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Abstract

Evaluation of candidate surrogate endpoints using individual patient data from multiple clinical

trials is considered the gold standard approach to validate surrogates at both patient and trial

levels. However, this approach assumes the availability of patient-level data from a relatively large

collection of similar trials, which may not be possible to achieve for a given disease application.

One common solution to the problem of too few similar trials involves performing trial-level

surrogacy analyses on trial sub-units (e.g., centers within trials), thereby artificially increasing the

trial-level sample size for feasibility of the multi-trial analysis. To date, the practical impact of

treating trial sub-units (centers) identically to trials in multi-trial surrogacy analyses remains

unexplored, and conditions under which this ad hoc solution may in fact be reasonable have not

been identified. We perform a simulation study to identify such conditions, and demonstrate

practical implications using a multi-trial dataset of patients with early stage colon cancer.
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1 Introduction

1.1 Background and Motivation

Surrogate endpoints are desired in clinical trials where traditional endpoints are too

expensive or difficult to obtain, or where substantial follow-up would be required to observe

the clinical endpoint (e.g., survival) in a sufficient number of patients to draw meaningful

trial conclusions. While numerous methods for evaluating and validating surrogate

endpoints have been proposed, recent consensus has supported evaluation of potential

surrogates based on patient-level data from multiple similar trials, where surrogate

performance is assessed both within trials (i.e., at the patient level) and across trials (trial

level). A surrogate endpoint is considered to be validated for use in future clinical trials of

the same disease setting when both strong patient-level surrogacy and strong trial-level

surrogacy are present.

Central to this multi-trial surrogacy evaluation paradigm is the availability of patient-level

data from a relatively large number of randomized clinical trials within the disease setting

where the surrogate endpoint is proposed for use. Within a comprehensive surrogacy

analysis, a strong association between a candidate surrogate endpoint S and a true clinical

endpoint T must be present, where this patient-level surrogacy is traditionally quantified as a

simple correlation where possible, or evaluated through a multi-trial joint model for S and T,

such as a copula model (Burzykowski et al., 2001), otherwise. Arguably of equal or greater

importance is trial-level surrogacy, which may be demonstrated by a strong predictive

relationship (e.g., correlation) between treatment effects on S and treatment effects on T.

That is, the experimental treatment’s observed effects on a valid surrogate endpoint should

provide a strong indication of the experimental treatment’s (unobserved) effects on the

clinical endpoint. In theory, patient-level surrogacy may be established using patient-level

data from one or more historically similar clinical trials, through straightforward joint

modeling or correlation (where censoring is not an issue) of the two endpoints S and T. On

the other hand, a trial-level surrogacy analysis necessitates access to a collection of

historical clinical trials, the number of which should be sufficient to compute–at a

minimum–the correlation of the (estimated) treatment effects on S and T across trials, along

with an associated measure of uncertainty (e.g., standard error). For a surrogacy analysis to

be truly informative for clinical decision-making, the standard error associated with an

estimate of trial-level surrogacy should be sufficiently small to distinguish a strong surrogate

from a weak surrogate, which in turn requires a relatively large “trial-level” sample size

(see, e.g., Shi et al. (2011)).

In many practical applications, patient-level data from a large number of comparable

randomized trials are difficult or impossible to obtain. Challenges may include: reluctance

by data owners to share patient-level data with other parties, lack of time, resources, or

expertise to successfully define and pool data elements from a large number of disparate

trials into a single database, or non-existence of a large number of similar trials within a

specified disease setting and class of treatments. Where a surrogacy analysis is desired but

one or more of these issues cause only a few (say, one to five) trials to be available for

analysis, a common ad-hoc solution is to perform trial-level surrogacy analyses on trial sub-
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units, such as centers, investigators, or geographic regions within trials, as if these sub-units

were themselves unique trials.

1.2 Published Uses and Explorations of Trial Sub-Units in Surrogacy Evaluation

Published examples estimating trial-level surrogacy using trial sub-units for analysis

include: evaluation of time to progression and progression-free survival as surrogates for

overall survival in advanced ovarian cancer, where centers within trials are treated as the

trial unit (Buyse et al., 2000; Burzykowski et al., 2001; Molenberghs et al., 2002; Tibaldi et

al., 2003; Burzykowski and Buyse, 2006); change in visual acuity at 6 months after

treatment as a surrogate for change in visual acuity at 12 months in age-related macular

degeneration, where centers are treated as trial units (Buyse et al., 2000; Molenberghs, Geys,

and Buyse, 2001; Molenberghs et al., 2002; Tibaldi et al., 2003; Alonso et al., 2004, 2006;

Pryseley et al., 2007; Abrahantes, Shkedy, and Molenberghs, 2008; Molenberghs et al.,

2008); progression-free survival as a surrogate for overall survival in advanced colorectal

cancer, with centers as trial units (Burzykowski et al., 2001; Molenberghs et al., 2002;

Tibaldi et al., 2003; Burzykowski and Buyse, 2006; Abrahantes, Shkedy, and Molenberghs,

2008); outcomes of the Positive and Negative Syndrome Scale (PANSS) as a surrogates for

the Clinician’s Global Impression (CGI) scale in schizophrenia, where treating physicians,

main investigators, or countries were considered as trial-level replicates (Molenberghs et al.,

2002; Renard et al., 2002; Alonso et al., 2002, 2003, 2004b, 2006; Tilahun et al., 2007;

