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Abstract

Motivated by recent developments on dimension reduction (DR) techniques for time series data,

the association of a general deterrent effect towards South Carolina (SC)’s registration and

notification (SORN) policy for preventing sex crimes was examined. Using adult sex crime

arrestee data from 1990 to 2005, the the idea of Central Mean Subspace (CMS) is extended to

intervention time series analysis (CMS-ITS) to model the sequential intervention effects of 1995

(the year SC’s SORN policy was initially implemented) and 1999 (the year the policy was revised

to include online notification) on the time series spectrum. The CMS-ITS model estimation was

achieved via kernel smoothing techniques, and compared to interrupted auto-regressive integrated

time series (ARIMA) models. Simulation studies and application to the real data underscores our

model’s ability towards achieving parsimony, and to detect intervention effects not earlier

determined via traditional ARIMA models. From a public health perspective, findings from this

study draw attention to the potential general deterrent effects of SC’s SORN policy. These

findings are considered in light of the overall body of research on sex crime arrestee registration

and notification policies, which remain controversial.
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1. Introduction

Sexual abuse, and sex-related crimes are a major public health burden in the United States

(U.S.). Because many of these assaults go unreported and unrecognized, it has been
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rightfully coined as a ‘silentviolent’ modern epidemic. The consequences of sexual abuse

are far-reaching and include increased risk of physical and mental health problems for

victims (Boney-McCoy and Finklehor, 1996; Letourneau et. al, 1996). Massive fiscal costs

are incurred to the society flowing directly from these crimes and their consequences (Post

et al., 2002). Consequently, prevention of sexual violence has been a public health priority

for decades (Mercy et al., 1993).

Yearly rates/counts of any criminal arrests yields auto-correlated time-series data, where the

major objective is to infer about the conditional distribution (or moments) of the current

observation given the past value(s) for studying the underlying dynamics and providing

efficient future forecasts. In an attempt to reduce sexual recidivism rates of targeted sex

crime arrestees (i.e., specific deterrence) and rates of first-time sex arrests by potential

perpetrators (i.e., general deterrence), the US relies mainly upon state-wide sex crime

arrestee registration and notification (SORN) policies, or interventions. In this context,

evaluating the effectiveness of these interventions for criminal justice settings (Loftin et. al.,

1983; McCleary and Hay, 1980; Vásquez et. al., 2008) are typically handled through an

interrupted/intervention time series (Box and Tiao, 1975) approach, which discriminates

between the behavior of the time series ‘before’ and ‘after’ the intervention (possibly

known, or unknown). A growing body of research suggests that SORN policies fail to

reduce sexual recidivism (Letourneau and Levenson, 2010). Moreover, research on South

Carolina (SC)’s SORN policy further indicates that registration and notification were each

associated with significant and substantial increases in plea bargains and online notification

was associated with significant reductions in findings of guilty for adult sex crimes

(Letourneau et al., 2010a). Sometimes, these policies resulted in much harsher

consequences. For example, SC SORN policy subjects arrestees convicted of virtually any

sex crimes to lifetime registration and lifetime notification requirements, which since 1999

have included online notification. There are no mechanisms to reduce the duration of the

requirement or to remove oneself from the online registry. Because general deterrent effects

depend, in part, on the certainty and noxiousness of the consequence (Wikström, 2008), it is

conceivable that harsher and more widely applied SORN policies such as SC’s policy might

exert general deterrent effects.

In an evaluation of the general deterrent effect of SC’s SORN policy, Letourneau et al.

(2010b) conducted univariate Box-Jenkins interrupted auto-regressive integrated moving

average (ARIMA) analysis (Box et al., 1994) to understand general deterrence of SC SORN

policies on sex crime arrestees, separately for the initial implementation of registration in

1995 and the subsequent implementation of online notification in 1999. They reported a

significant intervention effect for 1995, but not for 1999. In comparison to first-time sex-

crime arrests from 1990 to 1994 (i.e., prior to initial implementation), results indicated an

approximately 11% reduction in first-time sex crime arrests in the post-SORN period from

1995–2005. This decline equated to averting approximately three new sex crime arrests per

month. This finding supports the argument that harsher, more widely applied SORN policies

can achieve a general deterrent effect. However, it seems counter-intuitive that online

notification would fail to enhance a general deterrent effect, given that this mechanism

equates with public shaming of arrestees who themselves attribute serious consequences to
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public notification, including loss of employment, housing, friends and the support of family

(Levenson and Cotter, 2005; Wikström, 2008). We argue that Letourneau et al. (2010b)

original study was limited in that the separate analysis of registration vs. notification

implementation might not have captured a sequential (and progressive) effect of these

interventions. Moreover, their analyses adhered to traditional Box-Jenkins intervention

ARIMA models and did not consider investigating the relevancy (or redundancy) of the

information content of the time-series inputs (past values of the series) to arrive at a

desirable prediction/forecasting model (Lendasse et al., 2001).

