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Abstract

Gaussian Process (GP) models are popular statistical surrogates used for
emulating computationally expensive computer simulators. The quality of
a GP model fit can be assessed by a goodness of fit measure based on op-
timized likelihood. Finding the global maximum of the likelihood function
for a GP model is typically very challenging as the likelihood surface often
has multiple local optima, and an explicit expression for the gradient of the
likelihood function is typically unavailable. Previous methods for optimiz-
ing the likelihood function (e.g., MacDonald et al. (2013)) have proven to be
robust and accurate, though relatively inefficient. We propose several likeli-
hood optimization techniques, including two modified multi-start local search
techniques, based on the method implemented by MacDonald et al. (2013),
that are equally as reliable, and significantly more efficient. A hybridization
of the global search algorithm Dividing Rectangles (DIRECT) with the lo-
cal optimization algorithm BFGS provides a comparable GP model quality
for a fraction of the computational cost, and is the preferred optimization
technique when computational resources are limited. We use several test
functions and a real application from an oil reservoir simulation to test and
compare the performance of the proposed methods with the one implemented
by MacDonald et al. (2013) in the R library GPfit. The proposed method is
implemented in a Matlab package, GPMfit.
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1. Introduction

Computer simulators are useful tools for modelling complex real world
systems that are either impractical, expensive, or time consuming to physi-
cally observe. For example, the energy generated by the tides of large ocean
basins (Greenberg, 1979), the estimation of the magnetic field generated near
the Milky Way (Short et al., 2007), and the analysis of the flow of oil in a
reservoir (Aziz and Settari, 1979) – the latter of which motivated this re-
search – can be achieved through the use of computer simulators. That
being said, realistic computer simulators can be computationally expensive
to run, and as a result are often emulated using statistical models, such as
Gaussian Process (GP) models (Sacks et al., 1989).

The maximum likelihood approach for fitting a GP model to determinis-
tic simulator output requires the minimization of the negative log-likelihood,
or deviance (−2 log(L)). Rasmussen and Williams (2006) proposed the use
of either a randomized multi-start conjugate gradient method or Newton’s
method for this problem. Explicit information about the gradient of de-
viance, however, cannot easily be obtained, and the deviance surface of-
ten has multiple local optima, making the optimization problem challenging
(MacDonald et al., 2013). Derivative-free optimization techniques, such as
the genetic algorithm used by Ranjan et al. (2011), or the differential evolu-
tion algorithm used by Petelin et al. (2011), are robust, but can be computa-
tionally inefficient. Gradient approximation methods, such as the Broyden-
Fletcher-Goldfarb-Shanno method (BFGS) (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970), are generally faster, but have the poten-
tial to converge only locally if poorly initialized. MacDonald et al. (2013)
proposed a clustering-based multi-start BFGS algorithm, which allows for
a more global search to be performed. Nonetheless, this method demands
several executions of BFGS, which is also computationally expensive.

In this paper we investigate several optimization techniques in order to
improve the efficiency of the likelihood optimization process. Each technique
is a combination of the global and local search components. We propose using
the Dividing Rectangles algorithm (DIRECT) (Finkel, 2003) as an alternative
to the clustering-based approach for choosing the starting point(s) of BFGS.
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In terms of the local search, we compare the efficiency of BFGS with Implicit
Filtering (IF), a sophisticated pattern search algorithm developed by Kelley
(2011) for multimodal noisy functions. We use several test functions and a
real application from an oil reservoir simulation to compare the performance
of different optimization techniques; measured by the prediction accuracy
(optimized deviance and root mean squared prediction error) and number of
deviance function evaluations (FEs) required to optimize the deviance. After
an extensive case study we find that a hybrid approach of DIRECT-BFGS
is the most efficient optimization technique for fitting such GP models.

The remainder of the paper is outlined as follows. Section 2 describes the
GP model and the main components of the newly developed Matlab package
GPMfit. In Section 3 we briefly outline the optimization techniques used for
the deviance minimization. Section 4 provides the results and analysis for
several test functions, followed by a real world example in Section 5 where
the GP model is fit to an oil reservoir simulator using our proposed method.
Concluding remarks are provided in Section 6.

2. The Gaussian Process Model

The GP model requires as input a set of design points, xi = (xi1, ..., xid)
′,

and the corresponding simulator outputs, yi = y(xi), where i = 1, ..., n,
and n is the number of user supplied design points. Here, the prime, ′,
denotes the transpose of vectors and matrices. We assume that the simulator
provides a scalar valued output, yi, for each design point xi, and we denote
Y = (y1, ..., yn)

′ as the n × 1 vector of simulator outputs. The simulator
output is modelled as

yi = µ+ z(xi),

where µ is the overall mean, and z(xi) is a GP with E[z(xi)] = 0, Var[z(xi)] =
σ2, and Cov[(z(xi), z(xj)] = σ2Rij .

The n× n spatial correlation matrix R defines the degree of dependency
between design points, based on their observed simulator value. Following
MacDonald et al. (2013), we use the Gaussian correlation matrix, R; a special
case of the power exponential correlation family defined as

Rij =
d
∏

k=1

exp{−10βk|xik − xjk|pk} for all i, j. (1)
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Here pk = 2 is the smoothness parameter, and β = (β1, ..., βd) is a 1 × d
vector of correlation hyper-parameters which measures the sensitivity of the
response to the spatial distribution of |xik − xjk|2 for all i, j ∈ {1, ..., n} and
k ∈ {1, ..., d} (Loeppky et al., 2009).

