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Abstract

Finding a tube of small width that covers a certain percentage of the training data samples is a robust
way to estimate a location: the values of the data samples falling outside the tube have no direct influence
on the estimate. The well-known ν-tube Support Vector Regression (ν-SVR) is an effective method for
implementing this idea in the context of covariates. However, the ν-SVR considers only one possible location
of this tube: it imposes that the amount of data samples above and below the tube are equal. The method
is generalized such that those outliers can be divided asymmetrically over both regions. This extension gives
an effective way to deal with skewed noise in regression problems. Numerical experiments illustrate the
computational efficacy of this extension to the ν-SVR.
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1. Introduction

Since its introduction by Schölkopf et al. (2000), the ν-tube Support Vector Regression (ν-SVR) has
become a standard tool in nonparametric regression tasks. The ν-SVRs extend standard Support Vector
Regression techniques given by Vapnik (1995) via (i) enforcing a fraction of the data samples to lie inside a
tube, as well as (ii) minimizing the width of this tube. Mathematically, training such a tube [f(x)−ε, f(x)+ε]
can be formulated as the following optimization problem,

min
f,ε

ε (1)

s.t.
∑n

i=1
I (yi ∈ [f(xi) − ε, f(xi) + ε]) ≥ ρn,

where {(xi, yi)}
n
i=1, xi ∈ R

d, yi ∈ R are the data samples, 0 ≤ ρ ≤ 1 is a user defined constant, and
I(a) stands for an indicator function, which equals one when a is true and equals zero otherwise. Unlike
traditional point-regression methods, (1) focuses on estimation of the confidence region directly, which is
called support tube by Pelckmans et al. (2009). One can find the corresponding statistical discussion therein.

Apparently, the values of the data samples falling outside the tube have no direct influence on the result
of (1), which is quite robust to outliers, since the outliers probably fall outside. In fact, this idea has
appeared in robust regression and is known as the least median squares regression, which is proposed by
Rousseeuw (1984), Rousseeuw and Leroy (1987). Denote the k-th maximum of {ui}

n
i=1 by maxk

1≤i≤n{ui}:

maxk
1≤i≤n{ui} = uΓ(k) with uΓ(1) ≥ uΓ(2) ≥ · · · ≥ uΓ(n).
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Then the least median squares estimator can be written as

min
f

maxk
1≤i≤n

{

(yi − f(xi))
2
}

. (2)

One can observe the equivalence between (2) and (1) when ρ = k/n. If the median squared error is minimized,
(2) is regarded as the most robust estimator in view of the breakdown point defined by Donoho and Huber
(1982). The idea of minimizing the median error also has been discussed for classification tasks by Ma et
al. (2011) and Tsyurmasto et al. (2013). For the least median squares regression, there have been some
approximation algorithms proposed by Tichavsky (1991), Boček and Lachout (1995), Olson (1997), Verardi
and Croux (2009), and Winker et al. (2011). The most popular method for computing the least median
squares estimator is PROGRESS suggested by Rousseeuw and Leroy (1987) and modified by Rousseeuw
and Hubert (1997). Besides, several algorithms have been developed for finding the global optimum, see the
works of Steele and Steiger (1986) and Stromberg (1993).

Regression method (1) enjoys robustness to outliers, but it is non-convex. It can be modeled as a mixed
integer linear programming (MILP), which has been proved to be NP-hard, see the discussion given by
Huang et al. (2012). The solving time of an NP-hard problem is not acceptable for large-scale problems.
Thus, we need a convex proxy for (1) for computational efficacy. Actually, the ν-SVR can be regarded
as such a convex approximation, i.e., one can get a narrow tube, though not the optimal one, to cover ρ
percentage samplings via solving a convex problem. Let us consider the case that f is chosen from the set
of affine functions. Then the ν-SVR in primal space refers to the following optimization problem,

min
w,b,ε

1

2γ
wT w + νε +

1

n

n
∑

i=1

Lε

(

yi − (wT xi + b)
)

(3)

s.t. ε ≥ 0,

where ν ≥ 0 is a user defined parameter and Lε(u) is the ε insensitive zone loss as defined below:

Lε(u) =







u − ε, u ≥ ε,
0, −ε < u < ε,

−u − ε, u ≤ −ε.

It has been proved by Schölkopf et al. (2000) that the minimizer of (3) satisfies:

n
∑

i=1

I
(

yi ∈ [wT xi + b − ε, wT xi + b + ε]
)

≥ (1 − ν)n,

which means that by setting ν = 1−ρ, the ν-SVR provides a feasible solution to (1). The difference between
(1) and (3) can be observed by a linear regression task shown in Fig.1. In this example, we pursue a tube
covering half of the data samples, which are displayed by blue crosses. With a suitable ν, the ν-SVR (3)
results in a good solution to (1). This tube is shown by red solid lines and covers 50% of the data. This
solution is not yet the optimal to (1). Since this problem scale is small, we can get the optimal tube via
solving the MILP formulation of (1) by iLog CPLEX. The optimal tube is shown by black dotted lines,
which has the smallest width among all the tubes covering 50% of the data. One noticeable point is that
there are 8 points above the optimal tube and 2 points below it. However, the amount of outliers above and
below the red solid tube are imposed to be equal by (3), which reserves from the symmetry of Lε.

Motivated by these observations, this paper extends Lε to an asymmetric loss. Then an asymmetric
ν-tube support vector regression (asymmetric ν-SVR) is established. By the proposed method, we can find
an asymmetric tube, above and below which the outliers are distributed asymmetrically. The asymmetric
tube is more flexible and can give a better solution to (1). This is especially suitable for dealing with
asymmetric noise. Many applications have asymmetric noise. For example, when the measurement is close
to saturation, then the noise may follow a distribution of which one tail is long but the other tail is truncated.
Some existing discussions about asymmetric noise and the related methods can be found in literature, e.g.,
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Figure 1: We require 50% of the data (blue crosses) are covered by a tube. The result of the ν-SVR (3) is illustrated by red
solid lines. Black dotted lines display the optimal solution to (1). The two tubes cover the same amount of the data samples,
but the distributions of the outliers are different.

