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Abstract

Estimation of longitudinal models of relationship status between all pairs of individuals (dyads) in 

social networks is challenging due to the complex inter-dependencies among observations and 

lengthy computation times. To reduce the computational burden of model estimation, a method is 

developed that subsamples the “always-null” dyads in which no relationships develop throughout 

the period of observation. The informative sampling process is accounted for by weighting the 

likelihood contributions of the observations by the inverses of the sampling probabilities. This 

weighted-likelihood estimation method is implemented using Bayesian computation and evaluated 

in terms of its bias, efficiency, and speed of computation under various settings. Comparisons are 

also made to a full information likelihood-based procedure that is only feasible to compute when 

limited follow-up observations are available. Calculations are performed on two real social 

networks of very different sizes. The easily computed weighted-likelihood procedure closely 

approximates the corresponding estimates for the full network, even when using low sub-sampling 

fractions. The fast computation times make the weighted-likelihood approach practical and able to 

be applied to networks of any size.
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1. Introduction

In this paper we develop, apply, and evaluate a new method of estimating a dynamic model 

of the relationship status of all dyads (pairs of individuals) in a social network, where both 

the number of individuals (N) and the number of observation times (T) can be large. 
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Analyses of complete lattices of dyadic data (referred to as sociocentric network data) in 

general seek to identify the important determinants of dyadic relationships and gain insights 

into properties or determinants of the network. For example, one phenomena that is often 

thought responsible for the formation of relationships is homophily – commonly described 

as “birds of a feather flock together” – whereby individuals with similar attributes are more 

likely to form or maintain relationships, leading to clusters of individuals with similar traits 

within the network. However, the primary objective of this paper is demonstrating that the 

new estimation method is feasible to implement on networks of any N and T, overcoming 

the practical limitations of existing methods. The following two publicly-available social 

network data sets, judiciously chosen due to the difference in N and T between then, will be 

analyzed and used to appraise our method of computing estimates.

The smaller network is from the excerpt of 50 schoolgirls in the Teenage Friends and 

Lifestyle Study (TFLS) described in Snijders (2014). Students in the study named up to 12 

close friends at three surveys conducted during 1995–1997 (Michell and Amos, 1997; West 

and Sweeting, 1995). After dropping the two girls who did not nominate and were not 

nominated by anyone, the final network comprised N = 48 girls (1,128 dyads) observed on T 

= 3 occasions (two relationship change opportunities). The number of friends named by each 

schoolgirl (out-degree) could range from 0 to 12 while the number of times a girl could be 

named by others as their friend (in-degree) had a range from 0 to 47. The students were also 

asked about substance use and adolescent behavior associated with lifestyle, sporting 

behavior and tobacco, alcohol and cannabis consumption. A particular question of 

importance is whether homophily of smoking behavior exists; were girls who were both 

smokers or both non-smokers more likely to become friends.

The second and larger longitudinal friendship network is from the offspring cohort of the 

Framingham Heart Study (FHS). Since the offspring cohort’s inception in 1971, its members 

have been followed from 1971–2008 through eight periodic health exams, at which an 

extensive array of personal and medical information (e.g., height, weight, age, smoking 

status) was collected. Friendship ties at each exam were ingeniously obtained from the 

nomination of close-friends who might be in a position to know where the study member 

would be in two to four years (Christakis and Fowler, 2007, 2008). Subjects were not 

restricted from naming multiple friends but on most occasions only named a single friend, 

resulting in a sparsely-connected network. Out-degrees were typically 0 or 1 while in-

degrees were more widespread with values ≥2 relatively common. Emulating Paul and 

O’Malley (2013), all FHS offspring members who named or were named by another 

offspring cohort member over any two consecutive exams were included in the analysis, 

yielding N = 831 individuals observed at up to T = 8 exams (7 relationship change 

opportunities). A plethora of personal characteristics (gender, age, BMI, smoking status, 

various medical quantities) are available although herein we focus on age. More details of 

both the FHS and TFLS networks appear in Paul and O’Malley (2013).

In these networks relationship status (close friendships between schoolgirls or between study 

members) is presumed known for all N (N − 1)/2 dyads, yielding complete sociocentric data. 

Close friendship is represented as a binary random variable (1 = yes, 0 = no) with the 

presence thereof referred to as a tie. Because there is no constraint that a tie from one 
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individual to another implies that a tie exists in the reverse direction the networks are 

directional.

To identify the presence of homophily or some other relationship feature (e.g., reciprocity) 

in the network, other possible explanations for the formation and dissolution of ties need to 

be statistically adjusted for or controlled. Finding the important determinants of a network is 

aided by longitudinal data. However, such data has historically been elusive. Not 

surprisingly, methods for longitudinal analysis of sociocentric data are scarce and those that 

do exist are confronted by computational challenges. For example, we previously developed 

a novel model for a longitudinally-observed sociocentric network that allowed homophily 

effects and other network phenomena to be estimated. Although the methodology was 

sound, implementation was restricted to small- to mid-sized networks by CPU and time 

constraints (Paul and O’Malley, 2013). One of the reasons for the challenging computations 

is that the number of dyads in a sociocentric dataset has order N2 as opposed to the order N 

number of observations in individual level analyses. Because large networks with N ≥ 1000 

are becoming commonplace, the development of methods of estimating models of networks 

for any N and T is timely.