The formulation of correlation function in Equation (1) is slightly different
than the popular form of Gaussian correlation, which replaces 10βk with θk
(e.g., in Ranjan et al. (2011)). MacDonald et al. (2013) demonstrate that
the deviance surface with β-parametrization shown in Equation (1) is much
easier to optimize as compared to the commonly used θ-parametrization.

Sacks et al. (1989) show that the best linear unbiased predictor (BLUP)
at a given x∗ in the input space (typically normalized to [0, 1]d) is

ŷ(x∗) = µ̂+ r′R−1(Y − 1nµ̂)

=

[

(1− r′R−11n)

1n

′R−11n

1n

′ + r′
]

R−1Y

≡ C ′Y,

where r = [r1(x
∗), ..., rn(x

∗)]′, and ri(x
∗) = corr[z(x∗), z(xi)] is the correla-

tion between z(x∗) and z(xi). The GP model also returns the associated
uncertainty estimate, s2(x∗), as measured by the mean squared error (MSE),

s2(x∗) = E
[

(ŷ(x∗)− y(x∗))2
]

= σ̂2(1− 2C ′r + C ′RC). (2)

The model fitting process requires the estimation of µ, σ2 and β. The
closed form estimators of the mean and variance are given by

µ̂(β) = (1n

′R−11n)
−1(1n

′R−1Y )

and

σ̂2(β) =
(Y − 1nµ̂(β))

′R−1(Y − 1nµ̂(β))

n
,

respectively, and are used to obtain the profiled negative log-likelihood or
deviance (ignoring the unimportant terms like log(

√
2π) and log(n)):

Lβ = log (|R|) + n log [(Y − 1nµ̂(β))
′R−1(Y − 1nµ̂(β))], (3)

where 1
n
is an n× 1 vector of all ones. The most difficult part of fitting the
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GP model is to find
β∗ = arg min

β∈Rd

(Lβ).

Equation (3) shows that evaluating Lβ requires computing both the action
of the inverse, R−1, and determinant, |R|, of the correlation matrix. If any
pair of design points are sufficiently close to one another, the matrix R can
become near-singular, resulting in unstable computation of R−1 and |R|.
This can lead to an unreliable model fit.

To overcome this instability, we follow a popular technique developed by
Sacks et al. (1989), Neal (1997), and Booker et al. (1998), which adds a small
“nugget” parameter, δ, to the model fitting procedure. The inclusion of δ
smoothes the model predictions, and consequently the GP model fit will no
longer exactly interpolate the design points (O’Hagan and Kingman, 1978;
Wahba, 1978). To avoid over-smoothing, Ranjan et al. (2011) introduce a
lower bound on the nugget parameter,

δlb = max

{

λn(κ(R)− ea)

κ(R)(ea − 1)
, 0

}

,

where κ(R) = λn/λ1 is the 2-norm condition number and λ1 ≤ λ2 ≤ ... ≤ λn

are the eigenvalues of R. That is, R is simply replaced by Rδ = R + δlbI in
(3). The over-smoothness can further be reduced by using the iterative reg-
ularization technique proposed by Ranjan et al. (2011). In our simulations,
we scale the input-space domain to [0, 1]d, and the design points are gener-
ated via a space-filling maximin Latin hypercube design (LHD). The desired
threshold for κ(R) is ea, where a = 25 is recommended for a space-filling LHD
(McKay et al., 1979). Under this configuration, δlb values remain relatively
small, if not zero, and therefore the iterative approach is not needed.

Although there are several choices for the correlation function, we focus
on the Gaussian correlation, with pk = 2, because of its smoothness property
and popularity in other areas such as machine learning (radial basis kernels)
and geostatistics (kriging). In practice, however, we can increase the stability
of inverse and determinant computation by slightly lowering the smoothness
parameter, pk, of Equation (1), such that pk / 2 (e.g., pk = 1.99). By setting
pk = 1.99, the smoothness is not affected significantly and the occurrence
of near-singularity is substantially reduced; though not completely resolved
as instability may still occur if the design points are extremely close to each
other in input space. In this paper, we used pk = 2 with δlb as given above

5



for all simulated examples in Section 4, and pk = 1.99 with the same formula
for δlb in the oil reservoir application in Section 5.

3. Optimization Methodology

Our objective function, Lβ, has a complicated dependency on β, namely
in the form of the mean estimator, µ̂(β), the correlation matrix, R, and the
nugget parameter, δ. Thus, it is difficult to extract an explicit gradient,
∇Lβ, and the optimization methods that require the user to provide an
expression for ∇Lβ are not applicable here. We can, however, compute
numerical approximations to ∇Lβ, which is implicitly performed in both
BFGS and IF algorithms. That said, Lβ may contain several local optima
and flat regions (see Figure 1). Thus, a strictly descent-based optimization
approach may not be desirable.
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Figure 1: 1-D plot of Lβ surface for the 1-D Hump function and a given set of design
points. The Hump function is described in Appendix A.

In this section, we first present a brief description of the local optimization
algorithms used herein, namely BFGS and IF. In Sections 3.2 and 3.3 we
describe the global optimization techniques, namely multi-start clustering
and DIRECT. We conclude with a brief discussion on the bound constraints
imposed on the β search space.

3.1. BFGS and Implicit Filtering

The BFGS algorithm is a quasi-Newton optimization technique that uses
a rank-two Hessian update formula to locate an optimal β (Coleman et al.,
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1999). At iteration k, the algorithm obtains a descent direction, q(k), by

approximating the Hessian matrix, H(k), and the gradient, ∇L(k)
β , at a current

point, β(k), and solving

H(k)q(k) = −∇L(k)
β · β(k) for k = 0, 1, ... .

