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Abstract

Over the past decade much statistical research has been carried out to develop models for

correlated survival data; however, methods for model selection are still very limited. A stochastic

search variable selection (SSVS) approach under the proportional hazards mixed-effects model

(PHMM) is developed. The SSVS method has previously been applied to linear and generalized

linear mixed models, and to the proportional hazards model with high dimensional data. Because

the method has mainly been developed for hierarchical normal mixture distributions, it operates on

the linear predictor under the Cox type models. The PHMM naturally incorporates the normal

distribution via the random effects, which enables SSVS to efficiently search through the

candidate variable space. The approach was evaluated through simulation, and applied to a multi-

center lung cancer clinical trial data set, for which the variable selection problem was previously

debated upon in the literature.
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1 Introduction

Correlated survival data arise in various practical applications including multi-center clinical

trials, genetic studies, and recurrent events. In many such applications the data consist of

clusters and observations within the clusters. A number of statistical methods have been
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developed over the last decade to analyze such data. The proportional hazards mixed-effects

model (PHMM) was proposed by Ripatti and Palmgren (2000) and Vaida and Xu (2000) to

model clustered survival data, which allows cluster specific random effects of arbitrary

covariates. Suppose that Tij is the random variable representing the failure time of individual

j in cluster i. The PHMM assumes that the hazard function of Tij follows

(1)

where β is a p × 1 vector of fixed effects, bi ~ N(0, Σ) is a q × 1 vector of cluster specific

random effects, xij is a p × 1 vector of covariates, and zij is typically a q × 1 subvector of xij,

except that zij is allowed to contain an element of ‘1’ for a random cluster effect on the

baseline hazard.

Under model (1) various inference procedures have been proposed in the literature. Ripatti

and Palmgren (2000) considered a penalized partial likelihood approach, which is similar to

the penalized quasi-likelihood (PQL) under the generalized linear mixed models. Vaida and

Xu (2000) proposed a nonparametric maximum likelihood estimator (NPMLE), obtained

using a Monte Carlo EM algorithm. Cortiñas-Abrahantes et al. (2007) considered a Laplace

EM algorithm for the NPMLE. A comprehensive comparison of these methods can be found

in Gamst et al. (2009). Although it is reasonably clear to see the advantages and limitations

of the different inference procedures, only very recently attention has started to focus on

model selection. Under model (1) this concerns the selection of fixed as well as random

effects.

Xu et al. (2009) considered the likelihood ratio test under model (1), as well as a profile

Akaike information criterion for model selection. Donohue et al. (2011) developed a

conditional Akaike information criterion, where the focus is on the estimation of the fixed as

well as the random effects. Under the special case of frailty models where zij is restricted to

either 0 or 1, Fan and Li (2002) considered selection of the fixed effects. Gray (1995) and

Commenges and Andersen (1995) developed score tests for no random effects in the frailty

model, although it is also possible to generalize the score tests to test for no random effects

of additional covariates under model (1) via stratification (Gray, 2006). Dunson and Chen

(2004) also considered selection of random effects under the gamma frailty model, using a

Bayesian approach. Interestingly Dunson and Chen (2004) arrived at a different conclusion

from the score tests of Gray (1995), on the data from a multi-center clinical trial in lung

cancer, which will be further discussed in this paper.

Stochastic search variable selection (George and McCulloch, 1993, SSVS) is an approach

based on the Bayesian hierarchical normal mixture setup under a regression model, where

latent variables are used to indicate the inclusion or exclusion of a potential predictor. It uses

Gibbs sampler to sample from a multinomial distribution on the set of possible subset

choices, and the promising subsets of predictors are identified as those with high posterior

probabilities. As will be described below, SSVS avoids the overwhelming problem of

calculating the posterior probabilities of all 2p subsets, and is computationally fast and

efficient. The SSVS method has been extended to linear and generalized linear mixed

models (Chen and Dunson, 2003; Kinney and Dunson, 2007), and to survival models (Lee
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and Mallick, 2004). Because of its ability to select among a larger number of potential

predictors, it has been applied to high dimensional data including genomics and other

complex disease risk factor studies (Beattie et al., 2002; Lee et al., 2003; Swartz et al.,

2008; Lin and Huang, 2008).

In the following we develop the SSVS under the general PHMM (1), for selection of both

fixed and random effects of arbitrary covariates. There has been no Bayesian approach to

this problem in the literature, which has the advantage of subsequent model averaging that

can take into account model uncertainty and selection bias. In Section 3 we examine the

performance of SSVS using simulations. We apply the approach to the multi-center lung

cancer clinical trial data set that was previously analyzed in Gray (1995) and Dunson and

Chen (2004) in Section 4. The last section contains further discussion, and all the posterior

computation details are given in the Appendix.

2 Variable Selection under the PHMM

For clusters i = 1, ···, n, and observations j = 1, ···, ni, denote tij the observed, possibly right-

censored failure time, δij =1 if tij is an observed failure time, and 0 otherwise. Let N be the

total number of observations, that is, .

