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Abstract

Multivariate probit models have the appealing feature qfteang some of the dependence structure between the
components of multidimensional binary responses. The &eyhie dependence modelling is the covariance matrix
of an underlying latent multivariate Gaussian. Most apphes to maximum likelihood estimation in multivariate
probit regression rely on Monte Carlo EM algorithms to avoanputationally intensive evaluations of multivariate
normal orthant probabilities. As an alternative to the muséd Gibbs sampler a new sequential Monte Carlo (SMC)
sampler for truncated multivariate normals is proposede algorithm proceeds in two stages where samples are
first drawn from truncated multivariate Studendistributions and then further evolved towards a Gaussiine
sampler is then embedded in a Monte Carlo EM algorithm. Theesatial nature of SMC methods can be exploited
to design a fully sequential version of the EM, where the dampre simply updated from one iteration to the next
rather than resampled from scratch. Recycling the sampl#dsis manner significantly reduces the computational
cost. An alternative view of the standard conditional magation step provides the basis for an iterative procedure t
fully perform the maximisation needed in the EM algorithnieTidentifiability of multivariate probit models is also
thoroughly discussed. In particular, the likelihood ingace can be embedded in the EM algorithm to ensure that
constrained and unconstrained maximisation are equivafesimple iterative procedure is then derived for either
maximisation which takesfkectively no computational time. The method is validated pglging it to the widely
analysed Six Cities dataset and on a higher dimensionalaietduexample. Previous approaches to the Six Cities
dataset overly restrict the parameter space but, by camsjpie correct invariance, the maximum likelihood is quit
naturally improved when treating the full unrestricted ralbod
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1. Introduction

Multivariate probit models, originally introduced by Ashifl and Sowden (19170) for the bivariate case, are partic-
ularly useful tools to capture some of the dependence sticf binary, and more generally multinomial, response
variables |(McCullochl, 1994; McCulloch and Rossi, 1994; Band Gibbons, 1996; Chib and Greenberg, 1998;
Natarajan et al., 2000; Gueorguieva and Agresti, 2001; HiSechafer, 2008). Inference for such models is typically
computationally involved and often still impracticablehimh dimensions. To mitigate thesefiiulties, Varin and
Czado |(2010) proposed a pseudo-likelihood approach agegste for a full likelihood analysis. Similar pairwise
likelihood approaches were also previously considered by &d Noft|(2000) and Renard et al. (2004). A number
of Bayesian approaches have also been considered incl@tiigand Greenberg (1998); McCulloch et al. (2000);
Nobile (1993, 2000); Imai and van Dyk (2005) and more regefdlhouk et al.[(2012).

Due to the data augmentation or latent variable nature optbklem, the expectation maximisation (EM) algo-
rithm (Dempster et al., 1977) is typically employed for nraiding the likelihood as its iterative procedure is usually
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more attractive than classical numerical optimisatioresels. Each iteration consists of an expectation (E) step and
a maximisation (M) step, and both should ideally be easy ement.

For cases in which the E step is analytically intracteblei, kel Tanner (1990) introduced a Monte Carlo version
of the EM algorithm (MCEM). Sampling from the truncated nairdistributions involved is often based on Markov
chain Monte Carlo (MCMC) methods and the Gibbs sampler itiqdar (see e.d. Geweke, 1991). As dfelient
option we employ a sequential Monte Carlo (SMC) sampler (Detal et al., 2006). A sequence of distributions of
interest is then approximated by a collection of weightedloan samples, called particles, which are progressively
updated by means of sampling and weighting operations. dthotiginally introduced in dynamical scenarios (Gor-
don et al.| 1993; Kitagawa, 1996; Liu and Chen, 1998; Doutet/£2001) as a more general alternative to the well
known Kalman filter|(Kalman, 1960), SMC algorithms can algoused in static inference (see e.g. Chopin, 2002)
where artificial dynamics are introduced. When the targetisncated multivariate normal, as in our case, an obvious
sequence of distributions is obtained by gradually shgftime truncation region to the desired position. Since nbrma
distributions decay very quickly in the tails, we proposase flatter Studentdistributions to drive the SMC particles
more dficiently towards the target region, and only then take the@pyate limit to recover the required truncated
multivariate normal. The resulting algorithm is comparethte Gibbs sampler (Geweke, 1991; Rahert, 1995).

The main dificulty in the M step rests with the computational complexitystandard numerical optimisation
over large parameter spaces, for which Meng and Rubin (199f)ested a conditional maximisation approach. A
simple extension of their method allows us to define an itexgtirocedure to further maximise the likelihood at
each M step. Though the likelihood converges, there is noagtiee that the parameters converge to a point (Wu,
1983). Restrictions to the parameter space have then beduced to treat the identifiability issue where the data
does not determine the parameters uniquely (McCulloch amskiR1994| Bock and Gibbans, 1996), raising the
problem of constrained maximisation, normally signifi¢gmiore dificult than unconstrained. When constraints are
only introduced to overcome identifiability issues ratheart being intrinsic to the problem, they can be regarded as
artificial, and similar observations are at the basis of patar expansion approaches to EM (Liu €tlal., 1998). In
fact we show in our analysis of multivariate probit modekstthoth constrained and unconstrained maximisation can
be made identical. Furthermore we describe a simple noragkgly which allows either maximisation to be easily
computed.

Building on the fundamental ideas of the SMC methodology itassible to define a sequential version of the EM,
where the particle approximation is simply evolved after gfarameter update in the M step, rather than resampled
from scratch, so reducing the computational burden of theratise expensive E step. Finally we validate our meth-
ods by comparison with previous approaches (Chib and Gezgnh998; Craig, 2008), and on a simulated higher
dimensional example.

2. Background and notation

2.1. Sequential Monte Carlo samplers

Sequential Monte Carlo samplers (Del Moral €tlal., 2006)sackass of iterative algorithms to produce weighted
sample approximations from a sequefrgg of distributions of interest where the normalising cons@yneed not be
known,m, = vn/Cn. For a given probability distribution, one obtains a collection of weighted sampg9, Z®},
also referred to as particle approximationmsuch that

M

Ex (h(Z)) = > W®h(z®),
k=1

whereM is the number of particles arida function of interest. In a static scenario the main purf@tzobtain such
an approximation from the last element of an artificially deél targeted sequence.

In order to control for the degeneracy of the sample, resmgdee Douc et al., 2005, for a review of resampling
schemes) is typically performed when thiéeetive sample size (ESS), as defined by Kong et al. (1994) &ed o

approximated as (Doucet et al., 2000):
M

ESS™ = > (WM)?, (1)
k=1
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falls below a given threshold ESS= sM, with 0 < s < 1 though oftens = 1/2 is chosen as a traddéfdetween
efficiency and accuracy. The move from the tavget to the nextr, is achieved by means of a transition kerkg)
so thatzy? ~ Ka(Z¥,, ), and updating the normalised weights

K K -®
~ ~ yn(Zn")ln-1(Z07°, Z,2))
Wr(wk) o WS?M"), Wn(Zg(,)l» ng)) = - ® n(k) - (i) > k=1....M.
'}’n—l(zn,l)Kn(Z Zy )

n-1°

The quantityl,_; in the formula for the incremental weighté”"is a backward kernel introduced by Del Moral et al.
(2006) to address computational issues and should be aptiith respect to the transition kerg] in order to
minimise the variance of the importance weights. In the sewor the authors also discuss a number of choices for
Kn suggesting MCMC kernels with, as an invariant distribution as a convenient choice in maplieations. A
good approximation for the optimal backward kernel is thi2al(Moral et al., 2006)

7tn(Zn-1)Kn(Zn-1, Z0)
7Tn(zn) ’

Ln-1(2Zn, Zn-1) =

Following standard practice we therefore adopt here iniqadar a random walk Metropolis Hastings kernel. The
samples at a given iteratiorare obtained by moving each partid{{)l to a new locatiorz® = Y* ~ N(Zgi)l, TMH)
with probabilitye® = 1 A p* and leaving it unchanged otherwise, with= nn(Yk)/nn(Zg‘fl). The covariance matrix
rMH - kX, in the random walk proposal is a scaled version of an appmm'nimf,r of the target covariance matrix.
In practice we seEM" = X, | since at iteratiom, 7, ; is the best approximation available far. Unlike MCMC
schemes however, in the case of SMC samplers no convergendgions are required since any discrepancies
arising from sampling from the wrong distribution are cotegl by means of importance sampling reweighting (see
e.g. section 2.2.3 of Del Moral etlal., 2007).

As extensively investigated in the MCMC literature (for exae the original paper of Gilks etlal.. 1998; Haario
et al., 2001 Atchadé and Rosenthal, 2005, or the reviewrafrgu and Thoms, 2008) the scaling factaran be
adaptively tuned by monitoring the average empirical atznege probabilityr, at iterationn. For some canonical
target distributions it has been proved by Roberts et abBT}) ¢hat the asymptotically (with the dimension) optimal
acceptance rate isZB4, while Roberts and Rosenthal (1998) found that it%58 for Metropolis adjusted Langevin
algorithms (see also Roberts and Rosenthal, 12001, for @pwfvresults). There is however no gold standard on
how to choose the desired acceptance rate in more realtstitisns. Within the SMC framework, where one of the
purposes of the MCMC move is to help maintain the sample dlityeit seems sensible to fix slightly higher values
than those found in theory. Especially high values shouletrikeless be avoided when performing local moves as
they would only be masking an eventual sample degeneragyead to highly correlated samples (see Chapin, 2002,
for a discussion of related issues).

