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Abstract: ℓ1 penalties such as the lasso provide solutions with some coefficients to

be exactly zeros, which lead to variable selection in regression settings. They also

can select variables which affect the classification by being applied to the logistic

regression model. We focus on the form of ℓ1 penalties in logistic regression models

for functional data, especially in the case for classifying the functions into three

or more groups. We provide penalties that appropriately select variables in the

functional multinomial regression modeling. Simulation and real data analysis show

that we should select the form of the penalty in accordance with the purpose of the

analysis.

Key Words and Phrases: Functional Data Analysis, Lasso, Logistic regression

model, Model selection, Regularization.

1 Introduction

Variable selection is one of crucial issues in regression analysis. The lasso by Tibshirani

(1996) and its offshoots provide us an unified approach for estimation and variable selec-

tion problems, and therefore they are broadly applied in several fields (see, e.g. Hastie

et al., 2009). We can also select variables which affect to classification problems by ap-

plying these types of penalties to logistic regression models (Krishnapuram et al., 2005;

Park and Hastie, 2007; Friedman et al., 2010). The logistic regression model is one of the

most useful tools for classifying data by providing posterior probabilities which group the

data belong to.

In this paper we consider the cases for classifying data into three or more groups us-

ing the multiclass logistic regression model, which contains multiple parameters in each

variable, as well as a multivariate linear model. Several works have been provided for

multivariate linear or multiclass logistic regression models. Turlach et al. (2005) proposed

a new penalty to estimate multivariate linear models. They imposed an ℓ1 sum of maxi-

mum absolute values (ℓ∞ norm) of coefficients with respect to multiple responses, and also

generalized it to the ℓ1 sum of ℓq (q ≥ 1) penalties. Then afterwards Yuan et al. (2007)and

Obozinski et al. (2011) let the penalty denote ℓ1/ℓq and investigated theoretical properties

of it. Furthermore, Obozinski et al. (2010) proposed a new algorithm for estimating the

multinomial logistic regression model with the ℓ1/ℓq regularization for q = 1, 2.
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When the data to be classified are repeatedly measured over time, it is natural that

they are represented by some functional forms. Ramsay and Silverman (2005) established

this type of analysis and call it the Functional data analysis (FDA). FDA is one of the most

useful methods for effectively analyzing such discretely observed data and has received

considerable attentions in various fields (Ramsay and Silverman, 2002; Ferraty and Vieu,

2006; Ferraty, 2011). The basic idea behind FDA is to express repeated measurement data

as a smooth function and then draw information from the collection of functional data.

FDA includes extensions of traditional analyses such as principal component, discriminant

and regression analysis (James et al., 2000; James, 2002).

In this paper we consider the variable selection problem for classifying functional data

using the logistic regression model via the sparse regularization. Repeated measurement

data are represented by basis expansions, and then the functional logistic regression model

is estimated by the penalized maximum likelihood method with the help of sparsity penal-

ties. We propose a new penalty, denoted by ℓ1ℓ2/ℓq with q = 1, 2 here, for appropriately

estimating and selecting variables or boundaries for the multiclass functional logistic re-

gression model. Furthermore, the estimated model is evaluated by the model selection

criterion since the model evaluation problem is a crucial issue. We examine the proposed

method through Monte Carlo simulations and real data examples.

This paper is organized as follows. Section 2 provides a multiclass logistic regression

model for functional data. Section 3 shows the method for estimating and evaluating the

model. We apply the proposed method to the analysis of simulated data and real data in

Section 4 and Section 5 respectively. Concluding remarks are given in Section 6.