Under model (1)  is the linear predictor, or the prognostic index, which

determines the relative risk of an individual. It is an intermediate quantity analogous to the

response in a linear model, which in this case associates the predictors with the ultimate

survival outcome. Since the SSVS was initially developed for the hierarchical normal

mixture distributions, Lee and Mallick (2004) considered adding a small random quantity εij

~ N(0, σ2) to the linear predictor. The resulting model is then

(2)

The εij's may be viewed as an individual heterogeneity term which can improve the fit of the

model to the data (O'Quigley and Stare, 2002). But the consideration here is mainly

computational, because it simplifies the posterior computation as described below and

allows the Gibbs sampler to efficiently search through the model space. We should still

consider data as generated under model (1), while model (2) is a working model; this is also

reflected in our simulations later: while data were generated under model (1), we follow the

approach described below to do variable selection and estimation. We should mention that

the identifiability of model (2) is similar to the individual frailty models considered in

Kosorok et al. (2001), and can also be more intuitively seen from the equivalent

transformation model formulation: , where eij = e0ij – εij, e0ij

has a fixed, known extreme value distribution with Var(e0ij) = 1.645, and h(t) = log Λ0(t)

where  is the cumulative baseline hazard function.

For notational purposes, let Xi = (xi1, xi2, . . . , xini)′, Zi = (zi1, zi2, . . . , zini)′, and εi = (εi1,

εi2, . . . , εini)′ for i = 1, 2, . . . , n. Also let , Z = diag{Z1, Z2, . . . ,
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Zn}, , and . Finally let , W =

(W11, W12, . . . , Wnnn)′, t = (t11, . . . , tnnn)′, δ = (δ11, . . . , δnnn)′, and Y = (t, δ) which

denotes the observed survival data. Then we have:

(3)

where Σ is positive semi-definite as it may include variance components that should be

excluded from the final selected models, ⊗ denotes the Kronecker product, and In denotes

an n × n identity matrix.

The SSVS uses latent binary variables γ = (γ1, ... γp)′ to indicate the inclusion or exclusion

of a fixed effect: γk = 1 if βk ≠ 0 and 0 otherwise, k = 1, ..., p. Given γ, let βγ consist of all

nonzero elements of β, and let Xγ be the columns of X corresponding to the elements of βγ.

After specifying the prior distribution for γ, βγ and other parameters, one uses the observed

data likelihood and Markov chain Monte Carlo (MCMC) to sample from the posterior

distribution of γ = (γ1, ... γp)′. After burn-in, i.e. convergence of the MCMC chain, denote

s = 1, ..., S the MCMC samples. Then the marginal probability of inclusion for each fixed

effect can be estimated by

(4)

where  is the sampled value of γk in iteration s, k = 1, ..., p. For selection of the random

effects, a re-parameterization of the covariance matrix Σ is applied, so that whether αl = 0 (l

= 1, ..., q, see below) plays the same role as the γk's above. This is described in full details in

the following.

2.1 Prior specification

The priors for γ, βγ and σ2 are:

(5)

(6)

(8)

In the above, the γk's are assumed to be a priori independent with P (γk = 1) = πk, 0 ≤ πk ≤

1, for k = 1, ..., p. In practice we may take πk = 0.5 if there is no prior knowledge about

whether a fixed effect should be included, and we consider this as the ‘non-informative’
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prior; or we may take πk = 1 if we want to force a fixed effect into the model. When all πk =

0.5 (k = 1, ..., p), it is clear that each model γ for the fixed effects has a prior probability

equal to 2–p. The prior variance of β is taken to be proportional to , as it results

in a fast computing algorithm for the Gibbs sampler; this is also called Zellner's g-prior

(Zellner, 1986; Smith and Kohn, 1996). Finally, the improper prior for σ2 is commonly used

such that log(σ2) is uniform.

To specify the priors for the variance components, Chen and Dunson (2003) considered a

modified Cholesky Decomposition of Σ:

(9)

where Ψ = diag(ψ1, . . ., ψq), and Ω is a lower triangular matrix with diagonal elements

equal to 1. When ψl = 0 in Ψ, the l-th diagonal element of Σ is also equal to 0, implying that

the l-th random effect is excluded from model (1). The off-diagonal elements of Ω, denoted

by ω, represent the dependency among the random effects. Using decomposition (9) we

have , where , ai ~ N (0, Iq). Kinney and

Dunson (2007) further considered the parameter-expansion (PX) approach of Gelman

(2006) for variance components. The over-parameterization in PX reduces dependence

among the parameters in a hierarchical model and improves the Gibbs convergence (Liu et

al., 1998). Using the PX approach (3) becomes

(10)

where A = diag(α1, . . . , αq), D = diag(d1, . . . , dq), and . Following

Kinney and Dunson (2007) the priors are:

(11)

(12)

(13)

where ZI-N+(0, 1, pl0) represents the mixture distribution putting point mass pl0 on αl = 0,

and probability 1 – pl0 on N+(0, 1) which is the positive part of N(0,1), and ‘IG’ denotes

inverse Gamma. Just like for the fixed effects β, we can set the hyperparameters pl0 = 0.5 for

equal prior probabilities to include or exclude a random effect, hence the ‘non-informative’

prior; or we can set pl0 = 0 to force a random effect in the model. For the other

hyperparameters we set ω0 = 0 and Vω = 0.5I.

Finally for the baseline cumulative hazard function Λ0(t) we consider a Gamma process

(GP) prior (Kalbfleisch, 1978; Clayton, 1991; Ibrahim et al., 2001):
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(14)

where Λ* is the mean process, and the variance of Λ0(t) is given by Λ*(t)/a. When there are

no random effects in the proportional hazards model and a is close to zero, the resulting

marginal posterior of β is approximately proportional to the partial likelihood of Cox (1975),

while as a → ∞ the Gamma process is effectively replaced by Λ*, and it becomes the

likelihood function of (β, Λ*) (Ibrahim et al., 2001). Typically Λ* is assumed to be a known

cumulative baseline hazard function with hyperparameters, and λ* = dΛ*/dt denotes its

corresponding baseline hazard function. In this paper we mostly take Λ*(t) = ηtκ from the

Weibull distribution, and we can estimate the hyperparameters η and κ from the data by

fitting a Weibull regression model including all covariates. Figure 1 plots the pointwise 5th

and 95th quantiles of the Gamma process based on the lung cancer data, with various values

of a. Following Lee and Mallick (2004) we use a = 10 for the rest of the paper.

