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Abstract

The latent class model provides an important platform for jointly modeling mixed-mode data —

i.e., discrete and continuous data with various parametric distributions. Multiple mixed-mode

variables are used to cluster subjects into latent classes. While the mixed-mode latent class

analysis is a powerful tool for statisticians, few studies are focused on assessing the contribution

of mixed-mode variables in discriminating latent classes. Novel measures are derived for assessing

both absolute and relative impacts of mixed-mode variables in latent class analysis. Specifically,

the expected posterior gradient and the Kolmogorov variation of the posterior distribution, as well

as related properties are studied. Numerical results are presented to illustrate the measures.
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1. Introduction

Heterogeneous data types have become commonplace in many sciences. In the medical

sciences, clinical studies often collect data that are continuous (e.g., blood pressure), binary

(whether or not the subject has diabetes), ordinal (severity level of a disease), categorical

(medication used), and other types such as count and time-to-event. The identification of

clinically meaningful phenotypes in the population using a heterogeneous data type is thus

an important area of research. Everitt (1988,1993) [9, 10] referred to heterogeneous data

types as mixed-mode data in the context of latent class and mixture analysis, in which

multiple data types are used as indicators for putting similar objects into groups [see also 14,

24]. The terms latent class model and mixture are used interchangeably. The idea here is to

cluster a vector of mixed-mode responses Y = (Yi) for indicators i = 1, …,m into S distinct

latent classes Z = 1, …, S. There are at least two general approaches for mixed-mode latent
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class analysis (MM-LCA). The first approach is to relate the manifest categorical response

to an underlying multivariate Gaussian distribution such that continuous normal variables

and categorical variables can be jointly modeled [13, 23]. As pointed out by [7], the

underlying Gaussian approach has limitations, one of which is that it cannot easily

accommodate general data types such as counts. An alternative is to use the generalized

linear mixed-model approach proposed by [22] and later extended by [17], [7], [5], [25], and

[3]. This approach can accommodate any mixture of outcomes from an exponential family.

Under the assumption of conditional independence given latent class Z, the likelihood for an

individual subject in an MM-LCA can be expressed as:

(1)

where θ contains the vector of parameters θz for each individual class z, which has a prior

probability αz = p(Z = z). Within an exponential family framework, different link functions

can be specified for the conditional distribution piz for different data types.

One question that arises from the generalized mixed-model approach for latent class analysis

and latent variable in general is how the different types of data “impact” the likelihood. It is

possible that one data type “overwhelms” another data type in the likelihood and becomes

dominant in defining the structure of the latent class model. Because data values are not

measured on the same scale, it is not easy to promptly assess the impact of a variable on the

overall likelihood. This question is directly related to a second question: if only a limited

number of mixed-mode indicators can be included in a latent class analysis, which variables

should be selected for maximally “discriminating” between the classes? Interestingly, the

latter question can also be reformulated as a variable-selection problem and solved by a

search algorithm using criteria such as the BIC [20, 6].

Two measures are proposed for assessing a variable’s contribution to the classification of

latent classes. In LCA class labels are not known a priori; the term classification here refers

to the extent to which a variable contributes to discriminating the classes, or in the case the

class label is known (e.g., in a simulation setting) the accuracy in retrieving class

membership. The first measure, the expected posterior gradient (EPG), measures the

absolute contribution of a variable to MM-LCA. The second measure, based on the

Komolgorov variation of the posterior distribution (KVP), can be interpreted in terms of the

relative contribution of a variable by comparing classification accuracies with and without

the variable in the MM-LCA. Interestingly, both measures can be related to the statistical

distance between the prior distribution p(z) and the posterior distribution p(z|y). There are

several advantages in using the EPG and KVP. First, they both have strong theoretical

foundations, which will be described in the following two sections under the heading

“Justification of measures.” Second, the measures can be universally applied to all kinds of

mixed-mode data - continuous, discrete, and count data. Furthermore, computationally the

two measures are straightforward to compute and closed form solutions are available for

EPG. For the remainder of the paper, Section 2 describes the EPG measure, and the

procedure of how the measure can be derived and used in practice. Section 3 describes KVP

and specifically its relation to the total variation measure, which is commonly used in the
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image processing literature. In Section 4, two numerical examples of MM-LCA are provided

to illustrate the proposed methods. A brief discussion is given in Section 5.

