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Abstract

Hot deck imputation is a common method for handling item nonresponse in sur-

veys, but most implementations assume data are missing at random (MAR). We pro-

pose a new hot deck method for imputation of a partially missing outcome variable

that does not assume data are MAR. We use a parametric model to create predicted

means for both donors and donees under varying assumptions on the missing data

mechanism, ranging from MAR to missing not at random (MNAR). When imputing a

continuous outcome variable, for a given assumption on the missingness mechanism,

the predicted means are used to define distances between donors and donees and

probabilities of selection proportional to those distances. Multiple imputation using

the hot deck is performed to create a set of completed data sets, using an approxi-

mate Bayesian bootstrap to ensure “proper” imputations. This new hot deck method

creates an intuitive sensitivity analysis where imputations may be performed under

MAR and under varying MNAR mechanisms, and the resulting impact on inference

can be evaluated. In addition, we propose two donor quality metrics to identify situa-

tions where close matches of donor to donee are not available, which can occur under

strong MNAR assumptions. We investigate bias and coverage of estimates from our

proposed method through simulation and apply the method to estimation of income

in the Ohio Medicaid Assessment Survey.
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We extend the proposed hot deck method for multiple imputation of a binary out-

come variable by assuming there exists a continuous latent variable that determines

the value of the binary outcome. This allows us to use the framework developed under

a continuous outcome to create predicted means assuming different missingness mech-

anisms. However, because the latent variable is by definition unobserved, additional

steps are required to obtain the parameter estimates used in creating the predicted

means and we compare two approaches of estimation. Furthermore, we modify donor

selection by implementing an adjustment cell procedure. We investigate bias and

coverage of estimates from our proposed method through simulation and study the

sensitivity to normality. We apply the method to estimation of mean ER+ status in

the Surveillance, Epidemiology, and End Results Program. In addition, we illustrate

how the method can be applied to estimate regression coefficients.
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Chapter 1: Introduction

This dissertation develops a new hot deck imputation procedure for item non-

response. We do not make the assumption that missingness is at random, as the

majority of hot deck imputations do. The method allows the examination of miss-

ingness mechanisms through the variation of a sensitivity parameter. The rest of this

chapter presents the nomenclature of missing data, and discusses common methods of

handling missing data. Chapter 2 reviews the literature that is relevant towards the

proposed method. The proposed method is described and studied in Chapter 3 for

imputation of a partially observed continuous variable. We formulate the steps of the

method, perform a simulation study to examine its behavior, and apply the method

to data from The Ohio Medicaid Assessment Survey. Chapter 4 extends the method

to handle imputation of a binary variable. The theory and steps are formulated, and

a simulation study is performed. The proposed method is applied to two data sets.

The first imputes missing estrogen receptor (ER) status in the Surveillance, Epidemi-

ology, and End Results (SEER) dataset, and the second illustrates how the method

can be applied to a logistic regression model when the outcome is partially observed.

Chapter 5 is summary, discussion and future work.
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1.1 Missing Data Terminology

Incomplete data arise frequently in observational studies, surveys, and even con-

trolled experiments. The reason the data are missing, the missingness mechanism,

has an impact on the methods used for inference. The missing data mechanism can

be classified as one of three types: missing completely at random (MCAR), miss-

ing at random (MAR), or missing not at random (MNAR) [1]. To introduce these

terms, consider the simple situation of having only one variable, Y , subject to miss-

ingness, and no covariates. MCAR implies that missingness is not dependent upon

observed or unobserved values of Y and is a special case of MAR. MAR means that

missingness may depend upon the observed values, but not on the unobserved Y .

Specifically, we let Y be the vector of potential responses for a subject, and let M

denote the missingness indicator, which takes the value 1 if Y is missing (unob-

served), and 0 if Y is observed. We can write Y as y = (yobs, ymiss). Under MCAR,

P (M = 1|y) = P (M = 1), whereas under MAR, P (M = 1|y) = P (M = 1|yobs) and

the shared assumption of these two mechanisms is the independence of missingness

with the unobserved values of y [1, 2].

A more complicated situation arises when the missing data mechanism is missing

not at random (MNAR). This is the case when the probability Y is missing depends

upon the unobserved values (and optionally, the observed values also), i.e., P (M =

1|y) = P (M = 1|ymiss, (yobs)). This is a problem because there is no formal test to

determine if the data are MNAR, since the probability a value is missing is dependent

upon the missing value itself. Tests can be performed to determine if the mechanism

is not missing completely at random, but if the MCAR assumption is questionable,

distinguishing between MAR and MNAR is not possible [3].
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The missing data mechanism can either be ignorable (meaning one does not need

to model it and it can be ‘ignored’), or nonignorable (meaning that the mechanism

should be modeled). An ignorable mechanism results when the missingness is either

(1) MCAR or (2) MAR with distinctness between parameters involved in the data

model and the response model. Nonignorability occurs when the data mechanism is

either (1) MNAR or (2) MAR and the parameters are not distinct [1]. The assumption

of ignorability can be evaluated by subject matter experts, data from outside sources,

or more formally through a sensitivity analysis. Though there are two situations that

lead to “nonignorability”, it has become common to use MNAR and nonignorability

interchangeably, and this is the nomenclature we use in this paper.

1.2 Methods for Handling Missing Data

There have been many methods developed to handle missing data, all which range

in degree of implementation difficulty, ability to properly reduce bias, and ability

to correctly estimate the standard error. Typically the degree of implementation

difficulty depends on whether the method has already been incorporated into software

methods and is easy enough to be used by non-statisticians. These may or may not be

the ‘best’ methods to analyze any specific data set. As will be illustrated throughout

this text, collecting data that are thought to be related to both missingness and the

variable that is missing can help with the “worst case scenarios” of missing data.

1.2.1 Methods assuming MCAR

Suppose a dataset contains a number of subjects with a set of covariates, all of

which are subject to missingness. There are two “easy” approaches to handle the

missingness: a complete-case analysis (list-wise deletion) or an available-case analysis

3



(pair-wise deletion). A complete-case analysis would remove every case that has at

least one missing value for any variable prior to performing any type of analysis.

Therefore, every analysis would be conducted on the same set of cases, regardless of

the covariates involved. However, if missingness is scattered amongst variables, this

approach could remove a large number of cases and any analysis would suffer from

lack of power. An alternative is an available-case analysis. This also removes cases

with missing values, but only for the variables being used in the current analysis. If

sets of analyses are done, such as a series of pairwise correlations, each correlation

could potentially consist of a different subset of original cases, depending on the pair

of variables used. This makes use of all available data for each single analysis, but

can be a problem when comparing results, since the comparisons would be done on

different sets of cases with varying sample sizes.

A major assumption of both the complete-case and available-case analyses is that

missingness is completely at random (MCAR). To test this assumption, one can com-

pare the distributions of fully observed variables for respondents and nonrespondents.

However, a formal test to distinguish between MNAR and MAR is not possible, be-

cause the values that matter are the values that are missing. The assumption that

the data are MAR may be more believable if certain variables that are thought to be

related to missingness are included in the analysis. If it is reasonable to believe the

data are indeed MCAR, and the rate of missingness is low (such that the complete

case analysis would only be removing a few cases) then the parameter estimates will

be unbiased and only a small loss of efficiency will incur. However, if the missing

data rate is high, and the data truly are not MCAR, then both the complete-case

and available-case analyses could result in biased estimates and increased variance [4].
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1.2.2 Methods assuming MAR

Imputation methods were developed in an attempt to recover the lost sample size

and information from high rates of missingness by creating ‘completed’ data sets. The

purpose is not necessarily to impute the correct value for the missing subject, but

to regain lost information to perform inference on a population parameter. Missing

values can either be imputed once (single imputation) or multiple times (multiple

imputation). With many imputation methods, the resulting parameter estimates

may be unbiased, but treating imputed values as if they were actually observed will

result in biased variance estimates.

