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Abstract

We consider the problem of sparse estimation via a lasso-type penalized like-

lihood procedure in a factor analysis model. Typically, the model estimation is

done under the assumption that the common factors are orthogonal (uncorrelated).

However, the lasso-type penalization method based on the orthogonal model can

often estimate a completely different model from that with the true factor structure

when the common factors are correlated. In order to overcome this problem, we

propose to incorporate a factor correlation into the model, and estimate the factor

correlation along with parameters included in the orthogonal model by maximum

penalized likelihood procedure. An entire solution path is computed by the EM

algorithm with coordinate descent, which permits the application to a wide variety

of convex and nonconvex penalties. The proposed method can provide sufficiently

sparse solutions, and be applied to the data where the number of variables is larger

than the number of observations. Monte Carlo simulations are conducted to in-

vestigate the effectiveness of our modeling strategies. The results show that the

lasso-type penalization based on the orthogonal model cannot often approximate

the true factor structure, whereas our approach performs well in various situations.

The usefulness of the proposed procedure is also illustrated through the analysis of

real data.

Key Words: Nonconvex penalty, Oblique structure, Rotation technique, Penalized like-

lihood factor analysis

1 Introduction

Factor analysis provides a practical tool for exploring the covariance structure among

a set of observed random variables by construction of a smaller number of random vari-

ables called common factors. In exploratory factor analysis, a traditional estimation

procedure in use is the following two-step approach: the model is estimated by the maxi-

mum likelihood method under the assumption that the common factors are uncorrelated

(orthogonal), and then rotation techniques, such as the varimax method (Kaiser 1958)
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and the promax method (Hendrickson and White 1964), are utilized to find sparse factor

loadings. However, it is well known that the maximum likelihood method often yields

unstable estimates because of overparametrization (e.g., Akaike 1987). In particular, the

commonly-used algorithms for maximum likelihood factor analysis (e.g., Jöreskog 1967;

Jennrich and Robinson 1969; Clarke 1970; Lawley and Maxwell 1971) cannot often be

applied when the number of variables is larger than the number of observations. Further-

more, the rotation techniques cannot often produce a sufficiently sparse solution. In order

to overcome these difficulties, we apply a penalized likelihood procedure that produces

the sparse solutions, such as the lasso (Tibshirani 1996).

The lasso-type penalized likelihood factor analysis has been recently studied by several

researchers. Ning and Georgiou (2011) and Choi et al. (2011) applied the weighted lasso

to obtain sparse factor loadings, and numerically demonstrated that the penalization

method often outperformed the rotation technique with maximum likelihood procedure.

Hirose and Yamamoto (2012) showed that the penalization method is a generalization

of the rotation technique with maximum likelihood method, and applied the nonconvex

penalties such as minimax concave penalty (MC+, Zhang 2010) and smoothly clipped

absolute deviation (SCAD, Fan and Li 2001) to achieve sparser solutions than the lasso.

In these studies, the common factors are assumed to be uncorrelated (orthogonal) as is

the case with the maximum likelihood exploratory factor analysis. In some cases, however,

analysts may prefer to relax the requirement that the common factors are orthogonal (e.g.,

Mulaik 1972). Moreover, we found that the lasso-type penalization technique based on

the orthogonal model can often estimate a completely different model from that with the

true factor structure when the common factors are correlated (oblique). Empirically, the

estimated factor loadings in the first column often become dense (i.e., all elements are

non-zero), even if the first column of true loading matrix is sparse.

In order to handle this fundamental problem, we propose to incorporate a factor

correlation into the model, and estimate the factor correlation along with parameters

included in the orthogonal model by maximum penalized likelihood procedure. A pathwise

algorithm via the EM algorithm (Rubin and Thayer 1982) with coordinate descent for

nonconvex penalties (Mazumder et al. 2011) is introduced according to the basic idea

given by Hirose and Yamamoto (2012). Our algorithm produces the entire solution path

for a wide variety of convex and nonconvex penalties including the lasso, SCAD, and MC+

family. Furthermore, the proposed methodology can provide sparser solutions than the

rotation technique with maximum likelihood method, and be applied to the data where

the number of variables is larger than the number of observations.

The remainder of this paper is organized as follows: Section 2 shows that the lasso-

type penalized likelihood factor analysis based on the orthogonal model cannot often

approximate the oblique structure. In Section 3, we introduce a penalized factor analysis
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via the oblique model, and provide a computational algorithm based on the EM algorithm

and coordinate descent to obtain the entire solution path. Section 4 presents numerical

results for both artificial and real datasets. Some concluding remarks are given in Section

5.

2 Penalized likelihood factor analysis based on the

orthogonal model may not approximate the oblique

structure

2.1 Model and Estimation

We briefly describe a lasso-type penalized likelihood factor analysis based on the or-

thogonal model (Choi et al. 2011; Ning and Georgiou 2011; Hirose and Yamamoto 2012).

