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Abstract:

Many records in environmental science exhibit asymmetries: for example in shallow water and with variable
bathymetry, the sea wave time series shows front—back asymmetries and different shapes for crests and
troughs. In such situation, numerical models are available but their computational cost and complexity are
high. A stochastic process aimed at modeling such asymmetries has recently been proposed, the Laplace
moving average process, which consists in applying a linear filter on a non-Gaussian noise built using the
generalized Laplace distribution. The objective is to propose a new non-parametric estimator for the kernel
involved in the definition of this process. Results based on a comprehensive numerical study will be shown
in order to evaluate the performances of the proposed method.

Keywords: Laplace moving average ; Non-linear time series ; FIR estimation ; Splines ; High-order
spectrum ; Asymmetries

1. Introduction

Marine coastal systems are subject to loadings due to sea waves, and long time series of the loadings are
often needed to carry out studies of the performances of the system or to assess its extremal behavior.
During its lifetime, this system is likely to encounter various sea states, and thus one needs to be able to
simulate long and numerous series with realistic characteristics. Many such systems are located near the
shore, in shallow water and with variable bathymetry. In this context, the waves are known to be non-linear,
and show high asymmetries. Two kinds of asymmetries can arise in this context: the top—bottom (vertical)
asymmetry and the front—back (horizontal) asymmetry. The first one describes the different behavior of
troughs compared to crests with the peaks being generally sharper compared to the bottom. The second
kind of asymmetry is linked to the time irreversibility: for example, the front steepness of crests is higher
than the back one. Many other situations in natural and social sciences lead to similar asymmetries.

The aforementioned criteria are known to be impossible to reproduce with Gaussian processes, and models
with such asymmetries must be developed. Recently, such a model has been proposed (Podgérski and
Wegener, 2010 and Aberg and Podgorski, 2011), along with a description of some of its properties (Galtier
et al., 2010 and Galtier, 2011) and an estimation procedure of some of its characteristics (Podgérski and
Wegener, 2011). The model is a linear filter of a non-Gaussian noise built using the generalized Laplace
distribution. The goal of the study is thus to propose a new method for estimating the kernel, which is an
unknown function that rules the behavior of the process, and then to study the behavior of this estimator
both on simulated and real data.
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The paper is organized as follows. The first section introduces the model and some of its
characteristics, and in particular the high-order spectrum properties that is used in the estimation
procedure which is discussed in the second section. In a third section, we present a simulation
study to assess the performances of the new estimation procedure. An application on a real dataset
is carried out in the fourth section. Conclusions and key findings are given in Section 5.

2. Description of the LMA model

2.1. Model construction

The construction of the process is based on a non-Gaussian noise, itself based on a non-Gaussian
distribution, intended to be flexible and capable to handle heavy tails and distributional asymme-
tries, the Generalized Asymmetric Laplace distribution.

Definition 1 (Generalized Asymmetric Laplace distribution). The following characteristic
function defines a distribution called 'Generalized Asymmetric Laplace distribution’ (GAL):
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where §, w € R, v >0 and 0 > 0. The cases v =1 and pu = 0 are referred to as the asymmetric
Laplace distribution and the generalized symmetric Laplace, respectively.

This distribution has finite moments of any order and in particular if Y ~ GAL(J, u, 0, v), then
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where s denotes the skewness and k. the excess kurtosis. This distribution shows great flexibly,
with various shapes for the density function as it can be seen on Figure 1. This figure shows 8
densities all such that the mean is equal to 0 and variance to 1. The left plot contains symmetric
distributions, while the right plot shows asymmetric densities.

Thanks to the infinite divisibility property of the GAL distribution, one can construct also a
Levy process, with stationary and independent increments from a GAL, called a Laplace motion

(see [5]):

Definition 2 (Laplace motion). A Laplace motion T is defined by the following conditions:
e it starts at the origin (i.e. T'(0) =0);
e its increments are stationary and independent;
e the increments by the time unit v have a zeros mean asymmetric Laplace distribution.

This process is also referred as the Variance-Gamma process, see [6].

Once we have such a process constructed, it becomes possible to define the process that will be
intensively used in the sequel, namely a convolution of a Laplace motion with some function. This
leads to a stationary linear process which is linear but non-Gaussian, with the ability to produce
asymmetries, see [1] for more details.