2 Multinomial logistic regression model for functional

data

Suppose that we have n sets of functional data and a class label {(xα(t), gα); α = 1, . . . , n},
where xα(t) = (xα1(t), . . . , xαp(t))

T are predictors given as functions and gα ∈ {1, . . . , L}
are classes which xα belongs to. In the classification setting, we apply the Bayes rule which

assigns xα to class gα = l with the maximum posterior probability given xα, denoted by

Pr(gα = l|xα). Then the logistic regression model is given by the log-odds of posterior

probabilities:

log

{
Pr(gα = l|xα)

Pr(gα = L|xα)

}
= βl0 +

p∑
j=1

∫
xαj(t)βlj(t)dt, (1)

where βl0 is an intercept and βlj(t) are coefficient functions. We consider that xαj(t) is

expressed by basis expansions by

xαj(t) =

Mj∑
m=1

wαjmϕjm(t) = wT
αjϕj(t), (2)
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where ϕj(t) = (ϕj1(t), . . . , ϕjMj
(t))T are vectors of basis functions such as B-splines or

radial basis functions, wαj = (wαj1, . . . , wαjMj
) are coefficient vectors. Since the data

are originally observed at discrete time points, we obtain functional data xαj(t) using a

smoothing method with basis expansions in advance. In other words, wαj are obtained

before constructing the functional logistic regression model (1). Details of the smoothing

method are described in Araki et al. (2009b). Furthermore, βlj(t) are also expressed by

basis expansions

βlj(t) =

Mj∑
m=1

bljmϕjm(t) = bTljϕj(t), (3)

where blj = (blj1, . . . , bljMj
)T are vectors of coefficient parameters.

Using a notation πl(xα; b) = Pr(gα = l|xα) with b = (bT1 , . . . , b
T
(L−1))

T and bl =

(βl0, b
T
l1, . . . , b

T
lp)

T since it is controlled by b, we can re-express the functional logistic

regression model (1) as

log

{
πl(xα; b)

πL(xα; b)

}
= βl0 +

p∑
j=1

wT
αjΦjblj = zT

αbl, (4)

where zα = (1,wT
α1Φ1, . . . ,w

T
αpΦp) and Φj =

∫
ϕT

j (t)ϕj(t). It follows from (1) that the

posterior probability is given by

πl(xα; b) =
exp

(
zT
αbl
)

1 +
∑L−1

h=1 exp (z
T
αbh)

(l = 1, . . . , L− 1),

πL(xα; b) =
1

1 +
∑L−1

h=1 exp (z
T
αbh)

.

We define vectors of response variables yα which indicate class labels as

yα = (yα1, . . . , yα(L−1))
T =

 (0, . . . , 0,
(l)

1 , 0, . . . , 0)T if gα = l, l = 1, . . . , L− 1,

(0, . . . , 0)T if gα = L.

Then the functional logistic regression model has the following probability function

f(yα|xα; b) =
L−1∏
l=1

πl(xα; b)
yαlπL(xα; b)

1−
∑L−1

h=1 yαh .

3 Estimation by the sparse regularization

In order to construct the statistical model, we estimate the functional logistic model (1) by

the penalized likelihood method, which maximizes the penalized log-likelihood function

given in the form of

lλ(b) = l(b)− nλP (b), (5)
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where l(b) =
∑n

α=1 log f(yα|xα; b) is a log-likelihood function, λ is a regularization pa-

rameter which controls the effect of the penalty and P (·) is a penalty function. We can

also select variables which actually have an influence on the classification by employing

one of the ℓ1 type penalties on P (·). Here we adopt the lasso as the ℓ1 type penalty in

this paper. Now we consider two types of penalties for P (·):

P(1)(b) =
√

Mj

p∑
j=1

L−1∑
l=1

∥blj∥2, P(2)(b) =
√

Mj(L− 1)

p∑
j=1

{
L−1∑
l=1

∥blj∥22

} 1
2

. (6)

In order to select variables appropriately we need to treat wαj1, . . . , wαjMj
as grouped

variables and thus apply the group lasso (Yuan and Lin, 2006) to the corresponding

coefficients blj1, . . . , bljMj
, otherwise we fail to select functional variables (Matsui and

Konishi, 2011). In addition, P(1) imposes ℓ1 norms of coefficient parameters for each

class. On the other hand, P(2) treats L− 1 parameters as grouped parameters gain. The

former penalty shrinks each coefficient towards exactly zero, whereas the latter shrinks all

the L− 1 parameter vectors in the j-th variable towards zero simultaneously. We denote

P(1) and P(2) as ℓ1ℓ2/ℓ1 and ℓ1ℓ2/ℓ2 penalties respectively. If we consider the case Mj = 1

for all j, they correspond to ℓ1/ℓq penalties by Obozinski et al. (2010, 2011) with q = 1, 2

respectively, and therefore they are regarded as natural extensions of the ℓ1/ℓq penalties.

