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Mixtures of Quantile Regressions

Qiang Wua,∗, Weixin Yaob

aDepartment of Biostatistics, East Carolina University, Greenville, NC 27834
bDepartment of Statistics, Kansas State University, Manhattan, KS 66506

Abstract

A semi-parametric mixture of quantile regressions model is proposed to allow
regressions of the conditional quantiles, such as the median, on the covariates
without any parametric assumption on the error densities. The median as a
measure of center is known to be more robust to skewness and outliers than
the mean. Modeling the quantiles instead of the mean not only improves
the robustness of the model but also reveals a fuller picture of the data by
fitting varying quantile functions. The proposed semi-parametric mixture of
quantile regressions model is proven to be identifiable under certain weak con-
ditions. A kernel density based EM-type algorithm is developed to estimate
the model parameters, while a stochastic version of the EM-type algorithm is
constructed for the variance estimation. A couple of simulation studies and
several real data applications are conducted to show the effectiveness of the
proposed model.

Keywords: EM algorithm, Kernel density estimation, Mixture model,
Multiple imputation, Quantile regression, Semi-parametric model

1. Introduction

Mixtures of regressions, or clusterwise regressions, have been a longstand-
ing topic in the research of model-based clustering. When the population is
heterogeneous and consists of several homogeneous groups, several regres-
sion models are simultaneously built to explain the relationships between
the response variable and the covariates. The subjects are clustered based
on the estimated classification probabilities. Some early results trace back
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to DeSarbo and Corn (1988), Jones and McLachlan (1992), and Arminger
et al. (1999). In a classical mixture of regressions model, the conditional
distribution of the response variable Y given the covariates x can be written
as

f(y|x,θ) =
m∑
j=1

πjφ(y;xTβj, σ
2
j ), (1.1)

where θ = (π1,β1, σ1, . . . , πm,βm, σm) and φ(·;µ, σ2) is the normal probabil-
ity density function (pdf) with mean µ and variance σ2 > 0. In model (1.1),
the unknown parameters include πj > 0, βj = (β0j, . . . , βpj)

T , and σ2
j > 0 for

j = 1, . . . ,m where the mixing probabilities satisfy
∑

j πj = 1. The covari-
ates x = (1, x̃T )T usually contain a leading one for fitting intercepts. The
parameters can be estimated by the maximum likelihood estimator (MLE)
using an EM algorithm. A number of applications of model (1.1) can be
found at Wu and Sampson (2009), Skrondal and Rabe-Hesketh (2004), and
Wedel and Kamakura (2000).

Much effort has been made recently to improve the robustness of model
(1.1). For example, Garcia-Escudero et al. (2010) illustrate a robust cluster-
wise linear regressions method which trims off a fixed proportion of outlying
observations and fits the rest of the data via a mixture of linear regressions
model. This method has improved robustness to noisy data. Following In-
grassia et al. (2012), Ingrassia et al. (2014) develop a family of twelve mixture
models each inheriting from a linear t-cluster weighted model. Such models
allow the group assignments to depend on the covariates and the component
distributions to feature heavier than normal tails. Wei (2012) and Yao et al.
(2014) review some robust mixture regression models and propose a new one
using the t-distributions as its components. While being robust to heavy tails
of the component distributions, this method also trims the data based on a
modified Mahalanobis distance to deal with possible high leverage points.
Similarly, Song et al. (2014) introduce a robust mixture model fitting by the
Laplace distribution.

Most relevantly to the research in this paper, Hunter and Young (2012)
consider a semi-parametric mixture of regressions model

f(y|x,θ,G) =
m∑
j=1

πjg(y − xTβj), (1.2)

trying to relax the normality assumption to the greatest extent, where θ =
(π1,β1, . . . , πm,βm) and g is an unknown symmetric pdf with mean equal

2



to zero (its median is also zero since g is symmetric). Hunter and Young
(2012) prove that model (1.2) is identifiable for the parameters θ and the
error pdf g up to a permutation on θ if β̃j = (β1j, . . . , βpj) for j = 1, . . . ,m
are distinct vectors in Rp and the domain of x̃ contains an open set in Rp. A
location-shifted model is a special example of model (1.2). In their method,
the parameters and the error pdf are estimated by a kernel density based
EM-type algorithm.

When the error pdf is symmetric, the mixture of mean regressions model
(1.2) works well in modeling the center location functions. However, there are
situations where the error pdf is asymmetric in which case it seems reasonable
to consider the median or other quantiles. The median as a measure of
center is considered more robust to skewness and outliers than the mean.
In this paper, a novel mixture of regressions model is introduced to allow
regressions of the conditional quantiles, such as the median, on the covariates.
In addition, it allows the component error densities to be different. Denote by
gj the error density of the jth component. Under a similar model specification
as (1.2), the component pdf gj is assumed to have its τth quantile equal
to zero. As compared to the traditional mixtures of mean regressions, the
mixtures of quantile regressions are more robust to non-normal component
distributions and capable of revealing more detailed structure/information of
the data by fitting varying conditional quantile functions. A kernel density
based EM-type algorithm is developed to estimate the model parameters. In
each iteration of the algorithm, the regression parameters are updated using
a weighted quantile regression method, and the error pdfs are updated by a
constrained kernel density estimation method. Moreover, a stochastic version
of the EM-type algorithm based on multiple imputations is constructed for
the variance estimation. A couple of simulation studies and several real data
applications are conducted to demonstrate the effectiveness of the proposed
model.

The rest of this article is organized as follows. In Section 2, we introduce
the new mixture of quantile regressions model, prove its identifiability result,
and detail the new kernel density based EM-type algorithm. In Section 3,
we provide the stochastic EM-type algorithm for the variance estimation.
In Sections 4 and 5, we present the simulation studies and the real data
applications. Finally, some discussions are given in Section 6.
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2. Mixtures of Quantile Regressions

The model setting for a mixture of τth quantile regressions is as follows.
Let Z be a latent class variable with Pr(Z = j|x) = πj > 0 for j = 1, . . . ,m,
where x = (1, x̃T )T is a (p+1)-dimensional vector of covariates with a leading
one for fitting intercepts. Given Z = j, the response variable Y depends on
the covariates x through

Y = xTβj(τ) + εj(τ), (2.1)

where βj(τ) = (β0j(τ), . . . , βpj(τ))T are the τth quantile regression coeffi-
cients for the jth component. The errors εj(τ) are assumed to be indepen-
dent of x and have pdfs gj(·) whose τth quantiles are equal to zero. There is
no additional constraint on the error pdfs as they are going to be estimated
non-parametrically. We assume that the number of components m > 1 is
known in advance. A regular choice for τ is 0.5 which corresponds to a me-
dian regression but it does not have to be. Since the model deals with only
one quantile at a time, we suppress its dependency on τ in the following
discussion for the notational ease.

