4(ii) are particular to the recursive problem and the same as
those used in finite-dimensional cases. Note that F plays a crucial role in our
calculus: Its limit at zero, and a fixed χ is known as ‘small ball probability’.
Before announcing our results, let us provide typical examples of bandwidths
and small ball probabilities that satisfy H3 and H4 (see Ferraty et al. (2007)
for more details).
If X is a fractal (or geometric) process, then the small ball probabilities are
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of the form F (t) ∼ c′χt
κ, where c′χ and κ are positive constants, and ‖·‖

might be a supremum norm, an Lp norm or a Besov norm. The choice of
bandwidth hn = An−δ with A > 0 and 0 < δ < 1 implies F (hn) = c′′χn

−δκ,
c′′χ > 0. Thus, H3 and H4 hold when δκ < 1. In fact, assumption H3 and
the first part of H4 are clearly non-restrictive because they are the same as
those used in the non-recursive case. With regard to H4(ii), if δκr < 1, then
n∑
i=1

i−δκr ∼ n1−δκr

1−δκr . Thus, the condition is satisfied when β[r] = 1
1−δκr . The

same argument is also valid for An,`, if max{κr, 1 + κ(1− `)} < 1/δ.

2.2 Main results

Let us introduce the following notations from Ferraty et al. (2007):

M0 = K(1)−
∫ 1

0
(sK(s))′τ0(s)ds, M1 = K(1)−

∫ 1

0
K ′(s)τ0(s)ds,

M2 = K2(1)−
∫ 1

0
(K2(s))′τ0(s)ds.

We can establish the asymptotic mean square error of our recursive estimate.

Theorem 1 Under the assumptions H1−H4, we have

E
[
r[`]n (χ)

]
− r(χ) = ϕ′(0)

α[`]

β[1−`]

M0

M1
hn[1 + o(1)] +O

[
1

nF (hn)

]
,

V ar
[
r[`]n (χ)

]
=

β[1−2`]

β2[1−`]

M2

M2
1

σ2ε(χ)
1

nF (hn)
[1 + o(1)] .

Theorem 1 is an extension of Ferraty et al. (2007) result to the class of
recursive estimators. Using a bias-variance representation and an additional
condition, the asymptotic mean square error of our estimators is established
in the following result:

Corollary 1 Assume that the assumptions of Theorem 1 hold. If there exists
a constant c > 0 such that nF (hn)h2n → c, as n→∞, then

lim
n→∞

nF (hn)E
[(
r[`]n (χ)− r(χ)

)2]
=

[
β[1−2`]

β2[1−`]

M2σ
2
ε(χ)

M2
1

+
cα2

[`]

β2[1−`]

ϕ′(0)2M2
0

M2
1

]
.

In particular, if X is fractal (or geometric process) with F (t) ∼ c′χt
κ, then

the choice hn = An−
1

κ+2 , A, κ > 0, implies that

lim
n→∞

n
2

2+κE

[(
r[`]n (χ)− r(χ)

)2]
=

[
β[1−2`]

β2[1−`]

M2σ
2
ε(χ)

c′χA
κM2

1

+
α2
[`]

β2[1−`]

ϕ′(0)2M2
0A

2

M2
1

]
.
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Bosq and Cheze-Payaud (1999) established a similar result for the Nadaraya-
Watson estimator using the finite-dimensional setting and continuous time
processes.

To obtain the almost sure convergence rate of our estimator, we assume
that the following additional assumptions hold.

H5 There exist λ > 0 and µ > 0 such that E [exp (λ|Y |µ)] <∞.

H6 lim
n→+∞

nF (hn)(lnn)
−1− 2

µ

(ln lnn)2(α+1) = ∞ for some α ≥ 0 and lim
n→+∞

(lnn)
2
µF (hn) =

0.

Assumption H5 is clearly met if Y is bounded, which implies that

E
(

max
1≤i≤n

|Yi|p
)

= O[(lnn)p/µ], ∀p ≥ 1, n ≥ 2. (4)

In fact, if we set M =

{ (
p−µ
λµ

)1/µ
if p > µ

0 else
, then one is able to write:

E
(

max
1≤i≤n

|Yi|p
)
≤Mp + E

(
max
1≤i≤n

|Yi|p1{|Yi|>M}
)
.

Because the function x 7→ (lnx)p/µ for all p ≥ 1 is concave down on set
] max{1, exp( pµ − 1)},+∞[, Jensen’s inequality (via assumption H5) implies
that

E
(

max
1≤i≤n

|Yi|p1{|Yi|>M}
)
≤

[
lnE exp

(
λ max

1≤i≤n
|Yi|µ1{|Yi|>M}

)]p/µ
≤

[
ln

n∑
i=1

E exp (λ|Yi|µ)

]p/µ
= O[(lnn)p/µ],

and (4) follows. An example of a sequence of random variables, Yi satisfying
H5 (and then (4)) is the standard Gaussian distribution, with λ = 1 and
µ = 2. Bosq and Cheze-Payaud (1999) used relation (4) in the multivariate
framework to establish the optimal quadratic error of the Nadaraya-Watson
estimator. Assumption H6 is satisfied when X is a fractal or non-smooth,
whereas condition lim

n→∞
F (hn)(lnn)

2
µ = 0 is not necessary when µ ≥ 2.

We can write the following theorem for our estimator of the regression op-
erator.

Theorem 2 Assume that H1−H6 hold. If lim
n→+∞

nh2n = 0, then

lim sup
n→∞

[
nF (hn)

ln ln n

]1/2 [
r[`]n (χ)− r(χ)

]
=

[
2β[1−2`]σ

2
ε(χ)M2

]1/2
β[1−`]M1

a.s.
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The choices of bandwidths and small ball probabilities previously pro-
vided are typical examples that satisfy the condition lim

n→+∞
nh2n = 0. Case

` = 1 of Theorem 2 is an extension to the functional setting of Roussas
(1992) result concerning the almost sure convergence of Devroye-Wagner’s
estimator. Note, that in the non-recursive framework, the rate of conver-

gence obtained is of the form
[
nF (hn)

lnn

]1/2
(see Lemma 6.3 in Ferraty and

Vieu (2006)). Unlike the non-recursive case, the rate of convergence of the
recursive estimators are obtained with exact upper bounds.
To obtain asymptotic normality, we make the following additional assump-
tion, which was clearly verified by the choices of bandwidths and the small
ball probabilities above.

H7 For any δ > 0, lim
n→∞

(lnn)δ√
nF (hn)

= 0.

Theorem 3 Assume that H1−H5 and H7 hold. If there exists c ≥ 0 such
that lim

n→∞
hn
√
nF (hn) = c, then

√
nF (hn)

(
r[`]n (χ)− r(χ)

)
D→ N

(
c
α[`]

β[1−`]

M0

M1
ϕ′(0),

β[1−2`]

β2[1−`]

M2

M2
1

σ2ε(χ)

)
.