In the case of SMC samplers with a Metropolis Hastings ttenmskernel, the empirical acceptance rate can be
evaluated as

M
an = Z WL A mn(Y)/mn(Z9)).
k=1
Hence a stochastic approximation type algorithm can beeémphted aiming to keep the above quantity equal (or
close) to a prespecified valug (see e.g. section 4.2 bf Andrieu and Thoms, 2008) by seBMf§ = x,X,, with
scaling factor adapted as
l0g(kn+1) = 10g(kn) + én(@n(log(kn)) — @), 2)
with &, a stepsize and where the logarithm ensures that the scatitay$ are positive.
Adaptation of the transition kernel specifically within SN@s also recently been considered by Jasra et al.|(2011)
and Fearnhead and Taylor (2013).

2.2. Monte Carlo EM

An EM algorithm (Dempster et al., 1977) is an iterative pehoe for the computation of maximum likelihood
or maximum a posteriori estimates in the context of inconteptiata problems, where the likelihood is typically
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intractable. The algorithm relies on the definition of aroagsted complete data problem for which the object function
of the maximisation is tractable and therefore more easilyesl. LetY be a random variable representing the
observed data anfda vector of unknown parameters. Alternating between anaatien or E step and a maximisation
or M step the algorithm provides us with a sequefc® of parameter estimates such that the observed data likeliho
L(y | Y) is non decreasing (namelg(y™?! | Y) > L™ | Y)), and eventually converges to a local maximum. Let
Z be a random variable corresponding to the augmented dapara&img the observed data log-likelihood in terms
of the completeY, Z) and conditional missing dat | Y, distributions and by taking the expectation with respect
to the latent variabl& | Y, y™ conditioned on the observed dafaand the parameter estimag& at iterationm, the
log-likelihood can be written as

I(w 1Y) = log(prY | ¢}) = Q. y™) - HW.y™),
with
Q. ¥™) = Eziyyn [log(prty, Z | y))], H(y,y™) = Ezvyn [log(prZ | Y, y})].

Jensen’s inequality implies that(y, ™) < Hy™, ¢™), so that the likelihood is certainly not decreased at essh s
if Q™™ y™) > Q™ y™). An iteration of the EM algorithm then comprises the follog/two steps

E step. EvaluateQ(y, y™).
M step. Maximise Q(y, ¥™) with respect tay.

When itis not possible to perform the E step analyticallyaadtrd solution is given by the MCEM (Wei and Tanner,
1990) where the expectation in the E step is replaced by ad/©atlo estimate

1 M
QU Y™ = Ezivyn [10g(pHY, Z | )] = 57 > log(prtY, Zic 1), 3)
k=1

with the sample&  drawn from the conditional distribution of the augmentethda| Y, y™.

For situations where the maximisation in the M step is nasitda, Dempster et al. (1977) suggested settling for
a value that simply increas€Xy, ™ at each iteration, and they termed the resulting procedgeneralisedEM
algorithm (see also McLachlan and Krishnan, 2007, sectibrbl When the M step cannot be performed analytically,
to overcome the diculties associated with numerical maximisation, Meng andifiR (1993) suggested replacing the
maximisation over the full parameter space by a multi-staplidional maximisation over several subspaces in turn.
Ideally we wish to sep™ to the value ofy which maximise®(y, y™), as required by the actual EM. In Section 313.1
we show, for the first time, how such a value can easily be fdanthe multivariate probit model.

2.3. Multivariate probit model

Following the formulation in_Chib and Greenberg (1998),aterbyy’ a binary vector corresponding to tlj
observation of a response variaMewith p components. Le?z{iJ be a siz&k; column vector containing the covariates

associated to thi¢h componenyij of the jth observatiory!. The first element of the vector of covariabqisr,an be set
to 1 to account for an intercept. Define tfth matrix of covariates

XJ £ diag((x;)", ..., (xp)"),
as ap x k block diagonal matrix, withk = Zip:1 ki. A multivariate probit model with parametgBss R* andX, apx p

covariance matrix, can be specified by setting

i i _ [ .. ey j i_[©w) if yl=1
priY —yIX,,B,E}—j/;il ﬁéqﬁp(z,X,B,Z)dz, Aﬁ_{(_w’o] f yi-0" (4)

whereg, is the density function of a multivariate normal random &hhe with mean vectqe = XIB and covariance
matrixX. The vector of regression cfieient isg = (8], ... ,,B,T))T, with each subvectgs; € R% corresponding to the
ith component of the response variable. Naturally the sitnathere it is assumed that the same number of covariates
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are observed for each component of the response variabléharnvectorgs; are also taken to be all identical can be
treated as a special case. When considering particularggettowever, care must be taken in reconsidering the model
identifiability, as discussed in SectibnB.5.

The probit model can also be understood in terms of a contislatent variable construction, where the binary
responseY is obtained by discretization of a multivariate Gaussianaide Z ~ N(XB,X). The observations are
then thought of as obtained from an unobserved sample ofvawidtte Gaussian vectofg!, ..., 2V} asyI Iz>o(z|)
where specificallyZ! ~ N(X!g,Z) andl is the indicator function.

The covariance matriX is a crucial parameter for the multivariate probit modetsiit accounts, though indi-
rectly, for some of the dependence structure among the coemp® of the response variable. The identity matrix
corresponds to the assumption of independence and the nealdeles to a collection of independent one dimensional
probit models, for which the regression @dgientss can be easily estimated, component by component, and used as
starting point for more elaborate inference strategies.akkernative to the identity for the initial covariance niatr
can be obtained (Emrich and Piedmonte, 1991) by pairwiseoappations, which are likely however to lead to non
positive definite matrices. ‘Bending’ techniques (Hayed Hiil, 1981; Montana, 2005) are then necessary to ensure
the positivity of the eigenvalues.

2.3.1. Monte Carlo E step
For the multivariate probit model, letting = (X, 8) be the parameter vector ad ~ N(X!B8,X) the latent
variables, the complete data log-likelihood function is

z

log(priY, Z | y)) = ) log[1ai(Z)¢(Z); XIB, )| (5)

=1

Using the cyclicity of the trace and ignoring some normatistonstants, the correspondi@@y, ™) function can be
written as

N
200 9™ = -NlogIz| - Nr[£7S],  S= = 3 Eppie (20 - XIBNZ - X)), (6)
j=1

and for completeness a detailed derivation is provid¢d ipeflix A. The expression if(6) can be transformed into
the one provided in Chib and Greenberg (1998) by using thkcttycof the trace as in[(AJ), but the form ifl(6) is
convenient for the maximisation. The second ternidf (6) &itally intractable since it involves expectationstwit
respect to high dimensional truncated multivariate Gamsgdensities. In a MCEM approach (Wei and Tanner, 1990)
the expectations can be approximated as

M
Ezipign {20 = XIB)(ZT - XIB)T} = " Wit(z1® - xig)(Z1® - Xig)T, (7)

over a weighted sampl@Vi®, ZICWM from n(Z | yi,y™) = TMN(AI, X1, X), a multivariate normal distribution
truncated to the domaial. The weights should be normalisg}!, Wi® = 1 and the samples themselves may
be approximate, such as provided by MCMC or importance sagplased algorithms. In our analysis we suggest
to use particle approximations provided by the SMC samplehsch are detailed in Sectidn 3.1 for the truncated
multivariate normal distribution. The particle approximas so obtained can also be updated in a sequential manner
from one EM iteration to the next, without the need to redragv¢omplete sample from scratch at each E step. The
result is a moreféicient EM algorithm as presented in Section 3.2 for multat@rprobit models.

2.3.2. Two-step conditional maximisation

The multivariate normal regression with incomplete datzoissidered as an example.in Meng and Rubin (1993).
The parameterg™ at stepm are split intox™ andg™ leading to a two-step conditional maximisation which can be
performed analytically. The solutions can be obtained Ijngeto zero the derivatives of(6). Using the cyclicity of
the trace the maximisation condition becomes

2dQ = —Ntr [2-1 (1-szhydz + z—lds] =0, (8)



The functionS from (6) only depends of so by fixingB, the value off which satisfies equatiofil(8) is simp$/
Writing the result in terms of the particle approximation(i), we have

N M
2B)=< ) Y WIH@I® - xigzI® - XIp)T. ©)

=1 k=1

2|~

For example, by evaluating this at the current regressiatove/aluef™ the covariance matrix can be updated to
IS ) (8™ for the next step of the EM algorithm. KeepiBdfixed, the cyclicity of the trace allows us to write the
conditional maximisation condition frorhl(8) as

N M
0= -Ntr[z7'dS] = 2(d,B)TZZWJ(") xJ = YzIW — Xip), (10)

j=1 k=1

where again the Monte Carlo estimate[ih (7) has been sulestifarS. The value of8 which satisfies this condition
is then

N _1 N M
B(X) = (Z (xJ’)Tzflxi) ' 3oy (wikziw), (11)
i1 =1 k=1

so that by using the already updated valif&! the regression parameters for the next step can be updafSti‘as
,B():””l) to give the new parametege™?!. Though this two-step approach does not maxingisat each step, it
removes the need for computationally intensive maximasedind (in the larg®/ limit with particle approximations)
increases the likelihood at each step to ensure convergétive (generalised) EM.

2.4. Model invariance and identifiability

When the data is ‘incomplete’, maximisation of the obserstath likelihood may not lead to uniquely identified
parameters. Imposing constraints is a standard measunstwesidentifiability, but often with thefiect of making
the M step more involved (ela Kuk and Chan, 2001, and moreifgmaly for multivariate probit models Bock and
Gibbons|(1996); Chan and Kuk (1997)). The phenomenon istliiriinked to symmetries of the likelihood, where it
is invariant under some change of coordinates of the pammediothglobalandlocal symmetries can play arole. In
the first case the invariance of the likelihoddy) does not depend on the particular valuayof ¥. The parameter
space can then be decomposedfas: A x Z into an invariant spacé and a reduced parameter sp&so that
¥ = (0,&) with 6 € A and¢ € E. Due to the invariance of the likelihood ovér

Ly) = L(6,6) = L&) = mwaxjj(l/r) = maxL(£),

unconstrained maximisation over the whole spiids identical to performing it ‘constrained’ over the reddspace
E, with the diference that the parameters maximising the likelihood itdiger space ang® = A x£*. Conversely, if
the likelihood depended on some subspackthien it would be identified during the maximisation proc83serefore
the dimension oA\ is the number of constraints needed to ensure identifigbilit .