Figure 1: Densities of GAL distributions

Definition 3 (Laplace moving average). Let I' be a Laplace motion with zero mean and f a
function with values in R, named kernel such that both [ f and [ f? are finite. Then,

Xo= [ 1t = a)ir@) (1)

defines a stationary stochastic process on R, called a Laplace moving average (LMA). Such a
process will be referred as LMA(u, o, v; f).

2.2. Process properties

A lot of properties can be derived for this process, whose proofs can be found in the already
cited articles. We will here only recall the properties that will be useful from a modeling point of
view. We will describe both the margins and the second order structure, and will also see that a
same second order structure can correspond to infinitely many different processes, depending on
some characteristic of the kernel, namely the phase of the transfer function. We will then show
that this phase can be identified using higher order structure.

2.2.1. Marginal distribution
According to [1] and [2], the LMA process is based on GAL distribution, and one can compute
the characteristic function of the marginal distribution for such process:

ox,(u) = etun/v [ f xexp{—l/ log (1—iuuf(m)+021ﬂ2f2($)> dx}.
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In particular we get
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The scale of the kernel is still non identifiable, since any multiplicative constant on the kernel
will lead to the same process, just by allowing ¢ and p to change the opposite way. So, we impose
in the sequel the constraint [ f? =1, to stay consistent with previous studies.

Another important property of this process is stated below.

Property 1. Let X; be a LMA(u,0,v; f), and denote s and k. its skewness and excess kurtosis,
respectively. Then ke > 0 and if ke > 0, then

(X2 2 ([ )
(X)) BT (6)

Equation 6 can be interpreted as follows: for a given skewness, the distribution can not be too
light tailed (low k). In every case, the tail is heavier or comparable to the one of a normal distri-
bution, and the excess kurtosis depends on the skewness. For a Generalized Laplace distribution,

2 2
the equation (6) reads >~ < % and this is also the upper bound for - for a LM.A, since thanks to
3)2
% < 1. It means that for a LMA, the
space of values of skewness and kurtosis that can be described is smaller than for a Generalized

Laplace distribution.

the Cauchy-Schwarz inequality, we have for any f,

2.2.2. Second order structure

The usual tool for time series modeling is the second order structure, since for a Gaussian
process, this structure completely defines the process. We will see that it is no more the case with
LMA processes. For instance, the covariance function r of X is given by

0'2 2 O'
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where f(z) = f(—z) and * is the convolution operator. The power spectrum S of X; is given by

S(w) = o? —|—,u

IF(H ) (7)

where F' = F(f) denotes the Fourier transform of f and will be referred as transfer function in the
sequel.



Figure 2: Asymmetry criterion

2.3. Influence of the kernel

As it can be seen from the previous equations, only the magnitude of the transfer function has
an influence on the second order structure of the process. It means that there is still infinitely many
transfer functions that lead to the same covariance for the process, but that may lead to processes
with different properties. We study hereafter how the phase of the transfer function does influence
the dynamical properties of the process using simulations.

Following [7], we looked at some characteristics of the record that will help us in quantifying
the asymmetries of the data. Figure 2 represents an asymmetric wave and the asymmetry criteria
discussed hereafter:

Crest _ M )
° 5up =10 the crest front steepness;
Crest _ M .
® Ojown = 75, the crest back steepness;

Trough : -
o S1roush and g o€ can also be defined for the troughs in a similar manner.

The estimation of those characteristics from observations is straightforward, using zero crossings
to define the waves. A classical criterion to measure the steepness of the front face of waves is the
asymmetry criterion, which is defined as the skewness of the derivative of the process, but that
can be computed as the skewness of the Hilbert transform of the process (see e.g [8] and [9]). This
criterion is defined A hereafter.

In order to study those quantities, we simulated two LM processes with the same parameters
for the Laplace noise and the same second order structure, i.e same spectrum or autocorrelation



Crest Crest Trough Trough
Process Oip Odowm  Oup O down A

Non-symmetric kernel — 0.41 0.56 0.33 0.46  -0.21
Symmetric kernel 0.55  0.55 0.33 0.33 0.00
Gaussian process 0.45 0.45 0.45 0.45 0.00

222

Table 1: Estimation of the asymmetry criteria from 1000 independent replicates of process with length and same

second order structure and same parameters for the noise: A =0, ¥ =1, £ =0.2, ( =0.6

function. The two kernels are depicted in the upper left plot of Figure 3. The non-symmetric kernel
is defined by

fi(z) = e " 1g+ (2) (8)

and the symmetric one is defined by

fo(x) = FHIF(f1)]- (9)

Both kernels have Fourier transforms with the same magnitude.