Next, we prove that the mixture of τth quantile regressions model (2.1) is
identifiable for θ = (π1,β1, . . . , πm,βm) and G = (g1, . . . , gm) up to the same
permutation on θ and G if β̃j = (β1j, . . . , βpj) for j = 1, . . . ,m are distinct
vectors in Rp and the domain of x̃ contains an open set in Rp. Necessary con-
ditions and the identifiability of the model (2.1) are summarized in Theorem
2.1 whose proof is given in the Appendix. Of course, we have a flexibility to
assume an equal error density g1 = · · · = gm. In this case, a pooled density
estimate can be found during the estimation. But the regression parameters
β1, . . . ,βm must be distinct for the identifiability purpose.

Theorem 2.1. Suppose that in the mixture of quantile regressions model
(2.1), the domain of x̃ contains an open set in Rp, 0 < πj < 1, and β̃j =
(β1j, . . . , βpj) are distinct vectors in Rp for j = 1, . . . ,m. Then the parameters
πj, βj, and the error pdfs gj(·) for j = 1, . . . ,m are uniquely determined, up
to a permutation, by the conditional density f(y|x).

Hunter and Young (2012) have used similar conditions to prove the iden-
tifiability of the model (1.2) under an additional assumption that the com-
ponent error densities are the same. In a recent but not yet published work,
Wang et al. (2012) prove the identifiability of the model (1.2) under more
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general conditions without requiring the component error densities to be
identical or symmetric. In Theorem 2.1, we extend Wang et al. (2012)’s
result to the proposed mixture of quantile regressions model.

Since no parametric assumption is made on the component error densities
in (2.1), there is no likelihood function to work with in estimating the model
parameters. Instead, we propose a kernel density based EM-type algorithm
to estimate the parameters θ and the error pdfs G. Let X = {(Yi,xi), i =
1, . . . , n} be a random sample from the model (2.1).

Algorithm 2.1. With some initial parameter values θ̂
(b)

and error pdfs Ĝ(b)

for b = 0, 1, . . ., the (b+1)th iteration of the kernel density based EM-type
algorithm updates the parameters and the error pdfs through:

E Step. The E step computes the classification probabilities according to

p
(b+1)
ij = Pr(Zi = j|X , θ̂

(b)
, Ĝ(b)) =

π̂
(b)
j ĝ

(b)
j (e

(b)
ij )∑m

l=1 π̂
(b)
l ĝ

(b)
l (e

(b)
il )

, (2.2)

where e(b)ij = Yi− xTi β̂
(b)

j . The initial error pdfs can be taken as, for example,
the normal densities. But we can also bypass this requirement by assigning
initial values directly to the classification probabilities {pij} and proceed to
the M step.

M Step. The M step updates the parameters θ according to

π̂
(b+1)
j =

1

n

n∑
i=1

p
(b+1)
ij , (2.3)

and

β̂
(b+1)

j = argmin
βj

n∑
i=1

p
(b+1)
ij ρτ (Yi − xTi βj), (2.4)

where ρτ (u) = u(τ − I(u < 0)) following Koenker and Bassett (1978). The
existence of (2.4) is given by Bai et al. (1992) and a solution to (2.4) is
readily available in many statistical packages such as the R package quantreg.
To update the error pdfs G, we implement a constrained kernel density esti-
mation

ĝ
(b+1)
j (t) =

n∑
i=1

2∑
l=1

w
(b+1)
lj p

(b+1)
ij Kh(t− e(b+1)

ij )Il(e
(b+1)
ij ), (2.5)
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where e
(b+1)
ij = Yi − xTi β̂

(b+1)

j , Kh(t) = h−1K(t/h), and K(t) is a kernel
function such as the Gaussian kernel. In (2.5), we define I1(u) = I(u ≤ 0)

and I2(u) = I(u > 0). The constants w(b+1)
1j and w(b+1)

2j are found by solving
a system of linear equations

n∑
i=1

2∑
l=1

w
(b+1)
lj p

(b+1)
ij Il(e

(b+1)
ij ) = 1 (2.6)

n∑
i=1

2∑
l=1

w
(b+1)
lj p

(b+1)
ij v

(b+1)
ij Il(e

(b+1)
ij ) = τ, (2.7)

where v(b+1)
ij =

´ 0
−∞Kh(t− e(b+1)

ij )dt.

Upon convergence, Alg. 2.1 finds the parameter estimates θ̂ and the error
density estiamtes Ĝ that best identify the clusters of the quantile regressions
(2.4) given that the error densities are in the kernel density forms of (2.5).
Alg. 2.1 is not designed to minimize or maximize a unique objective function,
so its convergence criterion is based on the changes in consecutive parameter
values, that is, the algorithm is claimed convergence if the sum of the absolute
changes in consecutive parameter values does not exceed a pre-specified limit.
As one reviewer mentions that because the parameters π1,β1, . . . , πm,βm are
usually not on the same scale, the limit can be also set for the sum of the
relative absolute changes.

The constrained kernel density estimate (2.5) and the weights found by
solving (2.6) and (2.7) are used to ensure that the density estimates ĝj(·)
always have their τth quantiles equal to zero. This approach is inspired by
the method of Hall and Presnell (1999). In Section 3, we show that the
weights found in such a way are asymptotically equivalent to the uniform
weights of 1/n in the classical kernel density estimation.

A variation can be made to the above algorithm if we employ a homogene-
ity assumption that all error pdfs are identical, i.e., gj = g for j = 1, . . . ,m.
In this case, the E step of the algorithm computes the classification proba-
bilities by

p
(b+1)
ij = Pr(Zi = j|X , θ̂

(b)
, Ĝ(b)) =

π̂
(b)
j ĝ(b)(e

(b)
ij )∑m

l=1 π̂
(b)
l ĝ(b)(e

(b)
il )

.

