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Abstract

Estimation of a covariance matrix or its inverse plays a central role in many statistical methods.

For these methods to work reliably, estimated matrices must not only be invertible but also well-

conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a

posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards

a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus,

the MAP estimator gracefully transitions towards the sample covariance matrix as the number of

samples grows relative to the number of covariates. The utility of the MAP estimator is

demonstrated in two standard applications – discriminant analysis and EM clustering – in this

sampling regime.
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1. Introduction

Estimation of a covariance matrix or its inverse plays a central role in many statistical

methods, ranging from least squares regression to EM clustering. In these applications it is

crucial to obtain estimates that are not only non-singular but also stable under small

perturbations in sample values. It is well known that the sample covariance matrix
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is the maximum likelihood estimate of the population covariance Σ ∈ ℝp×p of a random

sample y1, …, yn ∈ ℝp from a multivariate normal distribution. When the number of

components p of of each sample point exceeds the sample size n, the sample covariance S is

no longer invertible. Even when n slightly exceeds p, the estimate S can be unstable.

Introducing a penalty in the maximum likelihood framework offers a reliable means of

stabilizing covariance estimation.

To motivate our choice of penalization, consider the eigenvalues of the sample covariance

matrix in a simple simulation experiment. We drew n independent samples from a 10-

dimensional multivariate normal distribution yi ~ N (0, I10). Figure 1 presents boxplots of

the sorted eigenvalues of the sample covariance matrix S over 100 trials for sample sizes n

drawn from the set {5, 10, 20, 50, 100, 500}. The boxplots descend from the largest

eigenvalue on the left to the smallest eigenvalue on the right. The figure vividly illustrates

the previous observation that the highest eigenvalues tend to be inflated upwards above 1,

while the lowest eigenvalues are deflated downwards below 1 (Ledoit and Wolf, 2004,

2012). In general, if the sample size n and the number of components p approach ∞ in such

a way that the ratio p/n approaches ζ ∈ (0, 1), then the eigenvalues of S tend to the

Marĉenko-Pastur law (Marĉenko and Pastur, 1967), which is supported on the interval

( ). Thus, the distortion worsens as ζ approaches 1. The obvious remedy

is to pull the highest eigenvalues down and push the lowest eigenvalues up.

In this paper, we introduce a novel prior which effects the desired adjustment on the sample

eigenvalues. Maximum a posteriori (MAP) estimation under the prior boils down to a simple

nonlinear transformation of the sample eigenvalues. In addition to proving that our estimator

has desirable theoretical properties, we also demonstrate its utility in extending two

fundamental statistical methods – discriminant analysis and EM clustering - to contexts

where the number of samples n is either on the order of or dominated by the number of

parameters p.

The rest of our paper is organized as follows. Section 2 discusses the history of stable

estimation of structured and unstructured covariance matrices. Section 3 specifies our

Bayesian prior and derives the MAP estimator under the prior. Section 4 proves that the

estimator is consistent and asymptotically efficient. Section 5 reports finite sample studies

comparing our MAP estimator to relevant existing estimators. Section 6 illustrates the

estimator for some common tasks in statistics. Finally, Section 7 discusses limitations,

generalizations, and further applications of the estimator.

2. Related Work

Structured estimation of covariance matrices can be attacked from two complementary

perspectives: generalized linear models and regularization (Pourahmadi, 2011, 2013). In this

work we consider the problem from the latter perspective. Regularized estimation of

covariance matrices and their inverses has been a topic of intense scrutiny (Wu and

Pourahmadi, 2003; Bickel and Levina, 2008), and the current literature reflects a wide

spectrum of structural assumptions. For instance, banded covariance matrices are

appropriate for time series and spatial data, where the order of the components is important.
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It is also helpful to impose sparsity on a covariance matrix, its inverse, or its factors in a

Cholesky decomposition or other factorization (Huang et al., 2006; Rohde and Tsybakov,

2011; Cai and Zhou, 2012; Ravikumar et al., 2011; Rajaratnam et al., 2008; Khare and

Rajaratnam, 2011; Fan et al., 2011; Banerjee et al., 2008; Friedman et al., 2008; Hero and

Rajaratnam, 2011, 2012; Peng et al., 2009).