2. Expected posterior gradient for variable assessment

Consider an S-class latent class model that includes both continuous and discrete random

variables, Y = (Y1, …, Ym), with class-conditional distributions of normal, exponential,

Gamma, Poisson, ordinal, or binomial distributions, given the latent random variable Z ∈ S,

S = {1, …, S}. Class-conditional independence is assumed among all the variables — i.e.,

(2)

Denote the posterior probability p(Z = z|Y1 = y1, …, Ym = ym) by τz, the class-conditional

probability p(Yi = yi|Z = z) by . These quantities are related by the Bayes

formula:

(3)

where p(y) is the marginal probability of observing the outcome vector, y = (y1, …, ym), and

(4)

The EPG measure for assessing the impact of variable yi on the MM-LCA is denoted by Bi

and its definition is given by:

(5)

The idea behind EPG is that when a change in a specific variable has a strong impact on the

posterior distribution, it would imply that the variable contains substantial information about

the classification of latent class - i.e., the membership of subject given the response pattern.

In other words, if class membership of a subject is sensitive to a change in the value of the

variable, then the variable has a strong impact. Because the gradient of log(τs) by yi is a

function of y, the expectation with respect to y in (5) is taken.

A few examples of the term E(∂ log (τz)/(∂i), are presented in closed form for parametric

distributions. Taking the logarithm of Eq. (3) and forming the expected partial derivative

leads to:

(6)
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And from (2) and (4),

(7)

It is easy to derive the following result for the expected log posterior gradients using the

identities (6) and (7). Details of the derivation are given in the supplementary file.

1. For a continuous variable Yi, without loss of generality, centered at 0, and class-

conditional normal distributions, N(µz, σz),

(8)

2. For a continuous variable Yi with unconditional mean λ̄ and class-conditional

exponential distributions, Exp(λz),

(9)

3. For a continuous variable Yi and class-conditional gamma distributions, G(kz, θz),

(10)

4. For a count variable Yi with unconditional mean λ̄ and class-conditional Poisson

distributions, Pois(λz),

(11)

where Δτz = τz(yi + 1) − τz(yi), and τz(yi) = p(Z = z|Yi = yi, i = 1, …, p).

5. For a discrete variable Yi with class-conditional binomial distributions, B(n, πz),

(12)

where  and Oz = πz/(1 − πz).

In the univariate mixture model of S normal distributions with equivariance, if µ1 = … = µS,

then µ1 = … = µS = 0, the degenerating case mentioned in [2]. In such a case, the continuous

variable has zero expected contribution to the posterior measure. A similar degenerating

case is seen in the Poisson distribution when λ1 = … = λS = λ̄, and in the Gamma

distribution when k1 = … = kS and θ1 = … = θS.
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From (12), it can be seen that if a binary variable has uniform conditional probabilities

across all classes — i.e., ∀z, π1|z = c, then the EPG is zero. On the other hand, if at least one

of π1|z is close to 0 or 1, the EPG, or the contribution to the reduction in entropy, would be

large.

2.1. Justification of the measure

Intriguingly, the EPG is related to the gradient of change of entropy from knowing the prior

distribution of the latent class to knowing the distribution of the latent classes after

observing the data. For example, if the prior distribution is uniform and the posterior

distribution is highly skewed with probability mass concentrated on one particular class,

then the change of entropy is large. More formally, denote the cross entropy between two

distributions q1 and q2 by

(13)

Cross entropy is a statistical distance measure that is directly related to the Kullback-Leibler

distance DKL through the following equation:

(14)

where H(x) is the Shannon entropy. Specifically for the prior distribution of

.