Kassam et al. (1982), Hubert et al. (2009), Le Masne et al. (2009), and Solli et al. (2010). For these skewed
noises, it is reasonable to require an asymmetric tube.

The remainder of the paper is organized as follows: the formulation of the asymmetric ν-SVR is given
and the properties are discussed in Section 2. Section 3 gives its dual problem and an algorithm. Then
the proposed method is evaluated by numerical experiments in Section 4. Section 5 ends the paper with
concluding remarks.

2. Asymmetric ν-tube Support Vector Regression

As discussed previously, the ν-SVR (3) results in a symmetric tube. To pursue an asymmetric tube, we
extend Lε into an asymmetric loss:

Lp
ε(u) =







1
2p

(u − ε), u ≥ ε,

0, −ε < u < ε,
1

2(1−p) (−u − ε), u ≤ −ε,

where p is the parameter related to asymmetry. When p = 0.5, Lp
ε reduces to Lε. The plots of Lp

ε for
some p values are shown in Fig.2. Lp

ε also can be constructed by introducing an ε insensitive zone to the
pinball loss, which has been widely applied and studied in the field of quantile regression, see Koenker
(2005) for parametric methods. For nonparametric methods, one can refer to the literature of Steinwart and
Christmann (2008), Steinwart and Christmann (2011). Introducing insensitive zone into quantile regression
brings sparseness and its approximation behavior has been discussed by Xiang et al. (2012).
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Figure 2: Loss value of L
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ε(u) reduces to the ε insensitive zone loss Lε(u).

3



Replacing Lε in (3) by Lp
ε, we obtain the following asymmetric ν-tube support vector regression (asym-

metric ν-SVR),

min
w,b,ε

1

2γ
wT w + νε +

1

n

n
∑

i=1

Lp
ε

(

yi − (wT xi + b)
)

(4)

s.t. ε ≥ 0.

We can introduce a nonlinear feature map φ(x) and then solve the asymmetric ν-SVR to find a good tube
in the feature space. In this case, the proposed asymmetric ν-SVR (4) can be equivalently transformed into
a quadratic programming (QP) problem as below,

min
w,b,ε,e+,e−

1

2γ
wT w + νε +

1

n

n
∑

i=1

(e+
i + e−i )

s.t. yi − (wT φ(xi) + b + ε) ≤ 2pe+
i , ∀i, (5)

(wT φ(xi) + b − ε) − yi ≤ 2(1 − p)e−i , ∀i,

ε ≥ 0, e+
i ≥ 0, e−i ≥ 0, ∀i.

In the above formulation, e+
i characterizes the sample above the upper boundary. Similarly, e−i is related

to the distance to the lower boundary. The ν-SVR gives equal emphasis to e+
i and e−i , which results in

an equal amount of points above and below the tube. In (5), we give different weights to e+
i and e−i .

Heuristically, when p is larger than 0.5, the penalties to the samples above the upper boundary are smaller,
which implies that we tolerate more outliers above the tube than below it. In the asymmetric ν-SVR, p and
ν control the fraction of points above and below the tube, guaranteed by the following proposition.

Proposition 1. The optimal solution to (5) satisfies:

n
∑

i=1

I
(

yi > wT φ(xi) + b + ε
)

≤ pνn,

n
∑

i=1

I
(

yi < wT φ(xi) + b − ε
)

≤ (1 − p)νn.

Proof. Introducing the Lagrange multipliers α+
i , β+

i , α−
i , β−

i , ζ, which correspond to the constraints of (5)
and are nonnegative, we get the Lagrangian

L(w, b, ε, e+, e−; α+, β+, α−, β−, ζ)

=
1

2γ
wT w + νε +

1

n

n
∑

i=1

e+
i +

1

n

n
∑

i=1

e−i −

n
∑

i=1

α+
i

(

wT φ(xi) + b + ε − yi + 2pe+
i

)

(6)

+
n

∑

i=1

α−
i

(

wT φ(xi) + b − ε − yi − 2(1 − p)e−i
)

− ζε −
n

∑

i=1

β+
i e+

i −
n

∑

i=1

β−
i e−i .

From the saddle point condition, we have that

∂L

∂ε
= ν − ζ −

n
∑

i=1

(

α+
i + α−

i

)

= 0, (7)

∂L

∂b
=

n
∑

i=1

(

α+
i − α−

i

)

= 0, (8)

∂L

∂e+
i

=
1

n
− 2pα+

i − β+
i = 0, i = 1, 2, . . . , n, (9)

∂L

∂e−i
=

1

n
− 2(1 − p)α−

i − β−
i = 0, i = 1, 2, . . . , n. (10)
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According to (7) and (8) and the fact ζ ≥ 0, we know that

n
∑

i=1

α+
i =

n
∑

i=1

α−
i ≤

ν

2
. (11)

For any point above the tube, there is

yi − (wT φ(xi) + b + ε) = 2pe+
i and e+

i > 0.

According to the complementary slackness condition, we have β+
i = 0. Then (9) tells us α+

i = 1
2np

.
Therefore, the amount of the data above the tube cannot exceed pνn, otherwise

n
∑

i=1

α+
i > pνn

1

2np
=

ν

2
,

which conflicts with (11). Thus, p and ν control the fraction of points located above the tube, i.e.,

n
∑

i=1

I
(

yi > wT φ(xi) + b + ε
)

≤ pνn.

Similarly, the complementary slackness condition and (10) together lead to

n
∑

i=1

I
(

yi < wT φ(xi) + b − ε
)

≤ (1 − p)νn.