2.2 The likelihood and posterior computation

Conditional on the random effects, we can integrate out Λ0(t) ~ G(aΛ(t), a) at each t, and

obtain the likelihood of the survival data Y marginalized over the prior distribution of the

baseline hazard function (Lee and Mallick, 2004). The resulting likelihood is

(15)

where Bij = –log{1–exp(Wij)/(a+Aij)}, , and R(tij) is the set of

individuals at risk at time tij – (j = 1, . . . , ni; i = 1, . . . , n). If we let θ = (β′, α′, ω′, d′,

σ2)′, where α = (α1, . . . , αq)′ and d = (d1, . . . , dq)′, the above likelihood involves θ only

through W.

We can obtain the posterior distribution of interest by

(16)

As mentioned before W is an intermediate quantity that associates the predictors with the

survival outcome, and here it is viewed more like a parameter in the posterior computation.

To draw inferences about all the parameters of interest as well as model selection, Gibbs

samplers or Metropolis-within-Gibbs algorithms are typically implemented. To compute the

model posterior distribution, we consider the composite parameter space method of Green

and O'Hagan (1998), and tailor it to the context of candidate models with fixed and random

effect structures. During an iteration of the procedure, parameters belonging to one part of

the model are updated using a standard method, such as a Gibbs or Metropolis-Hastings

step, while the other parameters are left unchanged. Our scheme moves around among the

indicators for the fixed and the random effects, and the parameters for the fixed and the

random effects, as detailed below:
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1. Move from a selection of the fixed effects to the next selection of fixed effects by a

standard MCMC step. The selection of fixed effects is indexed by the latent binary

variables γ = (γ1, ... γp)′ to indicate the inclusion or exclusion of a fixed effect.

2. Update all fixed effect parameters by a standard MCMC procedure, holding all

other parameters unchanged. That is, generate βγ from the full conditional

distribution.

3. Move from a selection of random effects to another selection of random effects by

a standard MCMC step. Just like for the fixed effect, the index for the random

effects is determined by αl = 0 or not, l = 1, ..., q.

4. Update all random effect parameters, holding all other parameters unchanged.

The proof of convergence properties as shown by Green and O'Hagan carries over to the

algorithm above. All the relevant posterior computations are given in the Appendix. Note

that we update each γk individually, k = 1, ..., p. Here we actually integrate out βγ in (10). A

similar approach integrating out both βγ and σ2 was used in Smith and Kohn (1996) to

accelerate the convergence of the MCMC chain. We investigated both approaches, and the

results were similar. Each αl is also updated individually, l = 1, ..., q. The zero-inflated

truncated normal prior for αl yields a conjugate posterior.

3 Simulation Experiments

We simulated data under model (1) for various numbers of clusters and cluster sizes (n, ni).

Here we show the results with relatively small n and ni, to illustrate the type of sample sizes

required for the SSVS to properly select the fixed and the random effects. We set λ0(t) = 1.

Censoring was generated as Uniform(0, τ), where τ was chosen so that about 20% of the

observations were censored in each case. We had p = 4 potential covariates, and xij = (xi1,

xi2, xi3, xi4)′ where each component of x was generated independently from Uniform (−2,

2). For the random effects, we had q = 3, and zij = (1, xi1, xi2)′. The true value of the

parameters were β = (0.8, 0.4, 0.4, 0)′, and Σ = diag(0.4, 0.2, 0). In the tables we used

subscript 0, 1 and 2 to indicate the random effects for the baseline hazard, x1 and x2,

respectively. We also gave the empirical variances of the simulated random effects in

parenthesis in addition to the true values of Σ; the accuracy of the estimated variances can be

better reflected when compared to these empirical variances than to the true values. We first

used ‘non-informative’ prior for selecting any of the fixed or random effects, that is, πk = pl0

= 0.5, k = 1, ..., p, l = 1, ..., q. The sample sizes were 20, 30 and 50 clusters, with cluster

sizes 10 and 20, respectively. The MCMC chain consisted of 10,000 iterations, with the first

10% for burn-in so that S = 9, 000 in this case.

The SSVS gives the marginal posterior probability for selecting each of the fixed and

random effects as described in the previous section. It also gives the posterior probability of

each potential model in a similar way. In Tables 1 and 2 we present the results for the three

models with the highest posterior probabilities, namely B1, B2 and B3, as well as the

averaged estimates from all S = 9, 000 iterations and the corresponding 95% credible

intervals. The latter have the interpretation of model averaged inference. Alternatively, a
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user may choose a model based on its posterior probability, say, and carry out conditional

inference; this will be illustrated in our data example of the next section.

For the smallest sample size of 20 clusters with 10 observations each, the top one-third of

Table 1 shows that all of the top three models missed the random effect on x1 which had a

variance of 0.2. The first two fixed effects had marginal posterior probability one, while the

third fixed effect had a posterior probability of 0.764. The random effect on the baseline

hazard with a variance of 0.4 had a posterior probability of 0.635. The 95% credible

intervals contained the true values of all parameters except β3 and Σ11.