Examples of trajectories that can be obtained with those kernels are shown in Figure 3, in the
upper right plot. The trajectories seem obviously to differ although the two processes share the
same autocorrelation function, as depicted in the same figure, bottom left plot.

As it can be seen from Figure 3 and Table 1, the kernel has a great influence on the tilting
of the trajectories. For example, the symmetric kernel will not be able to produce any front-back
asymmetries since dyp and dgown are equal, although the crests and troughs can behave differently.
It is also noticeable that the asymmetry criterion A differs clearly depending on the process.

We have seen that LMA processes with the same spectrum and same noise parameters will
exhibit completely different behaviors. This is the reason why we will have to focus on higher order
spectrum to explain such different dynamical properties. This is analogous to the marginal prop-
erties: a Gaussian distribution is described by its first two moments, but a generalized asymmetric
Laplace will need the first four moments; a Gaussian process is characterized completely by its
autocorrelation function, and a LMA is obviously not, according to the results above.

2.4. High-order spectrum

To distinguish between two LMA with the same spectrum, we can look at the high order
spectra. For sake of simplicity, we will introduce only the bispectrum, or third order spectrum,
but generalization to higher order is straightforward. First of all, let us recall the expression of the
third order cumulant function of a stationary stochastic process X;:

C3(71,72) = B[X¢ Xipr, Xtiry].
Its Fourier transform is referred as the third-order spectrum (or bispectrum):
S3(w1,w2) = Fop[Cs)(w1,wa), (10)

where Fop denotes the 2D Fourier transform. In the sequel, the subscript will be omitted to simplify
the presentation.

In the next section, an empirical estimate of the bispectrum is needed. Discussing this in
details would go beyond the scope of this study and the reader may refer to [10] or [11] for a
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Figure 3: Example of LMA. Top left: Kernel used; top right: Example of trajectories. Bottom left: Empirical
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line and symmetric kernel case f> in dotted line. Parameters for the noise are A =0, v =1, £ =0.2, ( = 0.6



comprehensive report on this subject. We use hereafter an estimate obtained by computing and
averaging biperiodograms from overlapping blocks before applying a frequency-domain filter. This
estimates of the bispectrum Ss will be denoted §3. It is readily available in the HOSA toolbox for
MATLAB.

In the case of X; being a LMA process with underlying Laplace noise I' and kernel f, its
bispectrum can be expressed from the kernel using similar computations as in the case of the power
spectrum. We obtain

S3(wi,wz) = $(T)F(w1)F(w2) F(wi + ws) (11)

where s(I') is the third order moment of the Laplace noise I' and F' = F(f) the transfer function.
In particular, one has the following relations, for any wy, ws:

|53 (w1, wa)| = [s(I)[|F(w1)| | F(w2) || F (w1 + w2)], (12)
\If(wl,wg) = (I)(wl) + (I)(wg) — <I>(w1 + wg), (13)

where ¥ (wy,ws) is the angle of S3(wi,w2) and ®(w) is the angle of F(w).

These relations show that unless the skewness of the noise is null, the kernel can be retrieved
completely from the bispectrum. This will be used in the sequel to derive estimates for the kernel.
In the case of null or very small skewness, the extension to fourth order could be necessary. It is
straightforward in the mathematical formulation

54(w1,w2,w3) = k(F)F(wl)F(wg)F(wg)F(wl + wo + w;;),

where k(T) is the fourth order moment of the Laplace noise I'. However, this approach will certainly
meet numerical difficulties. The extension to the fourth order has not been studied in this work.

3. Fitting procedure

3.1. Kernel estimation

Up to now, only symmetric kernels have been estimated in the literature for LM.A processes (see
aforementioned references). However, we have seen in the previous section that a symmetric kernel
is not able to retrieve front-back asymmetries existing in records. We will recall some particular
cases of kernels, before introducing a new estimator.