Suppose that X = (X1, . . . , Xp)
T is a p-dimensional observable random vector with mean

vector µ and variance-covariance matrix Σ. The factor analysis model (e.g., Mulaik 1972)

is

X = µ+ΛF + ε,

where Λ = (λij) is a p × m matrix of factor loadings, and F = (F1, · · · , Fm)
T and

ε = (ε1, · · · , εp)
T are unobservable random vectors. The elements of F and ε are called

common factors and unique factors, respectively. It is assumed that the common factors F

and the unique factors ε are multivariate-normally distributed with E(F ) = 0, E(ε) = 0,

E(FF T ) = Im, E(εε
T ) = Ψ, and are independent (i.e., E(FεT ) = O). Here Im is the

m×m identity matrix, and Ψ is a p×p diagonal matrix with the i-th diagonal element ψi,

which is called unique variance. Under these assumptions, the observable random vector

X is multivariate-normally distributed with variance-covariance matrix ΛΛT +Ψ.

Let x1, · · · ,xN be a random sample of N observations from the p-dimensional normal

population Np(µ,ΛΛT +Ψ). The estimates of factor loadings and unique variances, say,

Λ̂ort and Ψ̂ort (“ort” is an abbreviation for orthogonal), are obtained by maximizing the

penalized log-likelihood function

(Λ̂ort, Ψ̂ort) = argmax
Λ,Ψ

ℓortρ (Λ,Ψ),

where ℓortρ (Λ,Ψ) is the penalized log-likelihood function

ℓortρ (Λ,Ψ) = ℓort(Λ,Ψ)−N

p
∑

i=1

m
∑

j=1

ρP (|λij|).

Here ℓort(Λ,Ψ) is the log-likelihood function

ℓort(Λ,Ψ) = −
N

2

[

p log(2π) + log |ΛΛT +Ψ|+ tr{(ΛΛT +Ψ)−1S}
]

,
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P (·) is a penalty function, and ρ is a regularization parameter. The matrix S = (sij) is

the sample variance-covariance matrix.

The lasso-type penalty function P (·) produces sparse solutions for some ρ, i.e., some of

the factor loadings can be estimated by exactly zero. The lasso is continuous and fast, but

biased and then estimates an overly dense model (Zou 2006; Zhao and Yu 2007; Zhang

2010). Typically, a nonconcave penalization procedure such as MC+ (Zhang 2010) and

SCAD (Fan and Li 2001) can achieve sparser models than the lasso. For example, the

MC+ (Zhang 2010) is given by

ρP (|θ|; ρ; γ) = ρ

∫ |θ|

0

(

1−
x

ργ

)

+

dx

= ρ

(

|θ| −
θ2

2ργ

)

I(|θ| < ργ) +
ρ2γ

2
I(|θ| ≥ ργ).

For each value of ρ > 0, γ → ∞ yields soft threshold operator (i.e., lasso penalty) and

γ → 1+ produces hard threshold operator.

2.2 Problem of the lasso via orthogonal model

The lasso-type penalization based on the orthogonal model can perform well when the

true common factors are uncorrelated. In practical situations, however, the true common

factors may often be correlated: E[FF T ] = Φ with Φ being the factor correlation. In

this case, the covariance matrix of the observed variables X is expressed as ΛΦΛT +Ψ.

If each factor is highly correlated to each other, i.e., the absolute values non-diagonal

elements of Φ are large, the lasso based on the orthogonal model can often estimate a

completely different model from that with the true factor structure. A typical example

of this phenomena is given as follows:

Example 2.1. Suppose that the true factor loadings, unique variances and factor corre-

lation are given by

Λ =

(

0.9 0.9 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.9 0.9 0.9

)T

, Ψ = 0.19I6, Φ =

(

1.0 0.6

0.6 1.0

)

.

We generated 50 observations from X ∼ N6(0,ΛΦΛT +Ψ). The model was estimated by

the penalized likelihood method with P (θ) = θ (i.e., the lasso) and ρ = 0.01. The estimated

factor landings were

Λ̂ort =

(

0.87 0.83 0.89 0.59 0.53 0.54

0.00 0.05 −0.02 0.71 0.62 0.62

)T

. (1)

Because the lasso tends to produce some of the loadings being zero, λ̂12, λ̂22 and λ̂32 were

close to or exactly zero. However, λ̂41, λ̂51 and λ̂61 were far from zero although the true
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parameters are zero. The lasso based on the orthogonal model was not able to approximate

the true factor structure.

The problem that the lasso based on orthogonal model cannot approximate the true

factor structure is closely related to the rotation problem. In orthogonal model, the

true covariance matrix ΛΦΛT + Ψ is estimated by Λ̂ortΛ̂
T
ort + Ψ̂ort, which means Λ̂ort

approximates ΛG, where G = (gii′) is an m × m matrix that satisfies GGT = Φ. The

matrix G is not an identity matrix unless the factor correlation Φ is an identity matrix,

so that Λ̂ort is not always close to Λ even if Λ̂ort ≈ ΛG.