When the number of clusters increased to 30 in the middle of Table 1, the true model had a

posterior probability of 0.678. All the ‘true’ fixed effects had posterior probability one, and

two random effects had posterior probability 0.77 and 0.934, respectively. The 4th fixed

effects had a posterior probability of 0.212, which was slightly high. The 95% credible

intervals contained the true values of all parameters except Σ00, which was under-estimated.

The results for 50 × 10 are in the bottom one-third of Table 1, where the 4th fixed effect had

a high posterior probability of 0.418. But the true random effects had much higher posterior

probabilities (1 and 0.91, respectively) than the previous two scenarios, and the 95%

credible intervals contained the true values of all parameters except Σ00, which was over-

estimated in this case.

When the cluster size increased to 20 observations per cluster, even with only 20 clusters in

Table 2, the results were quite good: the true model had a posterior probability of 0.891, all

the true fixed and random effects had posterior probabilities of one or very close to one

(0.968 for Σ11), the null fixed (β4) and random (Σ22) effects had very low posterior

probabilities, and the 95% credible intervals contained the true values of all parameters.

With larger numbers of clusters as in the middle and bottom of Table 2, the results were

even better, with generally tighter credible intervals, and the true model had a posterior

probability of 0.94 when there were 50 clusters of 20 observations each.

The above used ‘non-informative’ prior for selecting any of the fixed or random effects, that

is, πk = pl0 = 0.5, k = 1, ..., 4, l = 0, 1, 2. In Table 3 we consider the sensitivity of the prior

probabilities pl0's for selecting random effects. As we understand in general, when the

sample sizes are small, the prior should have more influence on the posterior distribution, as

compared to larger sample sizes. This is indeed the case in Table 3. Note that pl0 is the

probability of mass zero in the prior (11) for the random effects. When ni = 10, pl0 = 0.2 (l =

0, 1, 2) gave rise to high posterior probabilities (1 and 0.887) for the two random effects

corresponding to Σ00 and Σ11, while pl0 = 0.8 (l = 0, 1, 2) gave only high posterior

probability for one random effect. On the other hand, when ni = 20, both pl0 = 0.2 and 0.8 (l

= 0, 1, 2) gave high posterior probabilities for the two random effects. In fact, when pl0 = 0.8

only two models (B1 and B2) had positive posterior probabilities, and both contain the two

true random effects.
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4 An Example

We apply our proposed model to a multi-center advanced stage non-small cell lung cancer

clinical trial data which was analyzed in Gray (1994) and Vaida and Xu (2000). The study

was conducted by the Eastern Coorperative Oncology Group. There were two randomized

treatment arms: a standard chemotherapy (CAV) and an alternating regimens (CAV-HEM)

where cycles of CAV were alternated with HEM. The outcome of interest was overall

survival, and the longest follow-up time was about 8.4 years. Five binary covariates were

found to be significantly associated with survival in the previous published analyses:

treatment assignment, presence or absence of bone metastases, presence or absence of liver

metastases, performance status at study entry (ambulatory or not), and whether there was

weight loss prior to study entry. Gray (1995) found significant institution-to-institution

variation in the treatment effects using a score test under the frailty model. Vaida and Xu

(2000) fitted model (1) to the data with potential random effects for all five covariates, and

found that those for bone metastases were even stronger than the random effects for

treatment, while the variances of the random effects of the rest three covariates converged

towards zero. Dunson and Chen (2004) considered selection of frailty terms using a

Bayesian approach by putting a mixture prior on the frailty variances with point mass at zero

and inverse Gamma, and concluded that after accounting for the random bone metastases

effects, there was no direct evidence of institutional variation in treatment effects. This then

led to a correspondence by Gray (2006) pointing out the statistical significance of the

random treatment effects by a score test even after accounting for the random bone

metastases effects, together with a reply by Dunson and Chen who did a separate analysis to

support their original conclusion published in 2004.

Here we take another look at the data using the SSVS approach. We consider the 22

institutions with more than 7 enrolled subjects each; this gives a total of 546 patients, and

the actual numbers of patients per institution are between 11 and 56. In addition to the fixed

effects for the five covariates described above, we also consider six potential random effects,

on the baseline hazard as well as for the five covariates. We first set the prior probabilities

for the fixed and the random effects to be πk = 0.5, k = 1, ..., 5, and pl0 = 0.5, l = 0, 1, ..., 5.

As mentioned before, we consider these as ‘non-informative’ priors for the probabilitilies of

inclusion of the fixed and random effects, respectively. We ran three Gibbs samplers for

10,000 iterations, after a burn-in period of 5000 iterations from dispersed initial values. The

Gelman-Rubin statistic (Gelman and Rubin, 1992) was computed to check the convergence

and the chains were shown to converge. The results are given in Table 4. The three models

with the highest posterior probabilities contain only the random bone metastases effect, and

the random treatment effect has a very low inclusion probability of 0.002. The fixed effects

of treatment and bone metastases have slightly low inclusion probabilities of 0.81 and 0.84,

respectively. In the table we also provide 95% credible intervals conditional on B1, if that is

the selected model, as well as averaged over all the models in the ‘Estimate (95% CI)’

column, like we did in the simulations of the last section.