Our current focus in this manuscript is to examine the general deterrence of SC’s SORN

policy via non-linear intervention time series models, overcoming the limitations mentioned

above. Driven by the primary goal of forecasting, development of non-linear time series

models (such as our case of intervention time series which might include features like non-

linearity, asymmetric cycles, conditional heteroscedasticity, etc) took both parametric (Tiao

and Tsay, 1994) and non-parametric regression routes (Tong, 1995; Härdle et al., 1997; Cai

et al., 2000 and Fan and Yao, 2003). In the quest of reducing the number of time-series

inputs variables without sacrificing information and achieve parsimony, Park et al. (2009)

considered a formal dimension reduction (DR) technique through central mean subspace

(CMS) as a viable nonparametric alternative for nonlinear time series analysis, motivated by

the approach adopted by Cook and Li (2002) for regression. Using notations, for a typical

time series xt where the focus is deriving inference on the conditional distribution xt|Xt−1,

where Xt−1 = (xt−1, xt−2, …, xt−p)T for some p ≥ 1, this DR approach focusses on the

conditional mean function E(xt|Xt−1) instead of the time series central subspace (TSCS)

(Park et al., 2010) which studies the dependence of xt on Xt−1. We follow that route in

establishing a CMS for non-linear time series (CMS-ITS) analysis of SC sex crime activities

which provides an unified framework to accommodate multiple interventions/changepoints,

and seek parsimony in using time series inputs for attaining reliable forecasts.

The paper unfolds as follows. Section 2 provides further details on the motivating dataset.

Section 3 develops the CMS-ITS methodology, and the estimation strategies. In Section 4,

we presents a small numerical study to assess the performance of CMS-ITS for various

types on interventions and changes in the mean function, and also apply the methodology to

determine the effect of SC SORN on general deterrence. Section 5 discusses the salient

features of our methodology with some concluding remarks.

2. Motivation: Data

The data on SC sex crime arrestees were extracted from SC’s computerized criminal history

records (CCHR) with assistance from the SC Budget and Control Board, Office of Research

and Statistics. The CCHR data originated from individual precincts and courts, where initial

charges were filed and adjudication decisions rendered, respectively. This information was

forwarded to the SC Law Enforcement Division and added to the CCHR database. The

current analysis focuses on first (initial) arrests for sex crimes by adult male arrestee defined

as 18 years of age or older, that occurred between January 1st, 1990 and December 31st,

2005. To capture general deterrence, any second (and subsequent) sex crime by an arrestee

within this time span was dropped, retaining only their first crime arrest. This resulted in
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19,060 unique arrestees with a mean age (SD) of 33.96 (11.00) years, with race composition

as 53.3% Whites, 44.3% African-Americans, and 2.4% others. Hence, our time-series data

spans from 1990 to 2005 where we record average annual charges (or rates) for sex crime

arrests per 10,000 adult male population. Population estimates were obtained from SC

Community Assessment Network population data tables available at http://

scangis.dhec.sc.gov/scan/index.aspx. Figure 1 plots the time-series profile of the rate of sex

crime arrests, decomposed into trend, seasonal and error terms. Visual inspection reveals

that the crime rates post-1995 appear to be smaller than pre-1995. There is also the effect of

the internet-based notification of 1999 that adds to the 1995 effect. The overall goal of this

data analysis is to accommodate these intervention effects during model building.

3. Definitions and Estimation Method

3.1. Central mean subspace in intervention time series

Let xt denote an univariate time series and Iτ, the intervention at a specific time point τ.