The cross entropy for the distribution of Z and the distribution of Z given Y is given by

(15)

The quantity ∂CH(Z,Z|Y)/∂yi signifies the relative change of cross entropy between the prior

distribution p(Z) and the posterior p(z|y) after observing Y with respect to a change in the

variable yi. Thus, the cross entropy gradient quantifies the impact of the variable yi on the

MM-LCA in terms of change in the classification distribution of the latent class variable Z.

Using the Jensen inequality, it is easy to show that the EPG and cross entropy is related by

the following inequality:

(16)

Thus, the EPG is the upper bound of cross entropy gradient. This bound is important for

variable assessment because if a variable yi has small EPG value Bi, then it is not possible

for large cross entropy values to exist, and therefore the variable is deemed to have

insignificant impact in terms of its discriminatory power for distinguishing between latent

Zhang and Ip Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



classes. In general, the further the class-conditional distribution of yi is away from a uniform

distribution, the more contribution it provides to Bi. Taking absolute value of gradients in

(16) is necessary because given a univariate standard-Gaussian variable and σz = 1 for z ∈ S,

without the absolute sign, Bi can be zero,

(17)

even when class-conditional means, {µz, …, µS}, are very different.

To illustrate the EPG, a small data set of n = 1, 000 is simulated, using a 2-class mixture (S

= 2, Z = 1, 2, and p(Z = 1) = p(Z = 2) = 0.5) in which Y1 is a mixture of N(−1, 1) and N(1, 1)

respectively for Z = 1 and Z = 2. Two additional variables Y2 and Y3 were independently

randomly sampled from N(0, 1) and added to the mix. Then an LCA software, Latent Gold,

used to estimate the 2-class model. For Y1, the class-conditional statistics were µ̂z=1 = −0.99,

. Therefore, the estimated B1 = 0.5 × (|−0.99/1.33|+|

0.99/0.74|) = 1.04, as opposed to the population value of 1.0. For Y2 and Y3, the sample

estimates of EPG were respectively B2 = 0.015 and B3 = 0.002, showing that these two

variables had little or no impact. In general, the EPG can be estimated by first fitting an

MM-LCA to data, and then using the easy-to-compute analytical formulas to calculate Bi for

variable ranking and selection. In the above example, Y1 would be ranked as the variable

with the highest impact on the posterior distribution and retained in the model.

3. Komolgorov variation of posterior distribution

The second measure for variable assessment, the Komolgorov variation of posterior

distribution, or KVP, is based on the statistical distance between the class-conditional

distributions. Formally, the Komolgorov distance [1] between two distributions, f and g, is

defined as

(18)

and the measure of KVP is defined as:

(19)

where  ( ) represents the set of all permutations of class index set , and πyi| +1 = πyi|1.

3.1. Justification of the measure

The KVP can be linked to a concept of “classification accuracy” in MM-LCA. The idea

behind KVP is that for a candidate variable to be included in an MM-LCA it needs to have a

substantial impact on the “classification accuracy” of the latent classes, and one way to

assess impact is to compare the “classification accuracies” of the MM-LCA with and

without the specific variable in the model. If there is a significant reduction in classification

accuracy without the variable in the model, then the variable is deemed important.

Otherwise, the variable is considered not important and could be a candidate for removal in
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an iterative model assessment process. This section shows how the concept of classification

accuracy is operationalized in terms of total variation and how KVP can be linked to total

variation.

Consider a generative latent class model in which each person is given a class membership

and mixed-model variables are generated given class membership. Under such a scenario, a

method that allows the accurate recovery of class membership is highly desirable. One

measure of “classification accuracy” is the total variation (TV) of the posterior distribution,

which is commonly used in the signal processing and compressive sensing literature [4, 19].