A line search procedure then determines a suitable step-size, α(k), along q(k),
in order to obtain an updated solution, β(k+1), given by

β(k+1) = β(k) + α(k)q(k).

We use Matlab’s built-in unconstrained optimization routine fminunc for an
implementation of BFGS. We have chosen to use the medium-scale imple-
mentation of fminunc, where the user must supply an initial value, β(0).

Implicit Filtering (IF) is a sophisticated, deterministic pattern search
algorithm designed by Kelley (2011) for bound constrained optimization.
Specifically, IF is a local optimization algorithm that hybridizes a general pat-
tern search algorithm with a BFGS derivative-approximation algorithm. The
pattern search is arranged on a stencil, which, given an incumbent solution
β(k), will evaluate Lβ at β(k)±hvj , in all coordinate directions j = {1, ..., d}.
Here, vj = (Lj − Uj)ej , where Lj and Uj represent the components of the
lower and upper bounds of the search space, respectively, and ej is the unit
coordinate vector. The scale, h, varies as the optimization progresses, ac-
cording to the sequence h = {2−m}7m=1, where m increases by 1 each time
the current stencil fails to find a more optimal position than the incumbent
point. As the pattern search progresses, IF constructs a linear least squares
interpolant from previously sampled points. After each pattern search phase,
the linear interpolant surface is optimized locally using the BFGS algorithm.
This process repeats until an optimal β-parameter is located. The idea is that
the pattern search phase, with a suitable step-size, could step over local min-
ima, while the quasi-Newton phase of IF will establish efficient convergence
in regions near the global optimum.

The BFGS algorithm, fminunc, does not require user specified bound
constraints and works efficiently for smooth objective functions. With ap-
propriate Hessian and gradient approximations and an efficient line search,
the BFGS algorithm converges superlinearly to a locally optimal β-parameter
(Griva et al., 2009) near the initial solution β(0). Conversely, IF does require
user specified bound constraints and is designed for functions that are noisy,
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with many local optima. The convergence of IF is somewhat slower than
superlinear, or equivalently, BFGS (Kelley, 2011); however, IF is, in prin-
ciple, more likely to find the global optimum within the bound constraints,
due to its pattern search component. The quasi-Newton phase of both algo-
rithms requires computation and storage of an approximate Hessian matrix
and solving the resulting system of equations in order to obtain a suitable
descent direction, which is generally computationally expensive.

3.2. Clustering-based multistart technique

MacDonald et al. (2013) proposed using a clustering-based multistart
BFGS to replace the computationally expensive genetic algorithm used by
Ranjan et al. (2011). The BFGS algorithm converges more rapidly, but lacks
robustness, in that the algorithm has the potential to get stuck in a local
minimum, depending on the starting position, β(0). MacDonald et al. (2013)
therefore proposed using 2d + 1 starting points of BFGS to improve the
chances of global convergence, where d is the dimension of the simulator
input (and therefore of β as well). These points are determined through
sampling and k-means clustering method (MacQueen, 1967), as described
below.

1. Generate 200d β-vectors within the search space, Sβ ⊂ (−∞,∞)d (as
defined in Section 3.5), using a random maximin Latin hypercube de-
sign, and evaluate Lβ for each β.

2. From the 200d evaluations of Lβ obtained from Step 1, select the 80d
β-vectors with the smallest Lβ values.

3. Cluster these 80d points from Step 2 into 2d groups, using the best of 5
random restarts of k-means clustering method. The 2d cluster centers
will serve as the 2d starting points of BFGS.

4. Evaluate Lβ at three equidistant points along the main diagonal of the
search space, Sβ. The β-vector with the lowest Lβ value is chosen as
the (2d+ 1)-th starting point.

5. Begin a run of BFGS from each of the 2d+ 1 starting points.

From thorough experimentation on several test functions, we have ob-
served that executing 2d + 1 starts of BFGS is excessive, and often results
in several runs converging to comparable optima. As an example, Figure 2
shows the convergence of 2d + 1 multistarts of BFGS (left plot) and ⌈0.5d⌉
multistarts of BFGS (right plot) as a function of the number of deviance
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function evaluations (FE), for the problem of fitting a GP model to the 10-D
Rastrigin test function (described in Appendix A). It is apparent that three
of the five BFGS runs shown in the right plot converge to a value that is
comparable to the best value found out of twenty-one BFGS runs in the left
plot. We therefore propose reducing the number of cluster centers to ⌈0.5d⌉
and eliminating the additional starting point obtained from sampling along
the main diagonal. We implement two clustering-based techniques: (i) ⌈0.5d⌉
multistarts of BFGS (the same method as in MacDonald et al. (2013)), and
(ii) ⌈0.5d⌉ multistarts of IF.
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(a) 2d+ 1 multi-start BFGS.
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(b) ⌈0.5d⌉ multi-start BFGS.

Figure 2: Plot showing the convergence of each BFGS start versus the cumulative number
of FEs (includes the initial 200d = 2000 FEs used for clustering), for fitting the 10-D
Rastrigin function. The starting points are generated using a random maximin LHD.

The simulation results (in Table 1 and Figures 2 and 4) show that the Lβ

value returned by BFGS and IF do not usually change significantly after the
first few iterations. Therefore, performing a full search (until the stopping
criterion is satisfied) from each starting point β(0) may be excessive as well.
We therefore investigate a two stage multistart IF method, denoted by IF-2.
The process starts with a clustering-based, ⌈0.5d⌉ multistart IF approach,
where each run of IF is limited by a budget of 20d FEs. In the second
stage, the single run of IF that returns the lowest Lβ value will then run to
completion.