The method proposed herein adapts ideas from survey sampling methodology to accurately 

approximate estimates of the full network in minimal computational time. The genesis of the 

method is the observation that as N increases the number of dyads that remain null (no ties) 

over time increases. Therefore, as long as the sampling design is accounted for in the 

analysis, in large networks only a small fraction of the always-null dyads may be needed to 

accurately approximate the estimates computed on the full network. To account for the 

dependencies introduced by sampling, we develop a novel weighted likelihood (WL) 

estimation procedure that weights the observations for each dyad by the inverse of the 

probability of sampling that dyad. The proposal to subsample null-dyads is not without 

precedent (Raftery et al., 2012; Kleinbaum, 2012). However, to our knowledge we are the 

first to consider subsampling in the context of longitudinal sociocentric networks.

In Section 2 we define notation and specify models for longitudinal analysis of sociocentric 

data. In Section 3 we describe our proposed sampling design and develop associated WL 

estimation and implementation procedures. To evaluate the efficacy of the WL estimation 

procedure, we compare it to a full information observed data likelihood (ODL) procedure on 

the smaller TFLS network data for which estimation of the ODL procedure is feasible and 

discuss the limitations of ODL methods on larger or more intensely observed networks. The 

estimation methods are applied to the two longitudinal sociocentric network data sets 

described above in Section 4 with comparisons between the methods and other results 

reported in Section 5. Section 6 reviews the primary findings and discusses limitations.

2. Notation, Nertwork Phenomena, and Model Specification

Let Yijt denote the presence of a tie (1 = friend, 0 = not a friend) from individual i to 

individual j (i, j ∈ {1, …, N}) at time t ∈ {1, …, T}. The bivariate random variable Dijt = 

(Yijt, Yjit), the status of dyad ij at time t, is the primary unit of analysis and the subject of our 

statistical model. Clearly, Dijt contains 0 (null friendship), 1 (directional friendship), or 2 
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(mutual friendship) ties. For notational convenience, the sequence of states held by a dyad is 

collated as Dij = (Dij1, …, DijT), the whole network at a given time as Dt = {Dijt}i<j, and the 

sequence of networks beyond baseline (t = 1) as D = (D2, …, DN).

In both the TFLS and FHS networks several network phenomena are of interest. If the 

prevalence of mutual dyads is greater than expected (i.e., if knowing i named j as a friend 

makes it more likely than otherwise that j named i as a friend) all else equal then reciprocity 

is present. A distinct phenomena from reciprocity is the propensity of an individual to name 

others as friends being correlated with the propensity of them being named by others as a 

friend. A positive correlation suggests that expansive individuals are also popular while a 

negative correlation might suggest the presence of powerful individuals who keep few close 

friends despite many others wanting to be their friend. Transitivity, the phenomena 

commonly referred to as a “friend of a friend is a friend,” is the most well-known form of 

between-dyad dependence. In addition, various forms of homophily may be present and as 

in any longitudinal study, observations may be serially dependent (O’Malley and Marsden, 

2008). A model for longitudinal sociocentric network data is needed to distinguish the 

effects of each of these and other terms (Handcock et al., 2003; Robins et al., 2007; Lewis et 

al., 2008). The statistical model considered in this paper was developed in our own prior 

work (Paul and O’Malley, 2013), which built off or was motivated by the work of several 

others (van Duijn et al., 2004; Zijlstra et al., 2006; Hoff, 2005, 2008).

A vector of covariates xijt includes the homophily (or similarity) measures (e.g., difference 

in age, both smokers or both non-smokers) for actors i and j at time t, any observed 

predictors specific to individuals i and j at time t, and any network-based covariates 

capturing transitivity or other forms of triadic dependence determined from Dt′ for t′ < t as 

elements. An example of the latter is the common source covariate, given by I(Σk≠i,j 

Yki(t−1)Ykj(t−1) > 0) where I(event) = 1 if event is true and 0 otherwise, allowing an individual 

k ≠ i, j naming both i and j as a friend at t −1 to have an effect on the likelihood of ties 

between i and j at t. Time-lagged versions of such triadic-type covariates are used in place of 

contemporaneous predictors in order to ensure that the resulting model is well-defined and 

self-consistent (Paul and O’Malley, 2013). To allow different effects on tie-formation and 

tie-retention, two versions of the common source covariate are created through 

multiplication by 1− Yij(t−1) and Yij(t−1), respectively.

The bivariate Dijt may be represented as a four-category multinomial random variable and 

Dij(t−1) → Dijt is represented by a 4 × 4 transition matrix. We focus on dyadic models with 

assumed Markov dependence across time so that the transition matrix is a sufficient 

representation of the serial dependence of a dyad on its prior states. However, this 

assumption could be relaxed to allow dependence on earlier states of the dyad (and more 

generally the network). We further assume that transitions in dyad status follow a 

generalized mixed effect logistic regression equation (an alternative link function such as the 

inverse of the standard normal cumulative distribution function as for probit regression 

could instead be considered). Let θij = (ai, bi, aj, bj) denote the individual-specific 

propensities of i and j to form (a) and receive (b) friendships. The probabilities of the four 

possible states of Dijt are represented in the form:
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(1)

where

(2)

(3)

and

(4)

In (1) the terms μijt and ρijt are linear predictors that relate the systematic components of (3) 

and (4) to the four state probabilities of dyad ij at t. The term μijt includes factors associated 

with the likelihood that Yijt = 1 but not necessarily with the likelihood that Yjit = 1. 