In this work, we do not assume any special prior structure. Our sole concern is to directly

address the distortion in the eigenvalues of the sample covariance matrix. Thus, we work in

the context of rotationally-invariant estimators first proposed by Stein (1975). If S = U DUt

is the spectral decomposition of S, then Stein suggests alternative estimators of the form

that modify the eigenvalues but not the eigenvectors of S. In particular, Stein (1975); Haff

(1991); Ledoit and Wolf (2004) and Warton (2008) study the family

(1)

of linear shrinkage estimators, where γ ∈ [0, 1] and T =ρI for some ρ > 0. The estimator (1)

obviously entails

A natural choice of ρ, and one taken by the popular estimator of Ledoit and Wolf (2004), is

the mean of the sample eigenvalues, namely σ̂ = (1/p) tr(S). Under the assumption that yi ~

N (0, σI), σ̂ is the maximum likelihood estimate of σ. With this choice, the linear estimator

becomes a mixture of the covariance model with the greatest number of degrees of freedom

and the simplest non-trivial model. For the rest of this paper, we will assume that ρ = σ̂. We

will refer to the Ledoit and Wolf linear estimator by the acronym LW. In the class of linear

estimators, the LW estimator specifies an asymptotically optimal value for γ based on the

data.

Ledoit and Wolf (2004, 2012) show that linear shrinkage works well when p/n is large or the

population eigenvalues are close to one another. On the other hand, if p/n is small or the

population eigenvalues are dispersed, linear shrinkage yields marginal improvements over

the sample covariance. Nonlinear shrinkage estimators may present avenues for further

improvement (Dey and Srinivasan, 1985; Daniels and Kass, 2001; Sheena and Gupta, 2003;

Pourahmadi et al., 2007; Ledoit and Wolf, 2012; Won et al., 2012). Our shrinkage estimator

is closest in spirit to the estimator of Won et al. (2012), who put a prior on the condition

number of the covariance matrix.

Recall that the condition number κ of a matrix is the ratio of its largest singular value to its

smallest singular value. For a symmetric matrix, the singular values are the absolute values
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of the eigenvalues, and for a covariance matrix they are the eigenvalues themselves. The

best conditioned matrices are multiples of the identity matrix and have κ = 1. A well-

conditioned covariance estimate is one where κ is not too large, say in excess of 1000.

When n does not greatly exceed p, Figure 1 shows that the sample covariance matrix is often

ill-conditioned. To address this defect, Won et al. perform maximum likelihood estimation

constrained to the set of positive definite matrices whose condition number does not exceed

a threshold κmax. Let ℓ(Σ) denote the negative loglikelihood, namely

Won et al. seek an Σ that solves

where λmax and λmin denote the largest and smallest eigenvalues of Σ respectively and κmax

≥ 1 is a tuning parameter. When κmax = 1, the unique solution is σ̂I. As κmax increases, the

solution converges to the sample covariance matrix. In practice, κmax is determined by

cross-validation. We will use the acronym CNR (condition number regularized) in referring

to Won et al.’s estimator for this problem.

Won et al. show that CNR has improved finite sample performance compared to linear

estimators in simulations, but the greatest gains arise when only a few eigenvalues of the

population covariance are much larger than the rest. The gains diminish when this does not

hold. The main contribution of the estimator that we describe next is that it provides superior

performance in scenarios where CNR loses its competitive edge.

3. Maximum a Posteriori Estimation with a Novel Prior

Adding a penalty is equivalent to imposing a prior π(Σ) on the population covariance Σ. To

ensure well-conditioned posterior estimates, let us suggest a prior that steers the eigenvalues

of Σ away from the extremes of 0 and ∞. Recall that the nuclear norm of a matrix Σ, which

we denote by ||Σ||*, is the sum of the singular values of Σ. Intuitively, we want to make sure

that neither ||Σ||* nor ||Σ−1||* is too large. Consequently, we propose the prior

where λ > 0 determines the strength of the prior and α ∈ (0, 1) determines the tradeoffs

between the two nuclear norms.
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This is a proper prior on the set of invertible matrices. One can demonstrate this fact by

comparing the nuclear norm ||Σ||*to the Frobenius norm ||Σ||F, which coincides with the