3.3. DIRECT Hybrid Techniques

Dividing Rectangles (DIRECT) is a derivative-free, block partitioning al-
gorithm that sequentially samples points in the search space and partitions
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the domain into hyper-rectangles based on the objective function value (here,
Lβ) at the sampled points. Hyper-rectangles are then identified as being po-
tentially optimal if they contain a sampled point whose function value is more
optimal than the sampled points contained by all other hyper-rectangles of
equal size. Each potentially optimal hyper-rectangle is then divided into
thirds along its longest dimension, and the process repeats. Figure 3 pro-
vides a 2-dimensional visualization of how DIRECT samples and divides its
search space. The left panel in Figure 3 shows the initial sampling phase
and partitioning of the domain. The bold rectangles in the middle panel of
Figure 3 are identified as being potentially optimal in the following iteration.
The rectangles are then partitioned in turn (rightmost figure), and three new
rectangles are identified as potentially optimal. The alternating process of
partitioning and then identifying potentially optimal rectangles continues,
until a stopping criterion is met. See Finkel (2003) for more details.

DIRECT is specifically designed as a global optimization approach, how-
ever, since it provides such a thorough exploration of search space it can
be slow to converge locally. We therefore use DIRECT to provide a single,
somewhat optimized starting point, β(0), from which to begin a run of either
BFGS or IF, thereby eliminating the need for a multi-start approach. For
ease of comparison with clustering-based approach, we provide a budget of
200d FEs to DIRECT.

r
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r

Figure 3: A few iterations of the Dividing Rectangles (DIRECT) algorithm. Bolded
rectangles are identified as being potentially optimal and are divided in the following
iteration. The •’s denote the sampled points.
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3.4. Boundaries of the Search Space

Many optimization techniques, including IF and DIRECT, require user-
supplied bound constraints on the optimization parameters, β. Although the
exact position of the global optimum in β-space is unknown, we can determine
a region, Sβ, where the optimum is likely to be found. MacDonald et al.
(2013) use the structural form of the correlation matrix R to provide an
approximate bound for Rij . Specifically

exp(−5) ≈ 0.0067 ≤ Rij ≤ 0.9999 ≈ exp(−10−4),

or equivalently,

10−4 ≤
d

∑

k=1

10βk|xik − xjk|2 ≤ 5.

Since the assumed input-space is [0, 1]d, and the design points are gen-
erated via a maximin LHD, the approximate spatial distribution of the 10d
design points that we use is at most |xik − xjk| ≈ 1/10 in any dimension k.
Moreover, if we assume that the simulator function is equally smooth in all
coordinate directions, i.e., β1 ≈ β2 ≈ · · ·βk, then the set of β values that is
likely to contain the global optimum is

Sβ = {(β1, ..., βd) : −2− log10(d) ≤ βk ≤ log10(500)− log10(d), k = 1, ..., d}.

The starting points, β(0), determined using either clustering or DIRECT, will
be confined to the region Sβ.

BFGS is an unbounded optimization algorithm and does not require any
user-specified bound constraints on the optimization variables, whereas IF
does. The step-size calculated in the pattern search phase of IF is propor-
tional to the physical size of the user supplied bound constraints, which we
denote by SIF

β . From our experimentation on the test functions, we have
noticed that if the size of SIF

β is too small, the optimization efficiency is
compromised as IF requires a large number of FEs in order to converge to
an optimal β-parametrization. Conversely, if SIF

β is too large, IF has the
tendency to “jump” around the potentially optimal regions of Lβ, resulting
in convergence to a suboptimal β value.

MacDonald et al. (2013) note that the optimal β values are rarely large
and positive, and hence, we impose bound constraints on IF in which the
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negative β region occupies a larger portion of the domain, i.e.,

SIF
β = {(β1, ..., βd) : d(−2− log10(d)) ≤ βk ≤ log10(500), k = 1, ..., d}.

We acknowledge that the β-value that globally minimizes Lβ may occa-
sionally be positioned outside the provided bounds, Sβ and SIF

β . Therefore,
included in the GPMfit package is the option to multiplicatively expand or
contract the default bound constraints.

4. Simulation Results

We use seven test functions, with input dimensions varying from d = 1 to
d = 12 to compare the performance of the different optimization techniques
discussed in Section 3. The formulae for all the test functions are provided
in Appendix A. The performance of each optimization technique is averaged
over 25 simulations. For each simulation, 10d training design points (xi) and
100d validation prediction points (x∗

i ) are chosen in [0, 1]d. The initial sample
points in β-space for the clustering procedure are randomly generated in Sβ

using the Latin hypercube design. All simulations were performed using 64-
bit Matlab 2012(b) on a Gentoo Linux operating system with a Core 2 Quad
Xeon processor.

4.1. Optimization Accuracy

Recall that our objective is to minimize Lβ. Typically, the parameter
estimate that corresponds to the smallest Lβ will provide the most accurate
model fit, as measured by the average relative root mean square prediction
error (RMSPE) between the GP model fit and the true simulator (test func-
tion) response. That is,

RMSPE =

√

√

√

√

N
∑

i=1

(yi − ŷi)2
/ N

∑

i=1

y2i , where N = 100d. (4)

We note that in most real applications, the true RMSPE values cannot
be calculated, as the true simulator outputs are unknown at the validation
points. One can, however, use the average MSE estimates (see Equation
(2)) for performance comparison. The consistency of RMSPE values over 25
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simulations is measured by the standard error in the RMSPE value, given by

Std. Err. = σRMSPE/
√
25, (5)

where σRMSPE denotes the standard deviation of the RMSPE values. A
standard error of one order of magnitude less than the corresponding RMSPE
value indicates that our results are fairly consistent over all 25 simulations.