Alonso and Molenberghs, 2007; Abrahantes, Shkedy, and Molenberghs, 2008; Molenberghs

et al., 2008, 2010); prostate specific antigen (PSA) as a surrogate for overall survival in

advanced prostate cancer, where country was used as the trial unit (Renard et al., 2003;

Molenberghs et al., 2004); recurrence-free survival as a surrogate for overall survival in

colon cancer, with grouped centers treated as the trial unit(Sertdemir and Burgut, 2009);

leukemia-free survival as a surrogate for overall survival in maintenance therapy trials for

patients with acute myeloid leukemia in complete remission, where countries within a single

trial were treated similarly to trials Buyse et al. (2011); pathologic complete response and

local control as surrogates for overall survival in advanced rectal cancer, where grouped

centers were treated as trial units Bonnetain et al. (2012);and progression-free survival as a

surrogate for overall survival in advanced non-small-cell lung cancer, where centers within

trials was the unit of assessment of trial-level surrogacy Laporte et al. (2013).

Although use of trial sub-units in place of trials is commonplace among published trial-level

surrogacy analyses, the impact of disregarding the subunit-within-trial hierarchy in these

convenient substitutions is relatively unexplored. For the case of two normal endpoints S

and T, Abrahantes et al. (2004) performed a simulation study to compare trial-level versus

center-level surrogacy estimation as a function of other key factors, such as number of trials,

equal versus unequal association of treatment effects at the trial and center levels, and

relative variability of trial versus center-level effects. They found that when data contains

both trial-specific and center-specific treatment effects, and when these treatment effects

truly have the same association across trials as within trials, using center as the unit of

measurement to assess surrogacy (rather than trial) does not adversely influence results.

However, when unequal association of treatment effects across trials versus within trials is

assumed, center-level estimation often over-estimated moderate surrogacy and under-
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estimated high surrogacy. This observed weakness of naive center-level surrogacy

estimation is alleviated when the variability of treatment effects among centers within trials

is constrained to a small fraction (1/100) of the variability of treatment effects across trials–a

scenario the authors argue is desirable, but seems unlikely to be observed in practice. The

practical effects of naive center-level versus trial-level surrogacy evaluation have not been

explored to date with non-normal endpoints, such as time-to-event endpoints, which are of

particular relevance and importance in settings where surrogates are desired specifically

because they occur earlier or more often in the population of interest. In addition, the effects

of unit choice on patient-level surrogacy estimation is previously unexplored.

In this paper, we compare the performance of common surrogacy estimation methods when

applied to trials versus application to sub-units within trials, and focus on the case of two

time-to-event endpoints S and T. In Section 2, we present an overview of existing joint

(patient-level and trial-level) evaluation methods, namely the multi-trial copula modeling

approach and weighted least squares of treatment effects from marginal Cox proportional

hazards models, and describe the implications of trial-level versus center-level evaluation in

analytical terms. In Section 3, we perform a simulation study to quantify the influence of

unit choice on trial-level and patient-level surrogacy estimation, considering factors such as

sample size (number of trials, number of centers within trials, and number of patients within

centers), equal or unequal trial-level versus center-level surrogacy, relative variability of

treatment effects among trials versus among centers within trials, patient-level surrogacy,

and amount of censoring. We apply the surrogacy evaluation methods to a collection of five

randomized clinical trials in colon cancer in Section 4, where both trial-level and center-

level evaluations are performed and results compared. We conclude with a discussion in

Section 5.

2 Surrogacy Evaluation Methodology and Choice of Units

Here we provide an overview of existing multi-trial surrogacy evaluation methodology for

two time-to-event endpoints S and T, and describe analytical implications when these

methods are applied at the trial sub-unit level versus the intended trial level. A similar

presentation for two Normally distributed endpoints without censoring was given in

Abrahantes et al. (2004), in which both a “full” random effects model and a computationally

convenient “reduced” model (originally proposed in Burzykowski et al. (2001)) were

described. For brevity, we restrict our discussion to the reduced model as it applies to time-

to-event endpoints, the version applied most often in practice. Without loss of generality, we

henceforth refer to trial sub-units as “centers,” recognizing that other sub-units such as

geographic regions or treating physicians may be considered.

2.1 Models and Notation

Consider a collection of similar historical trials indexed by i ∈ {1, …, N}, centers within

trials indexed by j ∈ {1, …, Ni} where Ni is the number of centers within trial i, and patients

within centers indexed by k ∈ {1, …, nij} where nij is the number of patients within center ij.

Let zijk denote the treatment assigned to patient k within center j from trial i, where Z = 1 for

experimental treatment and Z = 0 for control. Denote by sijk and tijk the observed surrogate

endpoint S and true endpoint T, respectively, of the same patient. We assume that marginal
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models (e.g., parametric or Cox propotional hazards models) for S and T depend on trial-

specific intercepts μSi and μTi and trial-specific slopes (treatment effects) αi and βi,

respectively, given by the trial-level model:

(1)

where (μS, μT, α, β)′ is a vector of fixed effects and (mSi, mTi, ai, bi)′ is a vector of trial-

specific random effects distributed as:

(2)

The subscript r denotes that covariance Dr is a reduced covariance matrix assuming no

correlation between trial-specific intercepts and treatment effects. Under the model above,

trial-level surrogacy is captured by the quantity , where an estimate  close

to 1 indicates strong trial-level surrogacy and a value near 0 indicates weak trial-level

surrogacy.