Note that the choices of bandwidths and small ball probabilities above imply
that β[1−2`]/β2[1−`] < 1. Thus, the recursive estimators are more efficient than
classical estimators in this case in the sense that their asymptotic variance
is small for a given M1,M2 and σε(χ).
Because the result of Theorem 3 depends on unknown quantities, we derived
a usable asymptotic distribution for the following corollary of case ` = 0.

Corollary 2 Assume that H1−H5 and H7 hold. If lim
n→∞

hn
√
nF (hn) = 0

and lim
n→∞

lnn
nF 2(hn)

= 0, then for any consistent estimators M̂i, i = 1, 2 and
σ̂ε(χ) of Mi, i = 1, 2 and σε(χ) respectively, we have

√
nF̂ (hn)

√√√√ β̂[1]M̂1
2

M̂2σ̂2ε(χ)

(
r[0]n (χ)− r(χ)

)
D→ N (0, 1) ,

where F̂ and β̂[1] are the empirical counterparts of F and β[1] defined by

F̂ (t) =
1

n

n∑
i=1

1{‖Xi−χ‖≤t} and β̂[1] =
1

n

n∑
i=1

F̂ (hi)

F̂ (hn)
.

Corollary 2 is similar to the result obtained by Ferraty et al. (2007) in the
non-recursive case. The assumptions used to establish this result are fulfilled
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by the choices of bandwidths and small ball probabilities above. If we con-
sider the uniform kernel K(·) = 1[0,1](·), then the asymptotic distribution in
Corollary 2 can be rewritten as√

nF̂ (hn)β̂[1]

σ̂2ε

(
r[0]n (χ)− r(χ)

)
D→ N (0, 1) .

According to Corollary 2, the asymptotic confidence band of r(χ) with level
1− α is given byr[0]n (χ)− z1−α/2

√
nF̂ (hn)

√√√√ β̂[1]M̂1
2

M̂2σ̂2ε(χ)
; r[0]n (χ) + z1−α/2

√
nF̂ (hn)

√√√√ β̂[1]M̂1
2

M̂2σ̂2ε(χ)

 ,
where z1−α/2 is the quantile of order 1− α/2 of the standard normal distri-
bution.

3 Simulation study and real dataset example

To observe the behavior of our recursive estimator in practice, this section
considers a simulation study. We simulated our data in the following way:
The curves X1, . . ., and Xn are standard Brownian motions on [0, 1], with
n = 100. Each curve is discretized into p = 100 equidistant points on [0, 1].

The operator r is defined by r(χ) =

∫ 1

0
χ(s)2 ds. The error ε is simulated as

a Gaussian random variable with mean 0 and standard deviation 0.1. The
simulations were repeated 500 times to compute the prediction errors for a
new curve χ, which was also simulated as a standard Brownian motion on
[0, 1].
In this functional context, the estimator depends on the choice of many
parameters: the semi-norm ‖·‖ of the functional space E , the sequence of
bandwidths (hn), the kernelK, the parameter ` and the distribution function
F in case ` 6= 0. Because the choice of kernel K is not crucial, we used the
quadratic kernel defined by K(u) =

(
1− u2

)
1[0,1](u) for all u ∈ R, which

behaves correctly in practice and is easy to implement. We estimated the
distribution function F, using the empirical distribution function, which is
uniformly convergent.

3.1 Choice of the bandwidth

In this simulation, the semi-norm was based on the principal components
analysis of the curves that retained 3 principal components (see Besse et al.
(1997) for a description of this semi-norm), whereas ` is fixed and equal to
0. We show below that this parameter ` has a negligible influence on the
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behavior of the estimator.
We chose to take a sequence of bandwidths hi = C max

i=1,...,n
‖Xi − χ‖ i−ν ,

for 1 ≤ i ≤ n, with C ∈ {0.5, 1, 2, 10} and ν ∈
{

1
10 ,

1
8 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1
}
.

At the same time, we also computed the estimator (2) introduced by Fer-
raty and Vieu (2006). Following Rachdi and Vieu (2007), we introduced an
automatic selection of the bandwidth with a cross validation procedure. We
used this procedure for the estimator of Ferraty and Vieu (2006). For the
recursive estimator, we denoted hi = hi(C, ν) with C ∈ {0.5, 1, 2, 10} and
ν ∈

{
1
10 ,

1
8 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1
}
, and we considered the cross validation criterion

CV (C, ν) =
1

n

n∑
i=1

(
Yi − r[`],[−i]n (Xi)

)2
,

where r[`],[−i]n represents the recursive estimator of r using the (n−1)-sample
that corresponds to the initial sample without the ith observation (Xi, Yi)
for 1 ≤ i ≤ n. Then, we selected the values CCV , νCV of C and ν that
minimized CV (C, ν). Our estimator was r[`]n using these selected values of
C and ν.
Table 1 presents the mean and standard deviations of the prediction error
over 500 simulations for the optimal values of C and ν with respect to the
CV criterion (these optimal values were CCV = 1 and νCV = 1/10 for our
estimator). Specifically, denoting Ŷ [j] = r

[`],[j]
n (χ[j]) the predicted value at

the jth iteration of the simulation (j = 1, . . . , 500) for a new curve χ[j], we
provided the mean (MSPE) and the standard deviations of the quantities(
Ŷ [j] − Y [j]

)2
. The errors were computed for our estimator (label (1) in

the table) and the estimator from Ferraty and Vieu (2006) (label (2) in
the table), both of which were adapted using the Rachdi and Vieu (2007)
procedure. From these results, we observed that the estimator from Ferraty
and Vieu (2006) is slightly better than our estimator for theMSPE criterion.
As we will observe in (see Subsection 3.4), the advantage of our estimator
is its computational time. This section also examines the behavior of the
prediction errors when the sample size increases. We used n = 100, n =
200 and n = 500; as expected, the errors decreased when the sample size
increased.

3.2 Choice of the semi-norm

In this simulation, the parameter ` was fixed equal to 0 and we chose band-
width hi = max

i=1,...,n
‖Xi − χ‖ i−1/10. Next, we aimed to compare the influence

of the choice of the semi-norm by considering the following:
• The semi-norm [PCA] based on the principal components analysis of
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n = 100 n = 200 n = 500

(1) 0.3022 0.2596 0.1993
(0.6887) (0.6275) (0.5430)

(2) 0.2794 0.2143 0.1368
(0.5512) (0.5055) (0.4208)

Table 1: Mean and standard deviation of the square prediction error com-
puted via 500 simulations for different values of n with the optimal values
of bandwidth provided by CCV and νCV

the curves retained q = 3 principal components; specifically,

‖Xi − χ‖PCA =

√√√√ q∑
j=1

〈Xi − χ, νj〉2,

where 〈., .〉 is the usual inner product of the space of square-integrable func-
tions and (νj) is the sequence of the eigenfunctions of the empirical covariance
operator Γn defined by Γnu := 1

n

∑n
i=1〈Xi, u〉u.