Single Imputation

Single imputation imputes a single value for each missing value, and is the simplest

form of imputation. Mean substitution, also called unconditional mean imputation,

replaces the missing values with the mean of the observed values. This drastically

reduces the variance, since the same value (the mean), is imputed for every missing

value. Parameter estimates may be biased if the data are not MCAR. If large values

are missing at a higher rate than small values, for example, then the mean of the

respondents will be lower than the population average, and imputation of the respon-

dent mean for nonrespondents could be just as biased as the complete case analysis.

Mean substitution can also be done by subgroups, if the means differ across groups

(e.g., female weight versus male weight). While helping to reduce bias compared to

imputing the overall mean, this still underestimates the variability in the data.

Regression imputation (or conditional mean imputation) imputes the predicted

score from a regression model, i.e., Ŷi = Xβ̂. The variable Y represents the variable
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with missing values and X is a fully observed variable (or set of variables). The

β̂’s are found using the observed cases only, but the fitted values are available for

everyone in the data set (since they would all have fully observed X’s).

With unconditional mean imputation, correlations between variables in the data

are underestimated, but with conditional mean imputation, the correlations are over-

estimated and variances still underestimated. Consider the case where the true un-

derlying population has a strong linear relationship between two variables, but Y

values are missing at random among the X’s. For the true data, a low value of X

corresponds to a low value of Y . If unconditional mean imputation is used, so that

the mean of the observed Y ’s is imputed for all those missing, then low values of X’s

will have missing Y imputed higher than the true value, and high values of X’s will

have missing Y imputed lower than the true values. This disrupts the true linear re-

lationship between these variables, resulting in lower correlation. On the other hand,

with conditional mean imputation, the missing values will be imputed to lie perfectly

on the regression line, ‘forcing’ a stronger correlation than the true value.

Stochastic regression imputation takes conditional mean imputation one step fur-

ther. Stochastic regression has the exact same β̂’s, but random error is added to the

imputed estimate: Ŷi = [β̂0 + β̂1Xi] + ei, with ei ∼ N(0, σ̂2
Y |X). Other variations

involve adding a randomly chosen residual. Instead of imputing the missing values

so that they fall directly on the regression line, there would be some added vari-

ability, which would decrease the overestimated correlation of the conditional mean

imputation.
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Stochastic regression imputation is typically done via a parametric model. A

method that is considered non-parametric is hot deck imputation. Hot deck impu-

tation finds subjects with observed values of the variable with missingness, called

“donors”, who are “close” matches to subjects who are missing that variable. A re-

view of hot deck imputation can be found in [5]. There are many ways to create

the set of possible donors for each unobserved subject (the donor pool), and many

metrics used to define a “close” match. Once a donor has been selected, the donor’s

observed value is then imputed for the missing value. An advantage with hot deck

imputation is that actual observed values are being imputed, as opposed to impu-

tation of a mean, or predicted values from a regression. This method can preserve

associations between variables but treating imputed values as if they were known still

underestimates variances.

Multiple Imputation

Multiple imputation is the process of imputing more than one value for each miss-

ing observation, resulting in more than one complete data set. Multiple imputation

(MI), in the traditional sense as formulated by Rubin [1], consists of three stages:

imputation, estimation and pooling. Multiple imputation (so long as it is ‘proper’)

accounts for the uncertainty associated with missing data by creating a set of com-

pleted data sets with different imputed values for the missing subjects in each. Proper

multiple imputation must be performed to fully recover the missing variability of the

imputations. Rubin states, “With ignorable nonresponse, the respondents and non-

respondents share the same parameters, but the sample mean and sample variance

for respondents are not perfect estimates of these parameters, and our imputations

must reflect this uncertainty to be proper” (page 123 of [1]). Rubin suggests that to
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make imputations proper, prior distributions should be placed on all unknown model

parameters, e.g., placing priors on the β parameters in stochastic regression imputa-

tion. Schafer (1999) [6] discusses this further and gives examples. This needs to be

kept in mind as we proceed later with hot deck multiple imputation, since it is an

improper MI if no adjustment is made.

To implement multiple imputation, suppose the goal is to estimate a single pa-

rameter θ. As described in [7], based on D multiply-imputed datasets, the estimate

is simply the mean, ¯̂
θ of the θ̂′is from each of the D datasets:

¯̂
θ =

1

D

D∑
i=1

θ̂i. (1.1)

The variance associated with ¯̂
θ is given by:

VT = VW +

(
1 +

1

D

)
VB. (1.2)

Here, VW is the within-imputation variance, calculated as the average of the variance

estimates Ŵi from the individual data sets:

VW =
1

D

D∑
i=1

Ŵi, (1.3)

and VB is the between-imputation variance estimated as the variance of the θ̂i values

across the data sets:

VB =
1

D − 1

D∑
i=1

(θ̂i − ¯̂
θ)2. (1.4)

Inference about θ can be performed by comparing ¯̂
θ to a t-distribution with degrees

of freedom ν given by:

ν = (D − 1)

(
1 +

D

D + 1

VW
VB

)2

. (1.5)
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The nature of multiple imputation allows for the development of measures of the

impact of missing data, as it gives both an estimate of the sampling variability as if

there were no missing data (VW ), and an estimate of the uncertainty of the imputa-

tions (VB). A simple estimate of the nonresponse bias can be found by comparing the

MI estimate to the estimate using a complete case analysis [8]. One measure of the

impact of nonresponse on the sampling variance of the estimate that uses VW and VB

is the fraction of missing information (FMI) [1]. The fraction of missing information

is defined as

FMI =
VB + VB/D

VT
=
VB(1 + 1/D)

VT
(1.6)

for large D. We can compare equations (1.2) and (1.6) and observe that for large

D, the FMI is the fraction of the total variance which is due to the between impu-

tation variance. If the between imputation variance is much larger than the within

imputation variance, it implies we have high uncertainty in our imputations and the

FMI will be close to one. If the imputations are very similar across the MI data sets,

the between-imputation variance will be low, resulting in a low FMI close to zero,

implying that the uncertainty pertaining to the missing values is low.
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Chapter 2: Literature Review

When the missingness mechanism is nonignorable, standard imputation methods

will lead to biased estimates. This leads to a challenging, but interesting, problem

because the data to test nonignorability are unavailable. There has been extensive

work in imputing nonignorable missing data for longitudinal settings (see [9] for a

review), but not as much in cross-sectional studies and surveys. For surveys, there

are imputation methods which aim to account for nonignorable missingness. Other

methods use follow-up data in an attempt to reduce bias due to MNAR. Another

technique is to use sensitivity analyses which study model estimates under a variety

of missingness scenarios.