Suppose Xt−1,l = (xt−1, …, xt−p, I1τ, I2τ, …․, Ilτ)T for some p ≥ 1, where l is number of

changepoints (fixed, in advance). Following Park et al. (2009), we proceed with establishing

a central mean subspace for (univariate) intervention time series (CMS-ITS). If this DR is

focused on the conditional mean function E(xt|Xt−1,l) only, we can simply detect

intervention effects by extending CMS in time series. In other words, when the conditional

mean with fixed number of interventions is our interest, DR depends on estimating a (p + l)

× q matrix Φq = (Φ1, …, Φq), where q ≤ (p + l) and l is number of changepoints, such that

the q linear combinations  contains all the information about xt that is available

from E(xt|Xt−1,l). Simply saying, a nonparametric intervention time series type of model can

be written as

(1)

where g is an unknown smoothing link function and ηt is an error sequence. We assume that

the CMS-ITS, E(xt|Xt−1,l), exists with dim( E(xt|Xt−1,l)) = d. The theoretical framework of

CMS-ITS is derived using two definitions and a proposition below.

Definition 1. Let xt be a univariate time series and l the number of interventions. Then, a

subspace (Φq) of ℝp+l for which  holds is called a mean

dimension reduction subspace for xt on Xt−1,l, where ⊥ is the notion of stochastic

independence, or orthogonality.

The conditions in Proposition 1 below are equivalent for Definition 1.

Proposition 1. (i) , (ii) , and

(iii) E(xt|Xt−1,l) is a function of  are all equivalent.

The second condition indicates that xt is not correlated to E(xt|Xt−1,l) given  and the

third one implies .
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Proof: Obviously, (i) implies (ii). If (iii) holds, E(xt|Xt−1,l) is a constant, given ΦTXt−1,l.

That is, it is independent of any other random variable. It is clear that (iii) implies (i). Then,

we need to prove that (ii) implies(iii). From (ii), we have

(2)

Since

the right hand side of (2) is {E[E(xt|Xt−1,l)|ΦTXt−1,l]}2. Similarly, the left hand side of (2) is

Therefore, Var[E(xt|Xt−1,l)|ΦTXt−1,l] = 0, which implies E(xt|Xt−1,l), given ΦTXt−1,l, is a

constant. Therefore, (ii) implies (iii), and hence the proposition.

We propose that any of the three conditions in Proposition 1 could be taken as the definition

of a mean DR subspace in intervention time series. In the following, we define the minimal

mean dimension reduction subspace in intervention time series.

Definition 2. Suppose E(xt|Xt−1,l) = ∩ N, where ∩ is over all time series mean dimension

reduction subspaces N for {xt}. If E(xt|Xt−1,l) is itself a intervention time series mean

dimension reduction subspace, then it is called the CMS in intervention time series.

The example given in Section 2 of Park et al. (2010) might cast some doubt on the existence

of CMS-ITS. If E(xt|Xt−1,l) exists, then E(xt|Xt−1,l) ⊆ xt|Xt−1,l because the former is the

intersection of a larger collection of subspaces. Therefore, it can reduce the dimension from

that of xt|Xt−1,l, if we are only interested in E(xt|Xt−1). Cook (1998) and Yin et al. (2008)

proved a similar argument for the existence of the CMS in intervention time series. Hence,

we assume that the CMS in intervention time series, E(xt|Xt−1,l), exists with

dim( E(xt|Xt−1,l)) = d.

3.2. Estimation methods

At the onset, we assume d and p known in order to estimate the basis vectors Φ1, …, Φd of

CMS-ITS. Consider an objective function , where

. The goal is to minimize ϒ with respect bd such that bd
T bd =

Id. Clearly, ϒ(bd) ≥ ϒ(Id) = ϒ(Φd) for any bd and Φd = argminbd ϒ(bd), because of the

existence of CMS-ITS and Condition (iii) in Proposition 1. We estimate the unknown mean

function f using the well-known Nadaraya-Watson (NW, 1964) estimator with a product
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Gaussian kernel. Here, any other nonparametric estimation can be used as long as a loss

function can be formed and minimized over the dimensions. Using the NW estimator yields:

(3)

where K is a kernel function and {δn} is a sequence of bandwidths. As a convenient choice,

we use a Gaussian kernel function in (3). Supposing r = (r1, ⋯, rd)T and W = (W1, ⋯, Wd)T,

the product Gaussian kernel has the form

(4)

with bandwidth bnj = mdsjn−1/(d+4) for j = 1, ⋯, d and md = [4/(d + 2)]1/(d+4). sj is the

corresponding sample standard deviation of Wj and md is from Silverman (1986) or Scott