Euclidean norm of the vector of singular values of Σ. In view of the equivalence of vector

norms on ℝp(p+1)/2,

for some positive constant η. Integrating the resulting inequality

over Σ demonstrates that the prior is proper. The normalizing constant of π(Σ) is irrelevant

in the ensuing discussion. Consider therefore minimization of the objective function

The maximum of −f (Σ) occurs at the posterior mode. In the limit as λ tends to 0, −f (Σ)

reduces to the loglikelihood −ℓ(Σ). In the sequel, we will refer to our MAP covariance

estimate by the acronym CERNN (Covariance Estimate Regularized by Nuclear Norms).

The minimizer of the objective f (Σ) can be found by extracting the spectral decomposition

of Σ. Three of the four terms of f (Σ) can be expressed as functions of the eigenvalues ei of

Σ. The trace term presents a greater challenge. As before, let S = U DUt denote the spectral

decomposition of S with nonnegative diagonal entries di ordered from largest to smallest.

Likewise, let Σ = V EVt denote the spectral decomposition of Σ with positive diagonal

entries ei ordered from largest to smallest. In view of the von Neumann-Fan inequality

(Mirsky, 1975), we can assert that

with equality if and only if V = U. Consequently, we make the latter assumption and replace

f (Σ) by
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using the cyclic permutation property of the trace function. At a stationary point of g(E), we

have

The solution to this essentially quadratic equation is

(2)

We reject the negative root as inconsistent with Σ being positive definite. For the special

case of no data when n = 0, all , and the prior mode occurs at a multiple of

the identity matrix.

In contrast to the solution (2), CNR shrinks the sample eigenvalues di according to the

formulas

(3)

for a τ* > 0 that is determined from the data. Thus, CNR truncates extreme sample

eigenvalues while leaving moderate ones untouched.

Figure 2 compares the eigenvalue solution paths obtained by CERNN and CNR to the

solution paths of the linear estimator on a set of five sample eigenvalues (13.29, 5.73, 1.51,

0.55, 0.44). At each condition number κ, the regularization parameters (λ, κmax, γ) of the

three methods are adjusted to give a condition number matching κ. Each path starts at a

sample eigenvalue and ends at the mean σ̂ of the sample eigenvalues. As desired, all three

methods pull the large eigenvalues down towards σ̂ and the small eigenvalues up towards σ̂.

There are important differences, however. Compared to the linear estimator, both of the non-

linear estimators pull the larger eigenvalues down more aggressively and pull the smaller

eigenvalues up less aggressively. The discrepancy in the treatment of high and low

eigenvalues is more pronounced in CNR than in CERNN. We will see later in finite sample

experiments that this more moderate approach usually leads to better performance.

Some insight to the limiting behavior of our estimator can be gained through asymptotic

expansions. Holding all but one variable fixed in formula (2), one can demonstrate after a

fair amount of algebra that
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(4)

These asymptotic expansions accord with common sense. Namely, the data eventually

overwhelms a fixed prior, and increasing the penalty strength for a fixed amount of data

pulls the estimate of Σ toward the prior mode. These expansions are helpful in proving

CERNN’s asymptotic properties in Section 4. As we discuss next, the second asymptotic

expansion is instrumental in selecting λ in a practical data-dependent way.

3.1. Choosing λ and α

To compute a CERNN estimate, we need to specify the parameters λ and α. Let us first

consider how to choose α. A natural choice for it would match the prior to the scale of the

data. Thus, we would determine α as the solution to the equation

namely

(5)

Of course, we recognize that this choice of α̂ results in the prior mode being σ̂I. For the

remainder of the paper we will set α to α̂.