• The semi-norm [FOU ] was based on a decomposition of the curves in
a Fourier basis, with b = 8 basis functions; specifically,

‖Xi − χ‖FOU =

√√√√ b∑
j=1

(aXi,j − aχ,j)
2,

where (aXi,j) and (aχ,j) are the coefficient sequences of the respective Fourier
approximations of curves Xi and χ.
• The semi-norm [DERIV ] was based on a cubic spline approximation

comparison of the second derivatives of the curves (with numerous interior
knots k = 8 for the cubic splines); specifically,

‖Xi − χ‖DERIV =

√
〈X̃i − χ̃, X̃i − χ̃〉,

where X̃i and χ̃ are the spline approximations of the second derivatives of
curves Xi and χ.
• The semi-norm [PLS] in which the data are projected on the space

determined by a PLS regression on the curves applied K = 5 PLS basis
functions; specifically,

‖Xi − χ‖PLS =

√√√√ K∑
j=1

〈Xi − χ, pj〉2,

where (pj) is the sequence of PLS basis functions.
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The results are provided in Table 2. For these simulated data, the semi-
norms [PCA] and [PLS] show better results. As Ferraty and Vieu (2006)
indicated, however, a universal norm does not exist that would overcome the
others. The choice of the semi-norm depends on the treated data.

norm [PCA] [FOU ] [DERIV ] [PLS]

MSPE 0.3936 0.4506 0.4527 0.3887
(1.5190) (1.5624) (1.5616) (1.5098)

Table 2: Mean and standard deviation of the square prediction error com-
puted on 500 simulations for different norms.

3.3 Choice of the parameter `

In this simulation, we used hi = max
i=1,...,n

‖Xi − χ‖ i−1/10 and the semi-norm

based on the principal components analysis of the curves that retained 3
principal components. The parameter ` varied into

{
0, 14 ,

1
2 ,

3
4 , and 1

}
. The

results are provided in Table 3. We showed that the values of the MSPE
criterion are close; thus, this parameter does not appear to significantly affect
the quality of the prediction, even if the mean square error decreases with
respect to ` as in the multivariate setting.

` 0 0.25 0.5 0.75 1

MSPE 0.4054848 0.4054814 0.4054786 0.4054764 0.4054746
(1.372965) (1.372930) (1.372896) (1.372863) (1.372831)

Table 3: Mean and standard deviation of the square prediction error com-
puted on 500 simulations for different values of `.

3.4 Computational time

This subsection highlights an important advantage of the recursive estima-
tor compared with the initial one from Ferraty and Vieu (2006)), regarding
the increase in computational time needed to predict a response when new
values of the explanatory variable are sequentially added to the database.
In fact, when a new observation (Xn+1, Yn+1) appears, the computation of
the recursive estimator r[`]n+1 requests another iteration of the algorithm via
its value computed with the sequence (Xi, Yi)i=1,...,n, whereas the initial es-
timator must be recalculated using the whole sample (Xi, Yi)i=1,...,n+1. The
following illustrates the computation time difference between both estima-
tors in these types of situations. From an initial sample (Xi, Yi)i=1,...,n with
size n = 100, we considered N additional observations for different values of
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N . We compared the cumulative computational times to obtain the recur-
sive and non-recursive estimators when adding these new observations. The
characteristics of the computer we used to perform these computations were
CPU: Duo E4700 2.60 GHz, HD: 149 Go, Memory: 3.23 Go. The simulation
was performed under the following conditions: the curves X1, . . . , and Xn
as well as the new observations Xn+1, . . . , and Xn+N , which are standard
Brownian motions on [0, 1] with n = 100 and N ∈ {1, 50, 100, 200, 500}. The
semi-norm, bandwidth sequence and the parameter ` were chosen as in the
previous cases.
The computational times are displayed in Table 4. Here, our estimator shows
a clear advantage with regard to computational time compared with the es-
timator from Ferraty and Vieu (2006).

N 1 50 100 200 500

comp. time for r[`]n+1, . . . , r
[`]
n+N 0.125 0.484 0.859 1.563 3.656

comp. time for rn+1, . . . , rn+N 0.047 1.922 5.594 21.938 152.719

Table 4: Cumulative computational times in seconds for the recursive and
Ferraty and Vieu (2006) estimators when adding N new observations for
different values of N .

3.5 First real dataset example

This subsection applies our estimator to a real dataset. Functional data are
particularly adapted to studying a time series. We illustrate this fact using
the El Niño time series1 that provides the monthly sea surface temperature
from January 1982 to December 2011 (360 months). These data are plot-
ted in Figure 1. From this time series, we extracted the 30 annual curves
X1, . . . , and X30 from 1982 to 2011, discretized into p = 12 points. These
curves are plotted in Figure 2. The variable of interest at month j of year
i is the sea temperature Xi+1 for month j; in other words, for j = 1, . . . , 12

and for i = 1, . . . , 29, Y
[j]
i = Xi+1(j).

We predicted the values of Y [1]
29 . . . , and Y

[12]
29 (in other words, the val-

ues of curve X30). The recursive estimator and the estimator from Ferraty
and Vieu (2006) were computed by choosing the semi-norm, the bandwidth
sequence and the parameter ` as in previous cases.

We analyzed the results by computing the mean square prediction error
through 2011, which was provided by

MSPE =
1

12

12∑
j=1

(
Ŷ

[j]
29 − Y

[j]
29

)2
,

1available online at http://www.math.univ-toulouse.fr/staph/npfda/
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Figure 1: El Niño monthly temperature time series from January 1982 to
December 2011
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Figure 2: El Niño annual temperature curves from 1982 to 2011

where Ŷ [j]
29 was computed with either the recursive estimator (result = 0.5719)

or the estimator from Ferraty and Vieu (2006) (result: 0.2823). The estima-
tor from Ferraty and Vieu (2006) again revealed its advantage with regard to

13



prediction, whereas our estimator behaved well and had an advantage with
regard to computational time (as highlighted in the previous subsection).
The computational time (in seconds) needed for our estimator to predict
twelve values (the final year) was 0.128s, whereas the computational time
for the Ferraty and Vieu (2006) estimator was 0.487s.

To construct the confidence intervals described at the end of Section 2,
we used the example from 2011. The constants involved in Corollary 2 were
estimated by

M̂1 =
1

n

n∑
i=1

1

F̂ (hi)
K

(
‖χ−Xi‖

hi

)
and M̂2 =

1

n

n∑
i=1

1

F̂ (hi)
K2

(
‖χ−Xi‖

hi

)
.