(1992). Next, we minimize a sample version of ϒ(bd), defined as

(5)

with respect to bd such that bd
T bd = Id. The minimizer ϒn̂(Φ̂

n,d) is defined as the Residual

Sum of Squares (RSS), where Φ̂
n,d = argminbd ϒ̂

n(bd). For details on the computational

procedure using MATLAB, see Park, Sriram, and Yin (2009). Consistency of the estimators

for the CMS-ITS basis vectors follows from similar arguments as in Theorem 1 in Park,

Sriram and Yin (2009).

Because the assumption of known dimension d and lag p in CMS-ITS is restrictive, we use

the well-known Akaike information criterion (AIC; Burnham & Anderson, 2002) to develop

a data-dependent approach for estimating d and p. For a fixed p, we determine dp̂ using the

following AIC criteria;

(6)

For each p, we compute d̂p, then select the best d̂ across all p. Next, using this d̂, we find p̂
similarly using the following criteria;

(7)

This procedure determines the best estimated d and p. In the following two sections, we

investigate how this methodology works in the context of our motivating dataset, and also its

performance in a simulation setting.
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4. Application

4.1. Simulation study

Before working on the data set, we carry out a small Monte Carlo simulation study to assess

finite sample performance of our CMS-ITS proposition. In addition, we illustrate that this

method is viable even when mean function is nonlinear, such as the cosine function. Since

any real data may not be restricted to the simple linear function, we believe that this will

provide a potential research tool for the further studies into this direction. Here, we will use

a distance based measure to assess the accuracy of our estimates which calculates the

distance between the real CMS and the estimated CMS in the ITS. This was adopted by Ye

and Weiss (2003) and is defined as , where |C| denotes the

determinant of a matrix C. Note that 0 ≤ ρ ≤ 1, and when ρ = 1, E(xt|Xt−1,l)(Φ
̂
n,d) =

E(xt|Xt−1,l)(Φd). Hence, if ρ value is close to one, it implies that the two spaces are closer

and the estimates are more accurate. In addition, Xia, et. al. (2002) propose a distance

measure between E(xt|Xt−1,l)(Φ
̂
n,q) and E(xt|Xt−1,l)(Φd) using 

for q ≥ d and m2 = ‖(I − ΦdΦd
T)Φn̂,q‖2 for q < d. Similarly, as m2 approaches zero, the two

spaces are closer and the estimates are more accurate. We simulated three models with

varying number (one, two, and three) of fixed (and known) interventions. For sample sizes n

= 100, 200 and 500, we assessed accuracy of estimates based on 500 Monte Carlo

replications. The error term {εt} in all our models considered below follows independent

standard normal random density. The models are as follows:

Model 1: .

Model 2: .

Model 3: .

each of which has p = 3 and d = 1. Table 1 reports the average values of ρ and m2,

respectively, for the above models. For all cases, the distance based measures of ρ and m2

remain close to 1 and 0, respectively, getting further closer with increasing sample size.

Even with higher number of interventions, e.g., three changepoints, both measures indicate

the estimation procedure to be accurate.

4.2. Data Analysis

Now, we apply our methodology to the motivating time-series dataset on yearly rates of SC

sex crime arrests. Similar to the benchmark analysis of the Los Angeles air pollution data in

Wei (2006), we build an interrupted ARIMA model including two changepoints

corresponding to the 1995 registration and 1999 internet notification. For a genuine

forecasting study (as suggested by a reviewer), the sample is split into a training sample

(January 1990 – December 2004) for estimation and a hold out sample (January 2005 –

December 2005) for forecasting. For the estimation, the period from January 1990 to
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December 1994 is assumed to be free of intervention effects and is used to estimate the

noise model for Nt. As shown in Figure 2, the sample autocorrelation function (ACF) within

this period suggests nonstationary and highly seasonal behavior with period 12. Both ACF

and Partial ACF (PACF) of the seasonally differenced series (1 − B12)Nt, where B is

backshift operator, has significant spike at lag 12. Since seasonal moving average

component was not significant, it was not included in the model. Finally, we arrive at the

following ARIMA(1, 1, 0)12 model for the pre-intervention period given by:

(8)

where at is a white noise, (1 − B12) is first order seasonal differencing and Φ is seasonal

autoregressive component at lag 12. After adding two changepoints, we arrive at the final

model:

(9)

where ω1 and ω2 are intervention coefficients; I1τ and I2τ are dummy binary variables,

where I1τ is 0 for all months between January 1990 – December 1994, and 1 for all months

between January 1995 – December 2004, and I2τ is 0 for all months between January 1990 –

December 1998, and 1 for all months between January 1999 – December 2004. The

introduction of dummy variables I1τ and I2τ resembles a stepwise (sequential) pattern of

incorporating the effects of the two interventions to the time-series. Considering the additive

effect of I1τ and I2τ on the series, the period from the beginning of the series to December

1994 remains intervention-free, the period from January 1995 – December 1998 is assigned

with ‘only 1995’ effect, while the period from January 1999 – December 2004 receives the

effect of ‘both 1995 and 1999’ interventions. Estimation results of the above model are

summarized in Table 2, which indicates there were approximately 7.6% decrease in the rate

of sex crime offense charges per 10,000 population post 1995. While ω1 (the 1995 co-

efficient) is statistically significant, ω2 (the 1999 indicator) is not.

Next, we apply our CMS-ITS method. We proceed with estimating d and p, followed by the

estimation of basis vectors of E(xt|Xt−1,l) in univariate time series with two changepoints, xt

vs Xt−1,2 = (xt−1, …, xt−p, I1τ, I2τ)T. To estimate d, we included the lag xt−12 as predictor (to

control for the strong seasonality), and then compute the AIC values in (6) for d = 1, 2, 3, 4

and p = 1, …, 13. For each p, d̂p is indicated by an asterisk in Table 3. According to AIC

criteria in (6), d̂p = 1 for all 1 ≤ p ≤ 13. Since d̂p = 1 uniformly for 1 ≤ p ≤ 13, we decided to

use d = 1. Under d̂ = 1, the AIC values in Table 3 indicates that p̂ = 12 yields the smallest

AIC value in (7). From these, we conclude that the estimates of d and p for this data are d̂ =
1 and p̂ = 12. This procedure gives the estimate of the 14 × 1 basis vector Φ1 of E(xt|Xt−1,2),

i.e.

. A time series plot of t vs  and t vs xt is provided in Figure 3. Evidently, d1,t

almost itself nearly captures the periodic fluctuations and dynamics of the entire series,
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delineating the effect of the two interventions. This happens even prior to the construction of

an adequate parsimoniously parameterized model for the data. We now use the estimates

above, and the following approach involving plots to build a intervention model.

To test the impact of interventions alone, the CMS-ITS theory requires estimating the

direction(s) in the regression of xt, which includes the (i) coefficients corresponding to the

lagged values of x, and (ii) the coefficients corresponding to the interventions. The

components corresponding to these two (separate) directions are  (for the

lagged x) and  (for the interventions), where X2,t−1 = (xt−1, …, xt−p)T, X3,t−1

= (I1τ, I2τ)T, Ψ̂
1 = (ψ̂

1, …, ψ̂
12) and Θ̂

1 = (θ̂1, θ̂2). Next, we examine the two-dimensional

plots of xt versus  and xt versus . While the former plot

roughly displayed a cubic pattern, the latter one was linear. Finally, since the interactions

between d2,t and d3,t was not significant, the regression of xt on the predictor series d2,t and

intervention effect d3,t yields:

(10)

where ηt is an error sequence and the coefficients in the above model found to be significant

with standard error (p-value) estimates being 0.0199 (<2e-16) for the intercept, 0.0449

(6.43e-09) for d3,t, 0.1851(1.76e-08) for  and 0.2144 (0.0001) for . Hence, there is

statistical significance for both the changepoints, with an approximate reduction of 8.76%

(=0.2753×−0.3180) for 1995 registration and 3.14% (=0.2753×−0.1142) for 1999 internet

notification in the rate of sex crime charges per 10,000 population, respectively. The

autocorrelation check the error sequence ηt revealed a white noise.

Finally, we compare the forecasting ability of our semi-parametric model in (10) with the

interrupted ARIMA model given in (9) using Relative Mean Square Error (RMSE) given by

 and the Mean Absolute Percentage Error (MAPE), given as

, using the hold out sample from January to December 2005. The

estimates of RMSE and MAPE for our semi-parametric model as in (10) were 0.0133 and

0.1117, while those for the intervention ARIMA model were 0.0156 and 0.1168

respectively. We find evidence of a slightly better predictive performance for our model.