We recommend different strategies for choosing λ depending on whether the covariance

estimation is being performed for a supervised or unsupervised task. Both strategies employ

cross-validation. We defer describing the former strategy until we discuss an application to

discriminant analysis. To choose λ in the unsupervised context, we implement cross-

validation as follows. Let Y ∈ ℝn×p denote the observed data. In K-fold cross validation, we

partition the observations, or rows of Y, into K disjoint sets. Let Yk denote the kth subset, nk

denote the number of its rows, and  denote the estimate we obtain when we fit the

data using all but the kth partition Yk. We have indicated with our notation that our estimate

depends on λ but not α since we have fixed α̂ at the value displayed in equation (5). For a

grid of increasing regularization parameters, λ = 0, …, λmax, we evaluate the predictive

negative loglikelihood of  on the held out kth subgroup Yk
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We select the λ that minimizes the average ℓk over the K folds, namely

We want to choose λmax sufficiently large to adequately explore the dynamic range of

possible solutions. The second expansion in (4) gives us a rough bound on how much each

of the shrunken eigenvalues deviates from the prior mode. We choose λmax so that those

deviations are no more than some small fraction ε of the prior mode, namely we choose λmax

so that

where ε ≪ 1, say 10−2.

4. Consistency and Asymptotic Efficiency

To prove consistency, we will need to assemble various facts. First, suppose A and B are

two p × p symmetric matrices with ordered eigenvalues  and . Then one has

(6)

This is a consequence of Fan’s inequality because  and . If

the two matrices A = U diag(a)Ut and B = U diag(b)Ut are simultaneously diagonalizable,

then equality holds in inequality (6). For nonnegative x the inequalities

(7)

are also relevant to our task. Verification of these inequalities will be left to the reader based

on the fact that the derivatives of  alternate in sign. Functions having this property are

said to be completely monotonic.

Let Sn be the sample covariance matrix with eigenvalues dn1 through dnp for the first n

sample points. The sequence Sn converges almost surely to the true covariance matrix Σ
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with eigenvalues ω1 through ωp. Inequality (6) therefore implies

. On this basis we will argue that  as

well, where the eni are the transformed eigenvalues of Sn. To make this reasoning rigorous,

we must show that the asymptotic expansion (4) is uniform as the eigenvalues dni converge

to the eigenvalues ωi. This is where the inequalities (7) come into play. Indeed, we have

(8)

The identity

finishes the proof that Σn tends to Σ.

Now consider the question of asymptotic efficiency. The scaled difference 

tends in distribution to a multivariate normal distribution with mean 0 because the sequence

of estimators Sn is asymptotically efficient (Ferguson, 1996). The representation

and Slutsky’s theorem (Ferguson, 1996) imply that  tends in distribution to

the same limit. In this regard note that

tends almost surely to 0 owing to the bounds (8) and the convergence of dni to ωi.

CNR and linear estimators are also asymptotically very well behaved. The asymptotic

properties of CNR are stated in terms of the entropy risk, which is the expectation of the

entropy loss given below

(9)

CNR has asymptotically lower entropy risk than the sample covariance (Won et al., 2012).

But since the sample covariance is a consistent estimator of the covariance, it follows that

CNR is also a consistent estimator.

Chi and Lange Page 9

Comput Stat Data Anal. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Among all linear estimators, the LW estimator of Ledoit and Wolf (2004) is asymptotically

optimal with respect to a quadratic risk. To make this claim more precise, consider the

optimization problem,

(10)

where the weights γ1 and γ2 are allowed to be random and can therefore depend on the data.

One can think of the solution Σ★ to (10) as being the best possible linear combination of I
and the sample covariance Sn. Even though Σ★ may not be an estimator, since it is allowed

to depend on the unseen population covariance Σ, Ledoit and Wolf (2004) prove that the

quadratic risk of LW has the same quadratic risk as Σ★ asymptotically. Their results are

actually even stronger than stated here because p is allowed to increase along with n, under

suitable, but somewhat complicated regularity conditions that we omit. Since the sample

covariance is consistent, and its quadratic risk by definition exceeds the quadratic risk of

Σ★, it follows that LW is also a consistent estimator.

5. Finite Sample Performance

Given their similar asymptotic behavior, to better understand the relative strengths of

CERNN, CNR, and the optimal linear estimator, LW, we conducted a finite sample study

almost identical to the one carried out by Won et al. (2012). We assessed the estimators

based on two commonly used criteria, namely the entropy loss (9) and the quadratic loss

In our experiments, we simulated data in which we varied the ratio p/n and the spread of the

eigenvalues of the population covariance. As noted earlier, linear shrinkage improves on the

sample covariance when p/n is large or the population eigenvalues are close to one another.