In addition to any global symmetries, the likelihood fupcticould also show #bcal symmetry so that(¢) is
maximised by a higher dimensional manifold rather than glsipoint (as discussed lin Wu, 1983). In principle a
local change of variables is possible (for example makiegitn-zero eigenvalues of the Hessian equallt@around
the maximum) to decompose the space further, but in préattispresumes knowledge of the likelihood function. As
above though, maximisation over the subspace or the whaleesare exactly equivalent because there will still be
(local) dimensions which do noffact the value of the likelihood.

Within the EM algorithm the identifiability issue becomes macubtle since the likelihood is not maximised
directly, but by proxy through the functio®(y, y™). If this were to share the symmetries of the likelihoodnthe
the simpler unconstrained maximisation would be equivaierthe constrained version, as for the likelihood. If
this is not the case, for example due to conditioning on tle¥ipus parameter valug™, then any changes i
arising from shiftingy in the invariant space of the likelihood must be exactly mimicked by changedin This
spurious dependence can creatiedénces between constrained and unconstrained maxionisatie non decreasing
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behaviour of the likelihood remains preserved, since eeithaximisation decreas€3 nor, because of Jensens’s
inequality, increaseld. Hence either choice leads to the EM algorithm finding a maxmof the likelihood (though
not necessarily the same one) and explains the conjectiBeasfand Gibbons (199€); Chan and Kuk (1997) and the
agreement between constrained and unconstrained mationiaund inLKuk and Chan (2001).

In fact such symmetries can be seen as a natural example pathmeter expansion EM algorithmliof Liu et al.
(1998) where in general one seeks additional parametershwdo not &ect the likelihood but which can be in-
corporated into the EM steps. Here for example the standifadvBuld be over the constrained spageavhile the
parameter expanded version would include some or all thenpeters inA. By examining the second fiérentials
of the likelihood/ Liu et al.|(1998) showed that (at least iquadratic neighbourhood of the maxima) the parameter
expanded EM algorithm converges at least as fast as theasthnersion, suggesting the more parameters the better.
They also gave some examples where the speed up was verfjcsighi In general unconstrained maximisation is
also less demanding than constrained maximisation anchtioea appealing on both fronts.

3. Methodology

Most approaches to MCEM for multivariate probit (e.g9. Chawl &uk,|1997; Natarajan et lal., 2000) rely on
MCMC schemes based on the Gibbs sampler to approximate pee®tions in[{(7). As an alternative in Section 3.1
we propose a SMC sampler for truncated multivariate nornsadidutions. In Section 312 we discuss how to evolve
the particle approximation through EM iterations and sddto fully draw a new sample at each E step. By taking
an alternative view of the conditional maximisation anatare procedure to complete the maximisation is discussed
in Section3.B. Based on identifiability considerationscipeally for multivariate probit models, it is discussed in
Sectiori3.b how to perform constrained maximisation at atmo computational cost.

3.1. SMC sampler for truncated multivariate normal and trildsitions

Since the probability of a random walk Metropolis to move &otks the tails of a Gaussian distribution decreases
exponentially, a SMC method involving normals may be highisfficient in moving samples towards regions of
low probability. To achieve higher rates of acceptance ent#ils we suggest starting with a flatter distribution: the
multivariate (of dimensiomp) Student distribution7 (v, u, X) with degree of freedom, a sizep vectory and ap x p
positive definite matrixt as location and scale parameters respectively. The piibaginsity function of a variable
Z ~ T (v, u, X) can be defined (Nadarajah and Kotz, 2005) as

e DN
f(Z)ZW 1+ ;(Z—/.l) X (Z—IJ) . (12)
Replacing ther in the denominator inside the square bracketsiby 2), and correspondingly changing the normal-
isation factor, would provide the Student distributioniwit covariance oE. As it stands, the distribution ifi_(112)
actually has a covariance eE/(v — 2) which further increases the acceptance in the tails. @nttee region of low
probability we allow the number of degrees of freedom to gtownfinity (v — o) so the distribution approaches a
p-variate Gaussian with the same mean and covariance rxatrix

To sample in the region of interest we define a sequence of target distributiz{msg such that the first target
is an unconstrained multivariate Student and the last otleisame distribution truncated £o Quite naturally the
intermediate distributions are defined in terms of interiziedarget domain{aAn}g, included in each othe¥, ;1 C Ay,
with At = AandA, = RP. The local target, at iterationn of the SMC algorithm is thenn(2) = yn(2)/Chn, with

v+p

N R L INC)

whereC, is a normalising constant which can be estimated (Del Mdral £2006) from

n
Cn—Co C C.1 Z\N(k) AL Zi(k))’

CI l CI -
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Figure 1: Cascade interpretation of the SMC sampler forctted multivariate normal via Studemnt

andC, follows from (I2). It follows that the probability that a rdom variableZ ~ ng from the initial distribution

falls within regionA, can be approximated B(Z € A,) = @ = [iL; . This ultimately allows us to obtain the
probabilities of the regions in{4) and hence the likelihémrthe probit model. )

After reaching the required region, we define a new sequehtzeget distributions{frn}g which this time starts
from the truncated Student = nr = y1/Cr. The following terms of the sequence are defined by incrgatsia
degree of freedom up to a valuevs large enough so that the truncated Studgnt"7(v+) cannot be distinguished
from the desired truncated multivariate normal within aaierlevel of accuracy. A final step is then performed to
explicitly move to the Gaussian. One could also vary bothringcation region and the degree of freedom concurrently
in the sequence of target distributions, but since the messan for introducing the flatter Student distribution is to
aid moving to regions of low probability we chose this twegstpproach. A graphical overview of the process of
moving from a Studerttdistribution to a truncated Gaussian is given in Fidure 1.

Similar sampling problems have also been studied in theatiiee dealing with rare event analysis. There smooth
sequences of distributions gradually concentrating omdheset have been suggested, as opposed to simply increas-
ingly truncated distributions (see Johansen et al., [20@breferences therein). The two stage approach based on the
Studentt distribution is preferred here for its relative conceptsiaiplicity and the fact that it proved well suited in
practice to a linear adaptation framework of the type descrin the following section 3.7.1.

3.1.1. Adaptive approach to artificial dynamics

Adaptive strategies can be applied not only for tuning thagition kerneK, as noticed in Sectidn 2.1, but also
to define the artificial dynamics leading to the distributadrinterestrr. The problem of finding the optimal path
linking an initial measurerg to the targetrr on the space of distributions is not addressed, rather gsaraed that
the functional form of the intermediate distributions igegi and can be described in terms of a paranttén the
examples of the Sectign 3.1 we have A for the truncation case arfd= v when moving the truncated Student to a
Gaussian. An adaptive strategy to move fregrto 71 is one that does not require the sampling pojat$ defining
the intermediate targets, = n(6,)} to be fixed a priori, but allows us to determine them dynarhjaai the basis of
the local dificulty of the problem.

Adaptation can be achieved by controlling some statisétzted to the performance of the algorithm and evolving
with the parametef. The ESS introduced ihl(1) is an ideal quantity to monitoreditetically we wish to solve

ESS\(6n) - ESS =0, (13)

where ES$ is a value chosen to compromise betweéitiency and accuracy, and which can b&atient (lower)
from the resampling threshold ESSInspired by the Robbins-Monro recursion (see for examplehfer and Yin,
2003, page 3) for stochastic approximation, and aimingeifmamical design of a sequence which keeps the ESS
on average close to the threshold ES8e define the updating scheme

ESS - ESS,
M
8

Ons1 = A Ot (14)

\ Agmin]

Oh + (g’n
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Figure 2: The number of steps required for the SMC algorithmeach a region of probabilityfor dimensions 2 (diamonds), 4 (crosses), 8 (dots)
and 16 (pluses).

whereESS, is the value observed for ESS at iterativand the division by the number of particldkis only intro-
duced for scaling purposes. Taking the maximum betweendhedion term and\6,i, ensures that the resulting
sequence approaches the final target monotonically, wdkladg the minimum withr ensures that the sequence ends
at the desired target(6r). Theoretically the ESS should ideally be equal to the totahber of particlesV of the
SMC sampler. To promote motion and so a quicker progresditirealgorithm towards its final target, the threshold
ES§, can be fixed as a fractiame (0, 1) of M, namely ES$ = aM. The fractiona should be slightly smaller than
the fractions defined i 2.1l to control the resampling, say .9s, to ensure that the resampling threshold E&S
also crossed while the algorithm runs. The number of itenatheeded to reach the targetis reduced for smaller
a. Similar adaptive ideas have also been applied to infermedochastic volatility models hy Jasra et al. (2011) and
rather recently discussed.in Schafer and Chapin (2013dmpling in large binary spaces.

The details of the complete SMC sampler are summarised iarfgn[l ifAppendix B.

3.1.2. Scaling behaviour

The advantage of the SMC method, over alternatives which loeagnore éicient in sampling from truncated
multivariate normals in low dimensions, is the scaling hétnar with the dimensiom. Solving the adaptive equation
(@3) exactly means that we lose a fixed proportion of the gridibamass at each iteration. The number of steps
required to reach a target region of low probabititthen behaves like log), independently op. This may not be
true when usind (14) as a numerical adaptive approximabi¢®3), especially as the number of steps for the adaption
to settle grows linearly witlp, so a weak dependence on the dimension could be expected.