4.2. Convergence Efficiency

We measure the efficiency of an optimization technique by the number of
likelihood function evaluations (FEs) required for optimization of Lβ. Using
Matlab’s profiler, we determined that evaluating Lβ constituted the bulk
of the computational load for all optimization techniques considered. In
particular, we determined that computation of the correlation matrix, Rδ,
demands anywhere from 60%−90% of the total computation time, depending
on the simulator input dimension, d. Computation of Rδ is nested within the
calculation of Lβ and is evaluated once per FE. Therefore, the number of
FEs, which is not affected by issues like server load, can be used in place of
computation time as a fair measure of optimization efficiency.

4.3. Discussion

Table 1 summarizes the accuracy (Lβ and RMSPE) and efficiency (FE)
of each optimization technique for six of the seven test functions, namely the
2-D Goldstein-Price function, the 5-D Schwefel Function, the 6-D Hartmann
function, the 10-D Rastrigin function, the 10-D Rosenbrock function and the
12-D Perm Function (see Appendix A for closed form expressions). Results
for fitting the 1-D Hump function are not shown, as the performance of all
the techniques was essentially the same for this simple test function. The %∆
notation in Table 1 denotes the percent relative difference between value of
the performance measure returned by a given technique and the best value
found among all techniques. The standard errors are not included in this
table; we found that for all cases the standard error was indeed at least one
order of magnitude less than the corresponding RMSPE, suggesting that each
technique is consistently able to provide the same GP model quality.

The results in Table 1 show that the ⌈0.5d⌉ multi-start techniques and
DIRECT-based techniques provide efficient and reliable alternatives to the
2d+1 BFGS technique. We observe that the ⌈0.5d⌉multi-start and DIRECT-
based techniques require anywhere from 20% to 90% fewer FEs than the
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Algorithm Goldstein-Price (2-D) Schwefel (5-D)
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS 0.017 0.201 439 0.100 2.885 1859
2d+ 1 BFGS − 3.213 653 − 2.885 4277
⌈0.5d⌉ IF 0.007 − 518 0.206 0.962 2381
2d+ 1 IF − 3.213 995 0.074 2.404 5735
⌈0.5d⌉ IF-2 0.007 − 546 0.272 1.442 1677
DIRECT-BFGS − 3.213 449 0.232 2.885 1296
DIRECT-IF − 3.213 498 0.243 − 1304

Hartmann (6-D) Rastrigin (10-D)
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS 0.034 − 2068 0.071 3.865 5553
2d+ 1 BFGS 0.102 1.064 5526 − 3.865 17853
⌈0.5d⌉ IF 1.703 6.991 2293 0.624 − 4346
2d+ 1 IF − 0.304 7497 0.134 2.899 17284
⌈0.5d⌉ IF-2 1.223 8.511 1866 0.545 0.483 4011
DIRECT-BFGS 0.207 1.216 1526 0.255 1.932 2682
DIRECT-IF 0.207 1.216 1533 0.287 1.932 2774

Rosenbrock (10-D) Perm (12-D)
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS − − 4562 0.003 1.370 8170
2d+ 1 BFGS − − 16245 − 1.643 27622
⌈0.5d⌉ IF − − 6654 0.010 − 12411
2d+ 1 IF − − 24725 0.001 2.055 44375
⌈0.5d⌉ IF-2 0.031 3.196 3775 0.025 − 4935
DIRECT-BFGS 0.003 0.457 2332 0.011 0.545 3338
DIRECT-IF 0.003 0.457 2654 0.012 0.685 3459

Table 1: Performance comparison of different likelihood optimization tech-
niques on six test functions. Dashed values in the %∆Lβ and %∆RMSPE
columns indicate that the best overall value was found by this algorithm.
Underlined values in the FE column indicate the smallest number of FEs
required by any algorithm.

2d + 1 BFGS technique (depending on the dimension of the test function),
while maintaining a comparable level of optimization accuracy. The relative
difference in the Lβ value returned by each technique is typically less than
1%. As a result, each optimization technique provides comparable GP model
quality, as measured by the RMSPE value. Table 1 shows, however, that
for all test functions, the ⌈0.5d⌉ multi-start IF-2 technique returns a larger
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average Lβ value and requires anywhere from 10% to 50% more FEs than
both of the DIRECT-based methods. As a result, IF-2 is not included in
the GPMfit package, as more accurate and efficient techniques are clearly
available.

The results in Table 1 suggest that a slightly suboptimal Lβ value can
result in an equal, or even slightly better GP model qualityas measured by
the RMSPE. For example, for fitting the 10-D Rastrigin function, DIRECT-
BFGS provides an RMSPE value that is 1.93% smaller than the RMSPE
value returned by 2d+1 BFGS, despite converging to a Lβ value that is sub-
optimal by 0.255%. This non-monotonic relationship between optimal Lβ and
GP model quality is presented in a recent paper by Kalaitzis and Lawrence
(2011), who argue that one can maintain the quality of the GP model even
with a slightly suboptimal Lβ value. Furthermore, Nguyen et al. (2011) sug-
gest that, due to the difficulties in finding optimal β-parameters, particularly
when the training data (xi, yi) is sparse, GP models can be prone to over-
fitting, which can lead to larger than expected RMSPE values. Motivated
by this non-monotonic relationship, our goal is to efficiently determine a suf-
ficiently optimal Lβ value, without compromising the resulting GP model
quality.