Furthermore, the matrixG can have a rotational indeterminacy, sinceGGT = G∗(G∗)T =

Φ, where G∗ = GT with T being an arbitrary orthogonal matrix. The rotational inde-

terminacy of G leads to ℓ(ΛG,Ψ) = ℓ(ΛG∗,Ψ). Thus, if Λ̂ort and Ψ̂ort are expressed as

Λ̂ort = ΛG and Ψ̂ort = Ψ, the matrix G is obtained by solving the following problem:

max
G

ℓortρ (ΛG,Ψ) s.t., GGT = Φ,

which is equivalent to

min
G

p
∑

i=1

m
∑

j=1

P (|λ̆ij|) s.t., GGT = Φ, (2)

where λ̆ij is the (i, j)-th element of ΛG.

How is the matrix G estimated? To explain this, we assume that the true factor

loadings Λ possess perfect simple structure, that is, each row has at most one nonzero

element. The problem in (2) is then written as

min
G

m
∑

i=1

m
∑

i′=1

P (wii′|gii′|) s.t., GGT = Φ, (3)

where wii′ are positive values. Because the objective function is based on the L1 loss,

some of the elements of G become exactly zero. Empirically, one of the elements of G

often becomes 1. When gqr = 1, we have gqi′ = 0 (i′ 6= r) and gir = φir (i 6= q), so

that all elements of r-th column of ΛG become non-zero unless φir = 0, which does not

approximate the perfect simple structure. In this way, the lasso-type penalization via

orthogonal model can often estimate a completely different model from that with the true

factor structure when the common factors are highly correlated.

Example 2.2. In Example 2.1, the problem in (3) is written as

min
G

(|g11|+ |g12|+ |g21|+ |g22|) s.t., GGT =

(

1.0 0.6

0.6 1.0

)

.

The solution of G is given by

G =

(

1.0 0.0

0.6 0.8

)

.
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In this case, we have

ΛG =

(

0.90 0.90 0.90 0.54 0.54 0.54

0.00 0.00 0.00 0.72 0.72 0.72

)T

,

which is quite similar to the maximum penalized likelihood estimates of factor loadings

based on orthogonal model in (1).

3 Estimation of oblique structure via penalized like-

lihood factor analysis

The lasso-type penalized likelihood factor analysis based on the orthogonal model

cannot often approximate the oblique structure as described in the Section 2.2. In this

Section, we propose to incorporate a factor correlation into the model, and estimate the

oblique model by maximum penalized likelihood procedure.

3.1 Model Estimation

Let ℓ(Λ,Ψ,Φ) be the log-likelihood function based on the oblique model

ℓ(Λ,Ψ,Φ) = −
N

2

[

p log(2π) + log |ΛΦΛT +Ψ|+ tr{(ΛΦΛT +Ψ)−1S}
]

, (4)

and ℓρ(Λ,Ψ,Φ) be the penalized log-likelihood function

ℓρ(Λ,Ψ,Φ) = ℓ(Λ,Ψ,Φ)−N

p
∑

i=1

m
∑

j=1

ρP (|λij|). (5)

We estimate the factor loadings, unique variance, and factor correlation, say, Λ̂obl, Ψ̂obl,

and Φ̂obl (“obl” is an abbreviation for oblique), by maximum penalized likelihood proce-

dure simultaneously:

(Λ̂obl, Ψ̂obl, Φ̂obl) = arg max
Λ,Ψ,Φ

ℓρ(Λ,Ψ,Φ).

Example 3.1. The lasso based on oblique model was applied to the dataset used in the

Example 2.1. When ρ = 0.01, the estimates of factor loadings were

Λ̂obl =

(

0.85 0.78 0.89 0.00 0.00 0.02

0.03 0.09 0.00 0.93 0.82 0.81

)T

,

which closely approximate the true factor loadings compared with orthogonal factor load-

ings Λ̂ort in (1).
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3.2 Algorithm

It is well known that the solutions estimated by the lasso-type regularization methods

are not usually expressed in a closed form mainly because the penalty term includes a non-

differentiable function. In regression analysis, a number of researchers have proposed fast

algorithms to obtain the entire solutions (e.g., Least angle regression, Efron et al. 2004;

Coordinate descent algorithm, Friedman et al. 2007; Generalized path seeking, Friedman

2012). In particular, the coordinate descent algorithm is known as a remarkably fast

algorithm (Friedman et al. 2010) and can also be applied to a wide variety of convex and

nonconvex penalties (Breheny and Huang 2011; Mazumder et al. 2011). Thus, we employ

the coordinate descent algorithm to obtain the entire solution.