Won et al. report that when the eigenvalues of the population covariance are bimodal, CNR

dramatically outperforms linear estimators if very few eigenvalues take on the high values.

As the proportion of large eigenvalues grows, however, the discrepancy diminishes.

CERNN shrinks extreme eigenvalues in a manner similar to CRN but less drastically and

shrinks intermediate eigenvalues similarly to linear estimators. In contrast, CNR leaves

intermediate eigenvalues unchanged. Consequently, we anticipate that CERNN has the

potential to improve on CNR in the latter case, where there is a need to shrink all

eigenvalues, like linear estimators, but with extra emphasis on the extreme ones, unlike

linear estimators.

We simulated p-dimensional zero mean multivariate normal samples with diagonal

covariances with p = 120, 250, and 500. The eigenvalues took on either high values of 1 − υ

+ υp or low values of 1 − υ where υ = 0.1. For each p, the number of high value eigenvalues

ranged from a single high value to 10%, 20%, 30%, and 40% of p. For each p we drew one
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of three sample sizes n such that the ratio r = p/n took on values that were roughly 1.25, 2, or

4. For each choice of p, n, and r, we simulated 100 data sets and computed CNR, CERNN,

and LW. For each data set, we chose an optimal κmax and λ via 10-fold cross-validation. We

used the R package CondReg to obtain the CNR estimate (Oh et al., 2013). LW specifies a

penalization parameter γ based on the data (Ledoit and Wolf, 2004).

To expedite comparisons, we report the average ratio of the loss of other estimators to the

loss of CERNN. When this ratio is less than one, the other estimator is performing better

than CERNN, and when the ratio is greater than one, CERNN is performing better. Tables

A.2 and A.3, in Appendix A, summarize comparisons under the quadratic loss and entropy

loss respectively.

We first note that these experiments confirm what was previously observed by Won et al.

(2012). Regardless of loss criterion, CNR typically outperforms linear estimators over a

wide range of scenarios, but especially when few eigenvalues dominate and the ratio p/n is

larger. Compared to CERNN, however, CNR soundly outperforms CERNN only in the

extreme case of a single large eigenvalue. In all other scenarios, under either loss criterion,

CERNN performs better. It is especially notable that CERNN performs very well in

comparison to CNR in scenarios where CNR provides marginal improvement over linear

estimators, namely when the fraction of high eigenvalues is highest at 40%. According to

equation (3), recall that CNR only shrinks the most extreme sample eigenvalues and leaves

the intermediate eigenvalues unchanged. It is not surprising then that it works best when

there are very few large population eigenvalues and loses its competitive edge in the

opposite circumstance. CERNN’s more moderate approach of shrinking all eigenvalues,

with extra emphasis on larger ones, appears to win out when there is a more balanced mix of

high and low eigenvalues.

6. Applications

Several common statistical procedures can potentially benefit from shrinkage estimation of

sample covariance matrices. Here we illustrate how CERNN applies to discriminant analysis

and clustering.

6.1. Discriminant Analysis

The classical discriminant function

incorporates the mean μk and prior probability πk of each class k. A new observation x is

assigned to the class k maximizing δk(x). If there are c classes , …, , then the standard

estimator of Σ is
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where

One can obviously shrink Σ̂ to moderate its eigenvalues. In quadratic discriminant analysis,

a separate covariance matrix Σk is assigned to each class k. These are estimated in the usual

way, and eigenvalue shrinkage is likely even more beneficial than in linear discriminant

analysis. Friedman (1989) advocates regularized discriminant analysis (RDA), a

compromise between linear and quadratic discriminant analysis that shrinks Σk toward a

common Σ via a convex combination γΣk + (1 − γ)Σ. Although Friedman also suggests

shrinking toward class specific multiples of the identity matrix, we do not consider his more

complicated version here. Guo et al. (2007) shrink covariance estimates towards the identity

matrix and also apply lasso shrinkage on the centroids to obtain improved classification

performance in microarray studies. The main difference between CERNN and these

methods is that CERNN performs nonlinear shrinkage of the sample eigenvalues.