�

From Proposition 1, we further conclude that the solution of the asymmetric ν-SVR satisfies

n
∑

i=1

I
(

yi ∈ [wT φ(xi) + b − ε, wT φ(xi) + b + ε]
)

≥ (1 − ν)n,

which means that ν controls the fraction of the data falling outside the tube. The behavior of ν in (4) is the
same as in the ν-SVR. One noticeable point is that the computational complexity of the asymmetric ν-SVR
(4) is similar to that of the ν-SVR (3), since the corresponding QPs have the same numbers of optimization
variables and inequality constraints.

3. Nonparametric Formulation

In the above, we analyze the performance of the asymmetric ν-SVR in the primal space. Now let us
focus on the Lagrangian (6). Its saddle point conditions include (7) – (10) and

∂L

∂w
=

1

γ
w −

n
∑

i=1

(

α+
i − α−

i

)

φ(xi) = 0.

5



Then we let λ+
i = γα+

i , λ−
i = γα+

i , get the dual problem to (4), and establish the following nonparametric
asymmetric ν-SVR,

min
λ+,λ−

1

2

n
∑

i=1

n
∑

j=1

(λ+
i − λ−

i )TK(xi, xj)(λ
+
j − λ−

j ) −
n

∑

i=1

yi(λ
+
i − λ−

i )

s.t.

n
∑

i=1

(λ+
i − λ−

i ) = 0,

n
∑

i=1

(λ+
i + λ−

i ) ≤ νγ, (12)

0 ≤ λ+
i ≤

γ

2p
, ∀i = 1, 2, . . . , n,

0 ≤ λ−
i ≤

γ

2(1 − p)
, ∀i = 1, 2, . . . , n,

where K(xi, xj) = φ(xi)
T φ(xj) corresponds to a positive definite kernel. Any positive-definite kernel, such

as radial basis function (RBF) kernel or polynomial kernel, is applicable to (12). After solving (12), we get
the optimal dual variables λ+, λ−, and calculate wT φ(x) by

wT φ(x) =

n
∑

i=1

(

λ+
i − λ−

i

)

K(x, xi).

To compute the bias term b and the width ε, we consider the sample data (xi, yi) with 0 < λ+
i < γ

2p
, denoted

by S+
0 =

{

i : 0 < λ+
i < γ

2p

}

. These points are located on the upper boundary of the tube, i.e.,

n
∑

j=1

(

λ+
j − λ−

j

)

K(xj , xi) + b + ε = yi, ∀i ∈ S+
0 .

Similarly, for samples in S−
0 =

{

i : 0 < λ−
i < γ

2(1−p)

}

, there is

n
∑

j=1

(

λ+
j − λ−

j

)

K(xj , xi) + b − ε = yi, ∀i ∈ S−
0 .

Using one element in S+
0 and one element in S−

0 , the optimal b and ε can be calculated. As a result, we
obtain a nonparametric formulation of a tube covering a certain percentage of the data. The center of the
tube is expressed using the dual variables as

f(x) =

n
∑

i=1

(

λ+
i − λ−

i

)

K(x, xi) + b. (13)

Consequently, the upper and the lower boundary of the tube is obtained as f(x) + ε and f(x) − ε.
Similarly to Proposition 1, the fraction of the data samples above and below the tube obtained from

(12) is described by the following proposition. This proposition comes from the constraints in (12) and the
complementary slackness condition. The proof is similar to that of Proposition 1 and is omitted here.

Proposition 2. The optimal solution to (12) satisfies:

n
∑

i=1

I



yi >

n
∑

j=1

(λ+
j − λ−

j )K(xi, xj) + b + ε



 ≤ pνn,

n
∑

i=1

I



yi <

n
∑

j=1

(λ+
j − λ−

j )K(xi, xj) + b − ε



 ≤ (1 − p)νn,
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and

n
∑

i=1

I



yi ∈





n
∑

j=1

(λ+
j − λ−

j )K(xi, xj) + b − ε,
n

∑

j=1

(λ+
j − λ−

j )K(xi, xj) + b + ε







 ≥ (1 − ν)n.

The sparseness of the asymmetric ν-SVR is similar to that of the ν-SVR: for a training point (xi, yi)
inside the tube, i.e., f(xi)− ε < yi < f(xi) + ε, we have that λ+

i = λ−
i = 0. Otherwise, λ+

i − λ−
i 6= 0, which

corresponds to a support vector. Similarly to the ν-SVR, the parameter ν in (12) bounds the fraction of
support vectors. Additionally, p controls the location of support vectors.

The value of p should coincide with the skewness of the noise. Consider additive noise δ and assume
that the mean of δ is zero. Prob(δ > 0)/Prob(δ < 0) generally reflects the skewness of δ. Thus, we can first
estimate the mean function by a least squares method and count the positive and negative residuals. Then
p is heuristically set to be the fraction of positive residuals. In this paper, we tune p with the help of the
least squares support vector machine (LS-SVM, Suykens and Vandewalle, 1999; Suykens et al., 2002). After
estimating the mean function, one can measure the skewness by some robust methods proposed by Brys
et al. (2004), Kim and White (2004). Another potential choice is the methods based on a Huber loss, which
enhances the robustness. These robust methods are suitable to deal with outlier corrupted data but require
more computational time. In this paper, we simply set p based on the LS-SVM for computational efficacy.
If the outliers are heavy, one can consider robust methods or evaluate different p values by cross validation.

Now we summarize the above discussions and give the following asymmetric ν-SVR algorithm.