In the coordinate descent algorithm, each step is fast if an explicit formula for each

coordinate-wise maximization is given, whereas the log-likelihood function in (4) may

not lead to the explicit formula. In order to derive the explicit formula, we apply the

EM algorithm (Rubin and Thayer 1982) to the penalized likelihood factor analysis. The

coordinate descent algorithm is utilized to maximize the nonconcave function in the max-

imization step of the EM algorithm. Because the complete-data log-likelihood function

takes the quadratic form, the explicit formula for each coordinate-wise maximization is

available.

3.2.1 Update Equation for Fixed Regularization Parameter

First, we provide the update equations of factor loadings, unique variances, and factor

correlation when ρ and γ are fixed. Suppose that Λold, Ψold and Φold are the current

values of factor loadings, unique variances, and factor correlation. The model can be

estimated by maximizing the expectation of the complete-data penalized log-likelihood

function with respect to Λ, Ψ and Φ:

E[lCρ (Λ,Ψ,Φ)] = −
N

2

p
∑

i=1

logψi −
N

2

p
∑

i=1

sii − 2λT
i bi + λT

i Aλi

ψi

−
N

2
log |Φ| −

N

2
tr(Φ−1A)−N

p
∑

i=1

m
∑

j=1

ρP (|λij|) + const.,

(6)

where bi = M−1ΛT
oldΨ

−1
oldsi and A = M−1 + M−1ΛT

oldΨ
−1
oldSΨ

−1
oldΛoldM

−1. Here M =

ΛT
oldΨ

−1
oldΛold+Φ−1

old, and si is the i-th column vector of S. The derivation of the complete-

data penalized log-likelihood function is described in Appendix.

The new parameter (Λnew,Ψnew,Φnew) can be computed by maximizing the complete-

data penalized log-likelihood function, i.e.,

(Λnew,Ψnew,Φnew) = arg max
Λ,Ψ,Φ

E[lCρ (Λ,Ψ,Φ)]. (7)
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The solution in (7) is not usually expressed in a closed form because the penalty term

includes a nondifferentiable function, so that the coordinate descent algorithm is utilized.

Let λ̃
(j)
i be an (m− 1)-dimensional vector (λ̃i1, λ̃i2, . . . , λ̃i(j−1), λ̃i(j+1), . . . , λ̃im)

T . The

parameter λij can be updated by maximizing (6) with the other parameters λ̃
(j)
i , Ψ and

Φ being fixed, i.e., we solve the following problem:

λ̃ij = argmin
λij

1

2ψi

{

ajjλ
2
ij − 2

(

bij −
∑

k 6=j

akjλ̃ik

)

λij

}

+ ρP (|λij|)

= argmin
λij

1

2

(

λij −
bij −

∑

k 6=j akjλ̃ik

ajj

)2

+
ψiρ

ajj
P (|λij|).

This is equivalent to minimizing the following penalized squared-error loss function

S(θ̃) = argmin
θ

{

1

2
(θ − θ̃)2 + ρ∗P (|θ|)

}

.

The solution S(θ̃) can be expressed in a closed form for a variety of convex and nonconvex

penalties. For example, the update equation for MC+ penalty is given by

S(θ̃) =







sgn(θ̃)(|θ̃| − ρ∗)+
1− 1/γ

if |θ̃| ≤ ρ∗γ

θ̃ if |θ̃| > ρ∗γ.

After updating Λ by the coordinate descent algorithm, the new values of Ψnew and

Φnew are obtained by maximizing the expected penalized log-likelihood function in (6) as

follows:

(ψi)new = sii − 2(λ̂T
i )newbi + (λ̂i)

T
newA(λ̂i)new for i = 1, . . . , p,

Φnew = argmin
Φ

{log |Φ|+ tr(Φ−1A)},

where (ψi)new is the i-th diagonal element of Ψnew and (λ̂i)new is the i-th column of Λ̂new.

The explicit formula of Φnew may not be easily derived, because the diagonal elements

of Φ are fixed by 1. Therefore, the non-diagonal elements of Φnew are estimated by

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization procedure.

3.2.2 Pathwise Algorithm

A pathwise algorithm for orthogonal case has been proposed by Hirose and Yamamoto

(2012), and we apply their algorithm to the oblique case. The pathwise algorithm can

produce the solution for the grid of increasing ρ values P = {ρ1, . . . , ρK} and a grid

of increasing values Γ = {γ1, . . . , γT} efficiently, where γT gives the lasso penalty (e.g.,

γT = ∞ for MC+ family). First, we compute the lasso solution path for P = {ρ1, . . . , ρK}

by decreasing the sequence of values for ρ, starting with the largest value ρ = ρK for
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which the estimates of factor loadings Λ̂ = O. Next, the value of γT−1 is selected, and the

solutions are produced for the sequence of P = {ρ1, . . . , ρK}. The solution at (γT−1, ρk)

can be computed by using the solution at (γT , ρk), which leads to improved and smoother

objective value surfaces (Mazumder et al. 2011). In the same way, for t = T − 2, . . . , 1,

the solution at (γt, ρk) can be computed by using the solution at (γt+1, ρk).