Total variation in the context of MM-LCA is defined as

(20)

where  ( ) is defined in (19). With this definition, the measure TV (τ) is order-invariant,

and thus the measure does not change even when the class labels are switched. For

operational convenience, it is assumed τ +1= τ1. Figure 1 shows the TVs of three example

posterior distributions, τ = {τz|z=1, …, 4}, respectively with TV values of 0,1, and 2 (from

left to right). From the classification perspective, the third example (TV=2) would be the

most desirable. Briefly, higher TV value implies better discrimination between classes. It is

interesting to note that the TV of any posterior distribution is bounded between 0 and 2, as

demonstrated respectively by the first and the third examples in Fig. 1. The proof of the

bounds are straightforward and not included here. It is important to note that from the

definition of total variation, the measure TV is not dependent on knowing the actual or true

class membership. In a sense, the TV can be thought of as a measure of (non)uniformity of

the classification probabilities computed over all pairs of classes for an observed data point.

Total variation as defined in (20) is a function of the observed outcome y. The expectation of

total variation is a more useful summary for the purpose of assessing the overall impact of a

variable. The expectation of TV is given by

(21)

The TV measure inherits two desirable features directly from its very definition: that it can

be applied to mixed-mode data, and that it is order invariant, which means that one does

need to be concerned about label switching when compiling comparison statistics for

different models. Besides these two features, there are two less trivial properties of the TV

measure that make it desirable for assessing mixed-mode variables. The first property

concerns the lower bound of its value and states that using any variable for classification in

an MM-LCA could not deteriorate classification accuracy compared to the classification

based on the prior distribution. Specifically this non-negativity property is stated as:

(22)

The non-negativity property guarantees that any variable added to the MM-LCA cannot

decrease the expected TV as compared to the TV of the prior distribution. In other words,
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one would avoid a potential awkward situation in which using a variable in the model could

make the classification accuracy worse than simply using the prior distribution of the classes

without knowledge of any manifest variable.

The second property of the expected TV is related to a relative measure of impact - a

comparison of the TVs of the posterior distributions with and without the given variable in a

given model. Define, for a given variable yi, τ− = p(z|y−), where y− denotes the remainder of

the set of variables after deleting yi. Then under the condition that a monotonic relationship

exists between the joint probability, p(z, y−), and the class-conditional probability, πyi|z —

that is, πyi|z1 ≥ πyi|z2 if p(z1, y−) ≥ p(z2, y−)— the following inequality stands, i.e.,

(23)

— that is, the total variation of the posterior distribution after adding an extra variable yi

would be no less than the total variation of the posterior distribution without yi. The proofs

for the two properties are included in the supplementary file.

The proposed measure KVP takes advantage of the properties of TV, and the connection

between the two can be summarized by the following theorem, which states that the absolute

value of the expected total variation difference between models with and without a given

variable in an MM-LCA is bounded by a weighted sum of KVPs, where the weights are the

priors of the latent classes.

Theorem 1. The expected difference of TV (τ) and TV (τ−) is upper-bounded by the KVP:

(24)

where Ci is given in (19).

Although not obvious, Ci has an upper bound as 2 and a lower bound 0 as well. The upper

bound is achieved when ∀z, dKD(πyi|z+1, πyi|z) = 2. Unlike the EPG Bi, closed form solutions

of Ci may not be immediately available. However, simple numerical procedures such as

finite difference, can be used for computing Ci. The proof of Theorem 1 is given in an

appendix.