Algorithm 1: Asymmetric ν-SVR Algorithm

• Input {(xi, yi)}
n
i=1 (the training data), ρ (the required percentage of the covered training data);

• Choose the regularization constant γ, the positive definite kernel, and the kernel parameters;
• Use the LS-SVM to do estimation and denote the result by ŷi;
• Set ν := 1 − ρ and p :=

∑

i I(yi > ŷi)/n;
• Solve the asymmetric ν-SVR (12);
• Return the tube

[

f(x) − ε, f(x) + ε
]

, where f(x) is calculated by (13).

Next we illustrate the performance of the nonparametric asymmetric ν-SVR as a nonlinear example
shown in Fig.3(a). The underlying function is displayed by a blue solid line. The observed data (blue
crosses) are corrupted by noise and contain outliers. The existence of outliers makes the result of a least
squares method using the RBF kernel

K(xi, xj) = exp

(

−
‖xi − xj‖

2

σ2

)

with σ = 0.5 (illustrated by a green dash-dotted line) deviate significantly from the underlying function.
Then the nonparametric asymmetric ν-SVR (12) is applied to address this problem. We want the tube to
cover 80% of the data samples, which also means that almost 80% of the dual variables equal zero. Different
p values are related to different locations of the tube. The least squares method is first applied to estimate
the mean value. We then count the positive and negative residuals and set p as the fraction of positive
residuals: there are 43 data points above the least square regressor (green dash-dotted line) and 57 data
below it, we thus set p = 43

100 . The result of the asymmetric ν-SVR (12) with p = 0.43, γ = 100 and RBF
kernel (σ = 0.5) is displayed by its middle (red solid line) and boundaries (red dotted lines). There are
8 points above the obtained nonparametric tube and 11 below it. The obtained tube is narrow and the
difference between the middle and the underlying function is small, illustrating the good performance of the
asymmetric ν-SVR for asymmetric noise distribution.

We also test the performance of the asymmetric ν-SVR with different p values. For each p value, we
solve (12) and plot the width of the obtained tube in Fig.3(b) by the dashed line. In this example, the
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Figure 3: An example of the nonparametric asymmetric ν-SVR. (a) The data are shown by blue crosses. The existence of
outliers makes the result of the least squares method (green dash-dotted line) deviate from the underlying function (blue solid
line). The tube obtained by (12) is illustrated by its middle (red solid line) and boundaries (red dotted lines). The points
marked by red squares are located on top of the boundaries. In between the boundaries, the points correspond to zero dual
variables. (b) The RSSEs and the tube widths corresponding to different p values are displayed by red solid and green dashed
lines, respectively. The best choice is p = 0.41 and the p value selected based on the LS-SVM is p = 0.43.

underlying function f(x) is known. Then for the estimation f̂(x), we can calculate the relative sum of the
squared errors, defined by

RSSE =

∑

x∈V (f(x) − f̂(x)
)2

∑

x∈V

(

f(x) − E(f)
)2 ,

where V is the set of concerned data and E(f) is the average value of f(x), x ∈ V . In this example, we
consider the training set and report the RSSEs in Fig.3(b) by the solid line. Generally, a small tube width
corresponds to a small RSSE. In the viewpoint of the tube width, the best choice is p = 0.41. But the
performance of the asymmetric ν-SVR is not very sensitive to p. For example, based on the LS-SVM, we
set p = 0.43 which results in good performance as well.

4. Numerical Experiments

In the numerical experiments, we evaluate the proposed asymmetric ν-SVR from the following three
aspects:

• The asymmetric ν-SVR can be regarded as a convex approach to the non-convex problem (1). We
compare the asymmetric ν-SVR with existing heuristics;

• We discuss the robustness of the result of the asymmetric ν-SVR on a linear problem;

• Finally, we compare the asymmetric ν-SVR with the ν-SVR and the LS-SVM on some standard data
sets with outliers and asymmetric noise distributions.

In this paper, all the experiments are done using Matlab R2011a with Core 2-2.83 GHz, 2.96G RAM. The
ν-SVR and the asymmetric ν-SVR are solved by the QP solver embedded in Matlab. The LS-SVM is
implemented by LS-SVMLab v1.8, designed by De Brabanter et al. (2011).

4.1. Optimization performance

The proposed asymmetric ν-SVR can be regarded as a convex approach to (1), which tries to find a
tube with small width so as to cover a required amount of samples. There have been some algorithms for
this non-convex problem. Among these methods, PROGRESS established by Rousseeuw and Leroy (1987)
Rousseeuw and Hubert (1997) is the most popular one. Support Vector Tube (SVT, Pelckmans et al.,
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2009) is applicable as well. In the following, we apply these algorithms to real data sets downloaded from
http://www.agoras.ua.ac.be/ and search an affine tube which contains at least k samples of each data set.

This experiment focuses on optimization performance not the generalization error. Thus, a large enough
γ is used for the asymmetric ν-SVR. We test p = 0.2, 0.4, 0.5, 0.6, 0.8 and choose the best one as the
optimization result. For SVT, there is one parameter for bounding the amount of points outside. We set it
to be k. PROGRESS is based on random sampling. To make a fair comparison, we run PROGRESS 2000
times and let PROGRESS has the similar computation time as the asymmetric ν-SVR. The widths of the
tubes containing the required amount of the data are compared in Table 1, where the best one is underlined.
For each data set, we report the data name, the dimension d, and the number of the data samples n. The
results of the descent algorithm using linear programming (DALP), which is a global algorithm proposed
by Huang et al. (2012), are given as well for reference.