To better understand the behavior of SSVS in this case, we carry out further simulations in

Table 5 mimicking the lung cancer data. The covariates as well as the sample sizes including

the number of clusters and the numbers of observations in each cluster for both tables are the
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same as in the lung cancer data, and the baseline hazard function is estimated

nonparametrically from the lung cancer data with R package ‘phmm’. Recall that in the

simulations of Section 3 all the covariates were continuously distributed as Uniform(−2, 2),

with a variance of 4/3. For binary (0, 1) covariates, however, the variance is only 1/4. We

can only compare the strength of any effect when the corresponding covariates are on the

same scale, since we can otherwise always multiple the effect by a non-zero constant and

divide the covariate by the same constant and the model is unchanged. In the top half (‘weak

effects’) of Table 5 the strength of the random effects as reflected in their variances Σ11 and

Σ22 are comparable to those estimated from the lung cancer data, while in the bottom half

(‘strong effects’) they are increased to be equivalent to those for the Uniform(−2,2)

covariates as in Section 3 (0.2 × 16/3 = 16/15, 0.4 × 16/3 = 32/15). It is clear from the table

that when both random effects are strong, both of them have a posterior probability of one;

but with the level of strength as in the lung cancer data, only the stronger of the two random

effects has a high probability of inclusion.

The above investigation might provide some explanation for the discrepancy between the

frequentist score test as mentioned before and the Bayesian variable selection for the lung

cancer data. While the score test detects significant institutional variation in treatment

effects after having accounted for the random bone metastases effects, the random treatment

effects are relatively weak such that in simulation studies the Bayesian variable selection

chooses not to model it. From the point of view of model selection, it then depends on the

criterion that is important to the question of concern according to which one chooses to

model the random treatment effect or not. We also note that Cai (2010) analyzed this data

set using Dirichlet process prior for the frailty distribution, and reached a conclusion that

was somewhat a compromise between Dunson and Chen (2004) and Gray (1995).

Finally we carry out sensitivity analysis of the lung cancer data in Table 6 with respect to the

prior probabilities of both the fixed (πk's) and the random (pl0's) effects. Since there has

been consensus in the literature about the clinical importance of all five covariates, we set

the prior probabilities πk = 1 (k = 1, ..., 5) in the top third of Table 6. This also makes it

more comparable with Dunson and Chen (2004), where the inclusion of the fixed effects

was not questioned. The model with the highest posterior probability contains only the

random bone metastases effect, while the random treatment effect has an inclusion

probability of 0.01. We then set the prior probabilities pl0 for the (exclusion of) random

effects to be 0.2 and 0.8 (l = 0, 1, ..., 5), and the results are in the rest of Table 6. Again note

that pl0 is the probability of mass zero in the prior (11) for the random effects, so pl0 = 0.8

makes it unlikely for a random effect to be included in the model, as is the case in the

bottom of Table 6. In this case, it might be the relatively weak random effect of bone

metastases (see above), in addition to some of the small cluster sizes in the data, that causes

pl0 = 0.8 to lead to basically no selected random effects. On the other hand, even with a low

pl0 = 0.2, we still only have the random bone metastases effect with high posterior

probability of 0.85, while the other random effects have very low posterior probabilities of

inclusion.
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5 Discussion

In this paper we have developed the Bayesian SSVS approach for selection of fixed as well

as random effects under the PHMM. For computational purpose, we have added the εij's to

the linear predictor in the PHMM, which also expands the model to allow for individual

heterogeneity. Our simulation results show that this approach works well even when the data

are generated as i.i.d., i.e. with Var(εij) = 0. For the prior distribution of σ2 = Var(εij), we

have also considered truncated inverse-Gamma, the simulation results (data not shown)

depended on the range of truncation and were generally not better than the uniform prior

described in details in this paper.

We have used the Gamma process prior, which allows marginalization over the prior

distribution of the baseline hazard function, and greatly accelerates the MCMC convergence.

There are more general and flexible stochastic processes, such as the generalized Gamma

process (Brix, 1999). The use of such a more general prior will substantially increase the

computational burden. Alternatively, one might also consider putting prior on the increments

of the cumulative baseline hazard function, as was done in Gray (1994) and Dunson and

Chen (2004). As suggested by a reviewer, and also confirmed in our empirical experiences,

while the Gamma process prior is relatively restrictive, it appears to provide sufficient

performance for the purpose of variable selection. On the other hand, if more accurate

parameter estimation or prediction is of interest, one might wish to investigate the more

general prior processes and develop the corresponding computation techniques. This

certainly makes an interesting future research topic.

We have carried out sensitivity analysis in both simulation and the lung cancer data analysis,

with respect to the prior probabilities πk and pl0 for selection of the fixed and random

effects. We consider πk = 0.5 and pl0 = 0.5 to be the ‘non-informative’ priors, to be used

when we have no reference or prior knowledge of whether a fixed or random effect should

be included in a model. On the other hand, we can set either of them to be one to force a

fixed or random effect into a model. From our sensitivity analysis, it is seen that the smaller

the sample size, the more influence the prior has on the posterior probabilities of selection in

general. In addition, the strength of a random effect (see also below) also plays a role in its

posterior probability of inclusion in the model.

A reviewer asked about the definition of weak versus strong random effects, which have led

to different conclusions of variable selection in Section 4. We think that this is a relative

concept, and perhaps largely depends on the underlying data structure which is often

unknown. We have illustrated through the lung cancer data analysis how simulation can be

used to help understand the conclusions of model selection methods, given the possibly

complex real data structure at hand.

The SSVS provides the posterior probabilities of any fixed and random effects under the

PHMM, as well as the posterior probability of any candidate model that consists of a

combination of the fixed and random effects. A user may choose his or her own decision

rule, together with conditional or model averaged inference, depending on the needs and

interpretation of the data analysis. George and Foster (2000) discussed the connection
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between Bayes variable selection and other commonly used types of information criteria

such as AIC, BIC, etc; the explicit connection under the PHMM is an open problem to be

explored.