In the present setting, we additionally assume existence and knowledge of trial subunits or

centers, where trial i is associated with a vector of center effects (μSij, μTij, αij, βij)′ given by

the center-level model:

(3)

where (μSi, μTi, αi, βi) was defined in (1) above and (mSij, mTij, aij, bij) is a vector of center-

specific random effects distributed as:

(4)

From (3)–(4), surrogacy at the center level is given by . If we may safely

assume independence of the trial-level and center-level random effects (mSi, mTi, ai, bi)T and

(mSij, mTij, aij, bij)T, it follows that
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(5)

2.2 Surrogacy Estimation

2.2.1 Trial-level surrogacy—When a sufficiently large collection of similar historical

trials are available, an estimate of trial-level surrogacy may be obtained from a two-stage

procedure introduced by Burzykowski et al. (2001), where estimated trial-specific marginal

effects obtained from first-stage modeling may then be used to estimate  as computed

from (1)–(2) in the second stage. Under this reduced model,  is equivalent to the

squared correlation of the trial treatment effects (αi, βi), and it is usually estimated from the

(log) hazard ratios obtained from fitting trial- and endpoint-specific Cox models (where

patient-level association of S and T is ignored) or from maximum likelihood estimation of a

multi-trial copula model for S and T (which incorporates patient-level association, as

described in Section 2.2.2).

Optionally for  computation, trial-specific treatment effects estimates from either the

marginal or joint surrogacy modeling approach may be weighted by some function of the

contributing trial sizes; weighted least squares regression of the estimated trial treatment

effects on the true endpoint onto the corresponding estimated effects on the surrogate is

commonly employed, where the squared coefficient of determination from this model serves

as an estimate of trial-level surrogacy. Standard errors for  and associated confidence

intervals may be obtained via analytical or computational methods.

Although a collection of historical trials data with available center information may be

assumed to follow model (5) based on the composition of models (1)–(2) and (3)–(4), in

practice, when a sufficient number of trials are available and trial-level surrogacy is the

quantity of interest, only the trial-specific treatment effects (αi, βi) are traditionally involved

in computing trial-level surrogacy, while any center-level effects are often ignored.

Abrahantes et al. (2004) considered three-level (trial, center, patient) models for estimation

of trial-level surrogacy for the case of two normal endpoints, but they report numerical

challenges and describe substantial bias for these methods, specifically in those scenarios

likely to be observed in practice. As a result, the more straightforward two-level (trial,

patient) modeling procedure described above is widely applied, even in cases where an

insufficient number of trials are available.

2.2.2 Patient-level surrogacy—In most comprehensive surrogacy evaluations involving

trial-level surrogacy estimation as described in Section 2.2.1, patient-level surrogacy (the

association of S and T at the patient level) is also of interest. In practice, the original

endpoints S and T might be reasonably assumed to arise from a joint model, as non-zero

correlation of S and T is generally expected in the case of a strong surrogate. As previously
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mentioned, availability of a large number of trials is favorable but not necessary to evaluate

patient-level surrogacy.

While methodology for patient-level surrogacy evaluation is not the focus of this paper, the

choice of units in a trial-level surrogacy evaluation may also impact patient-level surrogacy

evaluation when joint (e.g., copula) models are utilized. Traditionally for time-to-event

endpoints S and T, a multi-trial copula model is used to simultaneously estimate trial-

specific marginal effects (such as the treatment effects subsequently used in a two-stage,

trial-level surrogacy evaluation) as well as a measure of patient-level correlation or

association of S and T, as captured by one or more copula association parameters. After

estimation of the multi-trial copula model, e.g. via maximum likelihood estimation, the

association parameter(s) may be subsequently transformed to yield a measure of patient-

level surrogacy, , that is bounded on [0, 1] for ease of interpretation. Similar to the

interpretation of , a value of  near 1 indicates strong patient-level surrogacy, while

a value near 0 indicates weak patient-level surrogacy. We refer the reader to Burzykowski et

al. (2001) for an introduction to patient-level surrogacy modeling using multi-trial copulas.

2.3 Choice of Units in Trial-Level Surrogacy Analyses: Implications

When the number of available trials in a given surrogacy analysis is insufficient for

estimation of  from model (1)–(2), the same model and methodology is commonly

applied to trial sub-units. In this case, the quantity actually estimated involves only center-

specific intercepts (μSij and μTij) and treatment effects (αij and βij) without recognition of

trial-level effects, and is based on the covariance matrix  from model (5) instead of ,

where

We refer to trial-level surrogacy estimated in this way as , which can be written as a

function of :

(6)
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Therefore, one possible scenario for  to reasonably approximate  is given

by the joint conditions ρC/ρT → 1 and c′/c → 1. Note from the trial-level model (1)–(2) and

patient-level model (3)–(4) that  and . Then

suggesting that  is a reasonable approximation for  when the center-level

treatment effects correlation matrix approaches the trial-level treatment effects correlation

matrix. Another scenario where estimation of  may be a reasonable solution to assess

trial-level surrogacy is when . To this end, it should be noted that

 and , which is true for all i ∈ {1, …,

N} and j ∈ {1, …, Ni}. Then  occurs when var(αij)/var(αi) → 0 and var(βij)/

var(βi) → 0, or when the variability of center-specific treatment effects within trials is much

smaller than the variability of treatment effects across trials, and when this is true for both

the surrogate and true endpoints. When it can reasonably be assumed that the ratio of the

variances of the surrogate effects to the true effects is equal at the trial and center levels (i.e.,

that c = c′), then it follows from (6) that lower center-level surrogacy than trial-level

surrogacy (ρC < ρT) directly results in lower naive trial-level surrogacy performed on centers

than trial-level surrogacy performed on trials, i.e. . Conversely, when

surrogacy at the center level within trials is higher than surrogacy across trials (ρC > ρT),

then . This result will not only be confirmed in the simulations of Section 3,

but will be evident in the data analysis of Section 4. As we will describe in Section 5, this

result may also be exploited to develop practical guidelines for conservative use of centers

as units of analysis when use of trials may be untenable.