We can also express the ℓ1ℓ2/ℓq norm in the following form.

P(q)(b) = C

p∑
j=1

{
L−1∑
l=1

∥blj∥q2

} 1
q

,

here we denoted a constant independent of b as C.

Since the penalized log-likelihood function involves the ℓ1 norm of coefficients it is

difficult to derive estimates analytically. We apply the local quadratic approximation to

the penalty (Tibshirani, 1996; Fan and Li, 2001). Then parameters are updated in the

following form:

b(k+1) = b(k) −
{

∂2l(b)

∂b∂bT

∣∣∣∣
b(k)

− nΣ(b(k))

}−1{
∂l(b)

∂b

∣∣∣∣
b(k)

− nΣ(b(k))b(k)
}
,

where Σ(b) is given by

Σ(b) = diag
{
Σ(b1), . . . . ,Σ(b(L−1))

}
,

Σ(bl) =


diag

{
P ′
(1)

(|bl1|)
|bl1|

, . . . ,
P ′
(1)

(|blp|)
|blp|

}
for P(1),

diag

{
P ′
(2)

(∥b(1)∥)

∥b(1)∥
, . . . ,

P ′
(2)

(∥b(p)∥)

∥b(p)∥

}
for P(2)

(
b(j) = (b1j, . . . , b(L−1)j)

T
)
.

This update is continued until convergence, and then we obtain a estimated coefficient

vector b̂.
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Statistical models estimated by the penalized likelihood method depend on regular-

ization parameters and it is a crucial issue to select appropriate values of them. In this

case we need to select an appropriate value of λ in the log-likelihood function (5). We

use a model selection criterion BIC originally proposed by Schwarz (1978). For the sparse

regularization problem, Wang et al. (2007) proved that the BIC select the true model con-

sistently for the SCAD regularization setting. The BIC for evaluating models estimated

by the penalized maximum likelihood method with the ℓ1 penalty is given by

BIC = −2l(b̂) + d̃f log n

=
n∑

α=1

L−1∑
l=1

{
yαl log πl(zα; b̂) +

(
1−

L−1∑
h=1

yαh

)
log πL(zα; b̂)

}
+ d̃f log n,

where d̃f is an effective degrees of freedom. Although Zou et al. (2007) derived a degrees

of freedom for the model estimated by the lasso-type regularization, it is not given in

the logistic settings. Konishi et al. (2004) proposed a model selection criterion GBIC

for evaluating models estimated by the regularization method, though, it needs a second

derivative of the penalized likelihood function. On the other hand, they also derived AIC

or BIC type criterion with effective degrees of freedoms in the logistic regression model.

Using this idea, the degrees of freedom here is given by

d̃f = tr{WZ̃A(Z̃
T
AWZ̃A + nΣ(b̂A))

−1Z̃T
A},

where

Z̃ = IL−1 ⊗ Z, Z = (zT
1 , . . . , z

T
n ),

W (k) =
(
W

(k)
hl

)
hl
,

W
(k)
hl =


diag{πl(z1; b̂)(1− πl(z1; b̂)),

. . . , πl(zn; b̂)(1− πl(zn; b̂))} (h = l),

diag{−πh(z1; b̂)πl(z1; b̂),

. . . ,−πh(zn; b̂)πl(zn; b̂)} (h ̸= l)

and the suffix A denotes an active set of b. We select the λ which minimizes the BIC and

then adopt the corresponding model as an optimal model.