3.1.1. Usual estimates

Assume we observe a sequence (Xy,,...,X;,) from a LMA with unknown parameters and
kernel f. Let S be the empirical spectrum. Our goal is to a find an estimate f for the kernel that
allows for asymmetries and respect the second order structure of the observed process. It means
that we will impose that the spectrum (or autocorrelation) of the fitted process to be the same
as the observed one. Thus the square magnitude of the Fourier transform of the kernel (or finite
impulse response) will be held fixed to the observed spectrum, i.e. |Ff|> = S. From this relation,
it is clear that we still have an infinite number of kernel with the same magnitude, if we allow the
phase to change, and we build estimates f of the kernel f as following:

F{fHw) = \/S(w) explid(w)}, (14)

where ® is an unknown function. Three classical kernels in signal processing, which correspond to
different general choices for ®, are detailed bellow.



Symmetric kernel. This is the kernel used in reference studies. It is obtained by assuming d=0.
This is a non-causal kernel, symmetric with respect to the origin, but that cannot be adequate
for modeling front-back asymmetries;

Anti-symmetric kernel. Assume the phase is ®(w) = — sgn(w)y. Then the kernel will be odd.
It can be seen from eq. (6) that the resulting process will have a skewness of 0, and thus
can not model marginal asymmetries. Moreover, it is shown in [12] that a LM.A with an
odd kernel can not generate any time irreversibility, and we thus decided to drop this model
hereafter.

Minimum Phase kernel. The particular case of minimum phase kernel is obtained by setting
® = H{log VS }, where #H is the Hilbert transform. In this model we have a direct relation
between the magnitude and the phase via the Hilbert transform 7. This kernel is causal
(null for negative lags), thus asymmetric, and allows for front-back asymmetries. This is the
estimate obtained when fitting a stationary ARMA model, in a discrete-time context.

3.1.2. Spline estimator for the phase

None of the kernels presented above may be suited for the observed time series, because all
of them rely on a strong assumption on the process that cannot be verified easily. In order to
adjust the kernel to the records, a classical approach is to use the bicepstral method. In this
method, a kernel estimate is obtained using the complex cepstrum, as described in [13, 10]. It thus
relies on 2D Fourier transform to identify an arbitrary kernel, by inverting the relation (11). The
obtained estimate for the kernel will be used as a reference. Instead of this approach, we propose
here to estimate the phase of the transfer function with regression splines. Splines are piecewise
polynomials smooth functions. They are defined by their knots, their degree, and the coefficients
of the polynomials within each knot (see e.g. [14] and [15] and references therein for more details).
The vector of coefficients will be denoted € in the sequel.

We used this tool to estimate the phase ®, by approximating this unknown function by a cubic
spline function, ®(w; ). The estimation of the coefficients of the regression spline can be performed
by using the relation (13). More precisely, hereafter 0 is defined as

0= argminz |5'3(wi,wj)\(1 — oS (@l(wi,wj) — Oy (wi 0) — Ps(wy; 0) + Po(w; + wj; 0)) ,  (15)

0 —

Z?]
where 33 is the empirical bispectrum, estimated as described in Section 2.4. The distance 1 — cos(.)
was used because the phase is unchanged when adding 2k7 for any & € Z. The weights S3(w;,w;)
are added because the angle is badly estimated for very small values of the magnitude, and thus we

reduce the importance of such observations. We used a numerical optimization algorithm to solve
this problem. This obtained kernel is thus

foptine = F~H {S(w) exp i, (w; 0)] } (16)
and will be referred as the ’spline kernel’ in the sequel.

3.2. Parameters estimation

In this section we assume that the kernel is known. The aim is to estimate the four parameters of
the underlying Laplace noise. Following [5], we will use a moment estimator based on the marginal



moments, expressed earlier (equations 2—5), meaning that we will replace the moments values in
those equations by their empirical counterparts, and inverting the obtained system.

As described in [5] it can happen that this system has no solution, because the constraint
in equation (6) may not be fulfilled by the empirical estimates of moments, due to the sample
variability of these quantities or because the marginal distribution is not a GAL. In this case, an
approximate solution is chosen, and one can refer to [5] for the choice of the approximation. We
will follow their choice in this study.

The consistency of the estimates can be derived from the strong mixing property of moving
averages with respect to Lévy measures, as LMA are (see, for example [16]). This ensures that
the empirical moments converge to the true values, leading to consistency.