The theoretical developments of this section suggest two possible scenarios where 

may be reasonably close to , thus warranting estimation of  for convenience in

some cases. However, it could be argued that these conditions, namely (1) equality of trial-

level and patient-level correlation matrices or (2) much greater variability of treatment

effects across trials than within trials, are unlikely to be observed in practice. Therefore, we

performed a simulation study to assess the impact of naive trial-level surrogacy estimation

performed on centers within trials, focusing on time-to-event endpoints and those

combinations of meta-analytic features (e.g., number of trials, number of centers within

trials, true underlying trial-level or center-level surrogacy, or relative variability of center

versus trial effects) which we deemed likely to be of greatest interest to practitioners.

3 Simulation Study

Because time-to-event endpoints are of primary interest in our own and many other

applications, we performed a simulation study to determine the extent to which particular

meta-analytic features (e.g., number of trials or centers, underlying trial-level or center-level
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surrogacy, or relative variability of treatment effects at each level) influence differences

between naive center-level and trial-level surrogacy evaluation.

3.1 Data Generation

Simulated data were generated according to a three step procedure. First, trial effects (αi, βi)

were generated from (1)–(2) assuming (α, β) = (0, 0), c = 1, and with ρT derived from 

and  according to the scenarios in Table 1. For the purposes of data generation, trial-

specific intercepts μSi and μTi were fixed at 0, but the estimation process allowed for non-

zero intercepts. Next, given the generated trial effects, center-level effects were generated

from (3)–(4) assuming c′ = 1 and ρC derived from  and  according to Table 1,

assuming center-specific intercepts (μSij, μTij) = (0, 0). Finally, using the generated center-

level effects (αij, βij) and random variates (uijk, vijk) drawn from a Clayton copula model

C(u, v) = {u1−γ + v1−γ − 1}1/(1−γ) with patient-level surrogacy defined by Kendall’s τ = (γ −

1)/(γ + 1), correlated event times (sijk, tijk) were produced via application of the inverse-CDF

method. Specifically, S and T were assumed to follow marginal Weibull distributions

parameterized according to

Allowing unique baseline hazard functions for each endpoint and center within trial, patient-

level observations of the (correlated) surrogate and true clinical endpoints were generated

from:

(7)

(8)

where  and  are center-within-trial-specific shape parameters (set equal to 2 for data

generation), and regressors zijk and corresponding generated treatment coefficients αij and βij

were introduced through center-within-trial and patient-specific scale parameters

 and . This model parameterization

was chosen for comparability of its treatment coefficients with those resulting from Cox

proportional hazards models.

3.2 Scenarios

For each scenario given in Table 1, 10,000 iterations were performed. To investigate the

“marginal” effects of particular trial or data settings (such as number of trials, underlying

surrogacy at each level, and censoring rate) on trial versus center-level surrogacy evaluation,

we performed simulations for a set of “high-level” scenarios presented in the upper part of

Table 1. For these scenarios, simulation parameters of interest were varied one at a time,

while holding all other parameters fixed at ideal settings. Here, we define “ideal” as the best-

case settings theoretically understood to produce the least bias and smallest variability (e.g.,
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from prior simulation studies such as Shi et al. (2011) or Renfro et al. (2012)). Specifically,

the “ideal” scenario (scenario 1) assumes high surrogacy at the patient, center, and trial

levels, with . Further assumed are availability of 15 trials with 20

centers per trial and 100 patient per center, larger variability of the trial-specific treatment

effects around their mean ( ) than center-level effects around their trial-specific

means ( ), and no censoring (e.g., each patient contributes observed events S and T

to model estimation procedures).

For comparison against the ideal scenario, high-level scenarios (1 through 20) were created

to study the marginal effects of the following: an increase (scenario 2) or decrease (scenario

3) in the number of available trials, reduced trial-level surrogacy (scenarios 4–5), reduced

center-level surrogacy (scenarios 6–7), equally small (scenario 8) or large (scenario 9)

variability of trial and center level effects, greater variability among center level effects than

trial effects (scenario 10), reduced patient-level surrogacy (scenarios 11–12), increased rate

of censoring (scenarios 13–14), reduced number of centers within trials (scenarios 15–16),

and reduced (scenario 17), mixed (scenario 18), or increased (scenarios 19–20) number of

patients within centers.

Upon completion of the high-level simulations, we performed additional simulations for a

set of “focused” scenarios, where settings were specifically chosen to represent those

practical situations where trial-level surrogacy analyses might be performed instead on

centers: namely, a small number of available trials (1, 3 or 5), a variable number of centers

within trials, and a mix of total accrual by center. For simplicity and based on the results of

the high-level scenarios, assumptions consistent across the focused scenarios included:

strong patient-level and trial-level surrogacy, a mix of sample sizes across centers, no

censoring of S or T, and larger variability of treatment effects at the center level versus trial

level.