The M step updates the parameters using (2.3) and (2.4) and updates the
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error pdfs using

ĝ(b+1)(t) =
∑
i,j

2∑
l=1

w
(b+1)
l p

(b+1)
ij Kh(t− e(b+1)

ij )Il(e
(b+1)
ij ), (2.8)

where w(b+1)
1 and w(b+1)

2 are found by solving

∑
i,j

2∑
l=1

w
(b+1)
l p

(b+1)
ij Il(e

(b+1)
ij ) = 1

∑
i,j

2∑
l=1

w
(b+1)
l p

(b+1)
ij v

(b+1)
ij Il(e

(b+1)
ij ) = τ.

If the homogeneity assumption is reasonable, then using the pooled es-
timate ĝ(·) may help improve the efficiency of the model estimation. Oth-
erwise, the model estimation and the calculated classification probabilities
could be biased. One might start the analysis using Alg. 2.1 and switch to
the equal error density one if there is strong evidence supporting the homo-
geneity assumption.

3. Asymptotics and Variance Estimation

In this section, we discuss some asymptotic properties of the proposed
model estimate from Alg. 2.1 and introduce a stochastic version of Alg. 2.1
to estimate the variance-covariance matrix of the parameter estimates.

First, Alg. 2.1 uses a constrained kernel density estimation method to
ensure the estimated densities having their τth quantiles equal to zero. The
idea of this method is inspired by Hall and Presnell (1999). Let {X1, . . . , Xn}
be a random sample from an unknown density f whose τth quantile equals
zero. A constrained kernel density estimate of f(x) can be written as

f̂(x|w) =
n∑
i=1

wiKh(x−Xi), (3.1)

where w = (w1, . . . , wn) and
∑

iwi = 1. The weights satisfy a constraint∑n
i=1wivi = τ where vi =

´ 0
−∞Kh(x −Xi)dx so that f̂ has its τth quantile

equal to zero. Obviously, there are infinitely many weights satisfying the
constraint. Hall and Presnell (1999) show, for example, that the ones that
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minimize the Kullback-Leibler divergence D(w) = −
∑

i log(nwi)/n from the
uniform weights (1/n, . . . , 1/n) are wi = {n− (vi− τ)c}−1 for some constant
c. They prove that these weights are close to the uniform weights in the sense
that maxi nwi converges to one in probability as n → ∞. However, finding
c involves an iterative Newton-Raphson algorithm. For computational effi-
ciency, we propose to constrain the weights by wi = a if Xi ≤ 0 or b if Xi > 0
for some constants a and b. To find a and b, it suffices to solve a system of
linear equations

n∑
i=1

aI(Xi ≤ 0) +
n∑
i=1

bI(Xi > 0) = 1

n∑
i=1

aviI(Xi ≤ 0) +
n∑
i=1

bviI(Xi > 0) = τ.

Using a change of integrals and a Taylor series expansion, we can show that
E[viI(Xi ≤ 0)] = τ − O(h) and E[viI(Xi > 0)] = O(h). If we let the
bandwidth h→ 0 as n→∞, then our weights are also close to the uniform
weights because both na and nb converge to one in probability as n→∞.

Second, the inference on quantile regressions generally follows three meth-
ods: sparsity, rank, and resampling. Let {(Yi,xi), i = 1, . . . , n} be a random
sample from a quantile regression model whose τth quantile function is given
by Qτ (Y |x) = xTβ (we omit the dependence of β on τ). The parameter
estimates can be found by solving

β̂ = argmin
β

n∑
i=1

ρτ (Yi − xTi β). (3.2)

The asymptotic normality of β̂ is established by Koenker and Bassett (1978)
under an assumption that the errors ei = Yi − xTi β are independent and
identically distributed (iid). The asymptotic result is later extended to het-
eroscedastic models by Koenker and Zhao (1994). He and Shao (1996) prove
a more general asymptotic result when the errors are independent but not
necessarily identically distributed. The asymptotic variance-covariance ma-
trix of β̂ is given generally by

Vτ = τ(1− τ)(XTFX)−1(XTX)(XTFX)−1,

where X is the design matrix and F = diag{f1(0), . . . , fn(0)} is a diagonal
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matrix of error densities evaluated at zero. For the iid case, it reduces to

Vτ =
τ(1− τ)

f 2(0)
(XTX)−1, (3.3)

where f represents the common error density. Koenker (1994) has a dis-
cussion on directly estimating Vτ via approximating the sparsity function
1/f(0). He also considers constructing confidence intervals using inversion of
rank tests which is later extended to a location-scale model by Koenker and
Machado (1999). Bootstrap resampling methods involve repeated applica-
tions of quantile regressions to resampled data. Parzen et al. (1994) describe
a resampling method using a pivotal quantity. More recently, Kocherginsky
et al. (2005) develop a more time efficient Markov chain marginal bootstrap
method. The sparsity, rank, and Parzen et al. (1994)’s resampling methods
are available in the R package quantreg. Kocherginsky et al. (2005)’s method
is available in the R package rqmcmb2. Since in the mixture of quantile re-
gressions model the sparsity function 1/f(0) is readily available from the
kernel density estimation, we choose to implement the sparsity method (3.3)
in estimating the variance-covariance matrix of the parameter estimates.

Alg. 2.1 does not allow an estimation of the variance-covariance ma-
trix, nor does the semi-parametric model setting allow a likelihood analysis.
In such cases, one usually turns to resampling methods such as the jack-
knife or bootstrapping. Particularly for regression parameters, Wu (1986)
shows that resampling variances from Case bootstrapping and ordinary jack-
knife are biased but those from residual bootstrapping are consistent. It
is unclear whether parallel results hold true for the mixture of regressions
model. But the consistency of the parameter estimates, as well as the
variance estimates, in the mixture of regressions model also depends on
data patterns. See Section 6 for more discussions on the model consis-
tency. Another competing approach is to bootstrap from the estimated
model, i.e., f̂(y|xi, θ̂, Ĝ) =