A simulation study with targets of dimensionsfarn=1,...,4 was performed. To limit the sources of variabil-
ity, only one covariance structure was considered for thmnstrained distribution, with unit diagonals and a single
non-zero &-diagonal element of-8. The SMC algorithm was initialised so that after an initi@ve the Student
t target would be truncated to a region containing one quaftédre probability mass of an independent Gaussian,
and we denote by, the actual estimated probability. The cfitfor the final target, the same in all directions, was
drawn so as to ensure that the log probability of an indepanaaltivariate normal would be uniform on a given
interval. The number of steps needed to reach the targetattegpagainst loge/r) in Fig.[2, for 400 runs of a SMC
sampler with 4000 particles for theftéirent dimensions. A behaviour close to linear can be obdethieugh the
offset increases by a factor of abouwd bver the range of dimensions and the slope increases roligéarly with
p, which is likely due to any inexactness in the adaptatione ffleoretical stability of these types of algorithms has
recently been investigated in depthiby Beskos et al. (2012).



3.2. Sequential Monte Carlo EM for multivariate probit méde

The SMC sampler of Section 3.1 for truncated multivariatemads has good scaling behaviour for rare events, but
depending on the choice of initial parametgfs= (£°, 8°) there may be morefécient methods of obtaining the initial
sample. If for example, as suggested earlier, the covariamatrixZ® is set to be the identity matrix a sample of the
corresponding distribution truncated to a reglor Ay x Ay X - - - X Ap with A of the type defined in equatioinl (4) can
be simply obtained by truncating each of fneomponents independently. Draws from a univariate triettabrmal
can for example be quiteficiently obtained via the mixed rejection algorithm_of Gewdk991) or for truncation
near the mean by the recent method proposed by Chopin! (2@8n a better and much more structured guess is
available for the initial covariance matr&°, such that the components cannot be truncated indepepdentithe
efficient univariate methods cannot be applied, the SMC sagpfiethod proposed above is then of course a valid
alternative.

On the other hand once the initial sample has been obtaired (fhichever method of choice) sequential Monte
Carlo methods provide a natural machinery ffiraent parameter updating during the E-step of a Monte Cardet
EM. In fact given a particle approximation from the trunchtarget distribution corresponding to the initial paragnet
values a sequential Monte Carlo approach can easily be dafimeove between subsequent estimates- (£, ™)
without the need to perform the complete truncation agahre WM step of iterationm provides the newly optimised
parameters§™?, ™). While from the previous E step, for each observaiioa particle approximation is available
from a multivariate normal with meaxi!™ and covarianc&™ truncated to the regioA) = A} x A} x --- x A}. One
wishes to simply move these particles to approximate thecttion to the same regiol of a multivariate normal
with updated meaix/™?* and covarianc&™.

Translating the particles could lead to the situation witeemean shift would féectively imply moving the
sample to a bigger region, which would prevent us from usisgrlified version of the backward kernie} (see
section 3.3.2.3 of Del Moral et al., 2006). Instead the cowigs of the previous sample can just be rescaled by
multiplying them by the diagonal matri® 1. As long as the scaling factors (elementsiott) are all positive, this
transformation does noffact the truncation region and the mean vector is likewistedda D™1X/8™. By simply
choosingD to set this equal to the new required mean vektg@@™* we have a particle approximation with the correct
mean and truncation region, but with a covariance matripofz™D~1. A SMC algorithm can then be applied to
target a distribution with the new covariance magX*.

Multiple sub-steps might be needed to updB@Z™D* to 2™, depending on how €fierent the two corre-
sponding targets are. As the EM algorithm progresses hawthese two must tend to approach each other and a
single step will start to Stice. For each observatigrthe local (to the EM iteration) initial and final distributie of
an artificial sequencrn)] can be defined viag = TMN(AI, X)g™!, D'2™D?) andzrr = TMN(AJ, XIg™*, £™1)
respectively. The parameter sequem;(% then defines the intermediate targets moves suctghatD-*x"D* and
6r = £™* and possibly only requires a single step.

The complete SMC EM procedure is outlined in Algorithm 2 ofp®pdix B.

3.3. M-step in the multivariate probit: alternative appedato the conditional maximisation step

The first step of the conditional maximisation in Secfion &n be interpreted as follows. The expression for
the covariance matrix(g) of equation[[P) maximises th@ function Q(y, ™) overX for any value of8. Therefore
it can be substituted in the expressiorQffy, y™) in (@) providing a function which only depends gn

2Q(B,¥™ = -Nlog[Z (B)| - Np, (15)

where the simplification of the second term to a constanvdsifrom the fact that the argument of the trace reduces
to the identity matrix. Finding the valygwhich maximises(15) oves and settingt = fl(ﬁ) in @) provides the new
parametety = (8, £) which maximises the likelihood. Setting to zero the deiieaof (I3) with respect tg@ leads to

the condition trfl_ldf‘.} = 0. SinceX = S, from the Monte Carlo expression Bfobtained when combining](6) and
(2) it follows that

df = dS~ - Z WI®[(XIdB)(ZI® - XIB)T + (21® - XIB)(XdB)T|.

k=1

Zl~

N
=1

M
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and again by the cyclicity of the trace the conditiqlifrldf:} = 0 reduces to the condition i {10) withinstead of£

N M
2(dp)T > > Wik ( XJ £7(z10 ~ xig) = 0. (16)

=1 k=1

Though & is linear in the components gf the inverse matrif " leads to a system of coupled higher order polyno-

mial equations. Solving these is impracticable, but amftee scheme over a sequence of poﬁtsan be followed.
Performing Newton-type iterations would be an option, bhewthe starting point is not too far from the maxi-

mum a simpler approximate maximisation can be employedtisgdrom a pomtB first setE™" = i(ﬁn), then sepa-

rateX(B) = nJ'1+A):(ﬁ). Recall that logG| = tr {log G} for any matrixG and make the approximation Idg{G) ~ G

for G near0 (Petersen and Pedersen, 2012; Higham,2008) to rewri@® thaction as

n+1

n+1} Ntr {E™)AZ} - Np.

208, y™ ~ —Ntr{log):

where the only term depending @ris AZ. Since d\X = d&, when diferentiating with respect {8, maximising the
previous expression is achieved by solving

N M
0=-Nir{E") ™ aZ} = 2(dg)" > > WI¥(X))TE™)%(zZI¥ - Xip), (17)
j=1 k=1

which is again just[(10) evaluated at a gi\é?fl The solution is of the form if_{11) when replaciigwith s
so that the next value (ﬁ can be set aﬁml = ,B():M) For a glven starting point of the full parameter veopor
the covariance matrig™ " and subsequently the déieient vectow ' can be updated in this way to provide a point

¢! for the next iteration.

3.3.1. Complete maximisation

Because of the logarithmic approximation, each vaILﬁnBJf found in a single step does not yet maximigelt is
clear however that the value Sfcan be iteratively adjusted until the maximum is found. Thn:pdure moves along
the sequencﬁ using the current value as the starting point for the nexafiten, while updatlng: ! at the same
time. The maximisation can be completed by |terat|ng umté 6inds the maximisey = limn_. ¢, and numerically
stopping the iterations when the Euclidean nﬁﬂn —ﬂ || is small. For the EM algorithm one can theng&t* = y.

In general the surety of convergence or even of not decrg@sislost with approximations. But choosiﬁ‘ﬁ =p"

(or (/~/0 = ™) as a starting point leads to the same expression as that &dter the first conditional maximisation over
¥ in @) andE" = =™, The logarithmic approximation then givgs = ™2, so that neatly, a single iteration using
the logarithmic approximation and the two-step conditlanaximisation of Meng and Rubin (1993) are equivalent
when started at the same poigit"{ for example). That each iteration (without a particle apgration) does not
decrease the likelihood follows from the arguments_ in Mend Rubin (1993), confirming the convergence of the
maximisation. More importantly, completing the maximisatby iterating until convergence can equivalently be
achieved by running through the two-step conditional masdtion many times.

3.4. From generalised EM to EM

Though the focus of Sectidn 3.B8.1 is on multivariate normaysling through the conditional maximisations of
Meng and Rubin (1993) until convergence can be applied menemlly, turning thgeneralisedeM of their single
round procedure into an EM again. However, as they mentiomay be computationally advantageous to perform an
E step between conditional maximisations when these are demanding, and in such cases the algorithm remains
a generalised one.

11



3.5. Invariance and identifiability in the multivariate goib model

The full parameter spack of a multivariate probit model compris@ép+ 1)/2 entries from the covariance matrix
Y andk regression cd@cients fromgB. Invariance of the likelihood is observed under a rescadiithe coordinates of
the latent multivariate normal variabfby means of a diagonal matrlx with positive entriesds, . . ., dp) according
to the transformatior’ = Dul. The covariance matrif gets transformed t® = D '£D! and the vector of
regression ca@icientsB to 2 = (d*B7. ..., d;'Bp)T, but it can easily be checked that the likelihood is left taraged.
Choosing the entries dD to be the square root of the diagonal elementE séduces2 to correlation form. The
invariant space then has coordinates given by theliagonal elements & (i.e.d; = 1/+/o11 etc.) while the reduced
spaceZ includes thep(p — 1)/2 rescaled upper triangular element(d{i.e. wi; = didjoi;) and thek elements of
= (0181, 6uBp)".