Our simulation experiments were carried out with moderate sample sizes. A notable

phenomenon has been that the cluster sizes appear to have more impact on the performance

of SSVS than the number of clusters: larger cluster sizes have substantially improved the

variable selection. We note that the approach has not worked well for clusters as small as

five observations each. Therefore, this method would not apply to certain data types with

small clusters, such as in a twin study. Model selection under the PHMM for those cases still

remains an area to be further studied.
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Appendix

The survival function conditional on the random effects is

where Λ0 is the unknown baseline cumulative hazard function. The joint survival function

conditional on the random effects is then

For notational convenience, θ–a denotes all θ except a.

• Full conditional distribution of W:
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(17)

• Full conditional distribution of γ:

Let  and

where .

Then, integrate out βγ and σ2 as follows:

Then

Let , and , k = 1, ..., p. Since

 and

, we have
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• Full conditional distribution of γ after integrating out βγ:

Let  and

where . Then, integrate out βγ as follows:

Then

Let  and , k = 1, ..., p. Since

 and

, we have

• Full conditional distribution of βγ:

therefore

where  and .
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• Full conditional distribution of g:

where . Therefore,

.

• Full conditional distribution of σ2:

Therefore

where .

•
The full conditional distribution p(ω|α, β, ε, W, X Z) is ,

where

(18)

(19)

U = (u11, u12, . . . , unnn)′, and the q(q – 1)/2 vector uij is defined as (ξilαmZijm : l =

1, . . . , q, m = l + 1, . . . , q)′, so that the random effects term  can be

written as .

• The latent variables ξi have conditional distribution p(ξ|β, α, γ, W, X, Z) given by

, where

(20)

Lee et al. Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(21)

•
, l = 1, ..., q, where

 denotes the normal density with

mean m and variance v evaluated at 0, and Φ(0; m, v) denotes the normal

cumulative distribution function with mean m and variance v evaluated at 0. The q

vector

is defined so that the random effects term  can be written as .

• The full conditional distribution of di, l = 1, ..., q is

.
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Figure 1.
The 5th and 95th quantiles of the Gamma process prior for the cumulative baseline hazard function, with  and 

estimated from the lung cancer data set. The solid line is the mean of the Gamma process.
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Table 1

Simulation results with ni = 10; B1, B2 and B3 are top three selected models.

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

n = 20 β 1 0.8 0.882 0.964 0.828 0.896 (0.738, 1.103) 1.000

β 2 0.4 0.459 0.489 0.482 0.473 (0.313, 0.628) 1.000

β 3 0.4 0.226 0.282 0.191 (0.000, 0.382) 0.764

β 4 0 0.001 (−0.007, 0.028) 0.121

Σ 00 0.4 (0.19) 0.313 0.327 0.203 (0.000, 0.605) 0.635

Σ 11 0.2 (0.21) 0.001 (0.000, 0.000) 0.013

Σ 22 0 0.000 (0.000, 0.000) 0.006

Pr(Selection) 0.385 0.276 0.157

n = 30 β 1 0.8 0.768 0.764 0.719 0.758 (0.603, 0.871) 1.000

β 2 0.4 0.409 0.409 0.362 0.401 (0.305, 0.475) 1.000

β 3 0.4 0.384 0.371 0.367 0.382 (0.295, 0.492) 1.000

β 4 0 −0.075 −0.118 −0.021 (−0.142, 0.000) 0.212

Σ 00 0.4 (0.17) 0.237 0.198 0.179 (0.000, 0.387) 0.770

Σ 11 0.2 (0.17) 0.222 0.254 0.228 0.210 (0.000, 0.370) 0.934

Σ 22 0 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.678 0.091 0.091

n = 50 β 1 0.8 0.850 0.867 0.796 0.851 (0.715, 0.999) 1.000

β 2 0.4 0.464 0.471 0.447 0.465 (0.381, 0.541) 1.000

β 3 0.4 0.500 0.496 0.438 0.494 (0.394, 0.597) 1.000

β 4 0 0.095 0.039 (0.000, 0.144) 0.418

Σ 00 0.4 (0.43) 0.843 0.798 0.666 0.808 (0.502, 1.233) 1.000

Σ 11 0.2 (0.16) 0.306 0.306 0.279 (0.000, 0.465) 0.911

Σ 22 0 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.514 0.396 0.067
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Table 2

Simulation results with ni = 20; B1, B2 and B3 are top three selected models.