∑
j π̂j ĝj(y − xTi β̂j). It involves drawing the

latent class variables Z
(b)
i = (Z

(b)
i1 , . . . , Z

(b)
im) from a multinomial distribu-

tion MN(π̂1, . . . , π̂m, 1) and drawing the residuals e(b)ij from the estimated
error distributions ĝj(t) given Zi. However, when the latent class variables
Z = {Z1, . . . ,Zn} are treated as missing data, multiple imputation methods
can be implemented if the variance-covariances of the parameter estimates
are available for the augmented data {Z,X}. In the mixture of quantile re-
gressions model, if the error pdfs G are known, then a Bayesian multiple im-
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putation iterates through an imputation step drawing Z(b+1) ∼ p(Z|X , θ̃(b)
)

and a posterior step drawing θ̃
(b+1) ∼ p(θ|X ,Z(b+1)) for b = 0, 1, · · · . Un-

fortunately, the posterior distribution p(θ|X ,Z(b)) is not available when the
error pdfs G have unspecified forms. A result from Rubin (1987) shows that
imputing Z(b+1) ∼ p(Z|X , θ̂, Ĝ) is improper and underestimates the vari-
ances. Similarly, imputing Z(b+1) ∼ p(Z|X , θ̂

(b)
, Ĝ(b)) is somewhat improper

too. Little and Rubin (2002, pages 214 - 217) list some alternative methods
for this purpose. For example, one can impute Z(b+1) ∼ p(Z|X , θ̃(b)

, G̃(b))

where θ̃
(b)

and G̃(b) are the parameter and error density estimates from a
bootstrapped sample X (b)

boot of X . This method is essentially the Case boot-
strapping method.

Finally, we propose a stochastic kernel density based EM-type algorithm
to estimate the variance-covariance matrix of the parameter estimates from
the mixture of quantile regressions model. It is a multiple imputation method
and more time efficient than any of the above mentioned resampling methods.
The parameter estimates from Alg. 2.1 can be treated as initial values for Alg.
3.1. Following a few burn-in steps, Alg. 3.1 is carried out for a large number
of steps. In practice, a thinning can be used to reduce the autocorrelation
among the multiple imputations.

Algorithm 3.1. The (b+1)th iteration of the stochastic algorithm for b =

0, 1, . . . starts with some initial parameter values θ̃
(b)

and error pdfs G̃(b).

E Step. The E step draws the random latent class variables from some multi-
nomial distributions as

Z
(b+1)
i = (Z

(b+1)
i1 , . . . , Z

(b+1)
im ) ∼MN(p

(b+1)
i1 , . . . , p

(b+1)
im , 1),

for i = 1, . . . , n where p(b+1)
ij are from (2.2) with θ̃

(b)
and G̃(b) substituted for

θ̂
(b)

and Ĝ(b). Only one of Z(b+1)
i1 , . . . , Z

(b+1)
im can be one and all others are

zero. This random draw temporally classifies the ith subject into one of the
m clusters.

M Step. The M step first finds the parameter updates θ̂
(b+1)

using (2.3) and
(2.4) with all occurrences of p(b+1)

ij replaced by Z(b+1)
ij . It then randomly draws

the parameter values as

θ̃
(b+1) ∼ N(θ̂

(b+1)
, V ar(θ̂

(b+1)
)), (3.4)
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where V ar(π̂(b+1)) = π̂(b+1)π̂(b+1)T/n, V ar(β̂
(b+1)

j ) are given by (3.3), and the

covariances among π̃(b+1), β̃
(b+1)

j , . . . , β̃
(b+1)

m are zero. To ensure that π̃(b+1)

are probabilities that sum to one, we can repeatedly draw its first m − 1 el-
ements from (3.4) until they are all between zero and one and sum to less
than one. Random draws G̃(b+1) of the error densities can be obtained from
a bootstrapped sample of the residuals e(p+1)

ij = Yi − xTi β̂
(b+1)

j using (2.5) -
(2.7) with all occurrences of p(b+1)

ij replaced by Z
(b+1)
ij . The residual boot-

strapping may help improve the consistency of the variance estimate. An
empirical method which does not enjoy the residual bootstrapping property is
to compute θ̃

(b+1)
= θ̂

(b+1)

boot and G̃(b+1) = Ĝ
(b+1)
boot from a bootstrapped sample

(X (b+1)
boot ,Z

(b+1)
boot ) of (X ,Z(b+1)).

According to Little and Rubin (2002, pages 209 - 212), with the results
from B iterations of the stochastic algorithm, the variance-covariance matrix
of the parameter estimates θ̂ can be estimated by

V̂ ar(θ̂) = VW (θ̂) + (1 +B−1)V B(θ̂),

where θ̄ =
∑

b θ̂
(b)
/B,

V B(θ̂) =
1

B − 1

B∑
b=1

(θ̂
(b)
− θ̄)(θ̂

(b)
− θ̄)T ,

V W (π̂) =
1

Bn

B∑
b=1

π̂(b)π̂(b)T ,

and

VW (β̂j) =
1

B

B∑
b=1

V ar(β̂
(b)

j ).

Given (X ,Z(b)), the estimated variance-covariance matrix π̂(b)π̂(b)/n of
the mixing probabilities follows from the multinomial model while V ar(β̂

(b)

j )

is computed using (3.3) for each component. Because π̃(b), β̃
(b)

1 , . . . , β̃
(b)

m are
uncorrelated given (X ,Z(b)), the covariances among π̂, β̂j, . . . , β̂m can be es-

timated simply by the covariances among π̂(b), β̂
(b)

j , . . . , β̂
(b)

m for b = 1, . . . , B.
Thus we have an estimated variance-covariance matrix of the parameter es-
timates θ̂.
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The variation in the parameter estimates θ̂ comes from two parts. One
is from the uncertainty in group memberships ((1 + B−1)V B(θ̂)) and the
other is from the sampling variations in the data (VW (θ̂)). A ratio of the
between-imputation variance to the total variance |(1+B−1)V B(θ̂)|/|V̂ ar(θ̂)|
quantifies the fraction of missing information due to the unknown group
memberships and so provides an indicator of the separability of the clusters
with values closer to zero meaning that the clusters are better separated.

4. Simulations

In this section, we conduct a couple of simulation studies to illustrate the
effectiveness of the proposed mixture of quantile regressions model and com-
pare the variance estimates from Alg. 3.1 to those from Case bootstrapping
and Model bootstrapping. All simulations use a τ = 0.5, i.e., a mixture of
median regressions.