Theorem 1 states that the change of the expected total variation of the posterior distribution

between models with and without a variable, is upper-bounded by the weighted sum of the

Kolmogorov distances between class-conditional distributions. This suggests that variables

with large Ci’s are more desirable. If the increase of classification accuracy by a variable as

measured by expected TV is upper-bounded by a small value, the variable would not be very

useful. The reasoning is similar as that for using the upper bound of cross entropy in EPG;

the difference here is that the upper bound for TV is used, and the two quantities - TV and

KVP - share the same lower and upper bounds of variation. Their common bounds can be

viewed as yet another desirable property because this implies that Ci could not be too far off

from the total variation measure. To put it differently, it allows a tighter interpretation of Ci

in terms of total variation.
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4. Numerical results

The following numerical examples used both simulated and real data for illustrating the

proposed two measures of EPG and KVP. One challenge of evaluating the performance of a

new procedure for LCA - or for unsupervised learning procedures in general - is that if real

data are used, there is no known label for the latent classes and hence it is hard to evaluate

classification accuracy. In the first example using simulated data, LCA parameters derived

from a real data set of archaeometry data are used to simulate a set of continuous and

discrete variables. Therefore, the class labels for latent classes are known and can be used in

evaluating the performance of the proposed measures. In the second example, real genetic

data from several ethnic groups is used. The latent classes are based on the ethnic group,

therefore the class labels are known as well.

4.1. Simulated Archaeometry data

The first example used archaeometry data from [18], in which 3 latent classes were

estimated from 21 continuous normal variables, and 12 binary variables selected from the

original 19 binary variables. These variables were measurements taken from archeological

artifacts - such as floor vases - dated back to ancient Italy. The continuous measures

provided chemical information whereas the binary variables were obtained from petrological

analysis. The discrete and continuous data are simulated using the reported estimated

parameters in [18] for a sample size of 1,000 and used the data for analysis. Without

refitting the original latent class model, the simulated data and the known model parameters

are used to compute the posterior probabilities and the classification accuracy. The two

defined measures for assessing variables were included in the analysis: the log EPG

(log(Bi)), and the KVP (Ci). Scatterplots of the two measures are shown in Fig. 2, in which

near-monotonic relationships are clearly seen between the two measures. However, the two

measures appear to assess continuous and binary variables differently. This is further

evidenced in the following analysis when both measures are compared to classification

accuracy.

For the nth subject, the classification is zn = maxz p(z|yn1, …, ynm), and the classification

accuracy r(y) is the percent of correctly classified subjects, given the observed variables. In

Fig. 3, the two measures log EPG and KVP are evaluated against the actual classification

accuracy using each individual variable, i.e., zn = maxz p(z|yni), and ri is the percent of

correctly classified subjects, given yi. Because class membership is known in this simulated

data set, the measure ri can be considered an objective reference for performance. From Fig.

3, Ci has a clear and strong linear monotonic relationship with ri, while the monotonic

relationships is less clear in log(Bi), even though the continuous and binary variables each

exhibits a high degree of monotonicity. Based on the result in Fig. 3, the measure Ci

appeared to be more consistent with the objective measure ri and subsequently was used to

rank all the 33 continuous and binary variables. Table 1 shows the values of the conditional

probabilities across the three latent classes, Bi, Ci, and the rank order of the binary variables

based on Ci, whereas Table 2 shows the conditional means, Bi, Ci, and the rank order of the

continuous variables. The ordering of the variables in both tables are based on Bi. The tables

show that the top 5 ranked variables using Ci are continuous, and appear to dominate the
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binary variables for classification. The measure EPG, on the other hand, tends to report high

values for binary variable and ranks four of the binary variables higher than all the

continuous variables. One reason for this to arise is that the conditional probabilities for

these binary variables are close to the boundary which lead to large odds ratios. As a result,

the ratio for computing EPG in equation (12) gives exceedingly high EPG values.

Finally, in this example, the top 10 variables that have the largest values of Ci are selected.

In this case, the selected continuous variables were 12, 6, 9, 2, 9, 11, 4, and 8, and the

selected binary variables were 13, and 14. Using only these ten variables, which are less

than one third of the original number of variables, the resulting MM-LCA could achieve a

classification accuracy of 99.71%.