Since we are primarily interested in the case where all or most of the predictors are

instrumental in grouping, we consider only Friedman’s method in a comparison on three

data sets from the UCI machine learning repository (Bache and Lichman, 2013). In the case

of the E. Coli data set, we restricted analysis to the five most abundant classes. We split each

data set into training and testing sets. In each experiment we used 1/5 of the data for training

and 4/5 for testing. Table 1 records the number of samples per group in each set. In these

data poor examples, linear discriminant analysis is not even viable since a common sample

covariance estimate will be ill-conditioned if not singular. Nonetheless, our results show that

the combination of separate covariances with regularization works well. We modeled a

separate covariance for each class and used 5-fold cross validation to select c regularization

parameters for CERNN. We used essentially the same procedure described in Section 3.1

except that we used the misclassification rate instead of the predictive negative

loglikelihood. We also used 5-fold cross validation to select the single γ parameter for RDA.

The testing errors in Table 1 demonstrate that CERNN performs well in comparison with

RDA. Even when it does not perform as accurately, its drop off is small.

6.2. Covariance Regularized EM Clustering

We now show how CERNN stabilizes estimation in the standard EM clustering algorithm

(McLachlan and Peel, 2000). Let ϕ(y | μ, Σ) denote a multivariate Gaussian density with

mean μ and covariance Σ. EM clustering assumes that the data arise from the mixture

density
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with parameters . The πk are nonnegative mixture weights summing to

1. We are given n independent observations y1, …, yn from the mixture density and wish to

estimate Ξ by maximizing the loglikelihood. It is well known that the loglikelihood is

unbounded from above and plagued by many suboptimal local extrema (McLachlan and

Peel, 2000). Hathaway (1985) proposed constraints leading to a maximum likelihood

problem free of singularities and beset by fewer local extrema. Later it was shown that these

constraints could be met by imposing bounds on the largest and smallest eigenvalues of the

Σk (Ingrassia, 2004; Ingrassia and Rocci, 2007). These findings suggest that employing our

Bayesian prior to estimate Σk can also improve the search for good local optima, since it

shrinks the extreme sample eigenvalues to the sample mean eigenvalue.

If zik is the indicator function of the event that observation i comes from cluster k, then the

complete data loglikelihood plus log-prior amounts to

Straightforward application of Bayes rule yields the conditional expectation

These weights should be subscripted by the current iteration number m, but to avoid clutter

we omit the subscripts. If we set

then the EM updates are , and

We now address two practical issues. First, there is the question of how to choose αk. In the

previous examples we sought a stable estimate of a single covariance matrix. Here we seek c

covariance matrices whose imputed data change from iteration to iteration. In accord with
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our previous choice for α, we set αk to be (1/p) tr(Sk). This αk changes dynamically as Sk

changes. Second, it is possible for wik ≈ 0 for all i for a given k at some point as the

algorithm iterates. Indeed, finite machine precision may assign wk the value 0 at some point,

making the updates for Σk and μk undefined. Consequently, we only update Σk and μk when

wk > 0. This is not a major issue, however, since this scenario only arises when no data

points should be assigned to the kth cluster.

Besides the work of Ingrassia and Rocci (2007), similar approaches have been employed

previously. Fraley and Raftery (2007) suggest a restricted parameterization of covariance

matrices. While they offer a menu of parameterizations that cover a range of degrees of

freedom, each model has a fixed number of degrees of freedom. One advantage of our

model is that the degrees of freedom may be tuned continuously with a single parameter λ.