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

n = 20 β 1 0.8 0.726 0.715 0.748 0.726 (0.564, 0.922) 1.000

β 2 0.4 0.426 0.431 0.460 0.428 (0.351, 0.518) 1.000

β 3 0.4 0.360 0.381 0.336 0.361 (0.283, 0.473) 1.000

β 4 0 −0.012 −0.001 (0.000, 0.000) 0.078

Σ 00 0.4 (0.41) 0.527 0.551 0.539 0.530 (0.259, 0.982) 1.000

Σ 11 0.2 (0.22) 0.212 0.226 0.206 (0.071, 0.423) 0.968

Σ 22 0 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.891 0.077 0.030

n = 30 β 1 0.8 0.775 0.771 0.776 0.775 (0.627, 0.940) 1.000

β 2 0.4 0.403 0.397 0.405 0.402 (0.315, 0.483) 1.000

β 3 0.4 0.469 0.476 0.501 0.470 (0.388, 0.559) 1.000

β 4 0 −0.011 −0.001 (0.000, 0.000) 0.081

Σ 00 0.4 (0.52) 0.718 0.721 0.707 0.718 (0.396, 1.174) 1.000

Σ 11 0.2 (0.17) 0.242 0.256 0.274 0.244 (0.121, 0.425) 1.000

Σ 22 0 0.002 0.000 (0.000, 0.000) 0.002

Pr(Selection) 0.917 0.081 0.002

n = 50 β 1 0.8 0.819 0.820 0.819 (0.685, 0.974) 1.000

β 2 0.4 0.398 0.400 0.398 (0.330, 0.472) 1.000

β 3 0.4 0.422 0.428 0.423 (0.354, 0.493) 1.000

β 4 0 −0.004 −0.000 (0.000, 0.000) 0.060

Σ 00 0.4 (0.29) 0.295 0.300 0.295 (0.176, 0.458) 1.000

Σ 11 0.2 (0.28) 0.291 0.301 0.292 (0.189, 0.434) 1.000

Σ 22 0 (0.000, 0.000) 0.000

Pr(Selection) 0.940 0.060 0.000
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Table 3

Simulation results with n = 20; B1, B2 and B3 are top three selected models.

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

ni = 10 β 1 0.8 0.446 0.426 0.642 0.430 (0.000, 0.739) 0.937

pl0 = 0.2 β 2 0.4 0.310 0.298 0.353 0.292 (0.018, 0.453) 0.952

β 3 0.4 0.393 0.387 0.429 0.394 (0.258, 0.555) 1.000

β 4 0 −0.025 −0.004 (−0.061, 0.015) 0.191

Σ 00 0.4 (0.33) 0.637 0.636 0.908 0.702 (0.229, 1.554) 1.000

Σ 11 0.2 (0.21) 0.269 0.275 0.267 (0.000, 0.683) 0.887

Σ 22 0 0.011 (0.000, 0.090) 0.144

Pr(Selection) 0.562 0.142 0.078

ni = 10 β 1 0.8 0.507 0.479 0.519 0.503 (0.338, 0.693) 1.000

pl0 = 0.8 β 2 0.4 0.287 0.269 0.251 0.281 (0.144, 0.409) 0.993

β 3 0.4 0.358 0.352 0.366 0.357 (0.206, 0.522) 1.000

β 4 0 −0.011 −0.002 (−0.044, 0.034) 0.160

Σ 00 0.4 (0.33) 0.561 0.546 0.392 0.558 (0.194, 1.151) 1.000

Σ 11 0.2 (0.21) 0.040 0.000 (0.000, 0.000) 0.008

Σ 22 0 0.000 (0.000, 0.000) 0.002

Pr(Selection) 0.825 0.159 0.007

ni = 20 β 1 0.8 0.738 0.715 0.696 0.733 (0.494, 0.976) 1.000

pl0 = 0.2 β 2 0.4 0.360 0.388 0.376 0.366 (0.268, 0.457) 1.000

β 3 0.4 0.327 0.329 0.330 0.327 (0.243, 0.421) 1.000

β 4 0 0.057 0.011 (0.000, 0.096) 0.201

Σ 00 0.4 (0.32) 0.495 0.461 0.462 0.488 (0.205, 0.928) 1.000

Σ 11 0.2 (0.28) 0.376 0.352 0.377 0.371 (0.199, 0.627) 1.000

Σ 22 0 0.002 0.000 (0.000, 0.000) 0.008

Pr(Selection) 0.793 0.200 0.006

ni = 20 β 1 0.8 0.696 0.791 0.705 (0.586, 0.837) 1.000

pl0 = 0.8 β 2 0.4 0.395 0.464 0.401 (0.335, 0.475) 1.000

β 3 0.4 0.334 0.328 0.333 (0.297, 0.361) 1.000

β 4 0 0.035 0.003 (0.000, 0.037) 0.090

Σ 00 0.4 (0.32) 0.379 0.386 0.380 (0.215, 0.634) 1.000

Σ 11 0.2 (0.28) 0.191 0.200 0.192 (0.117, 0.308) 1.000

Σ 22 0 0.000 (0.000, 0.000) 0.000

Pr(Selection) 0.910 0.090
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Table 4

Selection of fixed and random effects for the lung cancer data

Effect Variable B1 (95% CI) B2 B3 Estimate (95% CI) Pr(Inclusion)

Fixed Treatment −0.245 (−0.405, −0.109) −0.229 −0.186 (−0.360, 0.000) 0.808

Bone 0.248 (0.074, 0.435) 0.361 0.224 (0.000, 0.450) 0.835

Liver 0.263 (0.132, 0.472) 0.276 0.408 0.317 (0.164, 0.521) 1.000

P.S. −0.430 (−0.591, −0.344) −0.422 −0.574 −0.461 (−0.620, −0.347) 1.000

W.L. 0.263 (0.173, 0.367) 0.287 0.309 0.273 (0.171, 0.386) 0.996

Random Baseline 0.000 (0.000, 0.000) 0.001

Treatment 0.000 (0.000, 0.000) 0.002

Bone 0.158 (0.049, 0.305) 0.250 0.064 0.130 (0.000, 0.320) 0.822

Liver 0.000 (0.000, 0.000) 0.000

P.S. 0.000 (0.000, 0.000) 0.005

W.L. 0.000 (0.000, 0.000) 0.002

Pr(Selection) 0.542 0.145 0.133
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Table 5