The consistency of M̂i, i = 1, 2 is the same as the lines of the Lemmas 3, and
5 proofs with the help of the Glivenko-Cantelli theorem. In addition, the es-
timation of the conditional variance σ2ε was performed using a nonparametric
kernel regression procedure:

σ̂2ε(χ) =

n∑
i=1

Y 2
i K

(
‖χ−Xi‖
hi

)
n∑
i=1

K
(
‖χ−Xi‖
hi

) −
(
r[0]n (χ)

)2
.

The different values of σ̂2ε for each month of last year are shown in Table 5.

month 1 2 3 4 5 6

σ̂2ε 1.00551 0.60462 0.81971 1.60694 2.07112 2.02370

month 7 8 9 10 11 12

σ̂2ε 2.01471 1.65082 1.25991 1.24542 1.27177 1.08482

Table 5: Recursive estimations of σ2ε for each month on the last year.

The estimations of the other quantities in the confidence intervals were β̂[1] =

1.04966, M̂1 = 0.73367 and M̂2 = 0.62716.
We compared the confidence intervals for 2011 in Table 6 with the recursive
estimator (label (1) in the table) and the estimator from Ferraty and Vieu
(2006) (label (2) in the table). We noticed that the confidence interval with
the estimator from Ferraty and Vieu (2006) was still better, mainly due to
the estimation of σε and the termsM1 andM2 (which were estimated by the
respective non-recursive counterparts of σ̂2ε , and M̂1, and M̂2 was obtained
by replacing hi with hn in the non-recursive case), whereas the term β̂[1]
decreased the width of the confidence interval in the recursive case.
The corresponding true curve, predicted curve and 95% confidence intervals
over the year 2011 are plotted in Figure 3.
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month 1 2 3 4

(1) [23.24; 27.38] [24.68; 27.89] [25.10; 28.83] [23.62; 28.86]

(2) [22.80; 26.24] [24.83; 27.49] [25.07; 28.17] [23.42; 27.76]

month 5 6 7 8

(1) [21.96; 27.90] [21.04; 26.91] [19.91; 25.77] [18.76; 24.06]

(2) [21.80; 26.74] [20.44; 25.32] [19.18; 24.05] [18.42; 22.83]

month 9 10 11 12

(1) [18.59; 23.22] [18.65; 23.26] [19.22; 23.87] [20.59; 24.89]

(2) [18.37; 22.22] [18.81; 22.63] [19.54; 23.40] [20.88; 24.45]

Table 6: Confidence intervals for 2011 with the recursive estimator (label
(1)) and the estimator from Ferraty and Vieu (2006) (label (2)).
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Figure 3: El Niño true and predicted temperature curves for 2011. The solid
line denotes the true curve. The dashed lines represent the predicted curve
and the 95% confidence intervals with the recursive estimator.

3.6 Second real dataset example

This subsection highlights the performances of our estimator with regard
to computational time gain. The dataset we used consisted of information
collected by ORAMIP2, a French organization that studies air quality. We
disposed of a sample of 474 daily ozone pollution measurements curves (in
µg/m3). The variable Yi of interest was the daily maximum of ozone. The
ozone curve the day before (from 6 : 00 pm to 5 : 00 pm the day after)

2Observatoire Régional de l’Air en Midi-Pyrénées
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was used as a functional explicative variable Xi. Specifically, each Xi was
observed at p = 24 equidistant points that corresponded to hourly mea-
surements. The sample was divided into a learning sample of 332 and a test
sample of 142. The ozone curve from the learning sample is plotted in Figure
4. Every value of the test sample was predicted using our method and the

0
50
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0

15
0

20
0

hours

O3

18 21 24 3 6 9 12 15

Figure 4: Daily ozone curves for the learning sample

method from Ferraty and Vieu (2006). The learning sample and the curves
of the test sample were predicted as if they had arrived in real time. Again,
the estimator from Ferraty and Vieu (2006) showed its advantage over our
estimator with regard to mean prediction error (25.797 vs. 26.171). How-
ever, our estimator performed best when predicting several values and using
recursivity, especially when many values need to be predicted (which was the
case here, given that we predicted 142 values). The computational time for
our estimator (in seconds) was 2.025, whereas it was 25.478 for the Ferraty
and Vieu method; however, we are conscious that this advantage was rela-
tive in this case because we dealt with daily measurements. In any case, the
choice is up to the user: a better prediction error or a faster computational
time.
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4 Proofs

Throughout the proofs, we denote γi a sequence of real numbers going to
zero as i goes to ∞. The kernel estimate r[`]n writes

r[`]n (χ) =
ϕ
[`]
n (χ)

f
[`]
n (χ)

,

where ϕ[`]
n and f [`]n are defined in (3).

4.1 Proof of Theorem 1

To prove the first assertion of Theorem 1, let us use the following decompo-
sition

E
[
r[`]n (χ)

]
=

E
[
ϕ
[`]
n (χ)

]
E
[
f
[`]
n (χ)

] − E
{
ϕ
[`]
n (χ)

[
f
[`]
n (χ)− Ef [`]n (χ)

]}
{
E
[
f
[`]
n (χ)

]}2

+

E
{
r
[`]
n (χ)

[
f
[`]
n (χ)− Ef [`]n (χ)

]2}
{
E
[
f
[`]
n (χ)

]}2 .

The first part of Theorem 1 is then a direct consequence of Lemmas 1-4
below.

Lemma 1 Under assumptions H1-H4, we have

E
[
ϕ
[`]
n (χ)

]
E
[
f
[`]
n (χ)

] − r(χ) = hnϕ
′(0)

α[`]

β[1−`]

M0

M1
[1 + o(1)] .

Lemma 2 Under assumptions H1-H4, we have

E
{
ϕ[`]
n (χ)

[
f [`]n (χ)− Ef [`]n (χ)

]}
= O

[
1

nF (hn)

]
,

E
{
r[`]n (χ)

[
f [`]n (χ)− Ef [`]n (χ)

]2}
= O

[
1

nF (hn)

]
.

Lemma 3 Under assumptions H1-H4, we have

E
(
f [`]n (χ)

)
= M1 [1 + o(1)] and E

(
ϕ[`]
n (χ)

)
= r(χ)M1 [1 + o(1)] .
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The study of the variance term in Theorem 1 is based on the following
decomposition which can be found in Collomb (1976).