Dependence between Yijt and Yjit not attributed to observed characteristics of the individuals 

is quantified by the extent that ρijt = ρjit and is known as reciprocity. The further ρijt is from 

0 the greater the difference between Pr(Yijt = Yjit = 1 | Dt−1 = dt−1, xijt, θij) and exp(μijt + 

μjit)/kijt, its value under statistical independence of Yijt and Yjit.

The density parameter β0 reflects the rate of tie-formation in dyads whose current state is 

null. The reciprocity parameter λ0 allows the rate of formation of a tie from i to j to be 

correlated with that of a tie from j to i in dyads whose current state is null. The parameters 

β1, β2, and β3; and λ1 and λ2 are modifications of β0 and λ0 when the dyad is in the various 

non-null states at t − 1. For example, λ1 measures the increased propensity of a bidirectional 

tie at t if it is asymmetric as opposed to null at t − 1.

We assume that the sender and receiver effects in θij only impact μijt and are time invariant 

although these assumptions could be relaxed. To complete the model we assume (ai, bi) are 

random effects from a bivariate normal distribution having mean 0 and covariance matrix Σ 

(standard deviations σa and σb; correlation coefficient ν). The model in (1–4) is then a 

longitudinal extension of the P2 model (Duijn et al., 2004).

The joint likelihood function of the observed data and the random effects is given by

(5)

where Ω = (β, λ, θ) and Σ denote the transition model and random effect parameters, 

respectively. The factorization evident in (5) follows from the conditional independence of 

the dyadic observations given (a, b) and the independence of the random effects.
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2.1. Bayesian Estimation

Due to the hierarchical structure of the model, Bayesian methods are natural to use for 

estimation. As in Paul and O’Malley (2013) we complete a Bayesian specification of the 

model by assuming diffuse normal priors (mean 0 and variance 106) for the regression 

coefficients (β, λ). Instead of specifying priors directly for Σ, for additional flexibility we 

express the joint distribution of the random effects (ai, bi) in the product normal form 

(Spiegelhalter, 1998; Cooper et al., 2007). The product-normal form is advantageous 

compared to assuming (e.g.) the conjugate inverse-Wishart prior for Σ as it allows the prior 

for the variance and correlation components of Σ to be specified with different levels of 

precision. In the analyses of the TFLS and FHS networks we assume  and 

, where  and  in-turn have inverse-gamma priors with mean 1 and 

variance 103, and ϕ ~ N(0, 106).

3. Sampling Always-Null Dyads

In previous work we found that model estimation rapidly became too CPU intensive and 

time-consuming due to the O(N2) number of dyads. However, because the proportion of 

dyads that remain in their null state throughout (“always-null dyads”) naturally increases 

with N (Dunbar, 1992; Gladwell, 2000), it is reasonable to expect that sampling such dyads 

will result in minimal loss of precision. Therefore, we propose the sampling-design that 

samples non always-null dyads with probability 1 and always-null dyads with probability 

π0. Let  so that rij = 1 if dyad ij is an always-null dyad and rij = 0 

otherwise, and Sij = 1 if dyad ij is sampled and 0 otherwise. Then the associated sampling 

probability is given by .

The above sampling scheme is easily extended by allowing the sampling probabilities to 

depend on xij. For example, setting Pr(Sij = 1 | Dij) = 1 if individuals i and j are both friends 

with an individual k ≥ i, j at some t and 0 otherwise would ensure that the dyads that contain 

the most information about triadic effects are assured of being sampled. Such sampling 

designs are highly desirable when certain levels of a predictor occur infrequently to ensure 

the model is estimable on the sample data.

Because the sample inclusion indicators depend on Dij they are informative and ignoring 

them is likely to lead to sample selection bias. The joint likelihood function of D and θ given 

the sample inclusion indicators S has the form p(D, θ | S,X,D1), where X contains the matrix 

of covariates from across the observations and D1 is the initial state of the network. Because 

p(D, θ | S,X,D1) = p(D | S, θ,X,D1)p(θ | S,X,D1) it is convenient to consider p(D | S, θ,X,D1) 

and p(θ | S,X,D1) separately. Although the likelihood function is well-defined and 

maximum-likelihood or Bayesian estimators inherit the associated optimality properties, 

conditioning on S leads to non-standard expressions. As illustrated in the Appendix, p(D | S, 

θ,X,D1) is available in closed-form but is laborious to evaluate when T is large, while p(θ | 

S,X,D1) is not available in closed-form and so exact computation would entail numerical 

evaluation of an unresolved integral. Therefore, while traditional estimators exist 
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theoretically, computation of them would be onerous. To avoid such bias we propose to use 

a WL procedure to estimate the model parameters.

3.1. WL Point Estimation

In the design-based approach to the analysis of survey data, weighted estimators are often 

used to account for informative sampling designs. The general procedure is to weight 

observations by the inverse of their sample inclusion probability, thereby ensuring that 

inferences pertain to the individuals in the sampled population. The analogy for the 

sociocentric network is to weight each sampled dyadic observation by the inverse of its 

sampling probability.