2.1 Nonignorable missingness

In this dissertation we consider the type of nonignorability arising when missing-

ness depends on unobserved values. In this case, the response probability cannot be

ignored and should be modeled to decrease or eliminate bias. There are two main

types of models used, which differ in the factorization of the joint distribution of

the data and missingness indicator. These are selection models [10] and pattern-

mixture models [11]. The models have different assumptions and can lead to different

estimates.
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Let M denote the indicator of missingness (M = 1 if Y is missing, M = 0 if Y is

observed). Factorizing according to the selection model yields:

p(Y,M |θ, ψ) = p(Y |θ)p(M |Y, ψ), (2.1)

whereas the pattern-mixture model is written as,

p(Y,M |φ, π) = p(Y |M,φ)p(M |π), (2.2)

where (θ, ψ, φ, π) are all unknown parameters. The selection model factors the joint

model into the complete data model for Y and the model for the missingness, condi-

tional on Y . Common choices for the missingness model in the selection model frame-

work are probit or logit models. The pattern-mixture model results in a ‘mixture’

of the respondents and nonrespondents by modeling the marginal distribution of M

and the conditional distribution of Y given M . This assumes different parameters for

the respondents and the nonrespondents, i.e., φ = (µ(m=0),µ(m=1),Σ(m=0),Σ(m=1), π),

where P (M = 1|π) = 1 − π. When the data are missing completely at random, Y

is independent of M , the selection model becomes p(Y |θ)p(M |ψ), and the pattern-

mixture model becomes p(Y |φ)p(M |π). Hence, they are equivalent and θ = φ, ψ = π

[12]. Otherwise, they produce different models. Under nonignorable missingness, if

either model holds, the other does not hold [13].

2.2 Non-imputation Approaches

We now discuss literature that attempts to handle nonignorable missingness by

implementing methods other than imputation. These methods model the missingness

mechanism and include several Bayesian approaches. We also discuss several methods
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that provide means of performing a sensitivity analysis, by either comparing a series

of models, or by computing a specified value to capture the amount of nonignorability.

Baker and Laird (1988) [14] present how to model nonignorable nonresponse using

log-linear models. The joint distribution of the categorical outcome, Y , the covari-

ates, X, and the response indicator, R is factored according to the selection model.

By including a Y − R interaction term in the model for nonresponse, the resulting

model is nonignorable. The EM algorithm is used to maximize the likelihood to find

estimates for the parameters of the regression (model for X, Y ), and the nonresponse

parameters.

Smith et al. (1999) [15] applied the log-linear nonignorable nonresponse models of

Baker and Laird to the 1992 British General Election Panel Survey. This survey was

taken prior to the election and collected information on voting intention. There were

also post-election results for most of the non-responders that the authors used for

comparison purposes. The interest was in estimating the proportions who would vote

for the various political parties: Conservative, Labour, Liberal Democratic. Follow-

ing Baker and Laird, the joint distribution of P (Y,X) is represented by a saturated

log-linear model, while the nonresponse mechanism, P (R|Y,X), is modeled through

alternative specifications of a separate log-linear model. By comparing these alter-

native specifications, Smith et al. deem it a type of sensitivity analysis. Because the

post-election data are available, they compare the estimates from fitting ignorable

models and the various nonignorable models to the observed voting proportions.

One of the main findings was that some nonignorable nonresponse models gave

point estimates of voting proportions and parameters on the boundary of their pa-

rameter spaces resulting in implausible results. These implausible results included no
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assignments of nonrespondents to the Labour party, while a large proportion of the

nonrespondents was assigned to the category ‘other’, even though the category only

represented a small proportion of the respondents. They suggest placing constraints

on model parameters; specifically placing bounds on the range of the log-odds ratio of

the Y −R interaction term (which compares the voting intention for a nonrespondent

versus a respondent).

Stasny (1988) [16] considered nonignorable nonresponse in panel data, where the

interest may be in estimating the gross change from one period to another. The

survey responses were categorical, and it was assumed that subjects were observed

in at least one of the two periods. Five models were described, three of which were

ignorable models and two were nonignorable models. All models were applied to the

Current Population Survey (CPS) and the Labour Force Survey (LFS) for estimating

the change in employment status in two consecutive time periods. There were two

assumptions of the nonignorable models. The first was that nonresponse depended

on the period and on the unobserved survey classification in the period when the

individual did not respond. The second was that nonresponse depended only on the

unobserved survey classification in the period when the individual did not respond.

Maximum likelihood estimation was used to fit all models, but the nonignorable

models were more challenging to fit because they required the parameters to be solved

for simultaneously. Iterative procedures to fit all models are discussed.

In another paper by Stasny (1991) [17], an empirical Bayes procedure for esti-

mating parameters of hierarchical models allowing for non-random nonresponse is

discussed. The models were motivated by the National Crime Survey (NCS). This

survey had two concerns: small-domain estimation and non-random nonresponse.
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The binary response of interest was whether or not a subject had a crime committed

against him/her (or their property) in the previous 6-month period. Nonresponse

may not occur at random for these data for many reasons. An obvious reason is

because there are crimes which people may be uncomfortable reporting, but also be-

cause people who have crimes committed against them are more likely to move, to

be in jail, or not to be as trusting of interviewers. Models that account for nonran-

dom nonresponse should therefore be applied. Subjects within the same domain are

assumed to have an equal probability of being victimized, but these probabilities are

allowed to vary across domains, and also the probability that a subject responds is

allowed to vary across domains and vary according to victimization status. Three

parameters are modeled as coming from Beta distributions: the probability that an

individual in a given domain is a victim, the probability a victim in a given domain

responds, and the probability that a non-victim in a given domain responds. The

entire data set is used to estimate the parameters of these models, which are then

used as prior distributions for the Bayesian analysis, allowing the analysis to “borrow

strength” from the full data to estimate the parameters for the small domains.

Nandram and Choi (2002) also use a Bayesian modeling approach for nonrandom

nonresponse for binary data [18, 19]. Using a selection model approach they describe

a model for nonignorable nonresponse and apply the methods to the NCS [18] and

the National Health Interview Survey (NHIS) [19]. Both papers start with the models

in Stasny (1991) [17] and Nandram and Choi (2000) [20]. These models are extended

to create a nonignorable model that is centered around an ignorable model through a

centering parameter with the null value of 1, implying the response does not depend
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on the value of the outcome (ignorable model). This is called a continuous expansion

model.

For the NCS data, the expansion model for nonignorable nonresponse is

yij|pi
iid∼ Bernoulli(pi),

rij|{πi, yij = 0} iid∼ Bernoulli(πi), j = 1, . . . , ni, i = 1, . . . , l, (2.3)

rij|{πi, γi, yij = 1} iid∼ Bernoulli(γiπi), 0 < γiπi < 1,

where yij = 1 if household j in domain i reports at least one crime and yij = 0 for

households with no crime. The proportion of households with at least one crime,

pi, is allowed to vary across domains (areas), i = 1, . . . , l. The probability that

a household responds in area i is defined as δi = πi{γipi + (1 − pi)}. Response

for household j in domain i, rij, is allowed to differ for those with yij = 1 and

households with no crime (yij = 0). For yij = 1, the γi parameter is called a centering

parameter, because it centers the nonignorable model around the ignorable model.

Taking γi = 1 implies response does not depend on the value of yij, and leads to an

ignorable nonresponsemodel. Nandram and Choi assume parameters (pi, δi, γi) have

a common distribution across all areas.

With the NCS data, Nandram and Choi examine the posterior mean, posterior

standard deviation, and the 95% credible interval of the γi parameter. They found

that 4 of the 10 intervals included the value 1, and thus do not provide evidence of

nonignorability (in these 4 domains). They also provided the probability that γi ≤ 1,

and this probabilitiy is approximately 1 in the remaining 6 domains. This gives

evidence for nonignorability in these 6 domains; the success rate (crime occurring) is

lower for the respondents than for the nonrespondents.
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Nandram and Choi (2002) [19] also apply their methods to The National Health

Interview Survey (NHIS). In this study they consider inference on the proportion of

households with at least one doctor visit in the previous 2 weeks (pi). This can be

considered an indicator of the health status in the United States. To fit the expansion

model to the NHIS, the authors describe and use the Metropolis-Hastings algorithm

with weighted importance sampling.

Through simulations, the authors compare two nonignorable expansion models,

Stasny’s nonignorable model, and an ignorable model for inference concerning pi.