In Figure 1, we display a random set of generated trial-specific treatment effects (αi, βi)

along with corresponding generated center-specific effects (αij, βij) under the four scenarios

comprised of  and  in the simple case where

. If one now assumes that these (generated) treatment effects are trial-

specific and center-specific estimates to be used in the second stage of a trial-level (and

naive center-level) surrogacy estimation, the possible implications of the relative sizes of 

and  become readily apparent. In part because centers and other trial sub-units by

definition have (much) smaller sample sizes than their original trials, it is reasonable to

expect the observed variability of estimated center-level treatment effects to be larger in

practice than the variability observed across trials for trial-level effects. Thus, for the

focused scenarios intended to reflect situations where naive center-level estimation might be

performed, we consider only the case where  and .
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3.3 Estimation Methods

For all scenarios in Table 1, two different modeling approaches using patient-level data were

performed: trial-specific marginal Cox proportional hazards models ignoring patient-level

association between S and T, and a multi-trial Clayton copula model capturing (S, T)

association through a single copula association parameter. Specifically for the later

approach, S and T were assumed to follow correlated Weibull distributions with trial-

specific hazard functions according to the copula model and (7)–(8) described in Section

3.1. For both approaches, treatment effects estimates obtained at the first stage were used to

estimate trial-level surrogacy at the second stage, according to (1)–(2). Patient-level

surrogacy was also investigated, both assuming trial-specific surrogacy τi and equal-trial

surrogacy τ by transformation of the estimated Clayton copula association parameter to the

scale of Kendall’s τ. In all cases, estimation of trial-level surrogacy  was weighted by

trial size.

Because use of trials versus centers as the units of interest in surrogacy analyses is the

central exploration of this paper, all trial-level surrogacy estimation was separately

performed using trials (when N > 1) and centers as the unit of evaluation. Although each

dataset was generated from assumed “true” levels of surrogacy at the trial and center levels

(usually ), in reality, a given set of correlated treatment effects

generated for a single iteration rarely adhered to these values. For this reason, throughout

this paper, we compare trial-level estimates  and the corresponding naive center-level

estimates  to both the underlying “true” trial-level surrogacy  of interest and the

generated  obtained by squaring the correlation of the generated trial treatment effects.

3.4 Results

3.4.1 Trial-level surrogacy—Table 2 and Figures 2–4 present the results of trial-level

surrogacy analyses performed using trials versus centers as the unit of analysis. We note that

for these simulations, comparing a surrogacy estimate  against its corresponding

generated value of  is more informative than comparisons against “true” , as the

correlation of generated treatment effects (αi, βi) can vary widely from iteration to iteration.

Thus, we emphasize bias and MSE results for comparisons against generated surrogacy

whenever possible (i.e., when N > 1), but emphasize comparisons against true 

otherwise (when N = 1). For completeness, we report both comparisons for all scenarios, and

note that the conclusions generally agree.

Among the high-level scenarios, we find varying degrees of negative bias under naive

center-level estimation compared to trial-level estimation when true trial-level surrogacy is

high (i.e., all scenarios except 4 and 5), and some degree of positive bias when center-level

surrogacy is high but true trial-level surrogacy is moderate (scenario 4) or low (scenario 5).

We note these results are consistent with the findings of Abrahantes et al. (2004) for

Normally distributed endpoints. When many trials are available (N = 30 under scenario 3),

and even when only a few trials are available, such as N = 5 under scenario 2, trial-level

surrogacy analyses performed on trials show better estimation performance than those
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performed on centers. When trial-level surrogacy is truly high but center-level surrogacy is

moderate (scenario 6) or low (scenario 7), performing trial-level surrogacy estimation on

centers results in substantial negative bias. Equal variation of treatment effects at the center

and trial levels (versus larger variation at the trial level than the center level, as in the ideal

scenario) results in negative bias for naive center-level estimation when variability at both

levels is low (  under scenario 8), but both estimation approaches (trials versus

centers as units) perform well when variability at both trial and center levels is high

(  under scenario 9). When larger variability exists among treatment effects at

the center level than the trial level, treating centers as the units of trial-level surrogacy

estimation produces similar results to trials (scenario 10). Decreases in patient-level

surrogacy cause negative bias for trial-level surrogacy estimation when trial-level surrogacy

is truly high and analyses are performed on centers as units, as evidenced for scenarios 11

and 12, while presence of censoring has minimal effects under either approach (scenarios 13

and 14). When a relatively large (N = 15) number of trials are available, decreasing the

number of centers within trials has minimal effects on estimation (scenarios 15 and 16).

However, even when a large number of trials and centers within trials are available, a

reduced number of patients within centers results in substantial negative bias for trial-level

surrogacy estimation when treating centers as the unit of analysis (scenarios 17 and 18). For

confirmation, scenarios 19 (with nij = 500) and 20 (with nij = 1000) were performed,

showing that the small amount of negative bias present even for the ideal scenario 1

vanishes when the center-level sample size is extremely large (nij > 100).

Among the focused scenarios, where a small number of available trials (N ∈ {1, 3, 5}) is

assumed, we find additional differences in estimation performance for trials versus centers

as the units of analysis in trial-level surrogacy estimation. When only 1 trial with 5, 10, or

20 centers is available (scenarios 21, 22, and 23, respectively), performing a trial-level

surrogacy analysis on trials is impossible. In this case, performing an analysis on trial sub-

units is perhaps the best that can be done, and in our simulations, where a mixture of center-

level sample sizes ranging from 10 to 50 is assumed, such an analysis seems reasonable.