4. Simulation results

In this section, we study the behavior of the estimates using simulations.
The procedure is the following, repeated 1000 times:

1. Simulate a LM.A with known kernel (symmetric and minimum phase, see equations 8 and 8
and Figure 3);

2. Estimate the kernel assuming that it is a symmetric or minimum phase (see Section 3.1.1) or
using the bispectral and splines methods (see Section 3.1.2);

3. For each kernel estimate, deduce estimate of the GAL parameters using the method introduced
in Section 3.2 and do the same using the true kernel for comparison purpose;

4. Simulate a long realization of the fitted model to estimate its the dynamical characteristics.

According to Table 2, the symmetric, minimum phase and spline kernels lead to similar results
both in terms of bias and variance as concerns the estimation of the marginal parameters. There is
a systematic positive bias in estimating £ while the parameter ¢ is under-estimated. This may be
due to the correlation between those two estimates (not shown here). The bicepstral method leads
to rather different results, with a lower variance, but a higher bias for both parameters. The third
column of Table 2, which contains the L? distance [(f(z) — f(z))2dz between the true kernel f
and the estimated one f , suggests that it may be due to a bad estimation of the kernel. It implies
that the system of equation (2—5) has more often no solution than with the other method (4.5%
for this method, less than 1% for the others) and explains the higher bias in the estimates of the
marginal parameters. Note that using the wrong assumption on the kernel (e.g. assuming that
it is symmetric whereas the true process has a minimum phase kernel) lead to a bad estimation
for the kernel. It is then interesting to observe that the spline model provides a good estimate in
both cases, almost as good as when using the true model, with a slightly higher variance. When
comparing with the kernel obtained by the bicepstral method, we see a great improvement. We
also studied numerically the importance of the number of knots of the splines and their location,
but found that those two parameters do not have a great influence on the results (not shown for
the sake of conciseness). The latter remark only applies to this particular case for which the phase
function is smooth enough. If this function has many peaks, a more advanced fitting procedure
may be applied, following for example [17].

Figures 4 and 5 show the various kernel estimates. From these plots, it is clear that the spline
model allows to recover the asymmetries in the kernel, by allowing the phase to be non-zero in
the minimum phase case (right bottom plot, Figure 4), while for the symmetric kernel case, the
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True process

Minimum phase kernel

Parameter 13 ¢ L? error A girest  girest  ylrough §jrough

Actual values 0.2 0.6 NA -0.21 041 0.56 0.33 0.46

0.25 0.55 -0.21 0.41 0.56 0.33 0.47

True Kernel 0.08) (012) N (007 (0.01) (0.03) (0.01) (0.03)

Symmetric kernel 0.25 0.55 0.50 0.00 0.57 0.57 0.34 0.34
(0.08) (0.12) (2.10) (0.06) (0.02) (0.02) (0.01) (0.01)

Minimum phase kernel 0.25 0.56 0.00 -0.21 0.42 0.56 0.35 0.49
(0.09) (0.12) (0.01) (0.07) (0.01) (0.02) (0.01) (0.02)

Bicepstral method 0.19 0.42 0.17 -0.33 0.89 3.02 0.69 1.30
(0.06) (0.09) (1.12)  (0.16) (0.17) (0.40) (0.07) (0.41)

Spline kernel 0.25 0.54 0.01 -0.16 0.44 0.57 0.33 0.42
(0.08) (0.12) (0.03) (0.09) (0.02) (0.02) (0.01) (0.02)

True process Symmetric kernel

Parameter £ ¢ L? error A girest  g{rest  ylroush 63“;%1111@

Actual values 0.2 0.6 NA 0.00 0.55 0.55 0.33 0.33

0.23 0.56 0.00 0.55 0.55 0.33 0.33

True Kernel 007) (010) N (007 (0.02) (0.02) (0.01)  (0.01)

Symmetric kernel 0.24 0.56 0.00 0.00 0.57 0.57 0.33 0.33
(0.07) (0.10)  (0.00) (0.07) (0.02) (0.02) (0.01) (0.01)

Minimum phase kernel 0.24 0.63 0.48 -0.16 0.42 0.57 0.34 0.49
(0.07) (0.10) (2.00) (0.08) (0.01) (0.03) (0.01) (0.02)

Bicepstral method 0.16 0.43 0.25 -0.26 1.08 3.49 0.82 1.34
(0.05) (0.08) (1.38) (0.10) (0.09) (0.33) (0.08) (0.37)

Spline kernel 0.24 0.56 0.01 0.01 0.55 0.55 0.33 0.33
(0.07) (0.10) (0.01) (0.08) (0.02) (0.02) (0.01) (0.01)

Table 2: Parameters estimation for two kernels (minimum phase and symmetric) and four estimation methods. In
bracket, the standard deviation based on 1000 i.i.d replications.
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obtained kernel is almost symmetric (right bottom plot, Figure 5). This is important in practical
applications, since it might be interesting to recover the asymmetries in the records.