One difference between the models described in this paper and the models Stasny

described are that the hyper-parameters are estimated in the expansion model. All the

nonignorable models produced similar results when the missingness was nonignorable,

with the expansion models producing smaller intervals than the nonignorable model.

When missingness was ignorable, all nonignorable models produced similar results to

the ignorable model.

Baker et al. (2003) [21] performed a sensitivity analysis to study the impact of

nonresponse on estimating the association between balance disorders and frequent

depression. The data was from the Disability Supplement to the National Health

Interview Survey. This had a complex survey design because only subjects in Phase 2

were asked about experiencing depression. Subjects entered Phase 2 if they answered

“yes" to any one of a series of questions related to disability, and it is the view that

these subjects are more likely to suffer from depression. There were 145,007 total

adults in Phase 1, and 29,019 in Phase 2. 25,614 of these answered the depression

question. Every subject was asked about balance difficulties. This resulted in three

missingness scenarios for consideration: (i) missing only in depression (Y ), (ii) missing
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in both depression (Y ) and balance (X), and (iii) missing in depression (Y ) with

an auxiliary variable. This auxiliary variable is completely observed and strongly

associatied with the partially observed Y . All models controlled for age, gender, race,

health status and employment status. We only consider situation (i) because it is the

most relevant for this dissertation. The outcome equaled 1 if the subject was treated

frequently for depression and 0 otherwise. Let M = 1 if Y is missing, 0 otherwise.

The model considered for Y is,

logit(Pr(Y = 1)) = β0 +βBXbalance + βAXage + βGXgender

+ βRXrace + βHXhealth + βWXwork.

The only coefficient of interest to the authors was βB, and they compared the corre-

sponding odds ratios across different ignorable and nonignorable missing-data models.

The model for missingness, using a main-effects ignorable missing-data model, was

logit(Pr(M = 0)) = η0 +ηBXbalance + ηAXage + ηGXgender

+ ηRXrace + ηHXhealth + ηWXwork.

The main-effects nonignorable missing-data model considered adds either (ηDY ) or

(ηDY + ηB∗DXbalanceY ) in the above model, allowing missingness to depend on Y .

Other ignorable missing-data models considered were two- and three-way interac-

tion hierarchical models. Similarly, to make these nonignorable, the same terms as

above (ηDY or ηDY +ηB∗DXbalanceY ) were added to the hierarchical models. The sen-

sitivity analysis is a result of comparing the odds ratios (exp{βB}) from all of these

different models. Baker et al. were particularly interested in making comparisons
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within a group of models, such as, comparing the ignorable model to the nonignor-

able models within the main effects model, and again within the two-way interaction

models.

An Index of Local Sensitivity to Nonignorability (ISNI) is proposed in Troxel, et al.

(2004) [22]. This builds upon the methods of Copas and Li (1997) [23] and provides

the ability to conduct a sensitivity analysis without formally fitting any nonignorable

nonresponse models. The ISNI can be used for generalized linear models with missing

data on the outcome variable.

We assume there is an outcome Y subject to missingness, a set of fully observed

predictors Z, and another set of fully observed predictors X that may overlap with

Z. The distribution of Y , conditional on Z is represented by f (Yi|Zi)
θ (yi|zi), and the

interest is in estimating θ. Missingness in Y can be represented by a selection model,

Prγ (Mi = 0|Yi = yi, Xi = xi) = h(γ′0xi + γ1yi), (2.4)

where we allow missingness to possibly depend on X and h(.) is a function such as

a logit or probit. It should be clear that if γ1 = 0, the probability of missingness

does not depend on yi, resulting in the MAR mechanism. If γ′0 = 0 as well, then

missingness is completely at random (MCAR).

The contribution to the likelihood for a subject who is observed is the likelihood

of his observed values conditional on his covariates, multipled by the probability

the subject is observed. The contribution to the likelihood for a subject who is

unobserved can be represented as integrating over all possible values of y, multiplied

by the probability the subject is missing. The idea behind the ISNI is to express the

maximum likelihood estimate (MLE) of θ as a function of γ1. The log-likelihood is

expanded around values of the parameters which would lead to ignorability, i.e., θ =
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θ0, γ0 = γ00, γ1 = 0, using a first order Taylor series approximation. This expansion is

used to write the log likelihood as a function of (θ, γ0) for fixed γ1, to find the MLE

of (θ, γ0). Note that we will define O2L as the matrix of 2nd partial derivatives of L

evaluated at θ = θ̂0, γ0 = γ̂00, γ1 = 0. The ISNI is,

ISNI =
∂θ̂(γ1)

∂γ1

∣∣∣
γ1=0

= −
(
O2L11

)−1
O2L13. (2.5)

The ISNI can be viewed as a rate of change and is interpreted as “the amount by

which a unit change in the nonignorability parameter displaces the MLE of θ from

its value θ̂0 under the MAR model” ([22] page 1225).

The interpretation of the ISNI varies depending on the type of outcome (categori-

cal or continuous) and the type of selection model used. For categorical outcomes, the

interpretation is rather simple, but for continuous outcomes, the ability to transform

Y to different units makes this interpretation more complex. In Chapter 4 we com-

pare our proposed method to the methods provided here, in the context of a binary

outcome, and thus we do not cover the continuous case further. For ease of interpre-

tation the authors consider logistic selection models for all examples. This way, γ1

can be interpreted as a “log odds ratio in the observation probability associated with

a one-unit change in y.” One use of the ISNI is that it can be used to adjust the

MAR parameter estimate, θ̂0, by noting, θ̂(γ1) ≈ θ̂0 + ISNIγ1. This gives an estimate

assuming nonignorability, without ever fitting a nonignorable model. Another use of

the ISNI is in assessing the degree of susceptibility to nonignorability. If the ratio of

the ISNI to the standard error of the coefficient exceeds one, then the model estimates

are highly susceptible to nonignorability.
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For a categorical data example, the authors use data on the sexual behavior of

students at the University of Edinburgh in 1993, that has been analyzed by a nonig-

norable model elsewhere [24]. We describe their findings and compare them to those

from our proposed method in Section 4.7.2.

2.3 Imputation Approaches

We now review imputation approaches that attempt to account for possibly non-

ignorable missingness.

Greenlees et al., (1982) [25] propose a stochastic censoring model for imputation

when the response probability depends on the unobserved value of Y . Greenlees et

al. assume the selection model for factorization of the joint likelihood of the response,

the covariates, and the response probability is modeled via a logistic function. The

procedure has two main steps. The first step maximizes the likelihood of the respon-

dents and nonrespondents to estimate the parameters for both models. The second

step uses these MLEs, along with auxiliary variables X and other covariates Z, to

calculate the conditional mean of Y on nonresponse in order to impute Y for the

nonrespondents. They only use single imputation, and for the purposes of this anal-

ysis are not concerned with underestimation of the variance of Y , but suggest how to

account for the uncertainty in imputation.

The method is applied to impute income of nonrespondents to the 1973 Current

Population Survey (CPS). The authors were able to formally test the success of their

imputations because a matched data set consisting of the CPS and data from the

Social Security Administration (SSA) and the Internal Revenue Service (IRS) was

available, allowing the nonrespondents of the CPS to have their income value available
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from the SSA or the IRS. They found evidence suggesting that subjects with higher

income values were less likely to respond to the survey than subjects with lower

income values, implying that nonresponse is nonignorable. A key point to note is

that these authors estimate the parameter associated with Y in the response model,

whereas in our proposed method we allow the parameter to take on several values to

conduct a sensitivity analysis.