Because we are interested in estimating the parameters of the model in (1–4), we propose to 

weight the contribution of each sampled observation to the likelihood function. This 

procedure emulates an approach to estimating hierarchical models on survey data given 

informative sampling weights (Browne et al., 2002; Pfeffermann et al., 1998). We first 

ignore the presence of random effects and focus on the weighted-likelihood alternative to 

p(D | S, θ,X,D1). For our sampling scheme, the weighted log-likelihood function conditional 

on θ is

(6)

where  and 

 are the likelihood contribution and sampling weight, 

respectively, for dyad ij. The WL in (6) is not a true likelihood function as the weights do 

not represent the frequency of observations. However, from the perspective of 

approximating the estimates that would have obtained had the full sociocentric network been 

analyzed, theory suggests maximizing (6) is a more desirable procedure than the naïve 

unweighted alternative.

To accommodate the random effects θ, we extend (6) to

(7)

The unweighted second term on the right-hand-side of (7) arises because the sample design 

does not directly depend on θij; therefore, the information contained in S about θ is likely to 

be minimal. Therefore, we make the approximation p(θ | S,X,D1; Ω) ≃ p(θ; Σ) = Πi p(ai, 

bi;Σ). Raftery et al. (2012) similarly argues that information in the sample inclusion 

indicators about an individual’s position in the latent “social space” (the random parameters 

in this context) need not be used to construct individual-level weights.

O’Malley and Paul Page 7

Comput Stat Data Anal. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Bootstrap interval estimation procedure

An advantage of using (7) (or (6) if no covariates) for point estimation is that it is easily 

maximized. However, because it is not a true likelihood function, the WL is not calibrated to 

the information in the sample and so standard MCMC-derived variance estimates cannot be 

assumed to adequately represent the precision of knowledge about the true parameters. 

Therefore, we use a non-parametric bootstrap to compute interval estimates for the WL 

procedure. The resulting 100(1 − α)-level intervals are used to approximate the exact 

100(1−α)% equal-tailed Bayesian credible intervals. For the analyses conducted herein we 

assume α = 0.05.

The following pseudo-code describes the bootstrap procedure:

1. For k = 1 : nboot:

a. Re-sample with replacement N(N −1)/2 dyads from the network, keeping the 

set of observations attached to each dyad intact. Denote the re-sampled data 

by Dk.

b. Sample the always-null dyads in Dk with probability π0 and augment these 

with the non always-null dyads (sampled with probability 1). Denote the 

sampled data by .

c. Use the WL procedure to fit the model to . Denote the posterior mean 

estimates of the model parameters by Ωk = (βk, λk, θk) and Σk.

2. Take the 100α/2 and 100(1−α/2) percentiles of each element of {Ωk,Σk}k=1:nboot as 

the 95% interval estimate.

Because the bootstrap fits the model on each re-sampled dataset (in our case nboot = 100) in 

step 1c, we recommended that the bootstrap calculations be conducted in parallel.

The key assumption underlying the bootstrap is that the units of observations being re-

sampled are independent. In the case of the model in (1–4), dyadic independence does not 

hold as multiple dyadic observations depend on the same elements of θij. Furthermore, a 

two-stage bootstrap re-sampling scheme that re-samples clusters and observations within 

clusters does not solve the problem as the sender (a) and receiver (b) random effects are 

cross-classified between dyads. Therefore, the proposed bootstrap procedure is in general an 

approximation that warrants evaluation.

3.3. Validation of WL Estimation Procedure

A theoretically supported estimation procedure is to evaluate the likelihood function of the 

observed data conditional on S = {(i, j) : Sij = 1}, the set of the sample inclusion indicators. 

Maximization of the resulting observed data likelihood (ODL) function is a statistically 

efficient procedure as all the information in the sample is utilized, including the information 

contained in the sample inclusion indicators. The ODL procedure emulates estimation of 

models for case-control studies, an approach that has been previously considered for cross-

sectional network data (Raftery et al., 2012; Kleinbaum, 2012) but not for longitudinal 

network data.
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Because p(D | S, θ,X,D1) has a closed-form expression for all T (see Appendix), exact full 

information likelihood-based estimates can be computed for the case when (ai, bi) are 

constant across i. In general, because p(θ | S,X,D1; Ω) does not separate into disjoint 

components due to the involvement of ai and bi in multiple dyads (see Equation 10 in the 

Appendix), the ODL function involves a 2N-dimensional integral that does not have a 

closed-form. Therefore, exact likelihood-optimization or Bayesian evaluation is 

computationally challenging. However, because S only depends on θij indirectly through Dij, 

it is reasonable to assume S is only weakly informative about θ. Therefore, we approximate 

p(θ | S,X,D1; Ω) by p(θ; Σ) = Πi p(ai, bi; Σ) and use the resulting “pseudo ODL,”

(8)

as a “working” likelihood function for computing estimates against which to evaluate the 

performance of the WL procedure.

In those cases when ODL is available and able to be evaluated exactly, it provides a gold 

standard against which to evaluate the WL procedure. However, the above approximations 

notwithstanding, application of the ODL procedure is limited to situations where T is small 

(see Appendix for details).

4. Analyses of Network Data

In analyzing the TFLS and FHS networks, we assume (ai, bi) is a bivariate normal random 

variable with unknown covariance. When using the ODL procedure to assess the WL 

procedure, we also consider the special case where the variances are 0 (i.e., the random 

effects are constant across dyads). Because the objective of the WL procedure is to recover 

the estimates obtained from the full sample, the π0 = 1 case yields an upper bound on the 

performance of the WL procedure.