4.2. Hapmap2 data

The data set for this example was extracted from Hapmap2 [11], which is a second-

generation version of the haplotype map of the human genome. A Hapmap2 dataset of 210

subjects including three populations – central European, African, and Chinese/Japanese,

with respective sample sizes of 60, 60 and 90 was acquired. For each subject, 1% of the

original two million SNPs was randomly sampled to result in 20, 293 SNPs, for each of

which the major and minor alleles frequencies were counted. As the ethnicity of an

individual was known, the three populations are treated as latent classes. Thus, the variable

assessment question here is to select a subset of the SNPs to achieve a high level of

classification accuracy.

The EPG, Bi, and the KVP, Ci, are computed for each SNP and compared them with two

commonly used statistics in population differentiation – the likelihood ratio [12] and the Fst

statistic, which are defined as follows.

The likelihood ratio for the ith SNP is given by,

(25)

where S is the number of populations, Nijk is the kth allele count of the ith SNP in the jth

population, and pijk is the corresponding expected allele frequency.

The F-statistic Fst is defined as,

(26)

where pijk = Nijk/nj, nj is the number of subject in the jth population, and

 is the probability of observing the kth allele in the ith SNP in all

populations.

Of note, the F-statistic is similar to Efrons pseudo R-squared measure [8], and the LRT is

similar to McFaddens pseudo R-squared measure [15].
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The relationships between the three statistics, Ci, F, and LRT, are shown in Fig. 4, wherein

scatterplots between pairs of the three statistics are plotted, in which both x and y-axis are in

log scales. Overall, all three statistics are monotonically related to each other, and Fst is

more linearly related to LRT, while LRT and Fst appear to have greater variations than Ci.

The scatterplot between Bi and Ci (not shown) is also monotonic and approximately linear.

The performances of four measures, i.e., Fst, LRT, Bi and Ci, are compared in terms of

classification accuracy. All 20,293 SNPs are first separately ranked according to each of the

four measures. Starting with the top ranked SNP, the classification accuracy is calculated

only using this SNP, and then the next highest ranked SNP is incrementally added.

Classification accuracies were calculated for each measure as a function of the number of

SNPs in the LCA. In a way similar to the first example, the classification accuracy was

calculated for each set of chosen SNP-i.e., the posterior distribution of population classes for

each subject is computed, and the total number of correctly classified subjects is counted.

Figure 5 shows that the accuracy curves for all four measures limited to the first 50 SNPs.

The curve for Ci rises fastest among the four, suggesting that if only a small number of

SNPs were used for classification, then Ci would be the most effective measure.

Paradoxically, as more SNPs are included, the classification accuracies of all measures, to

various extents, tend to fluctuate. When the number of SNPs are more than 20, Fst performs

the best, although its performance also seems to decrease after including 45 SNPs. The

performance of Ci and LRT tend to converge, and for Bi its performance is comparable to

the other measures. One remark is that LRT is applicable to mixed-mode data while Fst only

applies to discrete data, so the above results are not necessarily generalizable to data with

different modes.

To compare how similar, or different, the several measures selected the respective most

important SNPs, we calculated the number of overlapping top ten SNPs selected by each

measure. We found that the top-10 SNPs selected by the measures substantially overlapped.

For example, 9 out of 10 overlapped between Fst and LRT, 7 out of 10 between Ci and LRT,

6 out of 10 between Ci and Fst, 3 out of 10 between Bi and Fst, and 3 out of 10 between Bi

and LRT. Overall, compared to Bi, Ci had a stronger overlap with Fst and LRT.

In summary, this example illustrates the practical relevance of the proposed measures for

efficiently identifying among a large number of SNPs, a small number of SNPs that could be

used for clustering and classification purpose.

4.3. Guidelines for practitioners

A summary of how EGP and KVP can be computed and used in practice is listed below.

1. Collect all the available variables, which could be of mixed mode, and fit a latent

class model.

2. Use the class-conditional parameters estimated in the previous step to compute the

proposed EPG and KVP measures.

3. Select the most discriminating variables and eliminate the weak variables based on

the measures.
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4. Re-run LCA using the selected variables. Using the classification accuracy of the

full model as a reference, compute the classification rate of the reduced model,

which assumes the same latent structure in the number of classes.