Table 1: Width of the Tube Covering k Data and the Computation Time (in millisecond)

asymmetric
data set d n k PROG. SVT ν-SVR DALP

AIRCRAFT 4 23 12 3.164 (106) 4.156 (17) 2.587 (93) 1.043 (279)
16 5.450 (109) 5.544 (18) 5.179 (98) 2.904 (248)
20 7.400 (119) 11.03 (21) 8.854 (99) 5.289 (245)

AIRMAY 3 31 16 11.45 (134) 14.07 (31) 11.13 (150) 7.231 (224)
20 14.91 (141) 111.7 (28) 11.92 (137) 11.92 (251)
24 21.99 (131) 306.8 (32) 20.96 (165) 14.66 (336)

COLEMAN 6 20 11 0.283 (102) 0.699 (17) 0.561 (84) 0.120 (245)
15 1.029 (104) 0.927 (18) 0.726 (86) 0.509 (257)
18 2.003 (101) 3.130 (17) 1.928 (82) 0.906 (385)

DELIVERY 2 25 13 1.005 (117) 0.920 (19) 0.904 (97) 0.758 (269)
17 1.911 (111) 3.165 (18) 2.057 (98) 1.350 (193)
21 2.984 (116) 3.825 (17) 4.016 (96) 2.984 (192)

EDUCAT 3 50 26 20.70 (146) 27.04 (37) 18.56 (122) 16.11 (234)
36 37.28 (143) 34.85 (27) 35.68 (152) 32.28 (289)
43 60.39 (146) 58.65 (38) 61.27 (163) 44.06 (265)

ENKNOCK 4 16 9 0.184 (91) 0.669 (14) 0.110 (71) 0.091 (219)
11 0.932 (93) 0.981 (14) 0.663 (68) 0.228 (240)
14 2.514 (89) 1.881 (13) 1.297 (62) 1.297 (212)

EXACT 3 25 13 0.500 (193) 0.700 (20) 0.500 (96) 0.250 (396)
18 0.889 (201) 1.039 (21) 0.500 (97) 0.500 (268)
23 2.000 (232) 1.375 (17) 1.375 (93) 1.300 (252)

HAWKINS 3 75 38 0.597 (379) 0.577 (74) 0.577 (280) 0.419 (573)
51 0.736 (363) 0.851 (57) 0.799 (263) 0.716 (622)
66 1.337 (368) 2.398 (64) 1.967 (327) 1.047 (494)

HEART 2 12 7 0.766 (78) 1.646 (10) 1.237 (52) 0.542 (261)
9 2.565 (77) 2.680 (11) 2.149 (51) 1.974 (201)

11 5.195 (85) 5.738 (11) 4.715 (53) 3.591 (227)
PHOSRHR 2 18 10 6.573 (90) 4.752 (13) 4.084 (70) 4.084 (260)

13 11.27 (88) 13.38 (15) 11.21 (80) 9.678 (203)
16 18.44 (95) 27.37 (15) 16.09 (78) 16.09 (191)

SALINITY 4 28 15 0.509 (124) 0.668 (22) 0.468 (190) 0.258 (231)
20 1.028 (131) 1.030 (22) 0.824 (116) 0.808 (237)
25 1.813 (131) 1.796 (35) 1.711 (163) 1.354 (308)

STACKLOSS 4 21 11 1.000 (119) 1.840 (15) 1.079 (81) 0.500 (288)
15 2.244 (119) 2.555 (19) 2.208 (87) 1.816 (266)
19 4.500 (128) 4.362 (28) 4.333 (168) 2.844 (363)

WOOD 6 20 11 0.004 (97) 0.014 (16) 0.009 (76) 0.002 (292)
15 0.012 (98) 0.018 (19) 0.016 (82) 0.006 (221)
18 0.035 (97) 0.030 (20) 0.027 (81) 0.021 (397)

From Table 1, one can see that the asymmetric ν-SVR generally gives good results for (1). Compared to
SVT, the advantage of the asymmetric ν-SVR is that various locations are considered. For some data sets,
PROGRESS provides good results as well. However, the nonparametric formulation based on PROGRESS
is hard to compute. Similarly, DALP is not applicable in the dual space.

DALP is a global optimization method and requires more computation time, especially when the data
size increases. As convex approaches for the least median squares (2), both SVT and the asymmetric ν-SVR
can be solved effectively. Notice that in this experiment, we consider 5 different p values. If we only use
one p value, its computing time will be similar to that of SVT. A simple and effective way of selecting p
is based on the LS-SVM, as described in Algorithm 1. In Fig.4, we illustrate the obtained tube widths for
different p values and show the selected p for some problems. Though there are outliers in these data sets,
the selected p value is generally suitable.

4.2. Robustness

As analyzed by Rousseeuw and Leroy (1987), (1) is a very robust regression method. The asymmetric
ν-SVR is a convex approximation and its robustness can be expected. To evaluate the robustness, a linear
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Figure 4: The tube widths for different p values are shown by solid lines. The p values selected by Algorithm 1 are displayed
by dot-dashed lines. (a) AIRCARFT k = 12; (b) DELIVERY k = 13; (c) SALINITY k = 11.

function f(x) = wT x + b with w = [1, 0.5,−0.5,−1, 2]T and b = −3 is considered. We generate n = 100
data following a uniform distribution in [0, 1]5. In this experiment, a typical asymmetric noise following
a chi-square distribution is considered: yi = f(xi) + (δχ2 − 4), where δχ2 follows a chi-square distribution
with 4 degrees of freedom. The mean of δχ2 is 4 and hence (δχ2 − 4) provides a mean-zero noise, but
Prob{δχ2 − 4 < 0} = 59.4%, Prob{δχ2 − 4 < 0} = 40.6%. Fig.5 displays the probability density function
with variance 8.00. We let the ratio of the variance of the noise (δχ2 − 4) to the variance of f(x) denoted
as rnoise equal to 0.05 and 0.1. Besides the noise, outliers are added into the training set. We randomly
select ro percent of the samples and replace their observed values by random values following a uniform
distribution in the range of f(x), x ∈ [0, 1]5.
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Figure 5: The probability density function of δ
χ2 − 4. The mean of δ

χ2 − 4 is zero and the variance of δ
χ2 is 8.00. This

distribution is asymmetric and the probability of δ
χ2 − 4 being positive is 40.6%.