3.3 Selection of the Regularization Parameter

In this modeling procedure, it is important to select the appropriate value of the

regularization parameter ρ. The following two selection procedures are introduced.

3.3.1 Model Selection Criteria

The selection of the regularization parameter can be viewed as a model selection and

evaluation problem. In regression analysis, the degrees of freedom of the lasso (Zou et al.

2007) may be used for selecting the regularization parameter. With the use of the degrees

of freedom, the following model selection criteria are introduced:

AIC = −2ℓ(Λ̂, Ψ̂, Φ̂) + 2p∗

BIC = −2ℓ(Λ̂, Ψ̂, Φ̂) + p∗ logN,

CAIC = −2ℓ(Λ̂, Ψ̂, Φ̂) + p∗(logN + 1),

where the number of parameters is given by p∗ = df(ρk) +m0(m0 − 1)/2+ p. Here df(ρk)

is the number of nonzero parameters for the lasso penalty at ρ = ρk, m0(m0 − 1)/2 is

the number of parameters in factor correlation matrix and p is the number of parameters

in unique variances. Note that this formula can be applied to any value of γ if the

reparameterization of the penalty function (Mazumder et al. 2011) is carried out, because

the reparameterization constrains the degrees of freedom to be constant as γ varies.

3.3.2 Goodness-of-Fit Index

It may be easy to interpret the estimated model when the factor loadings are suffi-

ciently sparse. However, a model that is too sparse does not fit the data. Therefore, it

is reasonable to select a regularization parameter that produces sparse solutions and also

yields large values for the following goodness-of-fit index (GFI) and the adjusted GFI

(AGFI):

GFI = 1−
tr[{Σ̂−1(S− Σ̂)}2]

tr[{Σ̂−1S}2]
,

AGFI = 1−
p(p+ 1)(1−GFI)

p(p+ 1)− 2df
,

9



where Σ̂ = Λ̂Φ̂Λ̂T + Ψ̂. The GFI and AGFI take values from 0 through 1. In our

experience, the model is fitted well if the value of the GFI is greater than 0.9.

3.4 Treatment for Improper Solutions

It is well-known that the maximum likelihood estimates of unique variances can turn

out to be zero or negative, which is referred as the improper solutions, and many re-

searchers have studied this problem (e.g., Van Driel 1978; Anderson and Gerbing 1984;

Kano 1998). In general, the occurrence of improper solutions makes converge of the algo-

rithm slow and unstable. In order to handle this issue, we add a penalty with respect to Ψ

to (5) according to the basic idea given by Martin and McDonald (1975) and Hirose et al.

(2011):

ℓ∗ρ(Λ,Ψ,Φ) = ℓρ(Λ,Ψ,Φ)−
N

2
ηtr(Ψ−1/2SΨ−1/2),

where η is a tuning parameter. Note that when ψi → 0, tr(Ψ−1/2SΨ−1/2) → ∞. Thus, the

penalty term tr(Ψ−1/2SΨ−1/2) prevents the occurrence of improper solutions. Hirose et al.

(2011) derived a generalized Bayesian information criterion (Konishi et al. 2004) for se-

lecting the appropriate value of η, whereas it is difficult to derive generalized Bayesian

model criterion in lasso-type penalization procedure. In practice, the penalty term can

prevent the occurrence of improper solution even when η is very small such as 0.001.

We provide a package fanc in R (R Development Core Team 2010), which implements

our algorithm to produce the entire solution path. The package fanc is available from

Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/web/packages/fanc/index.html.

4 Numerical Examples

4.1 Monte Carlo Simulations

In the simulation study, we used three models according to the following factor load-

ings:

Model (A):

Λ =

(

0.9 0.9 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.8 0.8 0.8

)T

,

Model (B):

Λ =





0.9 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.8 0.8 0.8 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.7





T

,

Model (C):

10
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Λ =











0.9 · 125 025 025 025

025 0.8 · 125 025 025

025 025 0.7 · 125 025

025 025 025 0.6 · 125











,

where 1q is a q-dimensional vector with each element being 1, and 0q is a q-dimensional

zero vector. For all models, we set Φ = 0.4 · Im+0.6 ·1m1
T
m, and Ψ = diag(Im−ΛΦΛT ).

The Model (C) is a relatively large model compared with Models (A) and (B).

For each model, 1000 data sets were generated with x ∼ Np(0,ΛΦΛT + Ψ). The

number of observations was N = 50, 100, and 200. The model was estimated by the max-

imum penalized likelihood method based on both orthogonal model and oblique model.