Specifically, for an increased number of centers within a single trial, naive-center level

surrogacy estimation performs increasingly well at estimating the true underlying value of

trial-level surrogacy, . When 3 trials are available with 5, 20, or a mixture of 5, 10, or

20 centers per trial (scenarios 24, 25, and 26, respectively), performing trial-level surrogacy

analyses on trials (versus centers) remains the least biased approach, though with the

disadvantage of increased MSE. When 5 trials with 5, 20, or a mixture of 5, 10, or 20 centers

is available (scenarios 27–29), the results are similar.

In general, trial-level surrogacy estimates returned by the Cox versus copula modeling

approaches are similar, as they should be. Where substantial differences occur, the copula

approach offers some advantages. Specifically, the Cox approach results in a small to

moderate number of outlying trial-level surrogacy estimates when centers are the unit of

analysis, as can be seen when comparing estimates  to generated values of  for

scenarios 1, 4, 6, 7, 9, and 11–14 (comparisons to true underlying  obscure these

outliers). In these cases, it is possible that some instances of numerical instability of the
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marginal Cox models (e.g., as a result of the smaller sample sizes associated with centers as

units) are mitigated by estimation using the parametric copula model in its place. These

differences between methods indeed become more exaggerated when the sample size per

center is reduced or varied, as is the case in Scenarios 17, 18, and 23–29. When the sample

size per center is artificially increased to nij = 500 or 1000 (scenarios 19–20), the differences

between modeling approaches cease to exist. These results motivate consideration of a

copula estimation method for multi-trial surrogacy evaluation, perhaps as confirmation or

results produced by marginal Cox models, when small unit-specific sample sizes (e.g., <

100) are present.

3.4.2 Patient-level surrogacy—Table 3 and Figures 5–7 present the results of patient-

level surrogacy analyses performed using trials versus centers as the units of trial-level

surrogacy analyses. For these scenarios, copula estimation assuming both equal patient-level

surrogacy τ across units and unit-specific patient-level surrogacy is reported. For the latter

approach, bias and MSE are computed for Table 3 by further averaging unit-specific bias

and MSE across units, while the minimum, median, and maximum values of τ̂
i across units

are displayed in box plots in Figures 5–7. While we show all results for completeness, for

brevity we will focus on estimation assuming equal τ across units of analysis. As a

reminder, equal patient-level surrogacy across trials was assumed throughout data

generation and is the method generally used in the literature.

In general, estimation of  using centers versus trials as the unit of analysis has

relatively little impact on patient-level surrogacy, with a few notable exceptions. Under the

ideal scenario (scenario 1) assuming high patient-level surrogacy τ = 0.90, τ is estimated

with negative bias under both approaches, but with larger bias when centers are used as the

unit of analysis. This remains true for any number of trials (scenarios 2 and 3), decreased

trial-level surrogacy (scenarios 4 and 5), equally small variability of treatment effects across

trials and centers within trials ( ; scenario 8), decreased patient-level surrogacy

(scenarios 11 and 12), presence of censoring (scenarios 13 and 14), a decreased number of

centers within trials (scenario 16), and a decreased number of patients within centers

(scenarios 17 and 18). However, when underlying center-level surrogacy is reduced

(scenarios 6, and 7), or when the variability of center-level treatment effects within trials is

large ( ; scenarios 9 and 10), patient-level surrogacy estimation shows less bias

when performed using centers as the unit of analysis versus trials. Similarly, when the

number of patients within centers is very large (scenarios 19 and 20), naive center-level

estimation can show slight gains in accuracy over trial-level estimation, though these gains

are diminished as nij → ∞. When only one center per trial exists (scenario 15), as expected,

the two methods yield identical results. Among the focused scenarios where a small number

of trials (N = 1, 3, or 5) are considered, patient-level surrogacy estimation performed on

trials versus units as centers generally yield similar results. An exception occurs when unit-

specific τi are assumed. In this case, substantial negative bias and outlying estimates are

frequent among , the minimum values of unit-specific surrogacy τ̂
i estimated at each

iteration, when centers are the unit of analysis. This is in sharp contrast to the good

estimation performance observed when unit-specific τi are similarly assumed but trial is the
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level of analysis (see Figure 7). It could be the case that small center-level sample sizes are

insufficient to accurately estimate patient-level surrogacy when this surrogacy is separately

estimated for individual centers.

4 ACCENT Data Analysis

Sargent et al. (2005) previously validated 3-year disease free survival (DFS) as a surrogate

endpoint for 5-year overall survival (OS) in trials of adjuvant treatment for colon cancer,

using a variety of meta-analytic surrogacy measures and patient-level data from more than

20,000 individuals enrolled to 18 randomized clinical trials. In this re-analysis of the

ACCENT data, we consider 5 of the original 18 trials where center-level identifiers are

available, and separately estimate “trial level” surrogacy using trials versus centers as the

unit of analysis. In the present manuscript, for purposes of exposition, both time to

recurrence (TTR) and disease-free survival (DFS) are considered as potential surrogates for

overall survival, and the primary aim is estimation of trial-level and patient-level surrogacy

for each candidate endpoint.