Var
[
r[`]n (χ)

]
=

Var
[
ϕ
[`]
n (χ)

]
{
E
[
f
[`]
n (χ)

]}2 − 4
E
[
ϕ
[`]
n (χ)

]
Cov

[
f
[`]
n (χ), ϕ

[`]
n (χ)

]
{
E
[
f
[`]
n (χ)

]}3

+3Var
[
f [`]n (χ)

] {E [ϕ[`]
n (χ)

]}2

{
E
[
f
[`]
n (χ)

]}4 + o

[
1

nF (hn)

]
. (5)

The second assertion of Theorem 1 follows from (5) and Lemma 4 below. �

Lemma 4 Under assumptions H1-H4, we have

Var
[
f [`]n (χ)

]
=

β[1−2`]

β2[1−`]
M2

1

nF (hn)
[1 + o(1)] .

Var
[
ϕ[`]
n (χ)

]
=

β[1−2`]

β2[1−`]

[
r2(χ) + σ2ε (χ)

]
M2

1

nF (hn)
[1 + o(1)] .

Cov
[
f [`]n (χ), ϕ[`]

n (χ)
]

=
β[1−2`]

β2[1−`]
r(χ)M2

1

nF (hn)
[1 + o(1)] .

Now let us prove Lemmas 1-4.

4.1.1 Proof of Lemma 1

Observe that

E
[
ϕ
[`]
n (χ)

]
E
[
f
[`]
n (χ)

] − r(χ) =

n∑
i=1

1
F (hi)`

E
[
(Yi − r(χ))K

(
‖χ−Xi‖
hi

)]
n∑
i=1

1
F (hi)`

E
[
K
(
‖χ−Xi‖
hi

)] .

Obviously

E
[
(Yi − r(χ))K

(
‖χ−Xi‖

hi

)]
= E

[
(r(X )− r(χ))K

(
‖X − χ‖

hi

)]
= E

[
ϕ (‖X − χ‖)K

(
‖X − χ‖

hi

)]
=

∫ 1

0
ϕ(hit)K(t)dP‖X−χ‖/hi(t).

Therefore, a Taylor’s expansion of ϕ around 0 ensures that

E
[
(Yi − r(χ))K

(
‖χ−Xi‖

hi

)]
= hiϕ

′(0)

∫ 1

0
tK(t)dP‖X−χ‖/hi(t) + o(hi).
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From the proof of Lemma 2 in Ferraty et al. (2007), H2 and Fubini’s Theorem
imply that∫ 1

0
tK(t)dP‖X−χ‖/hi(t) = F (hi)

[
K(1)−

∫ 1

0
(sK(s))′τhi(s)ds

]
, (6)

and

EK
(
‖X − χ‖

hi

)
=

∫ hi

0
K

(
t

hi

)
dP‖X−χ‖(t) = F (hi)

[
K(1)−

∫ 1

0
K ′(s)τhi(s)ds

]
. (7)

Also, combining (6) and (7), we have

E
[
ϕ
[`]
n (χ)

]
E
[
f
[`]
n (χ)

] − r(χ) =

n∑
i=1

hiF (hi)
1−`
{
ϕ′(0)

[
K(1)−

∫ 1
0 (sK(s))′τhi(s)ds

]
+ γi

}
n∑
i=1

F (hi)1−`
[
K(1)−

∫ 1
0 K

′(s)τhi(s)ds
]

:=
D1

D2
.

Finally, by virtue of H3 we get from Toeplitz’s Lemma (see Masry (1986))
that

D1

nhnF (hn)1−`
= α[`]ϕ

′(0)M0[1 + o(1)],
D2

nF (hn)1−`
= β[1−`]M1[1 + o(1)],

and Lemma 1 follows. �

4.1.2 Proof of Lemma 3

Equality (7) allows to write

E
[
f [`]n (χ)

]
=

1
n∑
i=1

F (hi)
1−`

n∑
i=1

1

F (hi)`
E
[
K

(
‖χ−Xi‖

hi

)]

=

n∑
i=1

F (hi)
1−`

nF (hn)1−`

[
K(1)−

∫ 1
0 K

′(s)τhi(s)ds
]

Bn,1−`
= M1[1 + o(1)],

where the last equality follows from assumptions H3, H4 and Toeplitz’s
Lemma. Now, conditioning on X , we have

E
[
YiK

(
‖χ−Xi‖

hi

)]
= E

{
[r(X )− r(χ) + r(χ)]K

(
‖χ−Xi‖

hi

)}
=: Ai +Bi,

where

Ai := E
{

[r(X )− r(χ)]K

(
‖χ−Xi‖

hi

)}
≤ sup

χ′∈B(χ,hi)

∣∣r(χ′)− r(χ)
∣∣EK (‖χ−Xi‖

hi

)
,
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and Bi := r(χ)EK
(
‖χ−Xi‖
hi

)
. Since r is continuous (H1), then

E
[
YiK

(
‖χ−Xi‖

hi

)]
= [r(χ) + γi]EK

(
‖χ−Xi‖

hi

)
= F (hi)M1 [r(χ) + γi] . (8)

We deduce from (8), with the help of assumptions H3 and H4, and applying
again Toeplitz’s Lemma, that

E
[
ϕ[`]
n (χ)

]
=

1
n∑
i=1

F (hi)
1−`

n∑
i=1

1

F (hi)`
E
[
YiK

(
‖χ−Xi‖

hi

)]
= r(χ)M1 [1 + o(1)] ,

that proves Lemma 3. �

4.1.3 Proof of Lemma 4

First, notice that as in (7), we have

E
[
K2

(
‖χ−X‖

hi

)]
= F (hi)

[
K2(1)−

∫ 1

0
(K2)′(s)τhi(s)ds

]
. (9)

Relation (7) and assumption H3 ensure that

E2

[
K

(
‖χ−X‖

hi

)]
= O

[
F (hi)

2
]
,

thus

Var
[
K

(
‖χ−X‖

hi

)]
= M2F (hi) [1 + γi] .

It follows that

Var
[
f [`]n (χ)

]
=

1(
n∑
i=1

F (hi)1−`
)2

n∑
i=1

F (hi)
1−2`M2 [1 + γi]

=
β[1−2`]

β2[1−`]

1

nF (hn)
M2 [1 + o(1)] ,

and the first step of Lemma 4 follows. In a similar manner, for the second
step, let us write

Var
[
ϕ[`]
n (χ)

]
=

1(
n∑
i=1

F (hi)1−`
)2

n∑
i=1

F (hi)
−2`Var

[
YiK

(
‖χ−Xi‖

hi

)]
.

20



Next, one obtains by conditioning on X ,

E
[
Y 2
i K

2

(
‖χ−Xi‖

hi

)]
= E

[
r2(X )K2

(
‖χ−Xi‖

hi

)]
+ E

[
σ2ε(X )K2

(
‖χ−Xi‖

hi

)]
.