4.1. TFLS Network

In the TFLS analysis, xijt consists of indicators of whether individuals i and j either both 

smoked or both did not smoke (“same smoking status”) at t and whether a third individual 

named both individuals as a friend at t − 1 (“lagged common source”). The common source 

covariate allows a test of whether a new tie is more likely to form or an existing tie is more 

likely to remain intact if the presence of that tie would result in a transitive triad.

The smaller (N = 50, T = 3) TFLS network allows the impact of sampling always-null dyads 

to be evaluated efficiently for each of: (1) naïve analysis of the sampled data (ignoring the 

fact that sampling has occurred), (2) the WL approach, and (3) the ODL procedure to assess 

the efficacy of the WL procedure. We evaluate results when π0 = 0.005, 0.01, 0.02, 0.05, 

0.10, 0.25, 0.5, and 1 to assess the extent to which WL recovers the estimates for the full 

network as π0 → 0. To determine which parameters are the most sensitive to π0, results are 

compared between the elements of (β, λ, Σ).
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4.2. FHS Network

The model for analysis of the FHS network is analogous to that for the TFLS network 

except that xijt includes the absolute difference of age for actors i and j as a homophily 

covariate in place of the same smoking status covariate. Because T = 8, the denominator of 

each contribution of the ODL function evaluates and sums 47 = 16, 384 terms, a laborious 

computation that needs to be frequently performed (see Appendix). Therefore, we only 

apply the WL procedure to the FHS Network.

To fully evaluate the utility of WL on the FHS network we evaluate its performance with π0 

as small as 0.001. For the purpose of the bootstrap we treat dyads as independent units – a 

reasonable assumption in the FHS due to the fact that individuals seldom name more than 

one close-friend at a single wave. Computations were performed using computer code 

written in the C programming language and, for preliminary testing, the R statistical 

language. The bootstrap was implemented by running analyses in parallel on a machine with 

eight dual-core processors. CPU times are reported for the evaluation of point estimates of 

the parameters.

5. Results

5.1. TFLS Network: Recovery of Estimates for Full Network from Sampled Data

Approximately 5% of possible ties were present at any given wave. The rate of friendship 

transitions (formation or dissolution) across consecutive waves was about 7% (173 changes 

in friendship occurred out of 2256 opportunities). The observed number of triads across the 

three waves was 86, 88 and 137 – substantially greater than would be expected by chance 

and implying that accounting for triadic dependence is important (Paul and O’Malley, 

2013).

It is clear from the results for the naïve method that ignoring sampling leads to substantial 

bias (Figure 1). The dependence of the point estimates on π0 exhibits asymmetry for pairs of 

parameters in which one parameter is a modification of another (e.g., β0 and β1, θ0 and θ1) 

reflecting the high collinearity between them. Sensitivity of the WL and ODL estimates to 

π0 is confined to the range [0, 0.05], suggesting that π0 = 0.05 is a sufficiently large 

sampling probability. The fact that the results for β are the least sensitive to π0 is a 

consequence of the invariant sampling probabilities. If the sampling design was covariate-

specific (e.g., dyads with two or more individuals naming them as friends were sampled 

with high probability), the estimates of β would likely be more sensitive to the sampling 

probabilities.

When the analysis was repeated without random effects, the results were similar suggesting 

that the approximations in the random effect component of the likelihood function have 

minimal impact. In addition, both the WL and ODL procedures successfully recovered the 

full sample estimates for π0 ≥ 0.02. However, WL was inferior to ODL for π0 < 0.02, an 

observation consistent with the general decline in performance of weighted estimators as the 

variability of the weights increases.
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The variances associated with WL and ODL are expressed in Figure 2 as ratios relative to 

the posterior variance under the naïve method. In general, the posterior variances under WL 

are larger than the ODL variance estimates. The parameters for whom the variance ratios are 

most sensitive to π0 are β0 and λ0. These parameters utilize information from the always-null 

dyads while estimates of the remaining parameters (βk, λk for k > 0) are identified solely 

from non-null dyads, which are included in the sample with probability 1 and thus are less 

sensitive to π0.

Table 1 shows the fitted model parameters for the TFLS data when π0 = 1 and when π0 = 

0.05 for WL and ODL. The existence of an individual in the role of a common source is 

associated with an increase in the likelihood of tie formation whereas same smoking status 

was non-significant in all scenarios, particularly as π0 decreased.

5.2. FHS Network: Comparison of CPU times

Whereas the TFLS network was based on individuals naming up to 12 friends, the FHS 

network was based on individuals most commonly naming a single close friend. Together 

with the large N, this led to fewer than 0.1% of dyads being non-null at any given wave. Due 

to sample attrition (e.g., due to death), the number of dyads in the sample declined from 

306,687 at exam 1 to 181,329 at exam 8.

Under WL and when π0 = 0.005, the estimates of all terms other than the elements of Σ are 

similar to those when π0 = 1, implying that 0.5% is a sufficient sampling fraction under the 

WL procedure (Table 2). Therefore, WL appears to be an efficient means of analyzing large 

networks.

The age-difference homophily covariate has a significant negative effect under both the 

weighted and full data analyses implying that individuals with more disparate ages were less 

likely to form or maintain friendships. Because the design of the FHS only required that a 

single close-friend be named at each wave, the variability of the out-degree distribution was 

much smaller than for the TFLS network leading to imprecise estimates of ν, the correlation 

of the latent propensities of individuals to name friends (expansiveness) and be named as 

friends (popularity).