Simulated lung cancer data with weak and strong random effects

Effect Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

β 1 −0.5 −0.070 −0.010 (−0.082, 0.000) 0.168

β 2 0.3 0.239 0.332 0.165 (0.000, 0.494) 0.609

β 3 0.5 0.312 0.408 0.334 0.323 (0.000, 0.535) 0.907

β 4 −0.8 −0.575 −0.546 −0.510 −0.554 (−0.788, −0.373) 1.000

β 5 0.3 0.320 0.348 0.301 0.335 (0.201, 0.467) 1.000

Σ 00 0 0.000 (0.000, 0.000) 0.022

Weak Σ 11 0.1 0.000 (0.000, 0.000) 0.001

Σ 22 0.2 0.320 0.367 0.322 0.343 (0.130, 0.658) 1.000

Σ 33 0 0.000 (0.000, 0.000) 0.005

Σ 44 0 0.000 (0.000, 0.000) 0.009

Σ 55 0 0.001 (0.000, 0.000) 0.023

Pr(Selection) 0.380 0.337 0.086

β 1 1 1.155 1.330 1.253 1.200 (0.921, 1.504) 1.000

β 2 −2 −2.062 −2.100 −2.099 −2.074 (−2.297, −1.815) 1.000

β 3 0 0.021 0.000 (0.000, 0.000) 0.038

β 4 −1 −0.914 −1.028 −0.928 −0.943 (−1.117, −0.829) 1.000

β 5 0 0.169 0.039 (0.000, 0.249) 0.235

Σ 00 0 0.000 (0.000, 0.000) 0.001

Strong Σ 11 16/15 0.619 0.900 0.677 0.688 (0.328, 1.346) 1.000

Σ 22 32/15 1.548 1.341 1.550 1.492 (0.707, 2.566) 1.000

Σ 33 0 0.003 (0.000, 0.000) 0.027

Σ 44 0 0.000 (0.000, 0.000) 0.001

Σ 55 0 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.712 0.223 0.025
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Table 6

Sensitivity analysis of the lung cancer data: in all three cases, k = 1, ..., 5, and l = 0, 1, ..., 5.

Analysis Effect Variable B1 (95% CI) B2 B3 Estimate (95% CI) Pr(Inclusion)

Fixed Trtmt −0.230 (−0.375, −0.068) −0.193 −0.273 −0.220 (−0.365, −0.063) 1.000

πk = 1 Bone 0.273 (0.057, 0.466) 0.293 0.313 0.279 (0.069, 0.481) 1.000

pl0 = 0.5 Liver 0.377 (0.217, 0.555) 0.496 0.338 0.411 (0.224, 0.607) 1.000

P.S. −0.481 (−0.625, −0.323) −0.538 −0.500 −0.497 (−0.638, −0.343) 1.000

W.L. 0.289 (0.158, 0.432) 0.341 0.241 0.303 (0.168, 0.442) 1.000

Random Baseline 0.000 (0.000, 0.000) 0.001

Trtmt 0.007 0.000 (0.000, 0.000) 0.013

Bone 0.160 (0.045, 0.359) 0.170 0.115 (0.000, 0.318) 0.714

Liver 0.001 0.000 (0.000, 0.000) 0.007

P.S. 0.000 (0.000, 0.000) 0.001

W.L. 0.001 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.699 0.278 0.012

Fixed Trtmt −0.186 (−0.319, −0.028) −0.101 (−0.295, 0.000) 0.547

πk = 0.5 Bone 0.292 (0.087, 0.516) 0.233 0.199 (0.000, 0.478) 0.734

pl0 = 0.2 Liver 0.371 (0.219, 0.531) 0.370 0.414 0.400 (0.248, 0.571) 1.000

P.S. −0.489 (−0.621, −0.361) −0.525 −0.535 −0.504 (−0.642, −0.357) 1.000

W.L. 0.267 (0.140, 0.394) 0.247 0.264 0.262 (0.127, 0.394) 0.992

Random Baseline 0.000 (0.000, 0.000) 0.007

Trtmt 0.000 (0.000, 0.000) 0.014

Bone 0.176 (0.036, 0.433) 0.168 0.118 0.141 (0.000, 0.383) 0.850

Liver 0.000 (0.000, 0.000) 0.014

P.S. 0.000 (0.000, 0.000) 0.005

W.L. 0.000 (0.000, 0.000) 0.013

Pr(Selection) 0.354 0.213 0.176

Fixed Trtmt −0.223 (−0.367, −0.076) −0.128 (−0.350, 0.000) 0.605

πk = 0.5 Bone 0.208 (0.090, 0.351) 0.192 0.131 (0.000, 0.337) 0.636

pl0 = 0.8 Liver 0.401 (0.288, 0.527) 0.604 0.463 0.476 (0.305, 0.623) 1.000

P.S. −0.482 (−0.581, −0.393) −0.584 −0.554 −0.520 (−0.621, −0.406) 1.000

W.L. 0.308 (0.148, 0.440) 0.202 0.260 0.268 (0.156, 0.427) 1.000

Random Baseline 0.000 (0.000, 0.000) 0.000

Trtmt 0.000 (0.000, 0.000) 0.000

Bone 0.000 (0.000, 0.000) 0.001

Liver 0.000 (0.000, 0.000) 0.000

P.S. 0.000 (0.000, 0.000) 0.000

W.L. 0.000 (0.000, 0.000) 0.000

Pr(Selection) 0.538 0.297 0.097

Comput Stat Data Anal. Author manuscript; available in PMC 2015 July 01.