Figure 4 compares the predicted (forecasted) values from the fit of the parametric and semi-

parametric DR models to the hold out sample, with the true rate of sex crime arrests

overlayed.

5. Conclusions

In this paper, we introduced a new semi-parametric DR scheme for ITS modeling when the

mean function of the series (rather than the whole conditional distribution) is of interest.

Most of the existing DR approaches such as sliced inverse regression (SIR, Duan and Li,

1991) pertain to various contexts of regression, and are not easily applicable to the context

of dependent data, such as time-series. Our estimation method uses the Nadaraya-Watson

kernel smoother for mean function estimation in the context of CMS-ITS. In our setup, the
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nonparametric part that uses the NWestimator behaves as an intermediate step to achieve the

primary goal of obtaining directions through DR. Hence, the inaccuracy involved in the

density estimation can be overlooked as long as the shapes of the estimated densities

resemble the true ones, and do not severely affect the estimation of directions. Our Gaussian

product kernel behaved adequately in simulation and real data analysis reducing concerns

related to choices of kernels and bandwidths typical in the context of nonparametric

regression. A data-dependent approach using AIC was used to estimate the dimension d and

lag p.

Amidst the challenges posed by the theory of CMS, our proposed methodology is a

reasonable contender to the usual intervention ARIMA modeling with respect to model fit

and forecasting performance. Our proposed methodology provided a slightly superior

forecasting performance, which is the cornerstone of any time-series modeling. Although

challenging, future research might consider devising methods of DR in time-series with an

unknown number of changepoints, or determining/estimating a changepoint. So far, our

methodology focussed on ‘central’ and ‘mean’ subspaces for time-series. However in some

situations (such as financial time series), interest might focus on other parts of the data

density, say the quantiles, or tails, and one might undertake time series DR starting from a

Quantile subspace to study the (conditional) quantiles.

The results from this analysis advances the application area to a great extent. Prior time-

series analysis of the yearly sex crime rates for SC (Letourneau et al., 2010b) considered

separate intervention ARIMA models for 1995 and 1999, and failed to consider the

sequential effect of the changepoints on the sex crime arrest rates within an unified

framework. Our current ARIMA modeling considers using the two (known) changepoints

within the same model. This resulted in a non-significant effect of the internet-based policy

of 1999. This is in parity to the Letourneau et al. (2010b) analysis. In contrast, our semi-

parametricmodel also produced a significant 1999 effect in addition to the previously

identified significant 1995 effect. It is worthy to note that the amount of reduction post-1999

intervention was minimal (3.14%) which suggests that the deterrent effect might be driven

by the original SORN policy of 1995 while the effect of 1999, though not substantial, still

remains. In their original article, Letourneau et al. (2010a) concluded that the 1999 internet-

based notification should be repealed, considering results that this mechanism was, at best,

ineffective (i.e. associated neither with general or specific deterrence) and at worst

iatrogenic, given the association these researchers found in separate studies evaluating the

effects of notification and registration on plea bargains (which increased significantly

following registration and again following notification) and on convictions (which decreased

significantly following implementation of SC’s online notification policy; Leteouneau et. al,

2010b). If public notification of adult sex crime arrestee indeed fails to deter sexual violence

via specific and general deterrence, results in unintended consequences on the prosecution of

these cases such that fewer arrestees are convicted of sex crimes, and impairs arrestee’s

ability to successfully reintegrate into their communities as law-abiding citizens (as

Levenson and Hern, 2007 have forcefully argued), then its repeal is a straightforward policy

recommendation. The present study found a slight, albeit significant increase in the

deterrence of first-time sex crimes attributable to online notification. The majority of the
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deterrent effect appears to be due to the original registration policy, which included limited

notification. In consideration of the fact that online notification achieves minimal deterrence

but is associated with significant harm to the reintegration efforts of ex-arrestees, significant

increases in plea bargains from sex to non-sex crimes, and significantly reduced likelihood

of guilty convictions for sex crime charges, our original position still seems defensible that

SC’s online notification should be revised.

We also carefully caution the reader that in the absence of more rigorous research designs

(e.g., randomization to conditions), causal attributes cannot be made with certainty.