An ideal approach to reduce the final amount of nonresponse in a survey is to

take a follow-up sample. A random sample of nonrespondents is selected and further

attempts are made to get a response. Glynn, Laird and Rubin (1993) discuss mixture

models with multiple imputation for nonignorable nonresponse when a follow-up sam-

ple has been selected [13]. They assume that every subject in the follow-up sample

has responded, forming three final sets of subjects: original respondents, respondents

who were originally nonrespondents, and nonrespondents. The standard approach for

estimating the mean outcome in this case is to use the double-sampling procedure.

This estimate is a weighted average of the estimate obtained from the respondents and

the estimate obtained from the nonrespondents in the follow-up sample, where the

weights are the proportions of respondents and nonrespondents, respectively. Glynn,

Laird and Rubin discuss alternatives to this approach, which should be easier to im-

plement in more complicated settings (such as nonignorable nonresponse). These are

multiple imputation of the remaining nonrespondents, using either an Approximate

Bayesian Bootstrap (ABB) or imputations from a normal distribution, and model-

based approaches such as large-sample Bayes estimation (under a normal selection

model including follow-up) and a fully Bayesian approach (under a normal mixture
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model). The ABB in this setting uses the follow-up sample to impute the nonrespon-

dents. A bootstrap of the follow-up sample is taken, and then a simple random sample

of size equal to the number of remaining nonrespondents is selected and imputed for

each MI dataset.

There are relationships between the fully Bayesian approach, the double-sampling

inference, and standard Bayesian inference (ignoring the indicator of response). Asymp-

totically, the normal mixture model Bayesian inference is nearly the same as the

double-sampling inference. If all the nonrespondents are successfully contacted in

the follow-up sample, then the normal mixture model is the same as the standard

inference obtained by ignoring the response indicators when drawing inferences.

Carpenter and Kenward (2007) [26] develop a weighting approach applied to mul-

tiple imputation estimates under MAR, allowing the study of the sensitivity of es-

timates to the MAR assumption. The approach is fairly simple; the MI estimates

assuming MAR of an effect can be obtained by software, and then re-weighted to

estimate the effect under an MNAR model. Consider the situation where a treatment

effect is of interest and the model for the probability of response is assumed to be:

logit Pr(Ri = 1) = α + βI[patient i on active trt] + γXi + δYi (2.6)

where,

Yi = response for unit i,

Xi = baseline characteristics for unit i,

Ri = response indicator,

α = adjusted log-odds of observing Yi,
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β = adjusted change in log-odds ratio of observing Yi if patient was

randomized to the active treatment,

γ = adjusted change in the log-odds of observing Yi for a 1-unit

change in baseline Xi,

δ = additional change in the log-odds of observing Yi when the

response changes by one unit.

We can see that, as typical when modeling the response probability under MNAR,

δ determines how much missingness depends on values of Y . Obviously, if δ = 0,

then missingness does not depend on Y (but still depends on other variables) and the

mechanism is MAR. The MAR model can be fitted to obtain estimates of (α, β, γ).

Imputations of Y can also be performed assuming MAR to produce a set of completed

data sets. Imputations only have to be performed once, under the assumption that

δ = 0. The value of δ can be varied for a sensitivity analysis, and for their application,

the authors use δ = 0, .3, .5.

To implement the procedure, assume patients i = 1, . . . , n1 withdraw from the

study and have missing Y , and patients i = n1+i, . . . , n are observed. For the patients

to be imputed, denote the dth MAR imputation by Y d
i . For each imputation, d,

weights are created as,

w̃d = exp

(
n1∑
i=1

−δY d
i

)
(2.7)

wd =
w̃d∑d
i=1 w̃d

. (2.8)

Then the re-weighted versions of the MI estimates for a parameter of interest θ

and associated within (VW ) and between (VB) variances are:
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θ̂MNAR =
D∑

m=1

wdθ̂d (2.9)

ṼW =
D∑
d=1

wdσ̂
2
d (2.10)

ṼB =
D∑
d=1

wd(θ̂d − θ̂MNAR)2 (2.11)

VMNAR ≈ ṼW + (1 + 1/D)ṼB (2.12)

When standard MI assuming MAR is applied, rarely are more than 20 imputa-

tions used, with mean and variance estimates not improving significantly past that.

However, even with D ≥ 50, Carpenter and Kenward find that the total variance of

the MNAR model is likely to be underestimated because re-weighting decreases the

effective sample size. This implies the degrees of freedom for the t-distribution of the

MAR imputation estimator should be decreased for the MNAR estimator.

Ressequier et al. (2011) [27] developed an R package called “SensMice" to per-

form a sensitivity analysis when implementing multiple imputation. First, multiple

imputation is performed under the assumption of ignorable missingness. The user

can then specify parameters in the function ‘sens.mice’, that dictate the relationship

between the outcome and response status. This parameter (or set of parameters),

is denoted by θ, and is either the odds ratio (OR) comparing the outcome among

subjects with missing data to the outcome among subjects who are observed, or if

the outcome is continuous, θ is the difference in the expected values for missing and

observed.

Ressequier et al. applied this procedure and function to the R data set “CHAIN”,

to study the relationship between poor mental health and self-reported viral load.
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When considering viral load as a binary variable, the authors chose θ values of 1.2,

1.5, 2.0 (representing ORs), all indicating the belief that nonresponders have higher

viral load than responders. Imputed data sets are then created for each of the values

of θ. In their example, the MAR estimated OR between viral load and mental health

is 2.01, whereas for MNAR with both θ = 1.2 and 1.5, the OR is 1.73; for MNAR

with θ = 2.0, the OR is 1.75. The 95% CI is still greater than 1 for all instances. The

OR for the outcome poor mental health decreases as the percent viral load is allowed

to increase among nonrespondents.

The extension of hot deck imputation to nonignorable nonresponse has not been

well examined. Rubin and Schenker (1991) [28] briefly describe how an ABB could

be applied to handle nonignorable missing data. An ABB is one method that can be

used to make hot deck MI a proper MI method. To introduce the hot deck ABB, we

let nobs be the number of subjects with observed Y values, Yobs. An ABB draws nobs

subjects randomly with replacement from observed subjects. For each imputation,

the set of nobs values is used to create the donor pool, which is then used for hot deck

imputation. Estimates of interest (for example, the mean of Y ), are found for each

imputation, then combined using the standard rules for MI as formulated by Rubin

[1]. To extend this MI idea to nonignorability, Rubin and Schenker suggest changing

the way the ABB is drawn, however, they do not study this procedure further.

Siddique and Belin [29] take the suggestion from Rubin and Schenker [28] to

develop a nonignorable hot deck procedure. It builds upon the ignorable ABB hot

deck Siddique and Belin develop in [30] by adjusting how the bootstrap sample of

respondents is drawn. Instead of drawing from the respondents with equal probability

(which corresponds to an ignorable hot deck procedure), the respondents are drawn
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with probability proportional to a function of Y . Hence, the probability of selection

to the bootstrap sample for yi ∈ Yobs is

yci∑nobs

j=1 y
c
j

. (2.13)

Siddique and Belin consider probabilities proportional to Y c for values of c = {−1, 0,

1, 2, 3}. If large values of Y are assumed missing, c is chosen to be positive, whereas

smaller values of Y assumed missing correspond to c < 0, and c = 0 corresponds

to the ignorable hot deck. Additionally, Siddique and Belin consider probabilities

proportional to how far away an observation is from a certain quantile, and coin

names such as “U-shaped ABB" (for values further from the median with higher

probabilities), and “Fishhook ABB" (using the distance from the first quantile). It is

important to note that if values of Y are nonpositive, they need to be transformed to

avoid numerical problems in the selection probabilities.