As stated in Section 2, one needs additional criteria than the parameters of the Laplace noise
to fully describe the ability for the fitted process to recover the characteristics of the original
data. Hence, we compared the asymmetry criteria introduced earlier. Results are given in the five
rightmost columns of Table 2. It can be concluded from this table that the spline model allows
to retrieve the shape of the 'waves’ for the two type of processes considered here. This was not
possible neither with the symmetric kernel nor the minimum phase kernel. We also found that the
biceptrum method was not well suited, since the estimated value differ greatly from the true values.
This is the reason why we did not use this estimator in the application part that follows.

5. Application to wave times series

In this section, the proposed methodology is illustrated on a time series of sea wave measured
in a wave flume on a varying bottom, in the situation described in Figure 6. The wave flume is
forced from the left with infinite-depth Gaussian waves, with a typical JONSWAP spectrum with
v = 3.3 (see e.g [18] Eq. 2.4.1), and waves propagate to the right and tends to shoal as the depth
decrease. At a fixed location (point 8, situated at X = 7m), one obtains a time series of elevation
of the free surface, presented in the upper-left corner of Figure 8. It can be seen from this plot that
the data indeed exhibits differences between front and back slopes, revealing time-irreversibility
(see the values in Table 3), and also discrepancies between crests and troughs (vertical asymmetry,
refer to the positive value of the skewness).

Figure 7 shows the periodogram which is a usual estimate of the the power spectrum. In
this plot, we see three main peaks which appear due to non-linear waves interactions, since an
unimodal power spectrum is introduced in the wave flume. These non-linear interactions are even
clearer when looking at the bisepctrum (upper-left plot of Figures 10 and 11) with peaks at coupled
frequencies. We recall that for a Gaussian process, the bispectrum will be identically zero, and thus
this assumption is not well suited here.

The marginal distribution of the observed sequence is too lightly tailed compared to a GAL
distribution (see eq. 6). To deal with this problem, we transform the process so that its marginal
distribution lie in the acceptable space for a GAL distribution, which is a quite usual way in time
series modeling with e.g. the Box-Cox transformation. We chose the following arbitrary non-linear
transform

exp <|X|.1/2)—1 if X>0
y — (17)
—exp (|X|._1/2>—1 if X<0
which allows for higher asymmetry and heavier tails. It would be interesting to propose a more
systematic procedure to chose such function. Descriptive statistics of this transformed process are
given in the upper-left corner of Figures 8 to 10 and in the first line of Table 3.

LMA is fitted to this transformed time series using the different kernel (symmetric, minimum
phase and spline) estimates. The kernels corresponding to each fitted model are shown in Figure 9.
One can clearly see the differences between the kernels, in particular the spline estimated kernel,
which is neither symmetric nor minimum phase and looks almost like a typical wave. As mentioned
in the introduction, a particular impetus for this work was to develop stochastic models which can
generate artificial but realistic waves. In this context, it seems natural to simulate long sequences
of the fitted models (see Figure 8 for examples of simulated sequences) and compare the statistical

12
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Figure 4: Estimation of the kernel for a minimum-phase process and three different estimates for the kernel. Dashed-
dotted line: true kernel; solid line: mean estimated kernel; dotted line: 95% confidence interval based on 1000 i.i.d.
replications.
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Figure 7: Power spectral density of observations.

properties of the artificial sequences with the ones of the original data. The variability of the
various estimates has been estimated using parametric bootstrap (see e.g [19]). Note that it is
difficult to compute a likelihood function of residuals for the fitted models and thus to use the
standard statistical diagnostic tools used in time series analysis.