The penalty functions were the MC+ family with γ = 2.10 and the lasso, and the regu-

larization parameter was selected by the AIC, BIC and CAIC. For comparison, we also

estimated the model by the maximum likelihood method, and employed the rotation

techniques based on the following criteria: the lasso loss criterion (both orthogonal and

oblique models), the varimax criterion (orthogonal model) and promax criterion (oblique

model). For example, the lasso loss criterion for oblique model is formulated as follows:

min
T

p
∑

i=1

m
∑

j=1

|λ̂∗ij|, s.t. Λ̂∗ = Λ̂MLET, diag(T
TT) = I,

where Λ̂∗ = (λ̂∗ij) and Λ̂MLE is the maximum likelihood estimates of factor loadings. Note

that the lasso loss function is included in the class of component loss function (Jennrich

2004, 2006).

Tables 1, 2 and 3 show the mean squared error of factor loadings, the true positive

rate (TPR), and true negative rate (TNR). The mean squared error is defined by MSE =
∑1000

s=1 ‖Λ − Λ̂(s)‖2/(1000pm), where Λ̂(s) is the estimated factor loading for the s-th

dataset. The TPR (TNR) indicates the proportion of cases where non-zero (zero) factor

loadings correctly set to non-zero (zero). Note that the maximum likelihood estimates

are not available when N ≤ p, so that the results of rotation techniques based on the

maximum likelihood estimates for N = 50 and N = 100 in Model (C) were not displayed.

We can see that

• The lasso-type regularization with orthogonal model yielded large MSE and small

TNR even when the number of observations N was sufficiently large, which suggests

the orthogonal model may produce different factor structure from the true one.

• For Model (C), although the maximum likelihood estimates were not available when

N = 50 and N = 100, the penalized likelihood procedure via BIC and CAIC with

MC+ relatively selected correct models.
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Table 1: Mean squared error, the true positive rate (TPR), and true negative rate (TNR)

for Model (A). In the second column, “obl” and “ort” indicate the oblique model and

orthogonal model, respectively. In the last column, “P/V” indicates the promax rotation

for oblique case, and the varimax rotation for orthogonal case.

Penalization Rotation

AIC BIC CAIC — —

N MC+ lasso MC+ lasso MC+ lasso lasso P/V

50 obl MSE 0.14 0.18 0.14 0.20 0.16 0.24 0.17 0.14

TPR 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

TNR 0.75 0.47 0.84 0.55 0.86 0.57 0.05 0.00

ort MSE 1.21 1.13 1.21 1.08 1.21 1.02 1.27 0.53

TPR 0.97 0.98 0.97 0.98 0.96 0.98 0.98 1.00

TNR 0.30 0.20 0.33 0.23 0.35 0.26 0.14 0.00

100 obl MSE 0.06 0.09 0.04 0.10 0.03 0.11 0.08 0.06

TPR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TNR 0.81 0.46 0.91 0.56 0.93 0.58 0.06 0.00

ort MSE 1.03 0.95 1.05 0.90 1.05 0.87 1.04 0.48

TPR 0.99 0.99 0.98 0.99 0.98 0.99 0.99 1.00

TNR 0.34 0.21 0.35 0.24 0.36 0.25 0.14 0.00

200 obl MSE 0.02 0.05 0.01 0.06 0.01 0.06 0.04 0.03

TPR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TNR 0.87 0.47 0.97 0.56 0.97 0.60 0.07 0.00

ort MSE 0.89 0.84 0.89 0.78 0.89 0.77 0.88 0.46

TPR 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00

TNR 0.41 0.21 0.42 0.26 0.43 0.26 0.14 0.00

• The MC+ family often performed better than the lasso in terms of both the MSE

and model consistency.

• The BIC and CAIC may often select the correct model compared with the AIC.

4.2 Analysis of Harman’s psychological tests data

We illustrate the proposed procedure by Harman’s psychological tests data (Harman

1976). This data represents scores of N = 145 subjects on the 24 psychological tests.

The dataset is available from the datasets in the software R (R Development Core Team

2010). Table 4 shows the factor loadings estimated by MC+ based on both orthogonal

and oblique models at γ = 2.10. The value of ρ was selected by the BIC. With the MC+

based on the orthogonal model, all elements of the first column of the estimated factor
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Table 2: Mean squared error, the true positive rate (TPR), and true negative rate (TNR)

for Model (B). In the second column, “obl” and “ort” indicate the oblique model and

orthogonal model, respectively. In the last column, “P/V” indicates the promax rotation

for oblique case, and the varimax rotation for orthogonal case.