Underlying and hidden factors could have altered other aspects of the justice system

resulting in the observed decline in first-time sex crimes. For example, police officers might

have altered their charging decisions upon initial arrest or their calculus regarding which

crimes to pursue in the first place. Moreover, there is the vexing problem of under-reporting

of sex crimes (Smith et al., 2000), although little reason to suspect that underreporting

would become more prevalent in the later years in this data set.

The present study is a first of its kind examining broadly the deterrent effects of SC’s SORN

policy on first time sex crime arrestees using an innovative time-series DR approach. Our

findings add to the growing research base evaluating the actual effects of these popular

policies, and draws attention to a very wide but mentally disadvantaged section of our

society. However, more research related to sex crime policies as implemented in other states

and jurisdictions is needed, both to validate the general deterrent effect identified in the

present study and to elucidate the parameters under which such deterrent effects are more or

less likely to occur. Future research should also evaluate whether any deterrent effect on

first-time sex arrests is offset by increases in other types of crime as might be seen in a

substitution effect (Ehrlich, 1996). The present study is limited particularly by the absence

of additional explanatory variables that might control for confounding factors, e.g., policy

changes that applied more broadly to violent crimes (Vujic et al., 2012). It will be important

for future evaluations to include such factors and also to include suitable control groups

(e.g., another state in the U.S. whose SORN policy was implemented later than, or very

differently than, the index state’s policy). Such controls might, for example, allow for

addressing the counterfactual question of what would have happened to general deterrence

in SC without the intervention, facilitating a more reliable estimation of policy effects via

multivariate structural time series models (Havey, 1996). Despite these limitations, the

present study appears to provide a new and more robust method for assessing policy effects

using time series data.
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Figure 1.
Time series of the sex crime arrestee data decomposed into trend, seasonal, and error terms. The 1995 and 1999 interventions

are indicated via. vertical lines.
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Figure 2.
Autocorrelation Function (ACF) plots from the sex crime arrestee data for the period January 1990 – December 2004.
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Figure 3.
Time series plot of t vs xt (solid line) and t vs d1,t (dashed line) for the sex crime arrestee data. The intervention points (Jan,

1995 and Jan, 1999) are indicated.
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Figure 4.
Comparing forecasts for the period January 2005 – December 2005 from the sex crime arrestee data. The true xt values are

indicated by the solid line, and overlayed with the fitted values from our semi-parametric DR model (10) (dotted line) and the

interrupted ARIMA model (9) (dashed line).
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Table 1

Simulations results based on 500 Monte Carlo replications. Average values of ρ and m2 are reported for

different number of interventions.

Sample Size Model ρ m2 Interventions

100 1 0.9596 0.0761 τ = 50

2 0.9477 0.0962 τ = 30, 50

3 0.9247 0.1322 τ = 30, 50, 70

200 1 0.9806 0.0381 τ = 100

2 0.9626 0.0724 τ = 50, 150

3 0.9585 0.0791 τ = 50, 100, 150

500 1 0.9908 0.0182 τ = 250

2 0.9876 0.0245 τ = 150, 350

3 0.9849 0.0299 τ = 150, 250, 350
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Table 2

Parameter estimates from the interrupted ARIMA Model

Parameter Estimate St. Error P-value

ω1 −0.0758 0.0303 0.0124

ω2 −0.0035 0.0097 0.7187

Φ −0.4300 0.0705 <.0001
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Table 3

Detecting d and p:

p d=1 d=2 d=3 d=4

1 −745.21

2 −747.95* −747.29

3 −745.95* −743.29 −734.55

4 −752.55* −750.91 −741.60 −730.96

5 −758.26* −756.50 −746.76 −734.21

6 −760.25* −756.76 −746.62 −732.11

7 −759.60* −752.76 −742.11 −725.62

8 −757.60* −748.76 −736.11 −719.14

9 −754.25* −743.33 −730.11 −711.14

10 −753.60* −742.21 −727.14 −706.22

11 −758.50* −745.62 −728.93 −706.15

12 −766.62*+ −754.15 −734.44 −711.61

13 −766.11* −753.42 −731.87 707.14

For fixed p = 1, …, 13, the SBC values are presented for d = 1, 2, 3 and 4, with the smallest value of SBC (in each row) denoted by a *.

The smallest SBC in the whole table is denoted by +.
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