Figure 4 shows the convergence performance of both the BFGS and IF
algorithms after the initial β(0) point(s) are determined using either clustering
or DIRECT. For the multi-start clustering-based techniques, the convergence
plots are displayed as though each run of BFGS or IF were implemented in
parallel, from which the best of the ⌈0.5d⌉ Lβ values is plotted versus the
cumulative number of FEs. The optimization performance for each technique
has been averaged over all 25 simulations, and is plotted on a semi-log scale
as the absolute difference between Lβ and the minimum Lβ value, Lmin,
(rounded down to the nearest 10−2) determined by one of the four techniques.

We first observe that, for both the DIRECT and multi-start approaches,
BFGS is more efficient than IF, and converges to a more optimal value of
Lβ. This suggests that BFGS is generally better suited to this optimization
problem than IF. Secondly, with the exception of the 2-D test case (Figure
4(a)), the ⌈0.5d⌉ BFGS technique converges to the best Lβ value. In general,
however, the difference between the Lβ value returned by the ⌈0.5d⌉ BFGS
technique and DIRECT-based methods is on the order of 10−1 to 100, which
has only a small effect on the resulting quality of the GP model, as measured
by the RMSPE. Moreover, Figure 4 shows that once the starting β(0) point(s)
have been determined, the DIRECT-based methods require approximately
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(a) 2-D Goldstein-Price.
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(b) 5-D Schwefel.
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(c) 6-D Hartmann.
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(d) 10-D Rastrigin.
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(e) 10-D Rosenbrock.
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(f) 12-D Perm.

Figure 4: Semi-log plots comparing the Lβ optimization performance of the single start
DIRECT-BFGS and DIRECT-IF techniques and the multi-start ⌈0.5d⌉ BFGS and IF
techniques, averaged over 25 simulations.

16



1
⌈0.5d⌉

as many FEs as the multi-start clustering techniques; this represents
a substantial increase in optimization efficiency, particularly as d increases.
Thus, the DIRECT-based approaches are able to find an optimum that is
only slightly worse than those found by the significantly more expensive
clustering-based approaches.

We ran an additional experiment to determine whether providing ad-
ditional FEs to the DIRECT-based methods would result in these methods
converging to the optimal Lβ value found by ⌈0.5d⌉ BFGS. Figure 5 compares
the optimization performance of the DIRECT-based and ⌈0.5d⌉ multi-start
clustering techniques for a single GP model realization of the 5-D Schwefel
function. For this particular case, the local search techniques used after DI-
RECT have been allotted 900 FEs, which is the number of FEs that were re-
quired for ⌈0.5d⌉ BFGS to converge to the optimal Lβ. From the logarithmic
plot (Figure 5(a)), we can see that there is no improvement in the solution
found by the DIRECT-BFGS and DIRECT-IF methods after roughly 200
FEs, indicating that allotment of additional FEs provides no benefit to these
approaches. We note again, however, that when plotted on regular axes,
as in Figure 5(b), the discrepancy in the Lβ values returned by the various
methods is small.
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(a) Semi-log Convergence Plot.

0 200 400 600 800 1000
780

790

800

810

820

830

FE

L β

 

 

0.5d BFGS
0.5d IF
DIRECT−BFGS
DIRECT−IF

(b) Convergence plot.

Figure 5: Semi-log convergence plot and convergence plot comparing the Lβ optimization
performance of the DIRECT-based techniques and the multi-start clustering techniques.

Figures 4 and 5, show that the DIRECT algorithm is able to determine
a more optimal starting position, β(0), for initialization of BFGS or IF. This
enables us to implement a single run of BFGS or IF, with only a small loss of
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optimization accuracy. These results were observed for all test functions and
support a fundamental conclusion; if the user has significant computational
resources at their disposal and if a highly accurate optimal Lβ is desired,
then the multi-start ⌈0.5d⌉ BFGS technique is preferred. If computational
resources are limited, however, then one can use DIRECT-BFGS to obtain
comparable GP model fit for a fraction of the computational cost. From
these results, we are able to establish an overall performance ranking of each
optimization technique, shown in Table 2.

Rank Algorithm # of starts

1 DIRECT-BFGS 1
2 DIRECT-IF 1
3 BFGS ⌈0.5d⌉
4 IF ⌈0.5d⌉
5 BFGS 2d+ 1
6 IF 2d+ 1
7 IF-2 ⌈0.5d⌉

Table 2: Ranks of the optimization techniques based on their overall average
performance for the seven test functions.

5. Oil Reservoir Simulator Example

Determining optimal drilling locations for production and injection wells
in an oil reservoir is a problem of considerable industrial interest (see for in-
stance Yeten et al. (2003); Bangerth et al. (2006); Onwunalu and Durlofsky
(2010)). The variables in this problem correspond to positional parameters
for each well; in this example, we will consider only vertical wells, each of
which can be parameterized by its (x1, x2) co-ordinates, representing a grid
location in the discrete reservoir model. The well locations serve as input to a
computationally expensive complex reservoir simulator – in our case, theMat-

labReservoir Simulator (MRST) (Lie et al., 2011; SINTEF Applied Mathematics,
2012). The simulator output, along with various economic parameters, are
then usually combined to provide the net present value (NPV) of the pro-
duced oil. The goal is to determine the configuration of wells that yields the
best NPV.
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We consider two problems using a simple 2-D reservoir model based on a
60×50 grid. For the first placement problem, we assume that two injection
wells (×) and one production well (◦) have already been drilled at the posi-
tions shown in Figure 7(a), and the goal is to find the optimal location for
the second production well. The NPV surface corresponding to this problem
is shown in Figure 7(a). One could use an expected improvement based se-
quential design scheme (Jones et al., 1998) for finding this optimal location;
the key component in such a sequential optimization is to efficiently emulate
(i.e., fit a GP model to) the simulator response after every iteration of this
sequential procedure. In this paper, we focus on this first step of fitting a
GP model-based surrogate to the simulator output. For the second problem,
we allow the positions of all four wells to be chosen freely, meaning that the
NPV now depends on 8 variables. Both of these problems are variants of one
considered in Humphries et al. (2013).