4 Simulation

In order to investigate the effectiveness and the behavior of the proposed method, we

conducted Monte Carlo simulations. We simulated multiple predictors, essentially given

as functions having three classes. In this example we aim to examine whether the proposed

method appropriately select variables which affect to the classification.
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First, we generated 2n sets of p predictors each of which were repeatedly measured

at several time points; {(xαi1, . . . , xαip); α = 1, . . . , 2n, i = 1, . . . , ni}, where xαij (j =

1, . . . , p) are assumed to be obtained from xαij = uαj(ti)+ εαij with uniformly distributed

ni observational points ti and εαij ∼ N(0, (σRαj)
2), Rαj = maxi(uαj(ti))−mini(uαj(ti)).

We divided the data with sample size 2n in half in order to use them as training and test

data. Here we consider a three-class classification problem, and therefore we trisected the

data and then assigned each class with them. We set true functions uαj(t) as follows:

uα1(t) = t3 + a1t
2 + a2t+ a3, uα2(t) = b1 sin(b2π(t− b3)),

uα3(t) = c1 exp(c2t)(t− c3)
2, uα4(t) = d1 sin(πt) + d2, t ∈ [−1, 1],

where they are controlled by following random numbers for classes g = 1, 2, 3 respectively.

Class 1 Class 2 Class 3
a1 ∼ N(3.0, 0.12), N(2.0, 0.12), N(4.0, 0.12),

u1 : a2 ∼ N(0.5, 0.22), N(0.3, 0.22), N(0, 0.22),
a3 ∼ N(1.0, 0.52), N(1.0, 0.52), N(2.0, 0.52),

b1 ∼ U(0.4, 0.7), U(0.8, 1.1), U(0.4, 0.7),
u2 : b2 ∼ U(0.9, 1.2), U(0.4, 0.7), U(0.9, 0.7),

b3 ∼ N(0.2, 0.12), N(0.5, 0.12), N(0.2, 0.72),

c1 ∼ U(0.7, 1.1), U(0.6, 0.9), U(0.6, 0.9),
u3 : c2 ∼ U(0.7, 1.2), U(0.8, 1.4), U(0.8, 1.4),

c3 ∼ N(0.8, 1.4), N(0.5, 0.12), N(0.5, 0.12),

u4 : d1 ∼ U(0.5, 3.0), U(0.5, 3.0), U(0.5, 3.0),
d2 ∼ N(0.2, 0.5), N(0.2, 0.5), N(0.2, 0.5).

Note that there are no classification boundaries for Class 1 and 3 on u2, Class 2 and 3

on u3 and all classes on u4, as seen in Table 1 since they respectively have same settings

for the random number generation. Especially u4 does not affect the classification. These

facts show that the coefficient functions in the model (1) should be β12(t) = 0, β23(t) = 0

and β14(t) = β24(t) = 0.

As the first step of the analysis, we converted longitudinal predictors xαij into func-

tions. Since they contain additive noises we applied the smoothing method with basis

expansions, then obtained functional data sets xαj(t). We used radial basis functions with

the idea of B-splines by Kawano and Konishi (2007) for basis functions ϕj(t) in (2) and

(3). In order to reduce computational burden, numbers of basis functions are supposed

to be 6 for all variables. Then after constructing the functional logistic regression model,

we estimated it by the maximum penalized likelihood method with penalties P(1) and P(2)

in (6) and evaluated the model by BIC. We repeated them 100 times for n = 75, 150, 300

and σ = 0.05, 0.2 and then investigated about results of errors and variable selections for

two penalties.

Table 1 shows numbers selected by the above method with penalties P(1) and P(2)

for 100 repetition, where ”β1jβ2j” in the table denotes numbers which both β1j and β2j
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Figure 1: True functions for uj (j = 1, . . . , 4 from top left to bottom right) used in the
simulation study. Solid, dashed and dotted lines represent functions for Class 1, 2 and 3
respectively.

are estimated to be non-zeros, ”βlj” for l = 1, 2 denotes numbers which either β1j or

β2j is estimated to be non-zero respectively and ”ϕ” is numbers which both coefficients

are estimated to be zeros. We can find that the penalty P(1) shrinks some of coefficient

functions to be zeros appropriately, especially for variable 1 and 3. Thus it selects which

classification boundary is important or not for each variable. On the other hand, P(2)

selects all or no coefficients for each variable owing to the form of the penalty and hence it

cannot select boundaries individually like P(1). However, it excludes variable 4 completely

more than P(1), which indicates that P(2) is more suitable for the purpose of only excluding

variables themselves which affect the classification. We also obtained training and test

errors and selected values of regularization parameters in Table 2. It indicates that the

penalty P(1) gives smaller test errors than P(2) in all cases.