Penalization Rotation

AIC BIC CAIC — —

N MC+ lasso MC+ lasso MC+ lasso lasso P/V

50 obl MSE 0.84 0.81 1.00 1.21 1.08 1.41 0.81 0.72

TPR 0.97 0.96 0.91 0.86 0.88 0.82 1.00 1.00

TNR 0.69 0.47 0.81 0.56 0.85 0.59 0.02 0.00

ort MSE 2.56 2.03 2.66 1.95 2.66 2.05 2.33 1.33

TPR 0.94 0.97 0.91 0.90 0.89 0.84 0.99 1.00

TNR 0.35 0.25 0.40 0.35 0.45 0.40 0.14 0.00

100 obl MSE 0.29 0.34 0.44 0.62 0.53 0.83 0.41 0.31

TPR 1.00 1.00 0.96 0.94 0.94 0.90 1.00 1.00

TNR 0.77 0.47 0.88 0.57 0.90 0.59 0.03 0.00

ort MSE 2.35 2.02 2.43 1.80 2.43 1.76 2.24 1.13

TPR 0.96 0.98 0.94 0.96 0.94 0.94 0.99 1.00

TNR 0.38 0.23 0.42 0.30 0.44 0.34 0.16 0.00

200 obl MSE 0.10 0.16 0.07 0.18 0.08 0.22 0.19 0.12

TPR 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00

TNR 0.86 0.48 0.95 0.56 0.96 0.58 0.03 0.00

ort MSE 2.05 1.85 2.11 1.64 2.13 1.59 1.95 1.02

TPR 0.98 0.99 0.97 0.99 0.97 0.99 0.99 1.00

TNR 0.41 0.21 0.44 0.27 0.45 0.28 0.16 0.00

loadings were relatively large. This phenomena has been described in Section 2.2. On the

other hand, the MC+ based on the oblique model estimated a loading matrix where the

first column was sparse. The AGFI and GFI of the oblique model were 0.78 and 0.87,

respectively, which might be large enough to conclude that the estimated model fit the

observed data.

5 Concluding remarks

In exploratory factor analysis, the lasso based on the orthogonal model often fails in

approximating the oblique structure. We have shown that this disadvantage comes from

the rotation problem of factor loadings. Then, a maximum penalized likelihood factor

analysis based on the oblique model has been proposed to handle this problem. Our
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Table 3: Mean squared error, the true positive rate (TPR), and true negative rate (TNR)

for Model (C). In the second column, “obl” and “ort” indicate the oblique model and

orthogonal model, respectively. In the last column, “P/V” indicates the promax rotation

for oblique case, and the varimax rotation for orthogonal case.

Penalization Rotation

AIC BIC CAIC — —

N MC+ lasso MC+ lasso MC+ lasso lasso P/V

50 obl MSE 8.54 10.0 7.68 17.2 8.84 20.6 — —

TPR 0.99 1.00 0.92 0.97 0.86 0.92 — —

TNR 0.43 0.14 0.85 0.36 0.96 0.44 — —

ort MSE 28.0 15.3 27.4 15.5 22.9 20.3 — —

TPR 0.98 1.00 0.97 0.99 0.94 0.92 — —

TNR 0.26 0.06 0.32 0.20 0.51 0.36 — —

100 obl MSE 3.51 5.73 1.79 12.4 2.08 13.2 — —

TPR 1.00 1.00 0.99 1.00 0.98 0.99 — —

TNR 0.58 0.14 0.99 0.41 0.99 0.43 — —

ort MSE 29.5 15.5 23.0 11.9 13.8 12.6 — —

TPR 0.98 1.00 0.98 1.00 0.97 0.99 — —

TNR 0.32 0.04 0.51 0.13 0.74 0.22 — —

200 obl MSE 0.97 3.39 0.67 9.24 0.67 10.2 2.18 1.68

TPR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TNR 0.91 0.13 1.00 0.44 1.00 0.48 0.00 0.00

ort MSE 30.2 16.1 19.2 12.1 9.12 11.1 18.0 13.0

TPR 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00

TNR 0.41 0.03 0.65 0.07 0.86 0.09 0.02 0.00

modeling strategy has been investigated through Monte Carlo simulations and the analysis

of a real data. Simulation results show that the proposed procedure can yield much

smaller mean squared error and true negative rate compared with the penalized likelihood

factor analysis via the orthogonal model. Furthermore, the MC+ often produced sparser

solutions than the lasso, so that the true factor structure can often be reconstructed. In

the Harman’s psychological data example, the orthogonal model estimated factor loadings

where first column was dense, whereas our procedure produced sparse factor loadings.

As a future research topic, it would be interesting to construct a penalization procedure

via nonconvex penalties for structural equation modeling, such as LISREL (Jöreskog and Sörbom

1996), which is able to express much more complex covariance structure between observ-

able variables and common factors. In this paper, the tuning parameter was selected by

the information criteria based on the degrees of freedom of the lasso. The degrees of free-

14



Table 4: Loading matrices estimated by MC+ based on both orthogonal and oblique

models at γ = 2.10 for 24 psychological tests data. The value of ρ was selected by the

BIC.