Of the 5 original trials, one contained 3 experimental treatment arms, and thus a total of 7

pairwise comparisons can be made (we will henceforth refer to these comparisons as

“trials”). Within each of the 7 two-arm trials, centers were also considered. Due to the high

rate of censoring (at least 70%) present for each endpoint, centers containing fewer than 20

patients were randomly combined with larger centers from the same trial containing at least

20 patients. This resulted in a total of 60 centers across the 7 trials, with a range of 1 to 18

centers per trial. Trial-level surrogacy estimation was performed using both marginal Cox

proportional hazards models and a multi-trial Clayton copula model assuming equal patient-

level association across trials, while patient-level surrogacy estimation was achieved using

the copula model. In all cases, estimation of trial-level surrogacy  weighted by trial

(center) size was performed, and standard errors were obtained by applying the delta method

to the standard errors associated with the weighted correlations.

4.1 Results: ACCENT Data

Results of the ACCENT analyses are presented in Figure 8 and Table 4. We find that for

both PFS and TTR, performing surrogacy analyses on trials versus centers yields

substantially higher estimates of trial-level surrogacy, . In each of these cases,

trial-level surrogacy based on centers may be viewed as a conservative estimate of trial-level

surrogacy based on trials, as it takes the large variability among centers (as evidenced in

Figure 8) into account that is otherwise ignored at the trial level.

As expected, due to estimation based on an increased sample size (number of units),

standard errors for  are substantially smaller under naive center-level estimation than

trial estimation, which may be viewed as an advantage if the relative disadvantages of

treating centers as trials are taken into account. For both DFS and TTR, patient-level

surrogacy estimation did not vary according to units of analysis.
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Noting that the full ACCENT analysis presented here is based on a number of trial-level

units (N = 7) larger than what might be available in practice, we also considered trial-level

versus naive center-level surrogacy analyses for DFS and TTR on all possible subsets of the

7 ACCENT trials with size N = 4 (35 combinations in total). For each candidate surrogate

(DFS and TTR) and trial subset, we plotted the trial-level surrogacy estimated from trials

versus the surrogacy estimated from centers, shown in Figure 9.

In all but one case for DFS and in all cases for TTR in Figure 9, naive trial-level surrogacy

based on centers as units is lower than trial-level surrogacy based on trials. From (6),

assuming c = c′,  is guaranteed to underestimate  when ρC < ρT (or equivalently,

when ). This phenomenon was examined in simulation scenarios 6 and 7 and

seems to be in effects for DFS and TTR in ACCENT. Among the trials in ACCENT with

more than one center, such that trial-specific center-level surrogacy may be computed, we

find that center-level surrogacy for DFS ranges from 0.837 to 0.959, while center-level

surrogacy for TTR ranges from 0.591 to 0.879. Thus, it is unsurprising that 

for each endpoint.

5 Discussion

A set of recommendations by an NIH workgroup for the evaluation of surrogate endpoints

included establishing databases within disease settings, where potential surrogates can be

evaluated most robustly (de Gruttola et al., 2001). The ACCENT database utilized in this

paper is one such successful endeavor. However, the large number of trials required to

utilize the gold standard surrogacy evaluation methodologies are in practice a substantial

challenge to assemble, and as such, a common ad-hoc solution is performance of trial-level

surrogacy analyses on trial sub-units. Here, we investigated the effects of unit choice (trial

versus centers) on multi-trial surrogacy evaluations where time-to-event endpoints are of

interest.

Based on the results of the simulations and data analyses of this paper, we provide the

following recommendations. First, when trial-level surrogacy (versus center-level

surrogacy) is truly the quantity of interest and a sufficient number of trials (e.g., N > 10) are

available, surrogacy analyses using the original trials as the units of evaluation should be

performed as the primary surrogacy analysis. When only a moderate number (e.g., 5 to 9)

trials are available for analysis, the practitioner may wish to perform surrogacy analyses at

both levels, with greater emphasis given to the trial-level analysis and supporting evidence

provided by the center-level analysis. When estimated surrogacy is sufficiently strong in

each case, one might conclude that the the surrogate endpoint is promising; otherwise,

additional exploration or justification of the surrogate for future use may be required.

When only 3 or 4 trials are available for analysis, we recommend proceeding as follows.

First, it can be shown (e.g., via simulation) that a correlation coefficient based on too few

units is likely to be negatively biased, with absolute bias increasing with the strength of

correlation. Because of this, and due to the relationship between  and  derived in

equation (6), we suggest performing surrogacy analyses on three separate levels: (1)
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estimation of  using trials as units, (2) estimation of  using centers (across trials)

as units, and (3) estimation of , computed across centers within each trial i ∈ {1, …,

N} for trials with more than one center (to gain some idea of center-level surrogacy). Based

on the relative surrogacy results at each level (which we have grouped into 3 possible

situations below), some general conclusions may be drawn:

1.
If  for all or most i ∈ {1, …, N}, it should also be true from

(6) that . In this case,  may be viewed as a conservative

estimate of , the quantity of interest. If  is sufficiently high, the

surrogate S may be viewed as promising to replace T in a future trial.

2.
If  for approximately half of i ∈ {1, …, N} and  for

the other trials, then  and  should be similar in magnitude. If so, S may

be considered a reasonable surrogate for T when both  and  are

sufficiently high.