The reduction in CPU time as a function of π0 was more profound for the FHS than the 

TFLS analyses (Figure 3). For example, the CPU time used by WL when π0 = 0.005 is 61 

times less than that of the full sample analysis on the FHS network while the analogous ratio 

for the TFLS is 2.7. The substantial difference of the ratios reflects the increased benefit 

from sampling always null dyads in large sparse networks due to the lower information 

content of each always-null dyad. Clearly, the larger the network the greater the utility of 

sampling the always-null dyads and, from a practical perspective, the more likely a 

computation that was unfeasible (years to complete) is to become feasible (days or hours to 

complete).
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6. Conclusion

The analysis of large sociocentric networks encounters various methodological and 

computational problems. For example, in the exponential random graph (ERGM) or pstar 

(p*) family of models (Frank and Strauss, 1986; Wasserman and Pattison, 1996), exact 

computations become unfeasible when N > 20 (Hunter and Handcock, 2006). Although 

approximate numerical estimates for ERGMs have been obtained using Markov-chain 

Monte Carlo (MCMC) for larger N (Goodreau, 2007), problems due to insufficient memory 

and computational time are commonly encountered. In the latent space family of models, 

which the models considered herein are a close derivative of, computations have been 

reported as becoming troublesome when N > 1000 (Raftery et al., 2012).

To overcome the above concerns we used informative dyadic sampling combined with a 

weighted-likelihood (WL) estimation method to estimate a longitudinal socio-centric 

network model. We validated the procedure using the small TFLS network for which 

likelihood-based estimates (or approximations thereof) could be computed and used as a 

bound to measure the performance of the WL procedure. We then showed that the WL 

procedure permitted rapid model estimation on the large FHS network with accurate results 

when using always-null dyad sampling fractions as low as 0.001.

Furthermore, because the density of ties in networks tends to decrease with N, smaller π0 

may be used thereby allowing WL to be applied to very large networks. A challenge facing 

WL is that bootstrap interval estimates must be computed for each re-sampled dataset. 

However, the bootstrap can be implemented such that each sample is analyzed in parallel, 

alleviating this concern. Therefore, the WL procedure has general applicability for any (N, 

T). Although the ODL procedure might be feasible when T is small (≤ 3), its feasibility will 

decline relative to that of analyzing the full network as T increases.

The dyadic sampling plan described herein is applicable irrespective of the complexity of 

the statistical model for the network. The only requirement is that the probability of 

sampling each dyad is known or is able to be accurately approximated. The always-null 

dyadic sampling scheme considered in this paper can be extended to allow dyads embedded 

in network positions of particular interest (e.g., if the individuals comprising them share 

certain traits or connections to common others) to be sampled with high probability or even 

with certainty. The mixed-effects generalized logistic regression model in (1–4) can also be 

extended in various ways, including allowing the addition of latent variables representing 

individuals’ positions in a “social space” to account for contemporaneous triadic dependence 

(Hoff et al., 2002; Hoff, 2005, 2008). A sampling scheme that over-samples triads would 

make estimation of such a model less computationally burdensome.

The evaluation of standard errors for the WL procedure warrants further research. An 

alternative to the proposed heuristic would be to form blocks of individuals in the network 

such that relationship statuses in different networks are as close to independent as possible. 

One strategy is to use a community detection algorithm that partitions individuals into 

clusters such that the ratio of ties within clusters to ties between clusters is maximized 

(Newman and Girvan, 2004). A bootstrap would then re-sample the clusters without 
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replacement as opposed to re-sampling individual dyads. The closer the “communities” are 

to having no ties between them, the more accurately the bootstrap would be expected to 

perform. However, the low density of ties in the FHS network makes it unlikely that this 

more complex procedure would have obtained meaningfully different results.

Acknowledgments

Research for the paper was supported by NIH grant P01 AG031093. We thank Joel Hoff for expert programming 
and Nicholas Christakis and Alan Zaslavsky for helpful comments.

References

Browne WJ, Draper D, Goldstein H, Rasbash J. Bayesian and likelihood methods for fitting multilevel 
models with complex level-1 variation. Computational Statistics & Data Analysis. 2002; 39(2):203–
225.

Christakis N, Fowler J. The spread of obesity in a large social network over 32 years. New England 
Journal of Medicine. 2007; 357:370–379. [PubMed: 17652652] 

Christakis N, Fowler J. Dynamics of smoking behavior in a large social network. New England Journal 
of Medicine. 2008; 358:2249–2258. [PubMed: 18499567] 

Cooper NJ, Lambert PC, Abrams KR, Sutton AJ. Predicting costs over time using bayesian markov 
chain monte carlo methods: an application to early inflammatory polyarthritus. Health Economics. 
2007; 16:37–56. [PubMed: 16981192] 

Duijn MV, Snijders TAB, Zijlstra B. P2: A random effects model with covariates for directed graphs. 
Statistica Neerlandica. 2004; 58:234–254.

Dunbar R. Neocortex size as a constraint on group size in primates. Journal of Human Evolution. 
1992; 22(6):469–493.

Frank O, Strauss D. Markov graphs. Journal of American Statistical Association. 1986; 81:832–842.

Gladwell, M. The Tipping Point: How Little Things Make a Big Difference. Little, Brown and 
Company; 2000. 