Assumption H1 and (9) ensure that

E
[
Y 2
i K

2

(
‖χ−Xi‖

hi

)]
=

[
r2(χ) + σ2ε(χ)

]
E
[
K2

(
‖χ−Xi‖

hi

)]
[1 + γi]

=
[
r2(χ) + σ2ε(χ)

]
M2F (hi) [1 + γi] ,

and then from Toeplitz’s Lemma, with H3 and H4, it follows that

Var
[
ϕ[`]
n (χ)

]
=

1(
n∑
i=1

F (hi)1−`
)2

n∑
i=1

F (hi)
1−2` [r2(χ) + σ2ε(χ)

]
M2 [1 + γi]

=
β[1−2`]

β2[1−`]

[
r2(χ) + σ2ε(χ)

]
M2

1

nF (hn)
[1 + o(1)] ,

which proves the second assertion of Lemma 4. The covariance term writes

Cov
[
f
[`]
n (χ), ϕ

[`]
n (χ)

]
= 1(

n∑
i=1

F (hi)1−`
)2

{
E

 n∑
i=1

n∑
j=1

YiK
(
‖χ−Xi‖
hi

)
K

(
‖χ−Xj‖
hj

)
F (hi)`F (hj)`


−

n∑
i=1

E
[
YiK

(
‖χ−Xi‖
hi

)]
F (hi)`

n∑
j=1

EK
(
‖χ−Xj‖
hj

)
F (hj)`

}
= 1(

n∑
i=1

F (hi)1−`
)2

n∑
i=1

E
[
YiK

2
(
‖χ−Xi‖
hi

)]
F (hi)2`

− 1(
n∑
i=1

F (hi)1−`
)2

n∑
i=1

E
[
YiK

(
‖χ−Xi‖
hi

)]
EK

(
‖χ−Xi‖
hi

)
F (hi)2`

:= I − II.

Notice that by (6) and (8), one may write

II = O

[
1

n
(Bn,1−`)

−2Bn,2(1−`)

]
= O

(
1

nF (hn)

)
.

Next, from assumption H1 and conditioning on X , we have

E
[
YiK

2

(
‖χ−Xi‖

hi

)]
= M2F (hi) [r(χ) + γi] .

It follows that

I =
(Bn,1−`)

−2

nF (hn)

n∑
i=1

F (hi)
1−2`

nF (hn)1−2`
M2r(χ) [1 + γi] ,

and the third assertion of Lemma 4 follows again by applying Toeplitz’s
Lemma. �
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4.1.4 Proof of Lemma 2

Lemma 2 is a direct consequence of Lemmas 3 and 4. �

4.2 Proof of Theorem 2

Let us consider the following decomposition

r[`]n (χ)− r(χ) =
ϕ̃
[`]
n (χ)− r(χ)f

[`]
n (χ)

f
[`]
n (χ)

+
ϕ
[`]
n (χ)− ϕ̃[`]

n (χ)

f
[`]
n (χ)

, (10)

where ϕ̃[`]
n (χ) is a truncated version of ϕ[`]

n (χ) defined by

ϕ̃[`]
n (χ) =

1
n∑
i=1

F (hi)1−`

n∑
i=1

Yi
F (hi)`

1{|Yi|≤bn}K

(
‖χ−Xi‖

hi

)
, (11)

bn being a sequence of real numbers which goes to +∞ as n→∞. Next, for
any ε > 0, we have for the residual term of (10)

P

{∣∣∣ϕ[`]
n (χ)− ϕ̃[`]

n (χ)
∣∣∣ > ε

[
ln lnn

nF (hn)

] 1
2

}
≤ P

(
n⋃
i=1

{|Yi| > bn}

)
≤ E

[
eλ|Y |

µ
]
n1−λδ,

where the last inequality follows by setting bn = (δ lnn)
1
µ , with the help of

Markov’s inequality. Assumption H5 ensures that for any ε > 0,
∞∑
n=1

P

{∣∣∣ϕ[`]
n (χ)− ϕ̃[`]

n (χ)
∣∣∣ > ε

[
ln lnn

nF (hn)

] 1
2

}
<∞ if δ >

2

λ
,

which together with the Borel-Cantelli Lemma imply that[
nF (hn)

ln lnn

]1/2 ∣∣∣ϕ[`]
n (χ)− ϕ̃[`]

n (χ)
∣∣∣→ 0 a.s, as n→∞. (12)

The main term in (10) writes

ϕ̃[`]
n (χ)− r(χ)f [`]n (χ) =

{
ϕ̃[`]
n (χ)− r(χ)f [`]n (χ)− E

[
ϕ̃[`]
n (χ)− r(χ)f [`]n (χ)

]}
+
{
E
[
ϕ̃[`]
n (χ)− r(χ)f [`]n (χ)

]}
:= N1 +N2. (13)

Theorem 2 will be proved if Lemmas 5 and 6 below are established. Indeed,
from Lemma 3 we have E

(
f
[`]
n (χ)

)
= M1 [1 + o(1)] and it can be shown

(following the same lines of the proof of Lemma 5) that

f [`]n (χ)− Ef [`]n (χ) = O

(√
ln lnn

nF (hn)

)
a.s.

�
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Lemma 5 Under assumptions H1−H6, we have

lim
n→∞

[
nF (hn)

ln ln n

]1/2
N1 =

[
2β[1−2`]σ

2
ε(χ)M2

]1/2
β[1−`]

a.s.

Lemma 6 Assume that H1−H5 hold. If lim
n→+∞

nh2n = 0, then

lim
n→∞

[
nF (hn)

ln ln n

]1/2
N2 = 0.

4.2.1 Proof of Lemma 5

Let us set

Wn,i =
1

F (hi)`
K

(
‖χ−Xi‖

hi

)[
Yi1{|Yi|≤bn} − r(χ)

]
and Zn,i = Wn,i − EWn,i,

and define

Sn =
n∑
i=1

Zn,i and Vn =
n∑
i=1

EZ2
n,i.

Observe that

Vn =
n∑
i=1

F (hi)
−2`

{
E
(
K2

(
‖χ−X‖

hi

)
[Y − r(χ)]2

)

+E
(
K2

(
‖χ−X‖

hi

)
Y [2r(χ)− Y ]1{|Y |>bn}

)}

−
n∑
i=1

F (hi)
−2`E2

(
K

(
‖χ−X‖

hi

)[
Y 1{|Y |≤bn} − r(χ)

])
:= A1 +A2 −A3. (14)

A1 writes

A1 =
n∑
i=1

F (hi)
−2`E

{
K2

(
‖χ−X‖

hi

)
E
[
(Y − r(χ))2|X

]}

=

n∑
i=1

σ2ε(χ)EK2
(
‖χ−X‖
hi

)
F (hi)2`

+
E
[
K2
(
‖χ−X‖
hi

)
{σ2ε(X )− σ2ε(χ)}

]
F (hi)2`

:= A11 +A12.
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From H2, by applying Fubini’s Theorem, we have

A11 =
n∑
i=1

F (hi)
1−2`σ2ε(χ)

[
K2(1)−

∫ 1

0
(K2(s))′τhi(s)ds

]
.