We first looked at the bispectrum in order to see if one can retrieve the coupling between
components which symbolized by the non-zero values. The logarithm of the absolute value of each
bispectrum is shown in Figure 10 whereas the angle of each bispectrum can be found in Figure
11. Both figures have been computed on the transformed time series to simplify the discussion.
Figure 10 shows that globally, the shape of the bispectrum is well retrieved, much better than with
a Gaussian process for which the bispectrum would be identically zero. However, we observe more
low-frequency peaks on the bispectra of fitted models, and less peaks at high frequencies. This is
probably due to the constraint imposed when using a linear process defined by (13). According
to Figure 11, the spline kernel outperforms the other estimate and the shape of the phase of the
bispectrum is well retrieved. As expected, the symmetric kernel has a zero phase, and the phase of
the minimum phase model is rather complicated, but linked to the Hilbert transform of the spectral
density of the process, and both of these are far from the observations.

Finally the fitted spline model allows to retrieve the first four moments of the process (see
Table 3), the second order dependence structure and some characteristics of the bispectrum, much
better than with the previously existing methods. We will now look at the tilting properties
of the models, and compare them to the observed data, in the original scale, meaning that the
fitted models are transformed back via the inverse of the marginal transform. Again, according to
Table 3, the spline model globally outperforms the two other models as far as asymmetry criteria
are concerned. Indeed, despite a small increase in the variance, all the values are closer to the
true ones. In particular, the minimum-phase kernel, which also permits to retrieve asymmetries,
fails to recover the good ratio between front and back slopes, both for crests and troughs. As said
in previous sections, the symmetric kernel is unable to reproduce asymmetry in the records apart
from vertical asymmetries. This is verified in Table 3 and confirms that this type of kernel lacks
flexibility to model non-linear time series.
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Figure 8: Example of sequences simulated with the fitted models.
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Figure 9: Estimated kernels. From top to bottom: symmetric model, minimum phase model, spline model.
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Figure 10: Log-magnitude of bispectra for the transformed process (top left) and the fitted models.
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Figure 11: Angle of bispectra for the transformed process (top left) and the fitted models.
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Parameter Median Skewness Kurtosis Asymmetry g2t ggrest  glrough 6(?;(;?11
Observations -0.10 0.89 4.87 -0.63 3.88 5.29 2.03 2.82
Symmetric kernel -0.15 1.08 5.29 0.00 5.10 5.12 3.07 3.08
(0.04)  (0.10)  (0.65) 0.01)  (0.28) (0.29) (0.16) (0.16)
Minimum phase kernel -0.11 1.04 5.25 0.37 4.42 4.90 3.44 2.81
(0.04)  (0.10)  (0.80) 0.07)  (0.24) (0.39) (0.17)  (0.20)
Spline estimated kernel -0.10 0.97 5.07 -0.32 4.37 5.70 2.99 3.07
(0.03)  (0.08)  (0.62) 0.04)  (0.34) (0.31) (0.16) (0.12)

Table 3: Dynamical criterion estimates for the three models, for the original data. In brackets, the standard deviation
obtained via parametric bootstrap.

Even if the spline model is the closest one to the data, it still fails to reproduce the observed
values. This might be due to constraints imposed when using linear filtering. To check this, we
performed a linearity test based on the bicoherence (see [10] and the HOSA toolbox for Matlab)
which rejected the linearity of the process, although each fitted LMA process pass the test. Hence,
the discrepancies between the fitted model and the observed data may be linked to the choice of a
too restrictive linear model.

6. Conclusion

In this article we proposed a method to model time series that exhibits both horizontal and
vertical asymmetries. The model is based on a novel versatile tool, called LMA, which involves
four parameters for the marginal distribution and a function called kernel. A new estimator based
on splines has been proposed to estimate this function. Thanks to an inclusive numerical study, the
performances of the new model have been checked and it shows great improvement compared to
the previous estimator available. Some future work is also left on the construction of a parametric
model on the phase of the transfer function to ease the estimation procedure.

We also tested the proposed methodology on a time series of sea waves. We checked that both
horizontal and vertical asymmetries are well respected, along with dynamical parameters such as
the skewness of the Hilbert transform or the crests and troughs slopes. The procedure shows great
enhancement compared to existing methods. However it still shows some discrepancies, that seems
to come from the non-linearity of the data. Hence, some improvements are still needed to overcome
this, for example by using a second-order model to enhance the model.
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