Goodreau S. Advances in exponential random graph (p*) models applied to a large social network. 
Social Networks. 2007; 29:231–248. [PubMed: 18449326] 

Handcock MS, Robins GL, Snijders TAB, Moody J, Besag J. Assessing degeneracy in statistical 
models of social networks. Journal of American Statistical Association. 2003; 76:33–50.

Hoff, P. Advances in Neural Information Processing Systems. Vol. 20. MIT Press; 2008. Modeling 
homophily and stochastic equivalence in symmetric relational data; p. 657-664.

Hoff PD. Bilinear mixed effects models for dyadic data. Journal of American Statistical Association. 
2005; 100:286–295.

Hoff PD, Raftery AE, Handcock MS. Latent space models for social networks analysis. Journal of 
American Statistical Association. 2002; 97:1090–1098.

Hunter DR, Handcock MS. Inference in curved exponential family models for networks. Journal of 
Computational and Graphical Statistics. 2006; 15:565–583.

Kleinbaum AM. Organizational misfits and the origins of brokerage in intrafirm networks. 
Administrative Science Quarterly. 2012; 57:407–452.

Langholz B, Goldstein L. Conditional logistic analysis of case-control studies with complex sampling. 
Biostatistics (Oxford). 2001; 2(1):63–84.

Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N. Tastes, ties, and time: A new social 
network dataset using facebook.com. Social Networks. 2008; 30:330–342.

Michell L, Amos A. Girls, pecking order and smoking. Social Science and Medicine. 1997; 44:1861–
1869. [PubMed: 9194247] 

Neuhaus JM, Jewell NP. The effect of retrospective sampling on binary regression models for 
clustered data. Biometrics. 1990; 46:977–990. [PubMed: 2085642] 

O’Malley and Paul Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review 
E. 2004; 6910.1103/PhysRevE.69.026113

O’Malley AJ, Marsden PV. The analysis of social networks. Health Services & Outcomes Research 
Methodology. 2008; 8(4):222–269. [PubMed: 20046802] 

Paul S, O’Malley AJ. Hierarchical longitudinal models of relationships in social networks. Journal of 
the Royal Statistical Society, Series C (Applied Statistics). 2013; 62(5):705–722.

Pfeffermann D, Skinner CJ, Holmes DJ, Goldstein H, Rasbash J. Weighting for unequal selection 
probabilities in multilevel models (Disc: P41-56). Journal of the Royal Statistical Society, Series 
B: Statistical Methodology. 1998; 60:23–40.

Raftery A, Niu X, Hoff P, Yeung K. Fast inference for the latent space network model using a case-
control approximate likelihood. To appear: Journal of Computational and Graphical Statistics. 
2012

Robins GL, Snijders TAB, Wang P, Handcock MS, Pattison PE. Recent developments in exponential 
random graph (p*) models for social networks. Social Networks. 2007; 29(2):192–215.

Snijders, TAB. [Accessed: July 29, 2014] Description excerpt of 50 girls from “teenage friends and 
lifestyle study” data. 2014. http://www.stats.ox.ac.uk/~snijders/siena/s50data.htm

Spiegelhalter DJ. Bayesian graphical modelling: A case-study in monitoring health outcomes. Journal 
of the Royal Statistical Society, Series C: Applied Statistics. 1998; 47:115–133.

van Duijn M, Snijders TAB, Zijlstra B. P2: A random effects model with covariates for directed 
graphs. Statistica Neerlandica. 2004; 58:234–254.

Wasserman S, Pattison P. Logit models and logistic regressions for social networks: I. an introduction 
to markov graphs and p*. Psychometrika. 1996; 61:401–425.

West, P.; Sweeting, H. In Working Paper no. 52. Glasgow: MRC Medical Sociology Unit; 1995. 
Background rationale and design of the west of scotland 11–16 study. 

Zijlstra BJH, van Duijn M, Snijders TAB. The multilevel p2 model: A random effects model for the 
analysis of multiple social networks. Methodology. 2006; 2:42–47.

Appendix

Observed Data Likelihood (ODL)

We seek the observed data likelihood (ODL) given the set of sampled dyads, denoted p(D, θ 

| S, X, D1), where S = {(i, j) : Sij = 1} is the set of the sample inclusion indicators and X 

contains the covariates of all observations. Because p(D, θ | S, X, D1) = p(D | S, θ, X, D1)p(θ 

| S, X, D1) we derive the joint posterior distribution of (D, θ) by computing p(D | S, θ, X, D1) 

and p(θ | S, X, D1) separately.

Under the assumed model, the elements of {Dij}i<j are conditionally independent given θ, 

implying p(D | θ, X) = Πi<j p(Dij | θij, xij). Therefore,

(9)

where  and ij denotes the set of 

4T −1 possible values of (Dij2, …, DijT). Similarly,

O’Malley and Paul Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stats.ox.ac.uk/~snijders/siena/s50data.htm


(10)

where (ai, bi, aj, bj) is substituted for θij to make the form of the dependence on the random 

effects clear.

6.1. Relationship of ODL procedure to complete data maximum likelihood

We temporarily ignore the presence of θ in the model in order to (i) establish a connection 

between maximization of (9) and maximum likelihood estimation and (ii) show that ODL 

becomes computationally unfeasible as T increases, even in the absence of θ. The former 

provides a useful characterization of the impact of retrospective sampling and makes a 

connection to the general literature on retrospective sampling (Neuhaus and Jewell, 1990; 

Langholz and Goldstein, 2001). The latter justifies the use of WL estimation on large 

networks.