Applying again Toeplitz’s Lemma, H3 and H4 allow to get

A11

nF (hn)1−2`
→ β[1−2`]σ

2
ε(χ)M2, as n→ +∞. (15)

The second term of the decomposition of A1 is bounded using (9) as

A12 ≤
n∑
i=1

F (hi)
1−2` sup

χ′∈B(χ,hi)
|σ2ε(χ′)− σ2ε(χ)|

[
K2(1)−

∫ 1

0
(K2(s))′τhi(s)ds

]
,

while the continuity of σ2ε (H1) with Toeplitz’s Lemma ensure that

A12

nF (hn)1−2`
→ 0, as n→ +∞. (16)

Now, let us study the term A2 appearing in the decomposition of Vn. Using
Cauchy-Schwartz’s inequality, and denoting ‖K‖∞ := sup

t∈[0,1]
K(t), we get

A2 ≤ ‖K‖2∞
n∑
i=1

F (hi)
−2`
{
E
(
Y 2 [2r(χ)− Y ]2

)
P (|Y | > bn)

} 1
2

≤ 3Qn‖K‖2∞
n∑
i=1

F (hi)
−2`,

where Qn =
(
max

{
E
(
Y 4
)
, 4|r(χ)|E|Y |3, 4r2(χ)E

(
Y 2
)}
P (|Y | > bn)

) 1
2 .

We deduce from H4 and H5, with the choice bn = (δ lnn)1/µ, that

A2

nF (hn)1−2`
= O

e−λbµn2 (lnn)
2
µ

F (hn)

→ 0, as n→ +∞ with δ >
2

λ
. (17)

The last term A3 is bounded

|A3| ≤ b2n [1 + o(1)]
n∑
i=1

F (hi)
2−2`

[
K(1)−

∫ 1

0
(K ′(s))τhi(s)ds

]2
.

It follows from H6 that

A3

nF (hn)1−2`
= O

[
F (hn)(lnn)

2
µ

]
→ 0, as n→ +∞. (18)
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relations (15), (16), (17) and (18) can be used to derive the following equiv-
alence

Vn ∼ nF (hn)1−2`β[1−2`]σ
2
ε(χ)M2, as n→ +∞. (19)

Next, since lnF (hn)
lnn → 0 as n→ +∞, then the first part of H6 implies that

nF (hn)(lnn)
− 2
µ

ln [nF (hn)1−2`] {ln ln [nF (hn)1−2`]}2(α+1)
→∞, as n→ +∞.

Setting bn = (δ lnn)
1
µ , there exists n0 ≥ 1 such that for any i ≥ n0, we have

iF (hi)(ln i)
− 2
µ

ln [iF (hi)1−2`] {ln ln [iF (hi)1−2`]}2(α+1)
>

2 ‖K‖2∞max
{
|r(χ)|2, (δ ln i)

2
µ

}
F (hi)2`

≥ Z2
n,i.

Hence, the event
{
Z2
n,i >

iF (hi)
1−2`

ln[iF (hi)1−2`]{ln ln[iF (hi)1−2`]}2(α+1)

}
is empty for i ≥

n0. We deduce from (19) that

∞∑
i=1

(ln lnVi)
α

Vi
E

Z2
n,i1

{
Z2
n,i>

Vi

lnVi(ln lnVi)
2(α+1)

}
 <∞.

Let S be a random function defined on [0,+∞[ such that for any t ∈
[Vn, Vn+1[, S(t) = Sn. Using Theorem 3.1 in Jain et al. (1975), there ex-
ists a Brownian motion ξ such that∣∣∣∣∣S(t)− ξ(t)

(2t ln ln t)
1
2

∣∣∣∣∣ = o
[
(ln ln t)−

α
2

]
a.s., as t→∞, for any t ∈ [Vn, Vn+1[.

It follows that

lim
t→∞

S(t)

(2t ln ln t)
1
2

= lim
t→∞

[
S(t)− ξ(t)
(2t ln ln t)

1
2

+
ξ(t)

(2t ln ln t)
1
2

]
= 1 a.s.

Then we have
Sn√

2Vn ln lnVn
→ 1 a.s., as n→∞, (20)

by virtue of the definition of S and the fact that Vn+1

Vn
→ 1 as n→∞. From

(19), we have

lim
n→∞

{
nF (hn)1−2` ln ln

[
nF (hn)1−2`

]}1/2
Bn,1−`

(2Vn ln lnVn)
1
2

=
β[1−`]{

2β[1−2`]σ2ε(χ)M2

}1/2 .
Lemma 5 follows from the last convergence and the fact that Sn = N1

n∑
i=1

F (hi)
1−`,

with the help of (20). �
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4.2.2 Proof of Lemma 6

We have

N2 =
1

n∑
i=1

F (hi)1−`

n∑
i=1

F (hi)
−`

{
E
[
K

(
‖χ−X‖

hi

)
(r(X )− r(χ))

]

−E
[
K

(
‖χ−X‖

hi

)
Y 1{|Y |>bn}

]}
:= A+B. (21)

As in the proof of Lemma 1, we can write

A = hn
α[`]

β[1−`]
ϕ′(0)M0 [1 + o(1)] , (22)

and then,[
nF (hn)

ln lnn

]1/2
A =

[
nF (hn)

ln lnn

]1/2
hn

α[`]

β[1−`]
ϕ′(0)M0 [1 + o(1)] = o(1),

where the last equality follows from the condition nh2n → 0. For the second
term of the right-hand-side in (21), using Cauchy-Schwartz’s inequality and
the boundedness of the kernel K, we get

|B| ≤ ‖K‖∞
n∑
i=1

F (hi)1−`

n∑
i=1

F (hi)
−` {E [Y 2

i

]
P [|Yi| > bn]

}1/2
.