We pursue a linear tube covering 80% of the above data samples and use Algorithm 1 with a linear kernel
to find the tube. We also consider the ν-SVR (3), robust regression using the Huber loss, and the least
trimmed squares estimation. The robust regression using the Huber loss is implemented by the statistics
toolbox of Matlab. The least trimmed squares is closely related to the least median squares. Actually,
they came from the same paper of Rousseeuw (1984). The least trimmed squares is to minimize the sum
of the smallest h squared residuals, which is apparently a robust method. However, it is also a non-convex
problem and the nonparametric model has not been established. In this experiment, we set h = 0.8n and
use the algorithm established by Rousseeuw and Van Driessen (2006). This algorithm is included in LIBRA,
a robust analysis toolbox developed by Verboven and Hubert (2005). For each group of rnoise and ro, we
repeat the above process 10 times, report the average and the standard deviation of the results in Table 2.

The least squares method is suitable to deal with Gaussian noise. When the noise follows another
distribution or there exist outliers, the other robust methods perform better, as shown in Table 2. The
standard deviation of the results of the ν-SVR is small, illustrating its robustness. But the average value
is biased due to the asymmetry of the noise, which motivates us establish the asymmetric ν-SVR. Robust
regression methods, including the least trimmed squares, PROGRESS, and the Huber loss, are also good for
handling outliers and have similar regression performance as the ν-SVRs. Compared with these methods, the
ν-SVR and the asymmetric ν-SVR give not only the predictive value, but also a tube covering a required
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Table 2: The Average and Standard Deviation of the Regression Results

Real value 1 0.5 −0.5 −1 2 −3

rnoise = 0.05 Least Squares 0.947 ± 0.125 0.487 ± 0.060 −0.434 ± 0.107 −0.928 ± 0.136 1.835 ± 0.075 −2.942 ± 0.066
ro = 5% Least Trimmed Squares 1.002 ± 0.042 0.494 ± 0.354 −0.503 ± 0.058 −0.993 ± 0.059 2.031 ± 0.051 −3.058 ± 0.065

PROGRESS 0.955 ± 0.117 0.529 ± 0.122 −0.491 ± 0.069 −1.040 ± 0.140 2.063 ± 0.144 −3.088 ± 0.094
Huber Loss 0.977 ± 0.085 0.519 ± 0.048 −0.500 ± 0.051 −0.952 ± 0.060 1.943 ± 0.050 −3.009 ± 0.062

ν-SVR 0.986 ± 0.038 0.499 ± 0.053 −0.475 ± 0.036 −0.989 ± 0.043 2.010 ± 0.055 −2.903 ± 0.116
asymmetric ν-SVR 0.992 ± 0.036 0.507 ± 0.022 −0.502 ± 0.029 −1.001 ± 0.055 1.994 ± 0.042 −2.997 ± 0.055

rnoise = 0.05 Least Squares 0.877 ± 0.103 0.477 ± 0.146 −0.514 ± 0.147 −0.904 ± 0.143 1.868 ± 0.120 −2.880 ± 0.163
ro = 10% Least Trimmed Squares 0.981 ± 0.054 0.487 ± 0.040 −0.512 ± 0.033 −1.032 ± 0.041 2.010 ± 0.025 −3.008 ± 0.056

PROGRESS 0.972 ± 0.039 0.508 ± 0.064 −0.506 ± 0.067 −0.974 ± 0.060 1.987 ± 0.087 −3.024 ± 0.073
Huber Loss 1.014 ± 0.096 0.460 ± 0.082 −0.475 ± 0.043 −1.021 ± 0.090 1.970 ± 0.095 −3.059 ± 0.089

ν-SVR 0.996 ± 0.047 0.487 ± 0.038 −0.507 ± 0.076 −1.015 ± 0.058 1.990 ± 0.069 −2.909 ± 0.086
asymmetric ν-SVR 1.000 ± 0.035 0.500 ± 0.031 −0.518 ± 0.028 −0.998 ± 0.035 2.013 ± 0.028 −2.987 ± 0.040

rnoise = 0.10 Least Squares 1.027 ± 0.111 0.514 ± 0.121 −0.489 ± 0.116 −1.014 ± 0.111 1.926 ± 0.076 −2.983 ± 0.077
ro = 5% Least Trimmed Squares 1.012 ± 0.101 0.492 ± 0.084 −0.545 ± 0.066 −0.988 ± 0.065 2.002 ± 0.059 −3.053 ± 0.106

PROGRESS 0.890 ± 0.168 0.495 ± 0.166 −0.509 ± 0.138 −1.130 ± 0.368 1.895 ± 0.275 −2.909 ± 0.255
Huber Loss 0.989 ± 0.075 0.525 ± 0.047 −0.515 ± 0.057 −0.971 ± 0.068 2.002 ± 0.041 −3.026 ± 0.049

ν-SVR 1.013 ± 0.058 0.496 ± 0.105 −0.532 ± 0.092 −0.990 ± 0.078 1.989 ± 0.086 −2.828 ± 0.162
asymmetric ν-SVR 1.007 ± 0.054 0.497 ± 0.103 −0.488 ± 0.083 −0.992 ± 0.085 1.997 ± 0.056 −3.024 ± 0.081

rnoise = 0.10 Least Squares 0.874 ± 0.196 0.491 ± 0.158 −0.426 ± 0.136 −0.960 ± 0.094 1.798 ± 0.103 −2.867 ± 0.118
ro = 10% Least Trimmed Squares 1.015 ± 0.085 0.516 ± 0.089 −0.497 ± 0.079 −1.022 ± 0.082 1.955 ± 0.070 −3.049 ± 0.035