Connection of ODL to Maximum Likelihood—When T = 2 it follows that rij1 = (1 − 

yij1)(1 − yji1) and

where  equals Pr(Dij2 |, xij, D1; Ω) when β̃
k = βk − log(π0) for k = 0, 3; β̃

k 

= βk + log(π0) for k = 1, 2; θ̃k = θk + log(π0) for k = 0, 2; and θ̃1 = θ1 − log(π0) are 

substituted in (3) and (4). If the sampling design is generalized such that Pr(Sij = 1 | Dij) = π1 

when rij = 0 then log(π0/π1) is substituted for log(π0).

The above derivation reveals that after accounting for retrospective sampling of dyads when 

T = 2, the ODL function has the same form as the likelihood function for the full network. 

Therefore, estimates of the model parameters are obtained by fitting the model given by (1) 

– (4) to obtain estimates of β̃ and θ̃ and then adding or subtracting log(π0) as appropriate.

Impracticality of ODL when T is large—Let + denote the set of non-null values of 

Dij. For general T,
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(11)

Because the model does not contain predictors of lag two or greater, the term 

 contains indicator variables that are not inside the exponential in 

the numerator of (11), preventing reduction to the same form of likelihood function as for 

the complete data case. Therefore, specialized methods of optimizing (11) are needed.

Because the likelihood function has a closed-form expression, MCMC and other likelihood-

based methods of estimation can be directly applied. However, summing the 4T −1 terms in 

the denominator of (11) for each of the N (N − 1)/2 dyads and each time the likelihood 

function is evaluated, rapidly becomes infeasible as T increases. For example, if T = 8 (as in 

the FHS network), 16,384 terms are summed each time the likelihood contribution of a 

single dyad is evaluated. In general, ODL is impractical when T is large.

Accessing Data Used in Paper

The two longitudinal network datasets and additional individual specific covariate 

information are available from:

1. Excerpt of 50 students from the Teenage Friends and lifestyle study (TFL): 

Publicly available at: http://www.stats.ox.ac.uk/~snijders/siena/Glasgowdata.htm

2. Offspring cohort of the Framingham Heart study (FHS): Network Data can be 

accessed through the application process at: http://www.ncbi.nlm.nih.gov/gap. 

Search for “framingham social network” to locate the data. Instructions for 

applying for data access are on the site.

In both cases, the relational data are in the form of adjacency matrices (i.e. an N ×N matrix).
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Highlights

1. Estimation of statistical models for social networks is challenging

2. Dyads with no relationship (“null-dyads”) are common in large social networks

3. Proposal to subsample the “always-null” dyads proposed

4. Develop weighted likelihood Bayesian estimation method

5. Method enables large social networks to be analyzed feasibly and accurately
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Figure 1. 
Trajectories of point estimates of selected density, reciprocity, and covariate effects for the 

TFLS data. Fitted curves are used to help identify the point where the estimator fails to 

accurately approximate the estimate for the full network.
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Figure 2. 
Ratio of variance estimates under WL and ODL with respect to the naïve method on TFLS 

data. To make the point where the precision of estimation rapidly deteriorates clear, a 

smooth curve overlays the simulated values.
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Figure 3. 
CPU time ratios for WL on the TFLS network (with T = 3, ODL estimates are nearly 

indistinguishable to WL estimates) and in the FHS network (with T = 8, ODL is unfeasible) 

as a function of π0. The plotted values are the ratios of the CPU time of the full network 

analysis to the CPU time of the analysis of the sampled data when always-null dyads are 

retained with probability π0.
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Table 2

Posterior mean estimates of the model parameters for the mixed effects model fit to the FHS network

Term

Full Network WL (0.5% sample)

Mean (2.5, 97.5) Mean (2.5, 97.5)

Density terms

 β0 (baseline) −8.365 (−8.525, −8.204) −8.078 (−9.017, −8.122)

 β1 (lagged 1-way) 10.103 (9.923, 10.276) 9.998 (10.010, 11.238)

 β2 (lagged other way) 4.953 (4.044, 5.651) 4.797 (1.567, 6.108)

 β3 (lagged 2-way) −5.286 (−6.204, −4.098) −5.006 (−6.468, −1.734)

 βx (lagged common nominator) 2.532 (−0.448, 4.320) 2.175 (−0.582, 2.206)

 βx (difference in age) −0.051 (−0.063, −0.038) −0.064 (−0.076, −0.019)

Reciprocity

 ρ0 (baseline) 5.441 (4.490, 6.101) 5.005 (1.883, 6.295)

 ρ1 (lagged 1-way) −4.558 (−5.491, −3.161) −4.417 (−5.919, 0.958)

 ρ2 (lagged 2-way) 4.633 (2.357, 6.237) 4.504 (−3.550, 6.845)

Covariance matrix

   (sender Var)

0.104 (0.068, 0.143) 0.138 (0.007, 0.011)

   (receiver Var)

0.211 (0.110, 0.323) 0.600 (0.161, 1.703)

 ν (correlation) −0.309 (−0.740, 0.225) 0.654 (−0.686, 0.843)

The weighted likelihood (WL) estimates are for a 0.5% sample of always-null dyads; 95% interval estimates are enclosed in parentheses. Observed 
data likelihood (ODL) estimates are not available as the calculations are too laborious when T = 8.
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