The likelihood however is not maximised directly, but thgbithe function

Q. y™) = Z f TMN(A, XIg™ ™M) [Iog( )— %(z(i) - XIp)Tx"Y(Z - xIp)|dZ. (18)

B

Given a diagonal matri¥ the expression i .{18) above is only invariant under a chafiglee integration variables
Z = Dul, if a factor| D| is included inside the log and correspondingly inside tigedbH (, ™). Moreover, bothy
andy™ need to be scaled by the same matrix so that essendially™. Thereforay andy™ are tied together in th®
function in an apparent constraint, though theoreticéiythave independent invariant spaces for the likelihood. |
Chib and Greenberg (1998) maximisation is performed ingideconstrained spa& while keepings; = 1. Denote
by . the corresponding solution and Igy, the one obtained through unconstrained maximisatiof.ofClearly
QW ¥™ = Q¥ ¥™), but when projectingy, to a pointy,, in the constrained space by settings; = 1 then
QW ¥™) < Q¥ ¥™). Since the likelihood is invariant under this projection

Q. ¥™) = Q. ¥™) = H. y™) — H(rp. y™).

and without any information okl (y,,, ™) — H(¥., ™), for example from the secondftérential of the likelihood as
in parameter expanded EM (Liu et al., 1998), it is imposdibkeay which maximisation increases the likelihood most
and is to be preferred in that respect.

3.5.1. Reintroducing the likelihood invariance in the Qdtion

To remove the above ambiguit§) can be redefined to respect the invariance of the likelihfmdexample by
replacing the parameterk,(8) in (I8) by their projection, 1). Such a replacemenffectively enforces invariance
of the resulting functiorQ with respect to a rescaling o£(8), making constrained and unconstrained maximisation
identical. However, this is no longer true when a (cyclitay-step conditional maximisation is performed.

With the replacement il {6}) becomes

N
1=

M
S, y™) = —g[log = tr{ Dx- 1Dé}], 5= % 3 S Wik(zie - pixigzi® - DG, (19)

2
D =i

in terms of the particle approximation il (7), and whé&és a diagonal matrix whose elements are the square roots
of the diagonal elements &F (so that its projection into correlation form§g = D-*xD%). ThoughQ may appear

to be limited to the constrained space, it depends on th@éumeter space when oneXbbr 8 are given. Assume
that for giveny™ and8™ = A™ we wish to find=™*. Constrained maximisation enforcés= 1 to find Q™.

An unconstrained maximisation allowsto vary, leading t&™?* such thatQ(():m+1 BM,y™) > Q™ am, x//m)
Because of the invariance, the projectionBf't*, 8™ does not now chang@ resulting in a point in the constrained
space with a higher value. It can now be unambiguously sesrthie unconstrained maximisation is preferable. In
factB is only defined up to a scale, which need not be preservedglaaoh conditional maximisation, nor given the
stochastic nature of the estimation step.
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3.5.2. Constrained maximisation

Introducing the invariance of the likelihood into the fuioctQ to obtain theQ in (I9) provides a function whose
maximisation allows constrained maximisation to be pented over the origina since they are identical whe
is the identity matrix.

First we diferentiate[(IP) to obtain the maximisation conditions

2dQ = —Ntr[£* (1~ DSDx)dx - 2D'dD + £7'd(DSD)| = 0, (20)
with

N M
== > ) Wi [(dDZ1® - XIgg)(DZI® - XI)T + (DZI® - XIg)(dDZIW - XIdg)T],  (21)
j=1 k=1

Z||—\

whereS now depends on botb andg.
Performing conditional maximisation by fixirlgy(and henced), the value o8 satisfying equation§ (20) and (21)
'S N 1 N M
B(D) = (Z (xi)Tzflxi) 3 x)TE D Y (Wikziw), 22)
i=1 =1 k=1
which is almost the same as [n{11) but with an extra faExdrefore the sum ovex.

Maximisation with fixedB overX can in turn be done in two steps. Thetdrential & is split into a diagonal
(2DdD) and an d&-diagonal part. The condition for the latter to vanish ist & (1 — DéD):‘l) be a diagonal matrix,
or equivalently that@ ! — Q’léﬂ’l) is the diagonal matri¥A. As long as the diagonal elementsQ#ére not too far
from 1, a solution can be found by a simple iterative appradatting from an arbitrarf2g and then solving for the
diagonal matrixA the linear equations

Qk+1 = é+ QkAQk, (23)

so thatQy, is in correlation form. Iterations are repeated until nuigeiconvergence provides the requi®dSince
for fixed D the diagonal part of O is identically zero the steps above allow constrained mesdtion to be performed
for both [19) and((6).

The above procedure leads to a significant speed up witheesprumerical optimisation routines over th&-o
diagonal elements &b. Both methods involve inverting and multiplyingx p matrices, but the relative complexity
of the numerical optimisation would be expected to grow astes fast as the number df-diagonal parameters,
namely agp(p — 1)/2 in dimensionp. In a simple test comparing to the ‘nlm’ function of the stp#gkage in R the
target parameter was set to a noisy version of the identityixpahich was used as starting point for both algorithms.
The method here was over 13 times faster in dimension 4,yné@iimes faster in dimension 6 and about 100 times
for p = 8, highlighting the scale of improvement that can be exgk@ted is consistent with a growth likg or better.

If D can vary, for the diagonal elements & tb vanish the matrix

N M 1N M
Z Z Wl(k)zl(zJ o1 D—lN Z Z Wj(k)XJﬂ(Z' (24)

j=1 k=1 j=1 k=1

A-1+Q71t

Z|H

must have zero along the diagonal. The condition transiates linear equation in the inverse elementfodnd so
can likewise be solved easily. The solution depend@pwhich in turn depends (throud) on D. The unconstrained
maximisation of[(IP) ovek for a giveng requires then cycling through solvirig{24) ahdl(23). As stioh diference
between constrained and unconstrained maximisation i tnadsparent.

3.6. Ildentifiability for specific formulations of the muéinate probit model

As pointed out in section 2.4 the identifiability of the parters of a model is directly related to any invariance
of the likelihood. In order to correctly evaluate the idéability of a given model it is then crucial to account for
any constraints explicitly or implicitly imposed on the pareter space. In an attempt to clarify sources of confusion,
different formulations of the multivariate probit models aresidered in detail. For clarity the fiierent cases are
summarised in Tablg 1.
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Table 1: Special formulations of the multivariate probitaebwith ap-dimensional response variabje= (y1, ..., Yp)T. The form of the design

matrix with the covariates associated to each observasignavided, where however the observation ingléx dropped to simplify the notation.
The scaling matrixD is defined adD = diag@s, ..., dp) with dj = +/oi andaji thei-th diagonal element cE. Likelihood invariance means that
L(B,X) = £(A, Q) holds under the given transformation of the parame(¥) = ®a(-) is shorthand for the model definition {al (4).

Design matrix Regression cfieients Likelihood invariance
General form block diagonal size= > ki vector
E(Y) = ®aA(XB; X) X = diag((x1)", . .., (xp)") B=B1.....8Y)" Q=D1xp?

Xi = (X1 )T B = Bu.. )T A= (d2pL. .. d8)
Shared covariates sikevector p x k matrix
E(Y) = ®a(BX; X) X =(Xt,...,%)" B=B.....8)" Q=D!xD1?

Bi = Bir, - -Bi)" A=D7'B

Shared cofficients p x k matrix sizek vector
E(Y) = Oa(XB L) Xe = (X, .., Xp)" Bo=B1.....5)" Q. =d’z

Xi = (X, - Xik) " A = d71B,

The most general form of multivariate probit model desdilire Sectiorf 2.B allows for a fierent number of
covariates for each component of the response variable@mequently dierent vectors of regression dbeients.

The design matrix for each observation is block diagonathwhne block, in the form of a row vector, for each
response. Depending on the data at hand the model can baligeetin diferent ways. The covariates may be shared
between the components of the response variables, whitgrigethe vectors of regression dbeients diferent. This

is the case for example in Talhouk et al. (2012) and Xu andgQe010). Indeed this is simply a special case of the
most general formulation since sharing the covariates doeshange the number of free parameters of the problem,
meaning that the dimension of the invariant space remamsadame. Having a single vector of covariates however
allows the problem to be represented in a sligififedent form, where the regression fibg@ents can be packed in a
matrix with each row corresponding to a given response compip and the design matrix reduced to a single column
vector. The parameter transformation yielding invariaatéhe likelihood can then be written in a more compact
form, as summarised in Talilé 1. An important practical cqneace is that a closed form solution can be derived for
the M-step as pursuedlin Xu and Créig (2010), provided thaomstraints are imposed.

Alternatively the regression cfiicients, and the number of covariates, may be shared amomgdpenses. The
model chosen in Chib and Greenherg (1998) for the Six Citi¢asibt is of this type, the same number of covariates are
observed for each component of the response variabled)dyutake diferent values. The model can be represented
into a more compact form with @ x k design matrixX., where each row corresponds to one component of the
response variable andedimensional vector of regression ¢heientss, (see Tablg]l). The conditional maximisation
in Sectiori3.311 can be applied to maximise over the comgtdaspace ofY, B.). The extreme case of fixing both the
covariates and the regression fiagents would lead to a univariate probit model.

Fixing the vector of regression ciheients across response components accounts to imposisgyaiats at the
modelling stage, with theffect of reducing the number of free parameters and hence tiendion of the invariant
space. This aspect seems to have been overlooked in tlatuitevhere the Six Cities dataset is taken as an example,
including Chib and Greenberg (1998). Itis simply treated apecial case of the most general form, and a correlation
structure is imposed on the covariance matrix, but in fastifunnecessary for identifiability.