PROGRESS 0.936 ± 0.130 0.507 ± 0.087 −0.450 ± 0.035 −1.041 ± 0.070 1.952 ± 0.066 −2.908 ± 0.081
Huber Loss 0.928 ± 0.123 0.564 ± 0.147 −0.532 ± 0.125 −1.011 ± 0.207 2.125 ± 0.180 −3.208 ± 0.231

ν-SVR 1.025 ± 0.068 0.463 ± 0.061 −0.503 ± 0.078 −0.971 ± 0.076 2.014 ± 0.097 −2.921 ± 0.105
asymmetric ν-SVR 0.992 ± 0.052 0.499 ± 0.070 −0.492 ± 0.061 −0.980 ± 0.060 1.997 ± 0.082 −2.996 ± 0.101

percentage of the data. The potential applications can be found in the field involving l∞ regression or
minimax approximation, which is an extreme case of (1) with ρ = 1. Generally, l∞ regression pursues a
narrow tube to cover all the training data. It originates from the worst-case analysis and has been applied
widely in e.g., circuit design (Antreich et al., 1994; Papamarkos and Chamzas, 1996), signal processing
(Kollar et al., 1990; Dvorkind et al., 2007), and portfolio optimization (Young, 1998; Cai et al., 2000).
Obviously, l∞ regression is sensitive to outliers. Hence, the asymmetric ν-SVR provides a potential tool to
handle outliers in these fields.

In regression, both yi and xi could contain outliers. If xi is a outlier, it is usually called a leverage point.
If the observation value of a leverage point is far away from the regression line, it will significantly reduce
the precision of many regression methods. The performance of the least median squares regression (2) for
leverage points has been discussed by Rousseeuw and Leroy (1994), Coakley et al. (1996). The asymmetric
ν-SVR is a good convex approximation for the least median squares. In this paper, we only focus on the
vertical outliers but its robustness for leverage points can be expected as well.

4.3. Nonlinear regression with outliers

In the last subsection, we evaluate the LS-SVM, the ν-SVR, and the asymmetric ν-SVR on the test
functions provided in Cherkassky et al. (1996). These functions are listed below and have been used in
many papers to examine the performance of different regression methods, see, e.g., Hush and Horne (1998)
Mart́ınez-Estudillo et al. (2006), and Wang et al. (2010).

Fun. 1: f1(x) = sin(x(1)x(2)), D = [−2, 2]2.

Fun. 2: f2(x) = exp
(

x(1) sin(πx(2))
)

, D = [−1, 1]2.

Fun. 3: f3(x) =
40f1

3 (x)

f2
3 (x) + f3

3 (x)
, D = [0, 1]2, where

f1
3 (x) = exp

(

8
(

(x(1) − 0.5)2 + (x(2) − 0.5)2
)

)

,

f2
3 (x) = exp

(

8
(

(x(1) − 0.2)2 + (x(2) − 0.7)2
)

)

,

f3
3 (x) = exp

(

8
(

(x(1) − 0.7)2 + (x(2) − 0.2)2
)

)

.

Fun. 4: f4(x) = 42.659
(

0.1 + (x(1) − 0.5)f1
4 (x)

)

, D = [−0.5, 0.5]2, where

f1
4 (x) = 0.05 + (x(1) − 0.5)4 − 10(x(1) − 0.5)2(x(2) − 0.5)2 + 5(x(2) − 0.5)4.
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Fun. 5: f5(x) = 1.3356
(

f1
5 (x(1)) + f2

5 (x(2))
)

, D = [0, 1]2, where

f1
5 (x(1)) = 1.5(1 − x(1)) + exp(2x(1) − 1) sin(3π(x(1) − 0.6)2),

f2
5 (x(2)) = exp(3(x(2) − 0.5)) sin(4π(x(2) − 0.9)2).

Fun. 6: f6(x) = 10 sin(πx(1)x(2)) + 20(x(3) − 0.5)2 + 5x(4) + 10x(5) + 0x(6), D = [−1, 1]6.

Fun. 7: f7(x) = exp
(

2x(1) sin(πx(4))
)

+ sin(x(2)x(3)), D = [−0.25, 0.25]4.

For the two-dimensional functions above, we generate 400 deterministic samples xi ∈ R
2, 1 ≤ i ≤ 400,

evenly spaced along its domain axes. Then we add noise and outliers following the same way as used in
subsection 4.2. For the high-dimensional functions, the same procedure is conducted except that 400 data
are randomly taken from a uniform probability distribution within the domain of interest.

For each group of data, we use the LS-SVM, the ν-SVR, and the asymmetric ν-SVR to obtain the
approximation f̂ . For outliers corrupted data, the reweighted strategies for the LS-SVMs have been discussed
by Suykens et al. (2002) and Valyon and Horváth (2005). In this experiment, we apply the robust cross
validation and robust training method in the LS-SVMLab toolbox. The RBF kernel is used in the three
methods. Since the computation time of the LS-SVM is significantly smaller than that of the other two
methods, we apply 10-fold cross validation based on the LS-SVM to find the suitable kernel parameter and
the coefficient of the regularization term, then we use them in the LS-SVM and the ν-SVRs. For the ν-SVR
and the asymmetric ν-SVR, we set ν = 0.2. In (12), p is chosen based on the result of the LS-SVM, as

described in Algorithm 1. After obtaining the approximation function f̂ , 100 test data samples uniformly
distributed in the domain are generated and the relative sum of the squared errors. For each case, we repeat
the process above 10 times and report the average and the standard deviation of RSSEs in Table 3.