5.1. 2-D Reservoir Simulator

Table 3 compares the performance of three methods for fitting the GP
model to the 2-D reservoir simulator: (i) ⌈0.5d⌉ BFGS, (ii) 2d+1 multi-start
BFGS, and (iii) DIRECT-BFGS. The number of training design points used,
n, ranges from 20 to 100. The performance of each optimization technique is
averaged over 25 simulations. For every value of n, the 2d+1 BFGS technique
returns the best Lβ value. The relative percent difference of the Lβ value
returned by the DIRECT-BFGS technique, however, is always less than 0.1%.
Moreover, in all cases, DIRECT-BFGS returns the smallest RMSPE value
and requires anywhere from 37% to 45% fewer FEs than 2d+ 1 BFGS, and
is therefore the preferred technique.

A close look on one realization (see Figure 6) reveals that the likelihood
surface changes significanly as the number of design points increases. In par-
ticular, when n = 80, a local optimum with a large basin of attraction is
created near the center of the Sβ domain. As a result, the ⌈0.5d⌉ multi-start
BFGS technique, which is a single-start technique when d = 2, converges
to this sub-optimal point when initialized in that region. DIRECT, on the
other hand, is able to determine an starting point that is significantly closer
to the global optimum (located in the top right corner) and thus avoids
converging to the sub-optimal point. This explains why the Lβ and corre-
sponding RMPSE values determined by ⌈0.5d⌉ BFGS are significantly higher
than those values determined by 2d + 1 BFGS and DIRECT-BFGS, when
n ≥ 40.

19



Algorithm n = 20 n = 40
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS 0.110 2.461 435 2.153 41.602 452
2d+ 1 BFGS − 2.461 691 − 3.359 721
DIRECT-BFGS 0.029 − 435 0.004 − 440

n = 80 n = 100
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS 2.757 47.734 461 2.648 22.459 465
2d+ 1 BFGS − − 756 − 3.476 822
DIRECT-BFGS − − 443 0.072 − 459

Table 3: Performance comparison of different Lβ optimization methods for
the 2-D reservoir simulator. Dashed values in the %∆Lβ and %∆RMSPE
columns indicate that the best overall value was found by this algorithm.
Underlined values in the FE column indicate the smallest number of FEs
required by any algorithm.
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Figure 6: Comparing Lβ surfaces of the 2-D reservoir simulator for varying design points.

Figure 7 shows the true simulator output and an example of the GP mod-
els that were found using each of the three optimization techniques, with
n = 100 design points. The 2d + 1 BFGS and DIRECT-BFGS approaches
provide near identical GP model predictions, with DIRECT-BFGS requir-
ing a fraction of the computational cost. As mentioned, the ⌈0.5d⌉ BFGS
technique converges to a sub-optimal β-parameter, and as a result the GP
model quality is significantly worse. In general we observe that for small
dimensional simulators, DIRECT-BFGS outperforms the ⌈0.5d⌉ multi-start
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(a) True simulator output.
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(b) ⌈0.5d⌉ BFGS.
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(c) 2d+ 1 BFGS.
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(d) DIRECT-BFGS.

Figure 7: True 2-D reservoir simulator output and GP fit surface obtained through Lβ

optimization using the ⌈0.5d⌉ BFGS, 2d + 1 BFGS and DIRECT-BFGS technique, with
n = 100. The locations of the two existing injection (×) wells and single production (◦)
well are shown in plot (a).

BFGS technique in terms of both optimization accuracy and efficiency (Ta-
bles 1 and 3, Figure 7). The 2d+1 multi-start BFGS method often provides
a more accurate GP model fit for any number of design points, but requires
up to 80% more FEs than both DIRECT-BFGS and ⌈0.5d⌉ BFGS for a 2-D
function. This example shows that DIRECT-BFGS provides an efficient al-
ternative to the 2d+1 multi-start BFGS approach, without sacrificing model
accuracy.

5.2. 8-D Reservoir Simulator

In our second example, we fit a GP model to the oil reservoir simulator
with 8 variables (the positions of all four wells), again using ⌈0.5d⌉ BFGS,

21



2d+1 BFGS and DIRECT-BFGS for Lβ optimization. The GP model is ini-
tialized using both 10d and 20d design points, and predicts for 100d points of
unknown function value. The performance of each of the three optimization
techniques is averaged over 25 simulations.

Table 4 compares the Lβ optimization and resulting GP model fitting
performance for each of the three techniques. Again, we observe that the 2d+
1 BFGS technique converges to the best Lβ value on average. Nonetheless,
this method requires roughly 12000 FEs, which is more than 3 times the
number of FEs required by ⌈0.5d⌉ BFGS and almost 6 times the number
of FEs required by DIRECT-BFGS. Moreover, DIRECT-BFGS, on average,
provides the highest quality GP model, as measured by the RMSPE value,
despite converging to a slightly sub-optimal Lβ value. The results obtained
in fitting the GP model to a true reservoir simulator provide evidence that,
in practice, one can employ the single start DIRECT-BFGS optimization
technique to greatly increase the efficiency of the GP model fitting procedure,
without compromising the quality of the model.