First, we simulate n = 100, 300, and 600 iid data points {(xi, yi), i =
1, . . . , n} from the following model

Y =

{
10− 10x+ ε1 if Z = 1

−10 + 10x+ ε2 if Z = 2,
(4.1)

where Z = 1 or 2 indicate two components with Pr(Z = 1) = Pr(Z = 2) =
0.5. The covariate x is simulated from the uniform U(0, 1) distribution and
the error terms ε1 and ε2 are simulated according to the following model

ε1, ε2 ∼ 0.5N(−1, 12) + 0.5N(2, 22). (4.2)

The error density is chosen so that its median is equal to zero and, conse-
quently, the mixture model uses the median regressions (τ = 0.5) as com-
ponents. For the kernel density estimation we use a bandwidth of h =
1.06σn−1/5 (see Silverman, 1986) where n is the total sample size and σ
is the standard deviation of the error density if an equal error density is
assumed. If unequal error densities are assumed, then hj = 1.06σjn

−1/5
j for

j = 1, 2 are calculated separately for each group. We run 500 replicates in
order to show properties of the parameter estimates. For each replicate, 500
imputation steps of the stochastic algorithm are recorded. For a comparison,
results from 500 Case bootstrapping and Model bootstrapping samples are
obtained.
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Figure 1: A typical simulation result for n = 600. The top two figures illustrate the esti-
mated mixture of quantile regressions model and the two unequal error density estimates
superimposed with the true error density in dotted lines. The cases are classified using a
cutoff of p = 0.5 and shown in different symbols. Similar results are given in the bottom
two figures when an equal error density is assumed.
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Table 1: A summary of parameter estimates using Alg. 2.1 on 500 simulations from model
(4.1) and (4.2). Results are displayed under the two error density assumptions and the
three sample sizes. Variances in this table can be treated as gold standards.
Error pdf n Estimate π1 = 0.5 β10 = 10 β11 = −10 β20 = −10 β21 = 10

U
ne
qu

al

100 Mean 0.510 10.1 -10.2 -10 10.2
Var 3.63E-03 0.716 2.57 0.77 2.66

300 Mean 0.508 10.1 -10.2 -10 10.1
Var 1.19E-03 0.231 0.868 0.205 0.73

600 Mean 0.508 10 -10.1 -10 10.1
Var 5.70E-04 0.101 0.424 0.104 0.404

E
qu

al

100 Mean 0.506 10.1 -10.1 -9.98 10.2
Var 3.62E-03 0.745 2.77 0.746 2.57

300 Mean 0.505 10.1 -10.2 -10 10.1
Var 1.16E-03 0.239 0.915 0.208 0.729

600 Mean 0.506 10 -10.1 -10 10.1
Var 5.55E-04 0.103 0.457 0.102 0.393

During simulations, we observe that the initial values for Alg. 2.1 are
very important. The nature of the mixture models prohibits using constant
initial values like p(0)ij ≡ p. The initial values must provide more or less
a tendency to separate the groups. Simulating the initial values from the
uniform distribution p

(0)
ij ∼ U(0, 1) usually works but it could lead to a

saddle-point-like solution. This difficulty can potentially be overcome by
starting Alg. 2.1 from multiple initial values. When starting from multiple
initial values, Bai et al. (2012) test successfully a practical solution to choose
the root which most of the initial values converge to. For our simulations,
we start Alg. 2.1 from near the true values to maximize the convergence.

Figure 1 illustrates a typical simulation result for n = 600. Both assump-
tions of an equal error density and unequal error densities are attempted.
Alg. 2.1 successfully identifies the two median regression components and
the error densities under both assumptions. The two median regression lines
are plotted against the two true median functions. The cases are clustered
using p = 0.5 as a cutoff and shown in different symbols. The clustering
performance is as good as expected. Under both error density assumptions,
the algorithm estimates the error densities reasonably well.

Table 1 summarizes the parameter estimates using Alg. 2.1 on the 500
simulated data sets. Means and variances of the parameter estimates are
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Table 3: A summary of parameter estimates using Alg. 2.1 on 500 simulations from model
(4.3) and (4.4). All simulations use a sample size n = 300 and assume unequal error
densities. The variances can be treated as gold standards.
Estimate π1 = 1/3 π2 = 1/3 π3 = 1/3 β10 = 0 β11 = −20 β12 = −20
Mean 0.318 0.345 0.337 -0.153 -19.9 -19.9
Var 6.21E-04 6.75E-04 7.11E-04 0.855 1.31 1.49
Estimate β20 = 0 β21 = 0 β22 = 0 β30 = 0 β31 = 20 β32 = 20
Mean -2.93E-02 -2.97E-02 5.29E-02 -5.62E-03 20.0 20.0
Var 0.250 0.372 0.375 5.35E-02 9.44E-02 8.74E-02

given under the two error density assumptions and the three sample sizes.
The variances in Table 1 can be treated as gold standards against which
the three variance estimates in Table 2 are compared. Table 2 summarizes
the variance estimates using Case bootstrapping, Model bootstrapping, and
Alg. 3.1 on the 500 simulated data sets. Means and variances of the vari-
ance estimates are also tabulated under the two error density assumptions
and the three sample sizes. Discrepancies between such variance estimates
and the gold standards can be measured in the mean squared error (MSE).
The Case bootstrapping variances tend to overestimate the true ones because
their means tend to be larger than the gold standards. Variance estimates
from Model bootstrapping and Alg. 3.1 are comparable and generally better
than those from Case bootstrapping in terms of the MSE except that Alg.
3.1 performs slightly better than Model bootstrapping in estimating the vari-
ances of the mixing probability π̂1. A critical advantage of Alg. 3.1 is that
it is much faster than both Case and Model bootstrapping methods.

Figure 2 contains pairwise comparisons of variance estimates for π̂1, β̂10
and β̂11 over 500 replicates for n = 600. The figures for β̂20 and β̂21 are
similar to those of β̂10 and β̂11 and so not shown here. These figures show
that variance estimates from Alg. 3.1 are more stable and generally closer to
the gold standards than the Case bootstrapping ones. Similar observations
hold true between the Model bootstrapping ones and the Case bootstrapping
ones.