MC+ (Orthogonal) MC+ (Oblique)

0.75 −0.08 0.00 0.00 0.73 0.00 0.00 0.00

0.46 0.00 0.00 0.00 0.47 0.00 0.00 0.00

0.56 0.00 0.16 0.00 0.66 0.00 −0.18 0.00

0.59 0.00 0.00 0.00 0.58 0.00 0.00 0.00

0.47 0.63 −0.17 0.00 0.00 0.72 0.22 0.00

0.49 0.67 0.00 0.00 0.00 0.75 0.00 0.17

0.48 0.67 −0.12 −0.12 0.00 0.79 0.13 0.00

0.56 0.41 −0.16 0.00 0.23 0.48 0.19 0.00

0.49 0.71 0.00 0.00 0.00 0.81 0.00 0.13

0.17 0.14 −0.81 0.24 −0.31 0.00 0.93 0.11

0.36 0.14 −0.42 0.34 0.00 0.00 0.44 0.35

0.37 −0.10 −0.63 0.13 0.14 −0.19 0.71 0.00

0.59 0.00 −0.41 0.00 0.37 0.00 0.44 0.00

0.23 0.25 0.00 0.48 0.00 0.00 0.00 0.58

0.26 0.15 0.00 0.45 0.00 0.00 0.00 0.53

0.51 0.00 0.10 0.42 0.44 −0.14 −0.15 0.49

0.26 0.19 −0.11 0.54 0.00 0.00 0.00 0.65

0.43 0.00 −0.19 0.43 0.28 −0.20 0.18 0.43

0.38 0.06 0.00 0.30 0.22 0.00 0.00 0.35

0.56 0.25 0.00 0.16 0.37 0.24 0.00 0.17

0.55 0.00 −0.31 0.16 0.38 0.00 0.39 0.00

0.56 0.24 0.00 0.16 0.37 0.23 0.00 0.18

0.67 0.19 −0.10 0.10 0.50 0.22 0.15 0.00

0.43 0.29 −0.41 0.24 0.00 0.22 0.47 0.22

dom of the lasso are usually applied to the regression model, whereas we have not given

a mathematical support for the degrees of freedom of the lasso in factor analysis model

yet. Another interesting topic is to provide a theoretical justification of the information

criteria given by Section 3.3.1.
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Appendix: Derivation of complete-data penalized log-

likelihood function in EM algorithm

In order to apply the EM algorithm, first, the common factors fn can be regarded as

missing data and maximize the complete-data penalized log-likelihood function

lCρ (Λ,Ψ,Φ) =
N
∑

n=1

log f(xn, fn)−N

p
∑

i=1

m
∑

j=1

ρP (|λij|),

where the density function f(xn, fn) is defined by

f(xn, fn) = (2π)−p/2|Ψ|−1/2 exp

{

−
(xn −Λfn)

TΨ−1(xn −Λfn)

2

}

· (2π)−m/2|Φ|−1/2 exp

(

−
fT
n Φ

−1fn

2

)

=

p
∏

i=1

{

(2πψi)
−1/2 exp

(

−
(xni − λT

i fn)
2

2ψi

)}

· (2π)−m/2|Φ|−1/2 exp

(

−
fT
n Φ

−1fn

2

)

Then, the expectation of lCρ can be taken with respect to the distributions f(fn|xn,Λ,Ψ,Φ),

E[lCρ (Λ,Ψ,Φ)] = −
N(p +m)

2
log(2π)−

N

2

p
∑

i=1

logψi

−
1

2

N
∑

n=1

p
∑

i=1

x2ni − 2xniλ
T
i E[Fn|xn] + λT

i E[FnF
T
n |xn]λi

ψi

−
N

2
log |Φ| −

1

2
tr

{

N
∑

n=1

Φ−1E[FnF
T
n |xn]

}

−N

p
∑

i=1

m
∑

j=1

ρP (|λij|)

For given Λold, Ψold and Φold, the posterior f(fn|xn,Λold,Ψold,Φold) is normally dis-

tributed with E[Fn|xn] = M−1ΛT
oldΨ

−1
oldxn and E[FnF

T
n |xn] = M−1+E[Fn|xn]E[Fn|xn]

T ,

where M = ΛT
oldΨ

−1
oldΛold +Φ−1

old. Then, we have

N
∑

n=1

E[Fn]xni =

N
∑

n=1

M−1ΛT
oldΨ

−1
oldxnxni = NM−1ΛT

oldΨ
−1
oldsi,

N
∑

n=1

E[FnF
T
n ] =

N
∑

n=1

(M−1 +M−1ΛT
oldΨ

−1
oldxnx

T
nΨ

−1
oldΛoldM

−1)

= N(M−1 +M−1ΛT
oldΨ

−1
oldSΨ

−1
oldΛoldM

−1),

Let M−1ΛT
oldΨ

−1
oldsi and M−1 + M−1ΛT

oldΨ
−1
oldSΨ

−1
oldΛoldM

−1 be bi and A, respectively.

Then, the expectation of lCρ in (6) can be derived.
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