Once the bootstrap sample of nonrespondents is drawn, predictive mean match-

ing is used on this skewed bootstrap sample. The observed values of the variable

to be imputed are regressed on a chosen set of predictor variables, and using the

estimated regression parameters, predicted values (Ŷ ’s) are found for every subject

(nonrespondents and all nobs bootstrapped respondents). These predicted values are

used to calculate the distance between a single nonrespondent and each respondent.

The probability a respondent is chosen for imputation for a nonrespondent depends

on this distance. Siddique and Belin’s distance measure allows every respondent (in

the bootstrap sample) to be in the donor pool and is defined as:

Dk
0i = (|ŷ0 − ŷi|+ δ)k. (2.14)
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Dk
0i is the distance between nonrespondent 0 and bootstrap sample respondent i,

for “closeness” parameter k. This “closeness” parameter is used to determine the

distribution of selection probabilities, with k = 0 equivalent to a simple random hot

deck, and as k approaches∞, a nearest neighbor hot deck. Siddique and Belin suggest

a value of k = 3 to form a good spread of the selection probabilities [30]. Here, δ

is the minimum nonzero absolute distance, and is included to insure there are no

problems with division by zero in the probability of selection. Because it might be

difficult before hand to select a single value of c, the authors suggest mixing the values

among the MI data sets, which they call a “Mixture ABB”. Their implementation

uses c = {−1, 0, 1, 2, 3} to create 5 separate MI data sets. This “averages” over

a set of possible missingness mechanisms, also including the ignorable nonresponse

mechanism, c = 0. We feel that a sensitivity analysis is more insightful and prefer

an approach that compares inferences from different assumptions on the missingness

mechanism (e.g., compares inference using different c values).

As stated above, Siddique and Belin suggest creating five imputation datasets

each with a different value of c and use MI combining rules to obtain final estimates.

This ‘averages’ over the different assumptions. However, as discussed in the 2012

paper by Siddique, Harel and Crespi [31], the standard MI combining rules do not

apply in this situation. This is because each MI set is assuming a different model for

the missingness, and the standard rules do not account for this added uncertainty.

Siddique, Harel and Crespi discuss combining rules for nested multiple imputa-

tions, with the goal of allowing researchers to have a way to use complete-data meth-

ods as opposed to model-based methods. They believe that “all imputation model

uncertainty should be incorporated into one inference.” Some reasons for doing this
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might be the need to have different model assumptions based on different time points

(in a longitudinal study), or perhaps based on different groups of subjects (dropouts

versus non-dropouts). They suggest choosing M missingness models, and generating

N imputed datasets within eachM , for a total ofM×N imputation sets. The overall

estimate of the quantity of interest is simply the average of theM×N point estimates.

The variance of the quantity of interest has three sources of variability (as opposed

to the two sources with standard MI estimates). These are the overall average of the

associated variance estimates (similar to the standard within imputation variance),

the within-model variance (the variance of the estimates for a givenM , averaged over

M), and the between-model variance (variability between the mean for M and the

overall M - similar to the traditional between imputation estimate, but for a specified

M). If only one model is used, the variance simplifies to the standard MI rules.

An alternative imputation method for nonignorable nonresponse is that of Kim

and Kim (2012) [32], who extend Parametric Fractional Imputation (PFI) to handle

nonignorable data. The data consist of fully observed x and a single y that is possibly

MNAR. The interest is in finding the MLE of θ (a population parameter) which can

be found by solving the score equations when complete data are available. Because

the mechanism is MNAR, the population parameter, θ, and the parameter for the

response mechanism, φ, must be solved for simultaneously. Under a selection model

framework for the factorization of the likelihood, PFI is proposed to jointly estimate

(θ, φ).

The observed likelihood of (θ, φ) is defined as,

Lobs(θ, φ) =
n∏
i=1

fobs(miyi,mi|xi; θ, φ) (2.15)
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where,

fobs(miyi,mi|xi; θ, φ) =

{
f1(yi|xi; θ)f2(mi|xi, yi;φ), if m = 0

g(xi,mi; θ, φ) =
∫
f1(yi|xi; θ)f2(mi|xi, yi;φ)dyi, if m = 1

(2.16)

Thus for the respondents the likelihood is factorized according to a selection model,

and for nonrespondents, their contribution to the likelihood is integrated over the

possible values of yi.

Imputed values are generated D times for each subject with missingness, and we

denote them by y
∗(1)
i.mis, . . . , y

∗(D)
i.mis. Let y∗id = (yi.obs, y

∗(d)
i.mis), where i = 1, . . . , n, and

d = 1, . . . , D. Each of the y∗id values is assigned a fractional weight, w∗i1, . . . , w∗iD.

These weights are importance sampling weights. The weights have a simple form

when yi is catogorical with J categories. In this case, D = J imputations are used,

and the corresponding fractional weights are:

w∗id =
Pr(yi = y

∗(d)
i |xi, θ̂) Pr(mi = 1|xi, y∗(d)i , φ̂)∑J

j=1 Pr(yi = y
∗(j)
i |xi, θ̂) Pr(mi = 1|xi, y∗(j)i , φ̂)

.

When yi is continuous, the fractional weights can be written as,

w∗id = w∗id0 ×
{1− π(xi, y

∗(d)
i , φ̂)}∑D

k=1w
∗
id0{1− π(xi, y

∗(j)
i , φ̂)}

where w∗id0 are the importance weights for f(yi|xi, θ̂) assigned to y
∗(j)
i , satisfying∑D

d=1w
∗
id0 = 1.

To avoid large fractional weights, Kim and Kim suggest generating imputed values

from

f̂(yi|xi, r = 0) =
f̂(yi|xi,m = 0){1/π(xi, yi; φ̂

(0))− 1}∫
f̂(yi|xi,m = 0){1/π(xi, yi; φ̂(0))− 1}dyi

(2.17)

If one takes the logit(π(xi, yi;φ)) = φ0 + φ1xi + φ2yi, then (2.17) reduces to the

case where the density of the nonrespondents is an exponential titling of the density
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of the respondents. This is discussed in Kim and Yu (2009) [33]. After performing

imputation, the final estimates of the parameters are found using the weights. If

we have complete data with corresponding sampling weights, wi, and a consistent

estimate of θ is found by solving

∑
i

wiU(xi, yi; θ) = 0 (2.18)

then using the fractionally imputed data, a consistent estimate can be found by

solving:

∑
i

D∑
j=1

wiw
∗
ijU(xi, y

∗(j)
i ; θ) = 0 (2.19)

The authors discuss choices for the proposal distribution, and changes which can

be made to avoid extremely large fractional weights. They also discuss calibration

weights to improve approximations for moderateD. For variance estimation they con-

sider jackknife and bootstrap, and give formulas for the replicated fractional weights

for both PFI and the calibrated fractional imputation (CFI).

In a subsequent article by Kim (2012) [34], the fractional imputation method

is applied to nonignorable missing categorical data, when follow-up data may be

available. Follow-up data may arise in the case when a sample of nonrespondents are

randomly selected for follow-up (or to be re-contacted) and it is often assumed that

the follow-up sample all respond. This results in three types of subjects: first-time

respondents, respondents in the follow-up sample, and the remaining nonrespondents.

The follow-up sample is used to fix the problem of parameter non-identifiability that

arises when modeling nonignorability. When applying the PFI to partially missing

categorical data, the D imputations are the D possible values of the categorical
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variable. The fractional weights (importance sampling weights) can be calculated

using a simple application of Bayes’ rule.

Kim conducted simulations to compare the complete sample estimators, the frac-

tional imputation estimator, and the MI estimator with 10 and 100 imputations for

each missing value. All results show that all estimators are mostly unbiased, but the

fractional imputation estimator is more efficient than the multiple imputation estima-

tor. This can be explained because fractional imputation is a deterministic method,

whereas multiple imputation is a stochastic imputation method.