Another observation from Table 1 is that the estimated group proportion
π̂1 from Alg. 2.1 is somewhat biased. For this reason, other parameter
estimates are likely to be biased too although the biases are not striking.
This is due to the unbalanced nature of the simulated data which we discuss
in details in Section 6.
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Figure 2: Pairwise comparisons of variance estimates for π̂1, β̂10 and β̂11 over 500 replicates
for n = 600. The vertical and horizontal lines represent the gold standards of variance
estimates from the 500 simulation replications. The diagonal line is the 45 degree line of
equal variances.
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Table 4: A summary of variance estimates using Case bootstrapping, Model bootstrapping,
and Alg. 3.1 on 500 simulations from model (4.3) and (4.4). All simulations use a sample
size n = 300 and assume unequal error densities. Each variance estimate is based on 500
bootstrap samples or MCMC iterations.
Variance Case Model Alg. 3.1
method Mean Var Mean Var Mean Var
π1 = 1/3 6.63E-04 5.87E-09 6.00E-04 5.20E-09 8.00E-04 7.22E-09
π2 = 1/3 6.61E-04 4.40E-09 6.23E-04 5.74E-09 8.13E-04 7.16E-09
π3 = 1/3 7.18E-04 3.36E-09 7.17E-04 3.63E-09 7.52E-04 9.30E-10
β10 = 0 1.18 0.504 1.39 1.40 1.43 1.03
β11 = −20 1.82 0.830 2.17 3.53 2.33 2.89
β12 = −20 1.81 0.775 2.14 3.18 2.29 2.61
β20 = 0 0.309 2.80E-02 0.375 3.00E-02 0.298 1.52E-02
β21 = 0 0.491 5.21E-02 0.578 6.35E-02 0.485 3.77E-02
β22 = 0 0.490 4.78E-02 0.577 6.35E-02 0.483 3.75E-02
β30 = 0 7.07E-02 1.30E-03 7.55E-02 2.99E-03 6.30E-02 4.09E-04
β31 = 20 0.113 2.30E-03 0.122 6.49E-03 0.105 9.66E-04
β32 = 20 0.119 2.63E-03 0.123 7.72E-03 0.105 1.03E-03

Second, in order to illustrate the full capacity of Alg. 2.1 and 3.1. We
conduct a second set of 500 simulations of a sample size n = 300. The data
{(x1i, x2i, yi), i = 1, . . . , n} are simulated from the following model

Y =


−20x1 − 20x2 + ε1 if Z = 1

ε2 if Z = 2

20x1 + 20x2 + ε3 if Z = 3,

(4.3)

where Z = 1, 2, or 3 indicate three components with Pr(Z = 1) = Pr(Z =
2) = Pr(Z = 3) = 1/3. The covariates x1 and x2 are again simulated from the
uniform U(0, 1) distribution and the error terms ε1, ε2, and ε3 are simulated
according to the following models

ε1 ∼ exp(N(1, 1))− exp(1)

ε2 ∼ exp(N(1, 0.5))− exp(1) (4.4)
ε3 ∼ exp(N(1, 0.25))− exp(1).

The three error distributions in (4.4) are different but all have medians equal
to zero. The parameters are estimated using Alg. 2.1. Bootstrap and Alg. 3.1
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variances are obtained based on 500 bootstrap samples or MCMC iterations.
The parameter estimates from the 500 simulated data sets are summarized
in Table 3 and the variance estimates are summarized in Table 4. Means
and variances are given for both the parameter estimates using Alg. 2.1 and
the variance estimates using all three methods. The variances in Table 3 can
be treated as gold standards against which the variance estimates in Table
4 are compared. As can be seen, the parameters are successfully estimated
by Alg. 2.1 and all three variance estimates are reasonably close to the gold
standards.

5. Illustrative Examples

In this section, the newly proposed mixture of quantile regressions method
is applied to three illustrative examples: the aphids data example from
Boiteau et al. (1998), the tone data from Cohen (1984), and the engine data
from Brinkman (1981). Advantages of the mixture of quantile regressions
model over the mixture of mean regressions model is demonstrated. Alg. 2.1
starting from uniformly generated initial values is used to find the parameter
estimates and Alg. 3.1 is used to estimate the variances.

First, Boiteau et al. (1998) study the effect of aphids on virus spread-
ing from infected to healthy tobacco plants. A controlled experiment was
conducted to measure the number of newly infected plants under differing
numbers of aphids introduced into the experimental environment. The data
from 51 trials of the study are plotted in Figure 3 which shows a dichoto-
mous pattern of two regression lines. For this reason, Boiteau et al. (1998)
fit a mixture of regressions model with two mean regression components of
percent virus transmission on the number of aphids. The estimated regres-
sion lines are 1) ŷ = 5.0342 + 0.0801x and 2) ŷ = 1.2447 + 0.0035x with an
estimated group proportion of π̂1 = 0.5017. When applying the mixture of
quantile regressions model with τ = 0.5, the estimated intercepts and slopes
of the two median regression lines are 1) β̂10 = 7.1874 (6.3654) and β̂11 =
0.0590 (2.1025E-4) and 2) β̂20 = 1.4493 (0.5527) and β̂21 = 0.0000 (2.8636E-
5) with an estimated group proportion π̂1 = 0.4315 (8.4783E-3). The values
in the parentheses are the variance estimates from Alg. 3.1. The results are
depicted in Figure 3 where the cases are classified using a cutoff of p = 0.5
to the classification probabilities and shown in different symbols. The mean
regression lines are included in the plot for a comparison. As can be seen,
there is a big difference between the mean and the median regression lines
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Figure 3: A mixture of median regressions of percent virus transmission on the number of
aphids. A mixture of mean regressions is included for a comparison. The kernel density
estimates of the two error densities are given. The mixture of median regressions model
and the mixture of mean regressions model are refitted when the two outlying observations
with high virus transmission rates are excluded.
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in group 1 which is likely due to the two outlying observations at the top
right corner. The kernel density estimates of the error densities show mod-
erate skewness to the right in both groups. There is also evidence that the
two error densities are unequal which shows the superiority of the mixture
of median regressions model to the mixture of mean regressions model (1.2).

To further demonstrate the robustness of the mixture of quantile regres-
sions model to possible outliers, the two outlying observations with their
percents virus transmission beyond 30% are removed and both the median
and the mean regression models are refitted to the rest of the data. Fig-
ure 3 shows that the refitted median regressions do not change much but
the refitted mean regressions depart largely from the original ones. There-
fore, the two outlying observations have a big impact on the mean regression
estimates.