Note that we did not mention a classification boundary between Class 1 and 2. We

can directly derive the coefficients for the boundary as β̂1j − β̂2j, and if there are no

boundaries for Class 1 and 2 there should be β̂1j = β̂2j. However, the above method does

not estimate like it and therefore we cannot estimate appropriately, which reminds to be
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Figure 2: Yeast cell cycle gene expression profiles for each synchronization. Each plot
consists of 5 genes from 5 classes. G1 (solid), G2/M (dashed), M/G1 (dotted), S (dot-
dashed), S/G2 (long dashed).

a future work.

5 Real data example

We applied the functional logistic regression modeling to the analysis of yeast cell cy-

cle gene expression data. Spellman et al. (1998) measured expression profiles for 6,178

genome-wide genes in the yeast genome using cDNA microarrays over about two cell

cycles. The data contain 77 microarrays consisting of several types of time course syn-

chronization; ”cln3” (2 points), ”clb2” (2 points), ”α-factor” (18 points), ”cdc15” (24

points), ”cdc28” (17 points) and ”elu” (14 points). Spellman et al. (1998) classified 800

genes into 5 groups, G1, G2/M, M/G1, S and S/G2, by the clustering method from the

above 77 experiments. Figure 2 shows examples for each synchronization. Araki et al.

(2009a) classified genes by using the ”cdc15” experiments as functional data and exam-

ined the misclassified data from the posterior probabilities. Here we aim to confirm that

these experiments actually affect the classification.

Since there are some missing values in expression profiles we excluded some genes

from data by following two rules: (1) Genes with at least one missing value for ”cln3” and

”clb2” respectively are excluded. (2) Those with more than 10 missing values in all for
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”α-factor”, ”cdc15”, ”cdc28” and ”elu” are also excluded. Although the number of genes

with no missing values are only 72, we can easily apply the regression model even if there

are some (not excessively many) missing values by converting them into functional data.

The resulting 657 genes are used for this analysis. First we converted time-course data

except for ”cln3” and ”clb2” into functions. They are expressed by basis expansions with

4 basis functions, which was selected in the functionalization step. Remaining variables

”cln3” and ”clb2”, each of which have only 2 time points, were treated as vector data

rather than functional data, and then we treated variables corresponding to 2 time points

for each variable as grouped variables. Next we constructed a functional logistic model

log

{
Pr(gα = l|xα)

Pr(gα = L|xα)

}
= βl0 +

2∑
j=1

2∑
j′=1

xαjj′βljj′ +
6∑

j=3

∫
xαj(t)βlj(t)dt, (7)

which is a special case of (1), where Xj (j = 1, . . . , 6) respectively correspond to ”cln3”,

”clb2”, ”α-factor”, ”cdc15”, ”cdc28” and ”elu”. The model was estimated by the penal-

ized likelihood method and evaluated by BIC. Furthermore we altered the class label L

in the left hand side of (7) and repeatedly estimated in order to investigate all coefficients

for classification boundaries. We repeated this process for 100 bootstrap samples, and

then investigated which variable or boundary affects the classification.

Table 3 shows the numbers of selected variables in 100 bootstrap samples for the

penalty P(1). We can find that most coefficients are estimated to be non-zeros. However,

the coefficient for the boundary between M/G1 and S/G2 is hardly selected for ”clb2”,

and similarly that between M/G1 and S is often excluded. It reveals that the variable

”clb2” does not affect the classification. On the other hand, the penalty P(2) selected all

variables for 100 repetitions. It indicates the variables themselves are actually relevant to

the classification.