From Markov’s inequality combined with (4), it follows that

|B| ≤ ‖K‖∞
n∑
i=1

F (hi)1−`

n∑
i=1

F (hi)
−`
{
E
[
Y 2
i

]
E
[
eλ|Yi|

µ
]
e−λb

µ
n

}1/2

= O

(
1

nF (hn)

Bn,−`
Bn,1−`

n1−λδ (lnn)2/µ
)
, (23)

which gives[
nF (hn)

ln lnn

]1/2
B = O

(
1√

ln lnn

1√
nF (hn)

n1−λδ (lnn)2/µ
)

= o(1) if δ >
1

λ
,

and Lemma 6 is proved. �
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4.3 Proof of Theorem 3

Using the decomposition (10), we have to show that√
nF (hn)

[
ϕ[`]
n (χ)− ϕ̃[`]

n (χ)
]
→ 0 a.s. (24)

and√
nF (hn)

[
ϕ̃[`]
n (χ)− r(χ)f [`]n (χ)

]
D→ N

(
cM0ϕ

′(0)α[`]

β[1−`]
,
β[1−2`]M2σ

2
ε(χ)

β2[1−`]

)
,(25)

where ϕ̃[`]
n is defined in (11) and c is such that lim

n→∞

√
nF (hn)hn = c, since

f
[`]
n (χ)

P→M1. This later follows from the first parts of Lemmas 3 and 4. For

(24), we follow the same lines of proof of (12) substituting
[

ln lnn

nF (hn)

]1/2
by

1√
nF (hn)

to get the desired result. About (25), using the decomposition

(13), it remains to prove Lemmas 7 and 8 below.

Lemma 7 Assume that Assumptions H1−H5 and H7 hold. Then

√
nF (hn)N1

D→ N

(
0,
β[1−2`]

β2[1−`]
σ2ε(χ)M2

)
.

Lemma 8 Assume that Assumptions H1 −H5 hold. If there exists c ≥ 0
such that lim

n→∞
hn
√
nF (hn) = c, then

lim
n→∞

√
nF (hn)N2 = c

α[`]

β[1−`]
ϕ′(0)M0.

4.3.1 Proof of Lemma 7

Setting

W ′n,i =

√
nF (hn)∑n

i=1 F (hi)1−`
Wn,i and Z ′n,i = W ′n,i − EW ′n,i,

where Wn,i is defined in the proof of Theorem 2, then

√
nF (hn)N1 =

n∑
i=1

Z ′n,i.

To prove Lemma 7, we first prove that

lim
n→∞

n∑
i=1

E(Z
′2
n,i) =

β[1−2`]

β2[1−`]
σ2ε(χ)M2, (26)
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and then check that W ′n,i satisfies the Lyapounov’s condition. Next, from
(19) we have

n∑
i=1

E(Z
′2
n,i) =

nF (hn)

(
∑n

i=1 F (hi)1−`)
2Vn =

1

nF (hn)1−2`
1

B2
n,1−`

Vn

=
β[1−2`]

β2[1−`]
σ2ε(χ)M2 [1 + o(1)]

which proves (26). To check the Lyapounov’s condition, set p > 2, we have

n∑
i=1

E
(
|Z ′n,i|p

)
=

n∑
i=1

E
(
|Z ′n,i|p−2Z ′2n,i

)
.

Since

∣∣W ′n,i∣∣ ≤ ‖K‖∞
√
nF (hn)∑n

i=1 F (hi)1−`
F (hi)

−`|bn − r(χ)|,

it follows that

n∑
i=1

E
(
|Z ′n,i|p

)
≤

(nF (hn))
p
2

n∑
i=1

F (hi)
−p`V ar

(
K
(
‖χ−Xi‖
hi

) (
Yi1{|Yi|≤bn} − r(χ)

))
22−p‖K‖2−p∞ |bn − r(χ)|2−p

(
n∑
i=1

F (hi)1−`
)p .

Using the same decomposition as in (14), we have

n∑
i=1

F (hi)
−p`V ar

(
K

(
‖χ−Xi‖

hi

)(
Yi1{|Yi|≤bn} − r(χ)

))

=
n∑
i=1

F (hi)
−p`

{
E
(
K2

(
‖χ−X‖

hi

)
[Y − r(χ)]2

)

+E
(
K2

(
‖χ−X‖

hi

)
Y [2r(χ)− Y ]1{|Y |>bn}

)}

−
n∑
i=1

E2K
(
‖χ−X‖
hi

) [
Y 1{|Y |≤bn} − r(χ)

]
F (hi)p`

:= B1 +B2 −B3. (27)

Setting bn = (δ lnn)
1
µ for some δ, µ > 0 and following the same lines as in

the proof of (15), (16), (17) and (18) substituting the exponent 2 by p in all
the expressions, we have

B1 = O
(
nF (hn)1−p`

)
.
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From Toeplitz’s Lemma, we can write

(nF (hn))
p
2

(
∑n

i=1 F (hi)1−`)
p |bn − r(χ)|p−2B1 = O

( (lnn)
1
µ√

nF (hn)

)p−2 = o(1).

Next, for the second expression B2 of (27), we get

B2

nF (hn)1−p`
= O

exp
(
−λbµn

2

)
(lnn)

2
µ

F (hn)

 = o(1) with δ >
2

λ
.

It follows again from Toeplitz’s Lemma that

(nF (hn))
p
2

(
∑n

i=1 F (hi)1−`)
p |bn − r(χ)|p−2B2 = O

( (lnn)
1
µ√

nF (hn)

)p−2 = o(1).

In the same manner as in the proof of (18), we have

B3

nF (hn)1−p`
= O

[
F (hn)(lnn)

2
µ

]
.

Then

(nF (hn))
p
2

(
∑n

i=1 F (hi)1−`)
p |bn − r(χ)|p−2B3 = O

( (lnn)
1
µ√

nF (hn)

)p−2 = o(1),

which concludes the proof of Lemma 7. �

4.3.2 Proof of Lemma 8

We go back to the decomposition of (21) in the proof of Lemma 6.
On one hand, from (22), we write√

nF (hn)A =
√
nF (hn)hn

α[`]

β[1−`]
ϕ′(0)M0 [1 + o(1)] . (28)

On the other hand from (23), we get

√
nF (hn)B = O

(
1√

nF (hn)

)
= o(1) if δ >

1

λ
, (29)

and Lemma 8 follows from the combination of (28) and (29). �
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4.3.3 Proof of Corollary 2

From the standard Glivenko-Cantelli type results, we have

F (hn)

F̂ (hn)

P→ 1. (30)

Then, to prove Corollary 2, it suffices to show that β̂[1]
P→ β[1]. To see this,

we use the following result

sup
x∈R

∣∣∣F̂ (x)− F (x)
∣∣∣ = O((lnn/n)1/2),

established by Devroye (1977) and write

β̂[1] − β[1] =
1

nF̂ (hn)

n∑
i=1

(
F̂ (hi)− F (hi)

)
+
F (hn)

F̂ (hn)
Bn,1 − β[1]

≤ F (hn)

F̂ (hn)

1

nF (hn)
sup
x∈R

∣∣∣F̂ (x)− F (x)
∣∣∣+

∣∣∣∣∣F (hn)

F̂ (hn)
Bn,1 − β[1]

∣∣∣∣∣ = oP(1),

by virtue of H4(ii) and (30). �
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