Figure 3 shows the results of clustering with our algorithm on a simulated data set. A total of

60 data points were generated from a mixture of 10 bivariate normals corresponding to 59

parameters in the most general case. The number of observations per cluster ranged from 3

to 11. We set the number of clusters c to be 10 and considered several different λ values

over a wide range (0.1, 10, 100, 10000). We could choose λ in a completely data dependent

way through cross-validation, but our main concern is to stabilize the procedure so fine-

tuning λ is not of paramount importance, especially when doing so complicates the

procedure. We ran our algorithm 500 times using random initializations with the k-means++

algorithm (Arthur and Vassilvitskii, 2007) and kept the clustering that gave the greatest

value of the expected log likelihood

The resulting clusterings are quite good over our broad range of λ values. It is notable that

for three out of the four values of λ, even clusters 2 and 10, which overlap, are somewhat

distinguished. The only missteps occur when λ = 10, where cluster 1 is split into two

clusters, and clusters 2 and 10 have been merged. The latter decision is reasonable given

how much clusters 2 and 10 overlap.

7. Discussion

The initial insight of Stein (1975) has led to several methods for shrinkage estimation of a

sample covariance matrix S. These methods preserve the eigenvectors of S while pushing S
towards a multiple of the identity matrix. Our Bayesian prior does precisely this in a

nonlinear fashion. Finite sample experiments comparing CERNN and CNR show that

CERNN and CNR complement each other. CNR performs better when only a few

eigenvalues of the population covariance are very large. CERNN performs better when there

is a more uniform distribution of high and low eigenvalues. Both estimators perform at least

as well and often better than the simple and asymptotically optimal LW estimator.
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CERNN does require a singular value decomposition (SVD), as does CNR. Although highly

optimized routines for accurately computing the SVD are readily available, such

calculations are not cheap. Recently introduced algorithms from randomized numerical

linear algebra may provide computational relief (Halko et al., 2011; Mahoney, 2011). If one

can tolerate a small loss in accuracy, the SVD of a randomly sampled subset of the data or a

random projection of the data can give an acceptable surrogate SVD.

Applications extend well beyond the classical statistical methods illustrated here. For

example, in gene mapping with pedigree data, a covariance matrix is typically parameterized

as a mixture of three components, one of which is the global kinship coefficient matrix

capturing the relatedness between individuals in the study (Lange, 2002). The kinship matrix

can be estimated from a high density SNP (single nucleotide polymorphism) panel rather

than calculated from possibly faulty genealogical records. Because a typical study contains

thousands of individuals typed at hundreds of thousands of genetic markers, this application

occurs in the regime n ≪ p. The construction of networks from gene co-expression data is

another obvious genetic example (Horvath, 2011). Readers working in other application

areas can doubtless think of other pertinent examples.
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Appendix A. Finite Sample Comparisons

Table A.2

Average ratio of quadratic loss of CNR and LW to that of CERNN. Values less than 1

indicate better performance than CERNN (bold). Standard deviations are in parentheses.

singleton

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 0.42 (0.13) 0.19 (0.03) 0.12 (0.01) 12.4 (6.05) 17.9 (3.97) 33.2 (4.23)

2 0.36 (0.07) 0.23 (0.03) 0.20 (0.02) 9.28 (2.76) 18.1 (2.66) 31.7 (2.09)

1.25 0.37 (0.04) 0.29 (0.03) 0.27 (0.02) 8.87 (1.59) 16.9 (1.48) 26.7 (1.18)

10% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 1.15 (0.20) 1.80 (0.12) 2.77 (0.13) 4.91 (0.53) 8.01 (0.42) 17.0 (0.66)

2 1.18 (0.11) 1.66 (0.08) 1.84 (0.06) 4.42 (0.30) 6.85 (0.28) 12.3 (0.41)

1.25 1.46 (0.08) 1.39 (0.05) 1.81 (0.05) 4.14 (0.21) 6.08 (0.20) 10.3 (0.29)

20% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 4.28 (0.70) 8.52 (0.86) 18.5 (1.06) 8.72 (0.88) 23.5 (1.62) 78.5 (3.32)

2 1.97 (0.16) 2.51 (0.13) 5.25 (0.16) 6.10 (0.37) 12.9 (0.53) 31.1 (1.00)

1.25 1.45 (0.07) 1.95 (0.07) 4.90 (0.15) 4.98 (0.20) 9.42 (0.31) 20.9 (0.61)

30% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 11.9 (1.90) 37.8 (3.17) 128 (6.03) 16.9 (1.74) 62.6 (3.49) 244 (7.32)