Consider the standard formulation where the design matrix block diagonal, with each element of the same
lengthk, and the vector of regression d¢beients is a vector of lengtlp x k with p repeated sub-vectog. It
has been noted in SectibnB.5 that the transformation whieinagtees invariance is such that each subvetisr
multiplied by a diferent positive factod;, violating the desired constraint that they be all equalorder to avoid
that the sub vectors of regression ffagents difer they all need to be multiplied by the same factor. In otherds
the likelihood is now left unchanged, independentlydf only when rescaling all the coordinate directions by the
same amount, corresponding to a one dimensional invariaices A reduced space can be defined by fixing the first
diagonal element of the covariance matrix to 1, c@l,(1;) the corresponding parameters. An invari@ris obtained
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Figure 3: The median errdt in estimating the matrix of second moments in 4d as well agitiee-quartile ranges for the SMC sampler (diamonds)
and a Gibbs sampler (crosses). Also included are runs withestas many particles for the SMC (dots) and Gibbs (plussespler.

by replacingX!,x andg in (I8) by X., Q. and . respectively and by setting all the elementsoin (19) to be the
square root of the first element Bf Constrained and unconstrained maximisation follow framdonsiderations in
Sectior 3.b but with the slight changes that only the firsinelet of the matrixA in (Z3) is non-zero and just the trace
of (24) needs to be 0.

Maximising over an overly constrained space leads in géteealower likelihood than when only imposing the
conditions needed to ensure identifiability. Neverthelesmre the correlation form desired for modelling reasons,
maximisation can be performed by settilgto be the identity matrix and using. in the formulae[(2R) and(23)
above.

4. Reaults

4.1. Comparison of the SMC and Gibbs samplers for truncatathrariate normals

The SMC method for sampling truncated multivariate norniglsow compared to a Gibbs sampler (Geweke,
1991; Robert, 1995) which is a Markov Chain where each compbis sampled conditional on all the others. In
dimensionp each ‘pass’ of the Gibbs sampler requires drawingnivariate truncated normal variables which can
be dficiently achieved by the mixed accept-reject algorithrn ofvBles (1991) or for betterficiency near the mean
using the tabulated accept-reject of Chopin (2011). Théd&#ampler starts from the correct truncation region but, as
noted in_ Geweke (1991), it can be rather slow at convergitigg@orrect correlation structure. Convergence however
is improved for extreme truncations since these haveftieeteof reducing the correlation among the components.

The SMC sampler on the other hand starts with the ‘correat’etation structure and moves to the required
truncation region. Better performance could then be exqukfor correlated samples with the Gibbs sampler becoming
preferable for more extreme truncation or lower correlati simulation study is conducted for the type of truncation
regions that occur for the multivariate probit model in foimensionsp = 4. The binary variables are setyo= 1,
corresponding to the quadrant with positizeand the vector of means is choseryas (-1,-1,1,1)" so that the
mean is included in two dimensions and excluded in the other All the off-diagonal elements of the correlation
matrixX are set equal tp. The matrix of second moments is estimated using 10 milliongges obtained by rejection
sampling. Estimates are then obtained from the SMC and thiesZiamplers, and a statiskids defined as the square
root of the mean square distance between each estimate enef¢ihence value from the rejection sampling. This
process is repeated for a ranggofalues.

Initially both algorithms are run to obtain 10 000 samples; the Gibbs sampler this is the sample size after
discarding the first fifth as burn in. For each valugafe run both samplers 100 times and plot the median value of
F as well as the inter-quartile range in Hig. 3. The error in@ilgbs sampler increases withand starts to increase
rapidly afterp ~ 0.75. The error from the SMC sample on the other hand is fairlystant and actually starts to
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decrease for large Both samplers then have similar performance for mode@telations with the SMC approach
notably better for large correlations. In the central raofje ~ 0.5 the truncation actually reduces the correlation so
that the df-diagonal elements of the sample correlation matrix arg ardund 023 on average.

However the Gibbs sampler implementation is faster thafst1€ version so that a Gibbs chain of about 50 000
passes can be obtained in the same time as the SMC samplatgzravsample of 10 000. Discarding the first fifth
leaves a sample which is four times larger and whose erroughly halved correspondingly. The growth in the error
with p still allows the SMC sampler to perform better, but now ordy ffather large values @f above about 85, or
where the actual sample correlations are above the moreratedalue of approximately.®6. Of course the actual
computational time depends upon hofii@ently each algorithm is implemented, but the simulatienehsuggests
that the SMC sampler will have an advantage for high colimiat

Finally, SMC samples of size 40000 are also obtained. Ther®oan again be observed to halve compared to
the samples of 10 000. For both samplers in [Eig. 3 the errasrebd with the larger sample sizes resemble a scaled
version of those from smaller sample sizes.

4.2. Application: the Six Cities dataset

To test the validity of our method, we treat the widely anatyslata set from the Six Cities longitudinal study
on the health fects of air pollution, for which a multivariate probit modehs considered for a range of covariance
structures by Chib and Greenbera (1998), who conductedBrybsian and non-Bayesian analysis. Later Song and
Lee (2005) proposed a confirmatory factor analysis for tteeseodel, while more recently Craig (2008) used the
example as a test case for a new method for geometricallyhséreacting multivariate orthant probabilities which
leads to an fficient evaluation of probabilities of the type [d (4). As oppd to the MCMC procedure of Chib and
Greenberg (1998), the SMC method provides estimates ofrthard probabilities as a by-product of the sampling,
so that likelihoods are readily available for comparisoth® results in_Craig (2008). Moreover the SMC sampler
produces a sample from the fitted distribution which is uls&fufurther evaluation of intractable expectations of
interest.

The Six Cities study was meant to model a probabilistic retedver time between the wheezing status of children,
the smoking habit of their mother during the first year of alzaon and their age. In particular the subset of data
considered for analysis refers to the observation of 53ldien from Steubenville, Ohio. The wheezing conditjgﬁn
of each childj at agei € {7, 8,9, 10} and the smoking habit! of their mother are recorded as binary variables, with
value 1 indicating the condition (wheezjisgoking) present. Three covariates are assumed for eacpormmti,
namely the age!(i'1 =i —9 of child j centred at 9, the smoking habq'g = hi and an interaction termi'3 =(i-9h
between the two. A probit model can then be constructed

_1
2

priy) = 1) = pr(z > 0) = @ |(Bo + B1- X, + B2 X, + s - x)ory 2 |

Where;J is theith component of a multivariate random variagle~ N/(X.8, £) and® is the cumulative distribution
function of a standard normal random variable.

Note that this is an example of a compact model as discussBddtior{ 3.6 and the invariant space is therefore
only 1-dimensional. For identifiability it is then ficient to fix only one of the diagonal elements of the covarganc
matrix, which in previous approaches has been overly otsttito be in correlation form instead. For comparison we
therefore first perform constrained maximisation withn correlation form using the methods in section 3.5.2 and
then run the SMC EM algorithm with the correct invariance.

4.2.1. Variance reduction
To reduce the variance associated with the stochasticenafuthe Monte Carlo E step, the parameter can be
updated according to a stochastic approximation type rule

Y =™ L@ - ™Y = (L - L™+ Gl

Wherex]/m is the actual estimate obtained from the M-step &nct (0, 1) a stepsize with the purpose of gradually
shifting the relative importance from the innovatiqhm(— Y™ to the value of the parametgy,, , learnt through
the previous iterations, and which therefore goes to 0. Therse is like taking a weighted average of the previous
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Table 2: Maximum likelihood estimates for the Six Citiesatat as obtained by using the constrained SMC algorithm limitlarly increasing
number of particles, after variance reduction and for alsingn where the samples are recycled. Included for congragase the results of Chib
and Greenberg (1998) and Craig (2008). The value in bracietsto each estimate is the estimated standard error. Thesvaf the parameters
(and their errors) have all been multiplied by 1000. Thellass report the estimatd@y) and correctecﬁ(nﬁ) log-likelihoods, and a more accurate
value obtained by numerical integrations.

Chib and Greenberg (1998) Craig (2008) linear increase ama€ reduction recycled samples
Bo -1118  (65) -1122  (62) -1122  (62) -1123  (62) -1122  (62)
B1 79 (33) 78 (31) 79 (31) 79 (31) -78  (31)
B2 152 (102) 159 (101) 159 (101) 159 (101) 158 (101)
B3 39 (52) 37 (51) 37 (51) 38 (51) 37 (51)
012 584 (68) 585 (66) 583 (66) 583 (66) 581 (66)
013 521 (76) 524 (72) 522 (71) 522 (71) 523 (71)
014 586 (95) 579 (74) 577 (74) 578 (74) 579 (73)
023 688 (51) 687 (56) 686 (56) 686 (56) 682 (57)
024 562 (77) 559 (74) 558 (74) 558 (74) 558 (74)
034 631 (77) 631 (67) 626 (67) 627 (67) 625 (67)
I(y) -79494 (069) 79493 (066) -79491 (059) -79495 (082) -79486 (066)
() -79470 79472 -79473 -79461 -79465

{(-794749 {(-794738 (-794742 {(-794740 {(-794748 (10°9)

estimates, so we refer to it as a ‘variation reduction’ stps way the monotonicity property of the EM algorithm is
not guaranteed, but as long as the parameters remain wittdigabourhood of the maximum likelihood point where
it can be approximated quadratically, monotonicity trilyigollows from the convexity, so that in many practical eas
this matter may not cause any issues.

4.2.2. Comparison to alternative approaches with covaceamatrix in correlation form

To fit the model, a SMC sampler is implemented with the numligrasticles increasing linearly from 50 to
2000, over 40 iterations, followed by 10 further steps ofamee reduction with 4000 particles. As for the tuning
parameters of the algorithm the desired acceptance pidpabiset toa* = .6 and the fractiors defining the
resampling threshold ESSss = .8. Results for the constrained maximisation are presentddble[2 along with
those of Chib and Greenberg (1998) and Craig (2008). Gooskaggnt can be observed both for the estimates and
the standard errors. The latter are the square roots ofdigedal elements of the inverse observed Fisher information
matrix, which in the case of missing data can be obtained fronis’ method (Louis, 1982).