Another approach to imputing nonignorable missing data is the proxy pattern-

mixture (PPM) model, developed by Andridge and Little (2011) [35]. They assume

that a fully observed set of covariates Z is available (for both respondents and nonre-

spondents). The method first creates a proxy X for the partially missing variable Y

by regressing Y on Z for respondents, and then taking X to be the predicted values

using Z from all subjects. This step is similar to the predicted means calculated for

the purposes of calculating distances in the Siddique and Belin (2008) hot deck [30],

though their use of these means is completely different. They assume that the joint

distribution of Y , X, and the missingness indicator M follows a bivariate normal

pattern-mixture model [11, 12]:

(Y,X|M = m) ∼ N2

((
µ(m)
y , µ(m)

x

)
,Σ(m)

)
,m = 0, 1 (2.20)

M ∼ Bernoulli(1− π)

Σ(m) =

 σ
(m)
yy ρ(m)

√
σ
(m)
yy σ

(m)
xx

ρ(m)

√
σ
(m)
yy σ

(m)
xx σ

(m)
xx


Here and throughout, we use a superscript (0) to denote m = 0 (respondent),

and superscript (1) to denote m = 1 (nonrespondent). Likewise, a subscript R refers
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to respondents, and NR refers to nonrespondents. For example, µ(0)
y is the popu-

lation mean of Y for the respondents, whereas ȳR is the sample mean of Y for the

respondents.

The pattern-mixture model allows means and variances to be different for respon-

dents (m = 0) and nonrespondents (m = 1). However, the model is underidentified.

All the parameters of the respondent distribution for X and Y , {µ(0)
y , µ

(0)
x , σ

(0)
xx , σ

(0)
yy ,

ρ(0)}, and those dealing with the marginal distribution of the nonrespondent proxy X,

{µ(1)
x , σ

(1)
xx }, are identified and easily estimable. However, the remaining parameters,

µ
(1)
y , σ

(1)
yy , and ρ(1), are not identifiable without making further assumptions.

Andridge and Little (2011) use assumptions on the missingness mechanism to

make these parameters identifiable. They assume that the probability of nonresponse

is a function of a linear combination of the proxy X and the outcome Y , with the

proxy scaled to have the same variance as Y for the respondents,

Pr

M = 1|Y,X

√
σ
(0)
yy

σ
(0)
xx

 = f

X
√
σ
(0)
yy

σ
(0)
xx

+ λY

 . (2.21)

The sensitivity parameter, λ, determines the missingness mechanism, with λ = 0

implying an MAR mechanism and λ = ∞ implying a type of “extreme” MNAR

where missingness depends entirely on Y . The assumption in (2.21), with f an un-

specified function, just identifies the parameters of the model. Using these identifying

restrictions, Andridge and Little estimate the marginal mean of Y and assess its sen-

sitivity to various deviations away from MAR by varying the value of λ. They discuss

and compare three methods for estimating this mean: maximum likelihood, a fully

Bayesian approach, and multiple imputation.
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Chapter 3: Continuous Outcome

3.1 Introduction

In this chapter we propose a new hot deck method for imputing nonignorable miss-

ing data for continuous outcomes which we call the proxy pattern-mixture (PPM) hot

deck. Our method combines the distance measure-based selection probabilities of Sid-

dique and Belin (2008) [29] with the PPM model of Andridge and Little (2011) [35].

Unlike Siddique and Belin, who incorporate nonignorability in the ABB step of the

hot deck, we use an ignorable (equal probability) ABB and instead allow for non-

ignorability in the creation of the predicted means used to calculate donor selection

probabilities. We use the PPM model conditional on a chosen value of λ to define

predicted means and calculate distances from donors to nonrespondents. The entire

process of creating the bootstrap sample of donors (the ABB), calculating distances

from donor to nonrespondent, calculating selection probabilities, and randomly se-

lecting donors is repeated for a set of values of λ. Doing this provides a sensitivity

analysis that yields imputed “complete” data sets under different assumptions on the

missingness mechanism.
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3.2 Predicted Values From the Proxy Pattern-Mixture Model

To integrate the proxy pattern-mixture model into the hot deck, we need to cal-

culate predicted means for the nonrespondents and the respondents for use in the

distance function. Under the PPM model given by (2.20) and (2.21), the conditional

distribution of the outcome Y given the proxy X for respondent status M = m is:

[yi|xi,mi = m] ∼ N

µ(m)
y + ρ(m)

√
σ
(m)
yy

σ
(m)
xx

(
xi − µ(m)

x

)
, σ(m)

yy −
σ
(m)
yx

2

σ
(m)
xx

 (3.1)

To obtain predicted means, ŷ, we need only consider the expectation of Y for the

nonrespondents and respondents, E[Yi|xi,mi = m].

For respondents, every parameter of the mean shown in (3.1) is identified, and

maximum likelihood estimates can be substituted into the equation to obtain the

estimated predicted mean for the ith respondent as:

ŷ
(0)
i = ȳR + ρ̂(0)

√
s
(0)
yy

s
(0)
xx

(xi − x̄R) . (3.2)

For nonrespondents, the identifying restrictions in (2.21) yield expressions for µ(1)
y

and ρ(1) in terms of identified parameters, and substitution of these quantities into

(3.1) yields:

E[Yi|Xi = xi,mi = 1] = µ(0)
y +

√
σ
(0)
yy

σ
(0)
xx

(
λ+ ρ(0)

1 + λρ(0)

)(
µ(1)
x − µ(0)

x

)
+

σ(0)
xy

σ
(1)
xx

+

√
σ
(0)
yy

σ
(0)
xx

(
λ+ ρ(0)

1 + λρ(0)

)
(σ

(1)
xx − σ(0)

xx )

σ
(1)
xx

(xi − µ(1)
x

)
.

(3.3)
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Substitution of maximum likelihood estimates for all parameters yields the pre-

dicted mean for nonrespondent i for a given λ:

ŷ
(1,λ=λ)
i = ȳR +

(
λ+ ρ̂(0)

1 + λρ̂(0)

)√
s
(0)
yy

s
(0)
xx

(x̄NR − x̄R) (3.4)

+

s(0)xy
s
(1)
xx

+

√
s
(0)
yy

s
(0)
xx

(
λ+ ρ̂(0)

1 + λρ̂(0)

)(
1− s

(0)
xx

s
(1)
xx

) (xi − x̄NR) .

The equation for the predicted mean of the nonrespondents depends on the value

of λ. Following Andridge and Little (2011) and Little (1994), we perform a sensitive

analysis by comparing estimates obtained using varying λ values and suggest λ =

{0, 1,∞}. We select nonnegative values of λ because X and Y should be positively

correlated since X is a proxy for Y [12]. Estimates of the chosen parameter of interest

(e.g., survey outcome mean) from λ = 0 assume MAR, while estimates from λ = ∞

assume “extreme” MNAR where missingness depends entirely on Y . The case of

λ = 1 provides an in-between case where missingness depends equally on X and Y .

Specifically, the values of the predicted means for the ith nonrespondent are written

below for the three values of λ just discussed.