Algorithm n = 80 n = 160
%∆Lβ %∆RMSPE FE %∆Lβ %∆RMSPE FE

⌈0.5d⌉ BFGS 0.013 0.711 3706 0.007 1.139 3567
2d+ 1 BFGS − 2.370 11896 − 1.635 11893
DIRECT-BFGS 0.032 − 2070 0.026 − 2005

Table 4: Performance comparison of different Lβ optimization methods for
the 8-D reservoir simulator. Dashed values in the %∆Lβ and %∆RMSPE
columns indicate that the best overall value was found by this algorithm.
Underlined values in the FE column indicate the smallest number of FEs
required by any algorithm.

6. Conclusion

In this paper we have investigated several techniques for efficient opti-
mization of the deviance function, Lβ, in GP modelling. These techniques
provide the foundation for an improved Matlab package, GPMfit. The re-
sults obtained from simulated examples and real applications show that using
2d + 1 multi-starts of BFGS is computationally expensive, and that we are
able to significantly improve the optimization efficiency by reducing the num-
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ber of multi-starts to ⌈0.5d⌉, while maintaining the quality of the GP model
in most cases.

Implicit Filtering proves to be slightly less accurate and efficient than
BFGS, and therefore is included in the GPMfit solely as a secondary option.
The modified multi-start technique IF-2 is generally unreliable; specifically,
the slight reduction in computational cost that is gained does not outweigh
the reduced accuracy, particularly when more efficient and robust optimiza-
tion techniques exist.

Replacing the ⌈0.5d⌉ multi-start technique with the DIRECT optimiza-
tion algorithm enables us to further reduce the number of starts of BFGS
or IF from ⌈0.5d⌉ to 1. After an initial β0 value has been determined, the
DIRECT-based hybrid techniques require approximately 1

⌈0.5d⌉
as many func-

tion evaluations as the multi-start techniques and provide an almost equally
accurate model fit. As a result, the DIRECT-BFGS hybrid technique is the
default Lβ optimization algorithm used in the GPMfit package. The slightly
less efficient DIRECT-IF hybrid technique is also included in the GPMfit

package as an additional optimization option, along with the more compu-
tationally expensive 2d+ 1 and ⌈0.5d⌉ multi-start BFGS and IF techniques.

Future Work: Training a GP model by expected improvement (EI) is a
popular technique for optimization of computationally expensive simulators,
in which repeatedly evaluating the simulator by use of traditional optimiza-
tion routines is inefficient (Jones et al., 1998). We are currently exploring the
use of GP models trained by EI sequential design as an efficient alternative to
traditional optimization routines for global optimization of computationally
expensive simulators.

Supplementary Material

The open source Matlab package GPMfit is available for download on
SourceForge.net. See Readme.txt for detailed instruction. The main func-
tions are model fit.m and predictor iterative.m.
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Petelin, D., Filipič, B., Kocijan, J., 2011. Optimization of Gaussian Process
Models with Evolutionary Algorithms. Springer Berlin Heidelberg. volume
6593 of Lecture Notes in Computer Science. pp. 420–429.

Ranjan, P., Haynes, R., Karsten, R., 2011. A Computationally Stable Ap-
proach to Gaussian Process Interpolation of Deterministic Computer Sim-
ulation Data. Technomectrics 52, 366–378.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine
Learning.

Sacks, J., Welch, W., Mitchell, T., Wynn, H., 1989. Design and Analysis of
Computer Experiments. Statistical Science 4, 409–435.

Shanno, D., 1970. Conditioning of Quasi-Newton Methods for Function Min-
imization. Mathematics of Computation 24, 647–656.

Short, B., Higdon, D.M., Kronberg, P.P., 2007. Estimation of Faraday Ro-
tation Measures of the Near Galactic Sky Using Gaussian Process Models.
International Society for Bayesian Analysis 2, 665–680.

SINTEF Applied Mathematics, 2012. Matlab Reservoir Simulator Toolbox
v. 2012a. http://www.sintef.no/Projectweb/MRST/.

Wahba, G., 1978. Improper Priors, Spline Smoothing and the Problem of
Guarding Against Model Errors in Regression. Journal of the Royal Sta-
tistical Society B 40, 364–372.

Yeten, B., Durlofsky, L., Aziz, K., 2003. Optimization of Nonconventional
Well Type, Location and Trajectory. SPE Journal 8, 200–210.

26



Appendix A. Test Functions

Test Function (d) Formula y=f(x)

Hump (1) y = 1.0316285+ 4x2 − 2.1x4 + 1

3
x6

Goldstein-Price (2) y =
[1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]×

[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

Schwefel (5) y = 2094.9−
5
∑

i=1

xi sin
(

√

|xi|
)

Hartmann (6) y = −
6
∑

i=1

α · exp[−
6
∑

j=1

Bij(xj −Qij)
2]

α = [1, 1.2, 3, 3.2], B =









10 3 17 3.5 1.7 8
0.02 10 17 0.1 8. 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14









,

Q =









0.1312 0.1696 0.5569 0.0124 0.8283 0.588
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381









Rastrigin (10) y = 10n+
10
∑

i=1

(x2
i − 10 cos (2πxi))

Rosenbrock (10) y =
9
∑

i=1

[100(x2
i − xi+1)

2 + (xi − 1)2]

Perm (12) y =
12
∑

i=1

[

12
∑

j=1

[

(ji + 0.5)
(

xj

j

)i−1
]2
]

Table A.5: Test functions and corresponding formula used for evaluating the
performance of the Lβ optimization process in GP modelling.
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