Second, Cohen (1984) describes a tone perception experiment, in which
a pure fundamental tone with electronically generated overtones added was
played to a trained musician. The overtones were determined by a stretching
ratio. The response variable is the tuning ratio, which is the ratio between the
adjusted tone and the fundamental tone, and the predictor is the stretching
ratio. There are 150 trials recorded from the same musician. The purpose
of this experiment was to see how this tuning ratio affects the perception
of the tone and determine if either of two musical perception theories was
reasonable (see Cohen, 1984, for more details). The scatterplot in Figure 4
shows that two homogeneous groups are evident which correspond to correct
tuning and tuning to the first overtone, respectively. The estimated mean
regression lines are 1) ŷ = −0.0193 + 0.9923x and 2) ŷ = 1.9164 + 0.0426x
with an estimated group proportion π̂1 = 0.3022. Applying the mixture of
median regressions model, we estimate the two median regression lines to
have coefficients equal to 1) β̂10 = 3.22E-3 (4.76E-3) and β̂11 = 0.999 (9.41E-
4) and 2) β̂20 = 1.95 (6.28E-4) and β̂21 = 3.04E-2 (1.29E-4) with π̂1 = 0.373
(2.89E-3). The results are depicted in Figure 4 where the cases are classified
using a cutoff of p = 0.5 to the classification probabilities and shown in
different symbols. The plot also includes the mean regression lines which can
be found close to the median regression lines. This is not surprising because
we have a pretty big sample size after all. The estimated error densities show
some bi- or triple-modal patterns. This is because of some suspicious outliers
outside the patterns of the two regression models.

The mixture of median regressions model is superior to the normal mix-
ture model (1.1) by dropping the normality assumption. Therefore, in prac-
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Figure 4: A mixture of two median regressions of the tuning ratio on the stretching ratio.
A mixture of mean regressions is included for a comparison. The kernel density estimates
of the two error densities are given. QQ-plots of the residuals within each group are
provided and the corresponding Shapiro-Wilk’s normality tests are conducted.
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Table 5: Three mixtures of quantile regressions of the equivalence ratio on the concentra-
tion of nitrous oxide using τ = 0.25, 0.5, and 0.75. Parameter estimates are found using
Alg. 2.1 and variances are estimated using Alg. 3.1.

Quantile Parameter β10 β11 β20 β21

25% Estimate 1.223 -0.07982 0.5358 0.07892
Variance 7.45E-05 1.73E-05 4.56E-04 7.67E-05

50% Estimate 1.240 -8.17E-02 5.57E-01 9.09E-02
Variance 1.45E-04 3.75E-05 5.37E-04 9.44E-05

75% Estimate 1.263 -0.08301 0.6146 0.08153
Variance 1.55E-04 3.63E-05 3.12E-04 5.25E-05

tice, if there is no prior information about the error density, the proposed mix-
ture of quantile regressions model can potentially be used as an exploratory
tool to check any parametric assumption of the error density. However,
normality tests in the mixture model setting are not easy because of the
uncertainty in the group memberships. It is unclear whether we can di-
rectly use the residuals from the mixture models for normality testing or
we should truncate the residuals based on the classification probabilities. If
we do truncate, shall we weight the truncated residuals by the classification
probabilities? Another approach is probably to resample the residuals by the
classification probabilities and treat the resampled residuals as from a single
population. More research is needed to address all these questions. For the
tone data, we show the normal Q-Q plots of the residuals within each group
while the cases are classified using the hard boundary of p = 0.5. Results
in Figure 4 show that the residuals are by no means from some normal dis-
tributions. The Shapiro-Wilk’s tests of normality have p-values less than
0.001 for both groups. The Q-Q plot and the Shapiro-Wilk’s test are only
effective when the components are well-separated and questionable when the
regression lines overlap.

Finally, Brinkman (1981) introduces an engine data set containing two
related variables. The response variable is the equivalence ratio, which mea-
sures the richness of the air-ethanol mix for burning ethanol in a single-
cylinder automobile test and the predictor is the concentration of nitrous
oxide in engine exhaust, normalized by engine work. The observations are
collected on 87 different engines. From Figure 5, one can see that there are
two homogenous groups. Therefore, a single linear regression will not fit the
data very well and a two component mixture of regressions should be used
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instead. The estimated mean regression lines are 1) ŷ = 1.2470−0.0829x and
2) ŷ = 0.5674 + 0.0846x with an estimated group proportion π̂1 = 0.5164.
However, it could be very interesting to fit several mixtures of quantile regres-
sions to the same data and show the conditional quantile regions of groups.
Figure 5 illustrates three mixtures of quantile regressions fitted to the en-
gine data using τ = 0.25, 0.5, and 0.75, respectively. For both groups, the
25% and 75% quantile regression lines define the conditional inter-quartile
regions. Table 5 summarizes the fitted models. However, there are a couple
of difficulties when fitting multiple mixtures of quantile regressions to the
same data. First, the quantile regression lines within each group might cross
each other so that the conditional quantiles at some x values are not in a
proper order. To ensure that all conditional quantiles are in a proper order,
further restrictions on the model fitting are necessary but they are out of
the scope of this paper. Second, although we do not expect the estimated
classification probabilities to be much different while using different quantile
levels, it could happen in real data applications, especially when the sam-
ple size is small. This can potentially create an ambiguity in terms of the
classification. For this application on the engine data, all cases are classified
using the mixture of median regressions with a cutoff of p = 0.5 to the clas-
sification probabilities and shown in different symbols in Figure 5. Also from
the mixture of median regressions, the error density estimate for group 1 is
skewed to the right and that for group 2 is skewed to the left.

6. Considerations

For the mixture of regressions model in general, if the error pdfs G are
completely known or known up to a finite number of parameters, then a
regular EM algorithm can be used to find the MLE θ̂ of the parameters
θ. For example, G can be the normal densities φ(·/σj)/σj with unknown
scale parameters σj for j = 1, . . . ,m. When G are known, an equivalent
estimating equation approach solves

n∑
i=1

xipij(θ)ξ(Yi − xTi βj) = 0, (6.1)

and

πj =
1

n

n∑
i=1

pij(θ), (6.2)
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Figure 5: There mixtures of quantile regressions of the equivalence ratio on the concen-
tration of nitrous oxide for τ = 0.25, 0.5, and 0.75. The kernel density estimates of the
two error densities are given under the mixture of median regressions model.

for j = 1, . . . ,m where

pij(θ) =
πjgj(Yi − xTi βj)∑m
l=1 πlgl(Yi − xTi βl)

.