Table 3: Relative Sum of the Square Errors on Test Data

rnoise ro LS-SVM Robust LS-SVM ν-SVR asymmetric ν-SVR

0.05 0.05 0.0156 ± 0.0051 0.0066 ± 0.0018 0.0143 ± 0.0049 0.0102 ± 0.0034
f1 0.05 0.10 0.0263 ± 0.0067 0.0087 ± 0.0012 0.0226 ± 0.0064 0.0210 ± 0.0091

0.10 0.05 0.0170 ± 0.0074 0.0158 ± 0.0060 0.0202 ± 0.0048 0.0169 ± 0.0080
0.10 0.10 0.0292 ± 0.0119 0.0193 ± 0.0069 0.0277 ± 0.0074 0.0259 ± 0.0128

0.05 0.05 0.0231 ± 0.0083 0.0094 ± 0.0037 0.0156 ± 0.0038 0.0121 ± 0.0046
f2 0.05 0.10 0.0484 ± 0.0100 0.0173 ± 0.0022 0.0302 ± 0.0089 0.0224 ± 0.0066

0.10 0.05 0.0357 ± 0.0119 0.0184 ± 0.0044 0.0325 ± 0.0084 0.0214 ± 0.0052
0.10 0.10 0.0585 ± 0.0246 0.0301 ± 0.0064 0.0410 ± 0.0187 0.0360 ± 0.0114

0.05 0.05 0.0238 ± 0.0127 0.0096 ± 0.0035 0.0152 ± 0.0084 0.0095 ± 0.0052
f3 0.05 0.10 0.0445 ± 0.0136 0.0171 ± 0.0044 0.0302 ± 0.0122 0.0223 ± 0.0109

0.10 0.05 0.0248 ± 0.0075 0.0127 ± 0.0033 0.0177 ± 0.0095 0.0121 ± 0.0059
0.10 0.10 0.0485 ± 0.0138 0.0235 ± 0.0081 0.0375 ± 0.0118 0.0313 ± 0.0165

0.05 0.05 0.0243 ± 0.0149 0.0055 ± 0.0014 0.0136 ± 0.0078 0.0085 ± 0.0081
f4 0.05 0.10 0.0588 ± 0.0172 0.0162 ± 0.0028 0.0312 ± 0.0121 0.0233 ± 0.0106

0.10 0.05 0.0252 ± 0.0083 0.0092 ± 0.0032 0.0192 ± 0.0121 0.0169 ± 0.0068
0.10 0.10 0.0650 ± 0.0186 0.0209 ± 0.0059 0.0330 ± 0.0095 0.0242 ± 0.0117

0.05 0.05 0.0266 ± 0.0107 0.0095 ± 0.0023 0.0193 ± 0.0043 0.0169 ± 0.0084
f5 0.05 0.10 0.0487 ± 0.0204 0.0161 ± 0.0069 0.0317 ± 0.0127 0.0220 ± 0.0151

0.10 0.05 0.0336 ± 0.0098 0.0218 ± 0.0045 0.0248 ± 0.0076 0.0214 ± 0.0085
0.10 0.10 0.0565 ± 0.0551 0.0302 ± 0.0068 0.0346 ± 0.0168 0.0326 ± 0.0182

0.05 0.05 0.0533 ± 0.0125 0.0447 ± 0.0093 0.0478 ± 0.0128 0.0443 ± 0.0131
f6 0.05 0.10 0.0742 ± 0.0154 0.0573 ± 0.0058 0.0798 ± 0.0161 0.0611 ± 0.0118

0.10 0.05 0.0589 ± 0.0121 0.0530 ± 0.0059 0.0667 ± 0.0291 0.0518 ± 0.0097
0.10 0.10 0.0789 ± 0.0102 0.0615 ± 0.0148 0.0873 ± 0.0141 0.0610 ± 0.0167

0.05 0.05 0.0241 ± 0.0186 0.0098 ± 0.0013 0.0164 ± 0.0074 0.0220 ± 0.0062
f7 0.05 0.10 0.0328 ± 0.0160 0.0250 ± 0.0073 0.0268 ± 0.0059 0.0272 ± 0.0102

0.10 0.05 0.0312 ± 0.0048 0.0144 ± 0.0040 0.0248 ± 0.0131 0.0228 ± 0.0069
0.10 0.10 0.0484 ± 0.0218 0.0274 ± 0.0083 0.0342 ± 0.0134 0.0294 ± 0.0140
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The LS-SVM is the best for the Gaussian noise and enjoys low computational complexity. This experi-
ment contains outliers and hence robust methods, i.e., the robust LS-SVM, the ν-SVR, and the asymmetric
ν-SVR, perform well. The asymmetric ν-SVR gives a better result than the ν-SVR, since it is flexible
with respective to the tube location and is suitable for handling asymmetric noise. The accuracy of the
asymmetric ν-SVR is slightly worse than that of the robust LS-SVM. But it can also output a tube covering
a required percentage of the data. Moreover, the ν-SVR and the asymmetric ν-SVR are sparse (in this
experiment, only about 20% data points are support vectors). In Algorithm 1, the p value is selected based
on the LS-SVM. If the outliers are heavy, we can use the robust LS-SVM or cross validation to tune p, then
the accuracy of the asymmetric ν-SVR can be improved further, but more computation time is needed.

5. Conclusion and Further Study

As a robust regression method, the ν-tube Support Vector Regression can find a good tube covering a
given percentage of the training data. However, equal amount of support vectors are located above and below
the tube. To enhance the flexibility of the tube location, we extended the ν-SVR to the asymmetric ν-SVR,
where one can use an additional parameter p to control the distribution of outliers. Enhancing the flexibility
may result in a narrower tube which covers the required percentage of the data. Numerical experiments
illustrated good performance of the asymmetric ν-SVR, especially when the samples were corrupted by
asymmetric noise and outliers.

In the future, we would like to study efficient solving-algorithms for the asymmetric ν-SVR (4) and (12).
Generally, the properties of the optimization problem associated with the asymmetric ν-SVR are similar to
those of the ν-SVR. Thus, one can draw lessons from the optimization techniques developed for the ν-SVR,
see, e.g., the works of Chang and Lin (2001), Chapelle (2007), and Tseng and Yun (2010).
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