2 3.97 (0.36) 6.65 (0.34) 13.6 (0.31) 10.7 (0.67) 31.4 (1.24) 95.0 (2.22)

1.25 2.15 (0.10) 3.76 (0.12) 10.6 (0.30) 7.71 (0.36) 18.6 (0.63) 51.8 (1.56)

40% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 25.6 (3.18) 83.2 (5.06) 304 (10.7) 28.3 (2.54) 105 (4.60) 407 (10.9)
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40% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

2 11.0 (1.10) 28.2 (1.61) 68.9 (3.48) 20.1 (1.23) 66.9 (2.28) 234 (4.74)

1.25 3.66 (0.22) 6.39 (0.14) 18.9 (0.27) 13.5 (0.68) 38.6 (1.05) 119 (1.62)

Table A.3

Average ratio of entropy loss of CNR and LW to that of CERNN. Values less than 1

indicate better performance than CERNN (bold). Standard deviations are in parentheses.

singleton

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 0.83 (0.11) 0.56 (0.05) 0.40 (0.03) 5.38 (2.24) 9.20 (2.10) 18.7 (2.61)

2 0.78 (0.07) 0.59 (0.03) 0.49 (0.02) 5.24 (1.63) 11.9 (2.08) 24.6 (2.17)

1.25 0.79 (0.04) 0.66 (0.03) 0.56 (0.02) 5.75 (1.15) 12.8 (1.37) 24.4 (1.30)

10% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 1.11 (0.12) 1.34 (0.07) 1.62 (0.06) 1.43 (0.11) 1.83 (0.09) 3.19 (0.11)

2 1.04 (0.07) 1.08 (0.04) 1.16 (0.03) 1.29 (0.07) 1.34 (0.05) 1.81 (0.05)

1.25 1.13 (0.05) 0.96 (0.03) 1.26 (0.03) 1.29 (0.05) 1.20 (0.03) 1.38 (0.03)

20% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 1.90 (0.19) 2.71 (0.15) 3.74 (0.10) 2.16 (0.19) 4.16 (0.20) 8.27 (0.17)

2 1.19 (0.06) 1.20 (0.05) 1.97 (0.03) 1.73 (0.10) 2.93 (0.10) 5.57 (0.11)

1.25 0.92 (0.03) 1.03 (0.02) 2.14 (0.04) 1.42 (0.05) 2.18 (0.06) 4.05 (0.07)

30% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 2.50 (0.20) 4.04 (0.17) 6.49 (0.15) 2.69 (0.17) 5.06 (0.17) 9.06 (0.15)

2 1.50 (0.08) 1.72 (0.06) 2.39 (0.02) 2.44 (0.12) 4.58 (0.12) 8.53 (0.10)

1.25 0.96 (0.03) 1.24 (0.02) 2.64 (0.02) 2.11 (0.10) 3.78 (0.10) 7.13 (0.07)

40% high

p =

CNR/CERNN LW/CERNN

125 250 500 125 250 500

p/n = 4 2.80 (0.17) 4.44 (0.13) 7.29 (0.13) 2.79 (0.15) 4.91 (0.12) 8.45 (0.12)

2 2.09 (0.11) 3.04 (0.11) 4.23 (0.12) 2.81 (0.13) 4.91 (0.12) 8.51 (0.09)

1.25 1.13 (0.05) 1.33 (0.02) 2.66 (0.02) 2.67 (0.11) 4.79 (0.09) 8.64 (0.08)
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Figure 1.
Boxplots of the sorted eigenvalues of the sample covariance matrix S over 100 random

trials. Here the number of components p = 10, and the sample size n is drawn from the set

{5, 10, 20, 50, 100, 500}.
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Figure 2.
A comparison of the solution paths for CERNN (left panel, solid line) and CNR (right panel,

solid line) against the path for the linear estimator (both panels, dashed line) for sample

eigenvalues (13.29, 5.73, 1.51, 0.55, 0.44). The dotted line indicates the mean of the sample

eigenvalues.
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Figure 3.
CERNN clustering projected onto the first two principal components of the data. Ellipses

depict the first two eigenvectors (and their corresponding eigenvalues) of the estimated

covariances of each cluster.
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