Also given in Tablé R are average values of the corresporidiptikelihoods together with the standard deviation
estimates over 50 runs. No realférences can be seen, with likelihoods comparable to, bylthlibelow, the
estimate of -7944 in|Craig (2008). Due to the sampling noise the log-liketil tends to be underestimated. A
simple correction, discussedin Appendikx C, consistingdidiag half the variance over the runs, brings the estimates,
i() in Tablel2, closer to that in Craig (2008).

In the case of the Six Cities dataset the design matsianly takes two possible values, corresponding respegtivel
to a smoking and non-smoking mother. Numerical calculatifche likelihood requires 32 regions to be evaluated for
each of the parameter valyeestimated by the élierent methods. Numerical integration in dimension 4 isildasind
gives the results in curly brackets in Table 2, with accure@y, confirming that the SMC EM finds better parameter
values than Chib and Greenberg (1998). We have also notie¢thie estimates from other MCMC methods, such as
inl[Song and Lee (2005), seem to be closer to those in Chib agein®Berg (1998), while ours are closer to the results
of the exact method of Craig (2008).

Regardless of the method used for drawing the samples, puoagh avoids the computationally expensive con-
strained maximisation employed by Chib and Greenberg (1B98eplacing it with the simple procedure in sec-
tion[3.5.2. Despite the advantage with respect to standamkrical optimisation, the cost of either method is not
significant compared to the sampling time. However failim¢ptke advantage of the cyclicity of the trace would make
the numerical optimisation substantially more involvecheTevaluation ofQ would require quadratic forms as in
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Table 3: Example maximum likelihood estimates for the SitieSidataset obtained using the unconstrained SMC algoffith non-invariantQ,
invariant® and by fixingo11 = 1. The standard deviations of the log-likelihood estimates090, 075 and 670 respectively, so that the corrected
values of the likelihood(y) are -79297, -79287, -792825 and the numerical values with FOaccuracy are -79849, -792836, -792834. The
values of the parameters have all been multiplied by 1000.

Bo B1 B2 B3 012 013 014 O 023 O 033 031 044 [(y)
Q -1176 -84 159 41 647 592 572 1208 855 619 1255 715 1001 -3793
Q -1235 -113 168 47 664 622 612 1275 921 683 1383 802 1146 -1393

fixedoq; -1241 -116 169 48 666 626 615 1279 927 686 1395 809 1158 -0793

(A.D) to be recalculated for each valueXturing the numerical routine, with a(N) increase in cost. This might
be the reason behind the suggestion at the beginning of fEgef8hib and Greenberg (1998) to redraw the latent
variables between the two conditional maximisations féciency reasons.

Assuming that cyclicity of the trace is indeed exploited, arensignificant gain comes instead from completing
the maximisation by cycling through the conditional maydgations until convergence, rather then performing a single
cycle. Completing the maximisation in fact reduces the nainabfull EM iterations needed.

A further major benefit of the SMC method is that the partiggeraximation can be updated after each M step
and need not necessarily be resampled at each iteratioasestied in sectidn 3.2. The last column of TaBle 2 shows
results obtained when recycling the samples in a SMC EM #lgorwith 2000 particles and 40 iterations. Since
oscillations before the variance reduction step are ar@.0@ll between iterations (with 2000 particles), parameter
estimates when recycling the sample are essentially dgaiyat a much reduced computational cost. Updating the
particle approximation is about 15 times faster than drgwilie sample again, and the entire procedure proves to be
about 5 times faster than a run with a linear increase of timel@u of particles drawn from scratch each time, with
the latter strategy still enjoying a factor two improvemewer keeping the number fixed at 2000. Similar parameter
values are obtained when using fewer particles, but oblyouth higher variance.

4.2.3. Unrestricted model

Strictly speaking the Six Cities model does not requiréo be in correlation form for identifiablity reasons.
As discussed in Sectidn 3.6 the invariant space is in fagt onk-dimensional. To illustrate an application of the
ideas presented in Sectibn3.5 a more general model whichriiiémpose correlation form is analysed. To respect
the invariance, one can either fix the first elemenkdi.e. seto;; = 1) or run unconstrained maximisation (and
project the results). Unconstrained maximisation wasquaréd over 60 iterations with 4000 particles before the
variance reduction step, since it may take longer for the Hddrghm to explore a larger space. A fairly robust
point is found with the non-invariar®, while the invariantQ seems to lead to a flatter likelihood neighbourhood,
with the solution appearing more sensitive to the numberasfigies during earlier iterations or on imposing the
constraint of fixinge1; to 1. Results are given in Tablé 3, and again can be quitelglosproduced by recycling
the samples in a sequential manner between parameter spat@erical integrations with t®accuracy produces
the values-792849 -792836 —792834, when working respectively wit®, the invariale or fixing 011 = 1. For
the latter two, despite theftierent parameter estimates, the likelihoods are essgritdalbtical, and interestingly also
higher than the one obtained for the non invari@nfThis seems practical evidence for an advantage in tagyttan
likelihood more directly through utilising the invariance

Since there are only two possible forms for the design ma€gixa local symmetry arises, along with the global
one, wherByBs = B182. Moving near this symmetry may allow the EM algorithm to firiéferent final maxima and
explain the diferent parameter values found by using invariance or notldds symmetry along with the estimation
noise may be responsible for the non positive definitenesheobbserved Fisher information (resulting from the
difference of two positive definite matrices). Fixing a furthargmeter value, such as another diagonal elemexnt of
to be 1, removes the local symmetry and allows standardsstodse obtained, centred aroud® and ranging from
.0451t0.16.
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4.3. Higher dimensional simulated dataset

A higher dimensional example with simulated data is presi show that the method scales reasonably well.
The model chosen has the same formulation as the one usdwef&ix Cities case, corresponding to the third line
in Table[1. The response variable is 8-dimensional with 7adates (including the intercept) associated to each
component, resulting in a 8 7 design matrix. The entriesftirent from the intercept are drawn from a uniform
distribution on the intervaH{.5, .5). The parameters are set to

1.00 010 010 010 010 020 020 040

égg 0.10 120 010 010 010 020 030 o040

030 0.10 010 120 010 020 020 030 o040

Be = 020 | ¥ = 0.10 010 010 110 020 020 030 050
020 ’ 010 010 020 020 110 020 030 050

0.10 020 020 020 020 020 090 040 060

_010 0.20 030 030 030 030 040 090 o060

040 040 040 050 050 060 060 080

and 1000 observations are generated from the resulting Imoderence is then performed using both our SMC EM
method and a Gibbs based MCEM approach. Since, as noted iio/§d2.2, the cost of the M step with respect
to the E step is relatively low in both cases, we retain oudémgntation of the M step rather than using numerical
optimisation routines, despite marginally penalising 88C EM algorithm in the comparison. The number of
particles M is set to 4000 for both the SMC and the Gibbs samaiel 40 iterations of the EM are performed. The
square root of the mean squared distance of the estimatachptars from the real ones are found to@#& and080.
However the distance between them is ah6Q¥, but the two clouds from filerent runs are barely distinguishable,
since they have variations around .01 within them. Localregtnies are excluded in the simulated example so the
standard errors could be estimated, ranging between aitiiand172, and centred a0 74 for the SMC, with similar
values for the parameter values estimated via Gibbs, angi@eanent with the actual distance to the real values. The
SMC sampler has the advantage over Gibbs of automaticadlyiging estimates of the likelihoods. Over 50 runs
the average log-likelihoods were found to be arou82803 and—32804, with a standard deviation of. Although

the likelihood for the parameters estimated via the SMC EMhioe happens to be marginally better in this case,
the noise is too high for an accurate comparison and stamiamerical integration is not an option due to the high
dimensionality of the problem. A computational advantagkeremains, since with the same number of particles the
run time for the SMC EM is about two and a half times shortenttoat the Gibbs based EM.

5. Conclusions

A new method based on sequential Monte Carlo samplers dinted for the maximum likelihood estimation
of multivariate probit models. In particular an adaptivgeential Monte Carlo algorithm is proposed to sample from
high dimensional truncated normals. The proposal buildmuthe property that a Studentlistribution approaches
a Gaussian as the degrees of freedom go to infinity. When comgp@ a Gibbs sampler the quality of the sample
produced by the SMC sampler seems to be better for high atioel

The typical iterative procedure of the EM algorithm appdiiesthe ideal setting for SMC methods, which provide
a natural machinery to evolve the particle approximatiomfione iteration to the next when updating the parameters
in the M step. Performing the truncation to the current regitarting from scratch can so be avoided. This way
the computational cost is greatly reduced, with no paricldss in the performance, as seen for the example of the
Six Cities dataset where similar parameter estimates aeéngll when restarting at each iteration and with the fast
sequential updating scheme.

Since by construction the sequential Monte Carlo sampger ptovides samples from truncated Student distri-
butions, it is clear that the method can be easily extendeddcenario where a Studendlistribution is assumed
for the underlying latent variable of the probit model, etthan a normal distribution. Extensions to models with
multinomial response variables are of course also possible

Furthermore some of the confusion that has arisen arounddiénisation step is clarified and the first complete
EM algorithm for multivariate probit models is presentede\Rously, methods typically proposed in the literature
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have inevitably resulted in a generalised EM, while herdulenaximisation is both easy to implement arfil@ent,
with almost no computational cost. By examining the idealility of such models we show that there is in fact
a simple way to perform constrained maximisation, a proedssh is normally more computationally demanding.
More importantly, we demonstrate how to tweak the EM algonitso that it more directly targets increasing the
likelihood. This is achieved by mimicking the invariancetbg likelihood in the functiorQ at the basis of the
maximisation process, a strategy that should be of intéoesther models.