3.
When  for all or most i ∈ {1, …, N}, it is likely, based on equation

(6) and simulation scenarios 4 and 5 presented in Section 3, that  will be some

degree lower than . In this case, the relative influence of two possible factors,

(1) negative bias caused by  computation with too few units and (2) higher

center-level correlation ρC than trial-level correlation ρT, cannot be distinguished.

For this reason, we caution against use of S in future trials based on even promising

values of , as  is possibly inflated relative to the quantity of interest

, which is immeasurable in practice and cannot be assumed to be bounded

above another measurable quantity, as was possible for situation (1).

When fewer than 3 trials are available for analysis, even rough estimation of  using

trials as units (for comparison against  and ) is impossible. In this case, we

caution against performing center-level surrogacy evaluations alone, for at least two reasons.

First, (6) demonstrates that promisingly high estimates  are potentially inflated relative

to the quantity of interest , and this occurs particularly when center-level surrogacy is

high. This could lead not only to overconfidence in the surrogacy analysis, but also–and

more critically–to a change of endpoint in future trials of the disease setting that might be

unjustified. Second, leave-one-out prediction of the effect of treatment on the true endpoint

in a ”future” trial given the observed effects on the surrogate endpoint across historical

trials–a central component of most published multi-trial surrogacy evaluations–cannot

reliably be performed on centers in place of trials, as the location and variability of center-

specific effects generally do not represent those of trial effects. For these reasons, when

patient-level data from only 1 or 2 trials are available, we advocate for continued use of the

true clinical endpoint T in future clinical trials, at least until a multi-trial surrogacy

evaluation is truly possible.
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When any multi-trial surrogacy analysis is performed, it is helpful to recall that the

respective trial sizes were originally based (at least in part) on powering the same treatment

comparisons now being analyzed across trials in the surrogacy analysis. To this end, one

should bear in mind that center-specific treatment effects utilized in naive surrogacy

analyses will be associated with increased variability relative to the trial effects that a multi-

trial surrogacy analysis is intended to quantify and predict. Indeed, the primary goal of a

multi-trial surrogacy analysis is to confirm that the treatment effect on the true clinical

endpoint in a new trial, which may be difficult or costly to estimate, can be well-predicted

by the more readily observed effect on a surrogate endpoint. When a collection of paired

historical center-level treatment effects are not sufficiently representative of their

corresponding trial-level effects, the derived prediction model based on centers may fail to

represent what may reasonably be expected for the S, T relationship in a future trial.

In conclusion, multi-trial meta-analytic evaluations of surrogate endpoints for future use in

clinical trials remains the gold standard approach, with inherent practical challenges such as

required availability of patient-level data from a large number of similar clinical trials within

the same disease setting. With careful understanding of the available data and with

consideration given to the recommendations provided here, estimates of trial-level surrogacy

may be obtained or reasonably approximated even when the number of trials is limited.
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Figure 1.
Generated values of (αi, βi) and corresponding (αij, βij) where N = 5, Ni = 15, and

. In each case, generated .
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Figure 2.
Boxplots of estimated minus true trial-level surrogacy, by units of analysis (T = trial, C =

center), estimation method (Cox, copula), and comparator (true vs. generated ) for

high-level scenarios 1–10.
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Figure 3.
Boxplots of estimated minus true trial-level surrogacy, by units of analysis (T = trial, C =

center), estimation method (Cox, copula), and comparator (true vs. generated ) for

high-level scenarios 11–20.
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Figure 4.
Boxplots of estimated minus true trial-level surrogacy, by units of analysis (T = trial, C =

center), estimation method (Cox, copula), and comparator (true vs. generated ) for

focused scenarios 21–29.
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Figure 5.
Boxplots of estimated patient-level surrogacy, by units of analysis (T = trial, C = center),

and assuming equal patient-level surrogacy τ or unit-specific patient-level surrogacy τi

across units, for high-level scenarios 1–10.
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Figure 6.
Boxplots of estimated patient-level surrogacy, by units of analysis (T = trial, C = center),

and assuming equal patient-level surrogacy τ or unit-specific patient-level surrogacy τi

across units, for high-level scenarios 11–20.
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Figure 7.
Boxplots of estimated patient-level surrogacy, by units of analysis (T = trial, C = center),

and assuming equal patient-level surrogacy τ or unit-specific patient-level surrogacy τi

across units, for focused scenarios 21–29.
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Figure 8.
Copula estimated trial-specific and center-specific treatment effect pairs for OS versus DFS

(left) and TTR (right). Common colors relate centers to their parent trials. Cox estimates

(not shown) are similar.
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Figure 9.

Cox estimated trial-level surrogacy  versus naive center-estimated surrogacy  for

all possible subsets of 4 ACCENT trial units among 7 total ACCENT trial units, presented

for DFS surrogacy (left) and TTR surrogacy (right).
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Table 4

Estimates of trial-level surrogacy using trials ( ) versus centers ( ) as units of analysis, under

marginal Cox and joint Clayton copula models weighted by trial size, with associated standard errors (SE).

Patient-level surrogacy τ estimated from Clayton copula models.

Estimate Marginal Cox Joint Copula Marginal Cox Joint Copula

DFS Surrogacy

Estimate 0.965 0.959 0.866 0.862

SE 0.164 0.178 0.089 0.090

τ̂ – 0.669 – 0.670

TTR Surrogacy

Estimate 0.951 0.943 0.766 0.768

SE 0.194 0.207 0.111 0.111

τ̂ – 0.638 – 0.630
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