5. Assess the adequacy of the reduced model. Repeat steps 1 to 4 if necessary until a

satisfactory reduced set of variables is selected.

5. Discussion

Two measures - the EPG and KVP, are presented for assessing variable impact in the

context of mixed-mode latent class modeling. The mathematical foundations for these

measures are elaborated respectively in terms of cross entropy and total variation. Two

empirical studies - one using simulated data based on parameters derived from an

archaeometry study, and a real data set in genomic that contains > 20, 000 manifest binary

variables, are used to illustrate the two measures. The several findings from this

investigation are summerized as follows. (1) EPG and KVP both can be used for assessing

mixed mode variables in LCA, and both measures are straightforward to compute given an

MM-LCA. (2) Both measures seem to perform reasonably well compared to existing

measures such as LRT and Fst. (3) The result from EPG may have to be handled with

caution for binary variables in cases when the conditional probabilities are close to the

boundary. (4) The KVP measure appears to have an advantage in its interpretation - its value

is bounded between 0 and 2, so both absolute and relative interpretations of the “scale” is

possible (e.g., value of 1.8 implies high impact on an absolute scale, and variable A that has

a value of 1.1 has stronger impact than another variable B that has a value of 0.9.) While it is

too early to offer any definitive conclusion about the proposed measures of EPG and KVP at

this point given the preliminary nature of the empirical studies, both the theoretical and the

empirical investigations demonstrate promising properties, as well as potential pitfalls, in the

two measures. More extensive work such as Monte Carlo experiments will be required to

further assess the performance of EPG and KVP.

Besides the lack of a large-scale empirical study validating the performance of the proposed

measures, there are also other limitations. Theoretical results are limited by the assumption

that the prior probabilities, {αz|z = 1, …, S}, remain constant as variables are added or

removed in the latent class model. In real data-driven MM-LCA estimation, the prior will

vary as a function of the set of variables included. The reported theoretical and empirical

results should be construed as focusing on comparison of the impact of individual variables

within the same latent class model.

The proposed measures are different from item fit statistics [21], where two items that both

have good fit do not necessarily have similar impact on the likelihood function. Item fit

statistic can be used to first eliminate poorly fitted items - continuous or discrete —

separately, and the proposed measures can be subsequently used to evaluate the remaining

variables.

The proposed measures can also be applied to mixtures of regression models [16] which

specify conditional distributions, for example, mixtures of regression models for normal,

binary and Poisson variables. For instance, when the conditional distributions are normal
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given the mixture component, an EPG-based regression procedure replaces the conditional

mean µj in Eq. (7) with the component-specific linear predictors, keeps the same σj , and

then compares . Such work is now in progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

Proof of Theorem 1

First the permutation is ignored. By the definition of Ey(TV (τ)),

(A.

1)

From (A.1), two inequalities can be derived, the first of which is

(A.

2)

where the first term on the RHS is Ey−(TV (τ−)) and the second term is the Ci. It is

straightforward to derive the second inequality:

(A.3)

These two inequalities together lead to (24). Because the equality above is true for any

permutation, the inequality holds for the permutation that gives the maximum TV of τ.
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HIGHLIGHTS

• Two measures are proposed for assessing continuous and discrete variables in

LCA.

• Both measures are either in closed form or straightforward to compute.

• Both measures perform reasonably well compared to existing measures such

LRT and Fst.

• Both absolute and relative interpretations of one measure are possible.
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Figure 1.
Three example posterior distributions with increasing TVs.
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Figure 2.
Scatter plots of the two measures of both binary and continuous variables.
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Figure 3.
Scatter plots between the classification accuracy and each of the two measures of both

binary and continuous variables.
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Figure 4.
Scatter plots for comparing Ci, LRT and Fst.
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Figure 5.
Classification accuracy as a function of the number of variables incrementally added to

model according to their rank order.
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