6 Concluding remarks

We have proposed a form of penalty for constructing functional multinomial logistic re-

gression models. We derived the estimation and evaluation procedures for the model with

the ℓ1ℓ2/ℓq penalty for q = 1, 2. The model was fitted by the penalized maximum likeli-

hood method, and the regularization parameter involved in the model was selected by the

model selection criterion. Monte Carlo simulations were conducted in order to investigate

the effects for the accuracy of prediction and variable selection. Results show that ℓ1ℓ2/ℓ1

and ℓ1ℓ2/ℓ2 penalties give different result and therefore we should select these penalties

for different uses.

As described in the end of Section 4, there are cases that this method does not estimate

coefficients appropriately at one time. It will be a topic for future research. Furthermore

we will focus on the theoretical investigation for the functional regression models with the

sparse regularization.
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Table 1: Numbers of selected variables. Top:P(1), bottom:P(2).

P(1) σ 0.05 0.2
n j β1jβ2j β1j β2j ϕ β1jβ2j β1j β2j ϕ
75 1 100 0 0 0 100 0 0 0

2 37 0 63 0 33 0 67 0
3 0 100 0 0 1 99 0 0
4 0 25 6 69 12 45 16 27

150 1 100 0 0 0 100 0 0 0
2 32 0 68 0 49 0 51 0
3 0 100 0 0 1 99 0 0
4 1 33 2 64 15 42 14 29

300 1 100 0 0 0 100 0 0 0
2 45 0 55 0 34 0 66 0
3 0 100 0 0 1 99 0 0
4 2 32 5 61 26 40 15 19

P(2) σ 0.05 0.2
n j β1jβj2 β1j β2j ϕ β1jβ2j β1j β2j ϕ
75 1 100 0 0 0 100 0 0 0

2 98 0 0 2 91 0 0 9
3 100 0 0 0 99 0 0 1
4 18 0 0 82 54 0 0 46

150 1 100 0 0 0 100 0 0 0
2 100 0 0 0 100 0 0 0
3 100 0 0 0 100 0 0 0
4 22 0 0 78 51 0 0 49

300 1 100 0 0 0 100 0 0 0
2 100 0 0 0 100 0 0 0
3 100 0 0 0 100 0 0 0
4 26 0 0 74 71 0 0 29
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Table 2: Averages of 100 training, test errors (%) and the regularization parameter λ
(and its standard deviations in parenthesis). The top is for P(1) and the bottom is for
P(2).

σ 0.05 0.2
n Train Test λ× 103 Train Test λ× 103

75 0.04 0.41 5.81 (2.74) 0.15 1.45 9.64 (4.74)
150 0.10 0.33 3.79 (2.02) 0.35 1.12 6.51 (3.20)
300 0.10 0.28 2.22 (1.13) 0.28 0.92 3.68 (1.64)

σ 0.05 0.2
n Train Test λ× 103 Train Test λ× 103

75 0.08 0.80 6.28 (2.94) 0.27 1.93 12.69 (6.28)
150 0.15 0.45 4.04 (2.20) 0.49 1.56 7.96 (3.77)
300 0.12 0.38 2.37 (1.27) 0.40 1.17 4.29 (1.58)

Table 3: Numbers of selected variables for P(1). Signs i/j below indicate classification
boundaries between i and j for i, j = 1, . . . , 5 with 1:G1, 2:G2/M, 3:M/G1, 4:S, 5:S/G2.

cln3 clb2 α cdc15 cdc28 elu
1/2 100 100 100 100 100 98
1/3 100 100 100 99 100 100
1/4 94 99 100 100 100 100
1/5 100 100 100 100 100 100
2/3 100 76 100 100 100 100
2/4 100 100 99 100 100 100
2/5 100 100 100 100 100 100
3/4 100 47 100 100 100 100
3/5 100 16 100 100 100 100
4/5 100 82 100 100 98 98

13



List of MI Preprint Series, Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Her-
mitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic
decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed
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