An interesting alternative to EM for point estimation in tbentext of latent variable models, when neither the
E step nor the M step are analytically tractable, is provioed set of methods combining multiple imputation and
simulated annealing ideas, as in Doucet et al. (2002); Gaeatd Yanl(2003); Johansen et al. (2008). Sampling is then
performed not only in the E step to impute the latent varigibet also in the M step to draw parameter values which
are expected to converge to the maxima of the object funciianterest. A desirable property of algorithms based
on a stochastic version of the M step with respect to its ddtestic counterpart is that they have a chance to escape
local maxima. Obtaining multiple copies of the latent vhls is essentially equivalent to drawing a sample in the E
step of a standard Monte Carlo EM algorithm, therefore timessampler can be applied. In the case of multivariate
probit models then the SMC sampler of Secfion 3.1 would agsarboption for the multiple imputations. Drawing the
parameters to mimic the M step on the other hand may be naalf@specially in higher dimensions. Thefdiulties
lie in particular with ensuring that the identification ctmaints on the covariance matrix are met, as already noted by
Chib and Greenberg (1998), and further discussed for exampMcCulloch et al.[(2000); Nobile (2000), in relation
to multinomial probit models. More recently a parameteramged method to simulate correlation matrices has been
suggested by Liu and Daniels (2006). However in the contiextudtivariate probit models we show that performing
the M step is actually pretty straightforward.

Acknowledgements

The authors would like to thank the associate editor and eferees for their comments and suggestions which
greatly helped to improve the overall presentation andakity of the manuscript, and thank Quirin Hummel for
implementing the numerical integrations for the likelildgaf the Six Cities example.

Appendix A. TheQ function for the probit model
For the multivariate probit model, substituting (5) inte texpectation in{3) gives
QY™ = Ezvyn[I@lY,2)] = f > log1ai(Z)e(2; XIB, )] - [ [ (21, u™ dZ*--- 2
2dyy™ 1 =1
(A1)
whereg(Z; X1B, ) is the density of a multivariate normal distribution an@|y', y™) is the density of a truncated
multivariate normal constrained to the domalnDenote it by TMNE; A, X'8™, £™) in the following. After inverting

the order of integration and summation, and accountingterfact that the integrals with respect to all the variables
Z for | # j can be independently evaluated and are normalised

f [ [TMNZ AL X g™ 2m [ ] dZ =1,
ZIvi |:l I:jl__
YLy™ 2] 1#]
1#]
the integral in[(A.1) then simplifies to
lylym

N
Q(¢,¢m)=2f log|1ai(2)¢(2); X8, )| TMN(Z, A, XIB™, £™) d2, (A2)
=17
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with I 4i(Z') = 1 on the domain of integration since TMN( X/8™ £™) is only different from zero foe! € Al. Substi-
tuting into [A.2) the expression for the density of a multisée Gaussian density, and neglecting the proportignalit
constant term which is irrelevant for the maximisation,

$(Z; XIB,E) oc [£[H2 exp(—%(z“) - XIByEH(Z - Xjﬂ)),

the Q function becomes

=

N
Qw.y™ = -3 Z; L » [log |zl + (21 - XIBYECH(Z - XIB)|- TMN(Z, Al XIB™, £™) dZ. (A.3)

The addends in the square bracketd of [A.3) lead to two tehedirst of which can be simplified as

—= Iog |2|Zf TMN(Z!, A, XIg™ =™ dz = —g log|Z|. (A.4)
Ziyiym

By the cyclicity property of the trace of a matrix
(2 - XIB)TENZ - XIB) = tr{z~(Z - XIB)(Z - XIB)T). (A.5)
hence the second term ¢f (A.3) can be written as
1 T C .
= f tr(=-1(2Z — XIB)(Z - XIB)T} - TMN(AI, XIg™ £™) dZ!
2 &4 Jaiyigm

N
- —%tr{z_lzf - (Z-XIB)(Z - XIB)T - TMN(AL, XIB™, M) dzj}
Zilyl ym

j=1
N

= —%tr {Z_l ZEZ”YW/"‘ [(ZJ - Xjﬂ)(zj - Xjﬂ)T]} . (A6)
j=1

By combining equation§ (Al4) and (A.6) we obtain the finalegsion for theQ function as in equatiof [6)

1

m N - N i j j
Q. y™) = ) Iog|2:|+tr{2‘. lNZLI ZiYiym (ZJ XJ,B)(Z'—X'ﬂ)T}H.

Appendix B. Algorithms

Algorithm 1:  SMC sampLER
Key steps of a SMC sampler with a Random Walk Metropolis itemmskernel and normalising constant
estimation

Initialisation: obtain a weighted particle approximatioom the initial distribution

W, 289) ~ 7o(6) 1)

set parametegy, M, k1, £, &1 for a first moven = 1
SMC core: Repeat the following loop undil = 61 (m, = 77)
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Loop: evaluate incremental weights

K
K\ _ Vn(zﬁ_)l)

Win(zW,, 28y = /L 2
n-1 n-1 )/n_l(szk_)l
dat lised weight
update normalised weights WK o ergli)le) 3)
update normalising constant estimate
M
C,=Cn1 Z W (4)
k=1
evaluate ES$as a measure of the degree of degeneracy
1
ES$=——— (5)
% (W2
k=1
if ESS< ESS resample
1 5k
(W(k), Zgi)l) - (M’ Zg)l) ~ Tn (6)
MCMC step:Yk e {1,2,..., M}
sampleY® ~ n(z® , =MH)
setz® = vk with probability
a=1ApK @)
where
k — ﬂn(Yk) = yn(Yk) (8)
_ m(ZP)  mEl,
adapt scaling factor
log(kn+1) = l0g(kn) + én(@n(log(kn)) — @) ©)
set new proposal covariance mati¥ = k,Z,.
update the parameter identifying the next target
ESS - ES
On+1 = |60 + (gnTg \ AHmin) A b1, (10)
current particle approximation
(Wr(wk)’ ng)) “ i (11)
go to next iteration
n=n+1 (12)
End of loop: particle approximation available
(Mk),Z‘Tk)) “ " r (13)

Further implementation details.When targeting the multivariate Studendistribution truncated to a domaias
described in Section 3.1 the parameter A can be defined as a vector of components (+ay, ..., +ap)" with

the signs and direction of trunctation given by the obséonat Similarly a vecto, = (+aun, . .., +apn)' defines the
target regiorA, at iterationn. In practice the algorithm cycles through the dimensioresatrthe time, so we can focus
on one particular component for a more detailed descriptidrawing from an untruncated distributioiffectively
means to fixap = —co. The first truncation points;; can then be chosen for example by ensuring that a certain pro-
portion of the probability mass of a multivariate normaltdizution with independent components is preserved after
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the truncation (to make sure that a non-negligible numbgadficles is kept). After the initialization the algorithm
proceeds by updating each component according to equBii)nn( Algorithm[d. The initial covariance matrix for
the random walk MetropoliE)" is set equal to the covariance matrix target of the multatarnormal distribution
(untruncated). Further tuning parameters in our runs wetres«a = 1,41 = 2,&1 = 7, Abqin = .02, however they
will depend on the particular scale of the problem, but theyreot automatically tuned in our implementation. The
resampling and adaptive thresholds E&&d ES§ are both set toaBM.

Algorithm 2: Prosir SMC EM
Key steps of the SMC EM algorithm for multivariate probit nedel

Initialisation: Set parameters

Yo =(x%p%), m=0 @
obtain a sample (possibly weighted) from the initial dimition
WY, Z§%) ~ mo(y), (2)
EM core: Repeat the following loop untig™ — y™1|| converges up to noise
Loop: m=m+1,8=8°5"=x"n=0
M-step: Cycle through conditional maximisation urﬂﬁfl —anlu <e€
n=n+1
update covariance matrix
1 N M 1 1
i WIR(Zi® _ xig™ Yy zi0 _ xighhT
N ; ; ( B")( B") 3

update regression cfigients

N 1 N M
B = (D 00rE) ) Y o0 E Y (Wioz) @)
=1 =1 k=1

update parametelr,, before E-step

=2 "= g (5)
E-step: Implement a SMC sampler to move samples frgm(y™?) to targetr(y™)
Yjie{1,2,...,N}
Rescale sampletk € {1,2,..., M}
Zr(rlgl = Dilzr(rlgl (6)
with scalingD such that
Xlp™ = DXt 7
set covariance matrix
F™t = plzmipl 8)
current particle approximation
WO 78 )~ TMN(AT, XIB™ £ )
build a SMC sampler to move from
7o = TMN(AL XIg™ £™h), go = £™* (10)
to S
nr = TMN(AL, XIg™ x™),  6r = x™ (11)
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Appendix C. Log-likelihood correction

The log-likelihood is the sum of the log-probabilities oéttegions corresponding to each observation, for which
the SMC sampler provides noisy estimates. Assume the vatuened ispj(1 + £;) for each observatiof, whereg;
are random relative noise variables with zero mean so thyebias is kept in the valup;. The total log-likelihood is

then
2

f.
1= > log[pi(L+)] = ) log(py) +log(L+¢) = D 1og(py) + &~ = +... (C.1)
i i i

with the logarithms expanded up to second order. Consigesuims over the random noises and their squares. From
the central limit theorem, these should tend towards nodigatibutions with variances related to the sums of the
second and fourth moments of thig Assuming the relative erroe§ < 1, fourth and higher moments will decay
quickly compared to the second, leading to the approximatio

2
D109+ 6) ~ £ - 5 (€2
j

wherec? corresponds to the variance betweefliedlent runs of the log-likelihood estimate afiis a normally dis-
tributed random variable with the same variatice N(0, o2). The log-likelihood should then be corrected to

A 2
=" log(py) ~ ) log[pi(1+¢)] + - (C.3)
i j
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