For mixtures of mean regressions ξ(a) = a is an identity function, while for
mixtures of τth quantile regressions ξ(a) = I(a ≤ 0) − τ . When G are
known up to a finite number of parameters, similar estimating equations
can be constructed with additional equations to solve for the parameters
in G. From either the MLE theory or the estimating equation theory, the
estimators θ̂ enjoy nice asymptotic properties such as being consistent and
asymptotically normal.

However, such asymptotic results are not available for semi-parametric
models (1.2) or (2.1). The EM-type Alg. 2.1 is designed to solve (6.1) and
(6.2) together with a kernel density estimation of the unknown error pdfs G.
But when G are modeled non-parametrically, (6.1) and (6.2) are not esti-
mating equations any more, at least not in the sense of Tsiatis (2010). This
is because pj(θ)ξ(Y − xTβj) for j = 1, . . . ,m are generally not orthogonal
to the nuisance tangent space of the model (see Tsiatis, 2010, pages 73 - 87
for more details). For this reason, potential bias in θ̂ can arise which we find
true in our simulation studies.
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Figure 6: Prototypes of mixtures of two regression models. The solid lines and the dashed
lines represent the two groups. The line density represents the density of regression errors.
Figures (a) and (b) contain two clusters with skewed error distributions while Figures (c)
and (d) have symmetric error distributions.
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In general, the bias can occur when the clusters have imbalanced intersec-
tions. This usually happens when the error pdfs are asymmetric. In Figure 6
(a), the section labeled by “1” is an imbalanced intersection of high and low
densities of the two groups. The subjects in this section are more likely to
be clustered into the top group which leads to a bias in the semi-parametric
estimation. In Figure 6 (b), the two imbalanced intersections “1” and “2” are
counter-balanced by each other, so the bias can be reduced or eliminated. In
Figures 6 (c) and (d), all intersections are balanced because the error densi-
ties are symmetric, so the estimates should be consistent. At this stage, Alg.
2.1 and 3.1 represent some practical methods that work reasonably well in
clustering the subjects and model estimation. Further research is required
for possible improvements on the asymptotics.
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Appendix

Lemma A1: For any nonzero real number λ,

lim
T→∞

1

2T

ˆ T

−T
eisλds = 0.

Proof of Theorem 2.1. The proof is adapted from Wang et al. (2012).
Note that the conditional density f(y|x) is

f(y|x) =
m∑
j=1

πj g̃j(y − x̃T β̃j),

where g̃j(t) = gj(t − β0j) and thus g̃j has its τth quantile equal to β0j. The
characteristic function for the conditional distribution of y given x is

φy|x(t) =

ˆ ∞
−∞

eiyt
m∑
j=1

πj g̃j(y − x̃T β̃j)dy =
m∑
j=1

πje
ix̃T β̃jtφg̃j(t),
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where i is the imaginary unit, φg̃j(t) is the characteristic function of g̃j(y).
Suppose that the proposed model has another representation

f(y|x) =
l∑

k=1

τkhk(y − x̃Tγk),

where γk are distinct, 0 ≤ τk ≤ 1, and
∑l

k=1 τk = 1. Then

φy|x(t) =
l∑

k=1

τke
ix̃Tγktφhk(t),

and therefore,
m∑
j=1

πje
ix̃T β̃jtφg̃j(t) =

l∑
k=1

τke
ix̃Tγktφhk(t). (.1)

For any fixed 1 ≤ q ≤ m, multiplying both sides of equation .1 by e−ix̃T β̃qt

gives

πqφg̃q(t) +
∑

1≤j 6=q≤m,

πje
ix̃T (β̃j−β̃q)tφg̃j(t) =

l∑
k=1

τke
ix̃T (γk−β̃q)tφhk(t).

Since β̃j are distinct vectors in Rp, β̃j − β̃q are nonzero vectors in Rp for
j 6= q, where R is the set of all real numbers.

Next, we will prove that one of γk’s is equal to β̃q. Let’s first assume
that γk − β̃q are all nonzero vectors in Rp. Let

F1 = ∪1≤j 6=q≤m{x̃ ∈ Rp : x̃T (β̃j − β̃q) = 0}

and
F2 = ∪lk=1{x̃ ∈ Rp : x̃T (γk − β̃q) = 0}.

Note that both F1 and F2 consist of the union of several (p− 1)-dimensional
hyper-planes of Rp and thus both have zero measure. Let D be an open
subset inside the domain of x̃. Then, there is a vector ν ∈ D, such that
νT (β̃j − β̃q) 6= 0, 1 ≤ j ≤ m, j 6= q, and that νT (γk − β̃q) 6= 0, k = 1, . . . , l.
Let ε > 0 be such that aν ∈ D for all a ∈ (1− ε, 1 + ε). Then

πqφg̃q(t) +
∑

1≤j 6=q≤m,

πje
iaνT (β̃j−β̃q)tφg̃j(t) =

l∑
k=1

τke
iaνT (γk−β̃q)tφhk(t).
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For any fixed t 6= 0, denote ηj = νT (β̃j − β̃q)t, j = 1, · · · ,m, ξk =

ν(γk − β̃q)t, k = 1, · · · , l. Then ηj 6= 0 for j 6= q and ξk 6= 0. Therefore,

πqφg̃q(t) +
∑

1≤j 6=q≤m,

πje
iaηjφg̃j(t) =

l∑
k=1

τke
iaξkφhk(t), 1− ε < a < 1 + ε.

By extension theorem (Whitney, 1934), the above equality holds for all com-
plex number a ∈ R.

Then

1

2T

ˆ T

−T

{
πqφg̃q(t) +

∑
1≤j 6=q≤m,

πje
iaηjφg̃j(t)

}
da

=
1

2T

ˆ T

−T

{
l∑

k=1

τke
iaξkφhk(t)

}
da.

Applying Lemma A1, we obtain that πqφg̃q(t) = 0. Letting t → 0, we have
πq = 0, which contradicts the assumption that πq > 0. Therefore, there must
be a 1 ≤ q̃ ≤ l such that γ q̃ = β̃q. Based on the similar arguments above, we
can have πqφg̃q(t) = τq̃φhq̃(t). Letting t→ 0, we have τq̃ = πq, and therefore,
φhq̃(t) = φgq(t), which in turns implies that hq̃(y) = gq(y).

Note that the above results should hold for any 1 ≤ q ≤ m. In addition,
since the g̃j’s are identifiable, the β0j’s, which are τth quantile of g̃j’s, are
also identifiable.
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