ŷ
(1,λ=0)
i = ŷ

(0)
i (3.5)

ŷ
(1,λ=1)
i = ŷ

(1,λ=0)
i +

s
(0)
xy

s
(0)
xx

(
1− ρ̂(0)

ρ̂(0)

)
(xi − x̄R) +

s
(0)
xy

s
(1)
xx

(
ρ̂(0) − 1

ρ̂(0)

)
(xi − x̄NR)

ŷ
(1,λ=∞)
i = ŷ

(1,λ=0)
i +

ρ̂(0) + 1

ρ̂(0)

{
s
(0)
xy

s
(0)
xx

(
1− ρ̂(0)

ρ̂(0)

)
(xi − x̄R) +

s
(0)
xy

s
(1)
xx

(
ρ̂(0) − 1

ρ̂(0)

)
(xi − x̄NR)

}
For the nonrespondents, we have written the equations for λ = 1 and λ = ∞ as

functions of the predicted mean assuming MAR, ŷ(0)i . For a given nonrespondent, we

can see the deviation from the MAR model for the different λ’s. The value of the

predicted mean for a nonrespondent will either increase or decrease for increasing λ,

depending on the location of xi in relation to x̄NR and x̄R (and the values of ρ, sxy
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and sxx). Another observation is that if X is a weak proxy for Y meaning that ρ̂(0)

is close to zero, the predicted means under a strong nonignorable assumption can

become very large. This will cause problems when one is trying to find matches and

is discussed in Sections 3.4 and 3.5.

3.3 Steps of the PPM Hot Deck

We now outline the steps of the PPM hot deck. For imputation 1 (of D):

1. Bootstrap: Generate a bootstrap sample of the respondents by selecting nobs

respondents with replacement. Denote these respondent outcomes and covariate

values as {Y b
j ,Z

b
j}, where b distinguishes the bootstrap sample from the original

sample.

2. Proxy: Regress Y b on Zb to create the proxy X for all nonrespondents and the

bootstrap sample of respondents. Note that only respondents who are selected

into the bootstrap sample have a proxy created, while all nonrespondents have

a proxy created.

3. Predicted Values: Calculate predicted values using maximum likelihood es-

timates from the bootstrapped sample of respondents and the entire sample of

nonrespondents based on a chosen value of λ. Note that for respondents the

predicted means do not depend on λ. However, they vary for each cycle through

the PPM hot deck because of the bootstrapping step. The predicted values are
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given by:

ŷ
b(0)
i = ȳbR +

s
b(0)
xy

s
b(0)
xx

(
xbi − x̄bR

)
ŷ
(1,λ=λ)
i = ȳbR +

√
s
b(0)
yy

s
b(0)
xx

(
λ+ ρ̂b(0)

1 + λρ̂b(0)

)(
x̄NR − x̄bR

)
(3.6)

+

sb(0)xy

s
(1)
xx

+

√s
b(0)
yy

s
b(0)
xx

· λ+ ρ̂b(0)

λρ̂b(0) + 1

(1− s
b(0)
xx

s
(1)
xx

) (xi − x̄NR) .

We use the superscript b to denote quantities that are calculated on a boot-

strapped sample, to distinguish them from quantities calculated on the whole

sample. For example, x̄bR is the mean of X for the bootstrapped sample of re-

spondents, while x̄NR is the mean of X for the entire sample of nonrespondents.

4. Distances: Calculate the distance between bootstrap donor i and donee 0,

using the distance measure of Siddique and Belin, given in (2.14). The distance

measure requires a value for the “closeness” parameter k; we use k = 3 as

recommended by Siddique and Belin (2008) [29].

5. Donor Selection Probabilities: Calculate the bootstrap donor i selection

probability lb,ki (ŷ
(1,λ)
0 ) proportional to the distances:

lb,ki (ŷ
(1,λ)
0 ) =

1
Dk

0i∑nb
obs
i=1

1
Dk

0i

(3.7)

6. Select and Impute: Randomly select a bootstrap donor i for donee (non-

respondent) 0 using the selection probabilities lb,ki (ŷ
(1,λ)
0 ). Impute the donor’s

value of Y for the missing value of the donee.

7. Repeat steps (1-6) D times to create D complete datasets, composed of the

original (pre-bootstrap) respondents and the imputed nonrespondent data. This
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entire process should be completed separately for each value of λ in the sensi-

tivity analysis.

Once the PPM hot deck has produced a set of completed data sets, standard

complete data estimates can be produced for each data set and combined with stan-

dard combining rules. This will yield an estimate for a single value of λ, and the

entire process is repeated for a different value of λ that assumes a different degree of

nonignorability, from MAR (λ = 0) to extreme MNAR (λ =∞).

The key difference between the method of Siddique and Belin and our proposed

method is where the nonignorability adjustment occurs. In Siddique and Belin’s

method, nonignorability is handled in the approximate Bayesian bootstrap step. The

distribution of the bootstrap sample takes different “shapes” depending on the as-

sumption of how missingness depends on Y . If it is believed that subjects with larger

values of Y are missing more often, then the bootstrap sample is set up to sample

larger values of Y with higher probability, skewing the distribution. Once the nonig-

norable ABB sample is formed, the steps which follow are the same as they would be

if the ABB were performed assuming ignorable missingness. In contrast, the PPM

hot deck uses a simple ignorable ABB, and adjusts for nonignorability in the creation

of selection probabilities for donors in the donor pool.

3.4 Graphical Display of Proposed Method

Figure 3.1 illustrates the steps of the proposed hot deck method for a single im-

putation data set by showing the distributions of various proxy values for a simulated

data set (details on data generation are in Section 3.6.1). We focus first on Figure 3.1a

which is for ρ = 0.8 and an MAR missingness mechanism, where missingness depends

38



on Z, denoted [Z]. Shown in the top panel are the values of Y prior to deletion (True

Y ), the distributions of both the observed Y values (Observed Y ) and those that were

deleted (Missing Y ), followed by the distribution of the bootstrap sample of respon-

dent Y values (Bootstrap Y ). The distribution of the bootstrap sample shows how

many times a specific subject was chosen. The 2nd through 4th panels correspond

to λ values of 0, 1 and ∞, respectively, and show the distributions of the predicted

means (Ŷ ) for the respondents (observed) and nonrespondents (missing). The last

distribution (in red) shows the values of the observed Y that were imputed for the

nonrespondents. With the MAR mechanism, [Z], we still observe a few respondents

with large and small values of Y . In fact, the range of the observed Y is larger than

that of the missing Y . For this particular imputation set, only one of the largest

subjects and one of the smallest subjects were chosen for the bootstrap sample. This

is an interesting observation because we can see how sparseness of donors for some

covariate values might increase if specific donors are not selected for the bootstrap

sample. This implies that the quality of donors could change between bootstrap sam-

ples, but the bootstrap is necessary for the extra variability required for proper MI.

Examining the distribution of predicted means Ŷ , we note that the values do not

change for the respondents as λ changes (as expected since (3.2) does not depend

on λ). The predicted means do change for the nonrespondents; for this data set the

values only slightly increase as λ increases. This also results in the largest observed

subjects being imputed when λ = 1 and λ = ∞, but not in the case when λ = 0.

Since the true missingness mechanism is [Z], there are still large values that can be

imputed.
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Figure 3.1 also demonstrates a potential problem in applying hot deck to non-

ignorable missing data. If we compare Figures 3.1a and 3.1b, which have the same

correlation but different missingness mechanisms, we see a common problem of hot

deck. When missingness depends on Y 2, denoted [Y 2], such that large values of Y

are missing, we see that even though the predicted means for the nonrespondents

get larger as λ increases, we can only impute the largest observed value of Y . In

the PPM hot deck setting, this is also the largest observed value of Y that is in the

bootstrap sample for that imputation. This is the case when a parametric version

of the PPM will outperform the hot deck, because it does not rely on the observed

values for imputation.

We can also compare Figures 3.1a and 3.1c. These have the same missing data

mechanism, [Z], but 3.1a has ρ = 0.8, and 3.1c has ρ = 0.2. The main observation

here is how large the values of the predicted means are for the nonrespondents when

λ = ∞. This is due to the formula for the predicted means when the correlation is

small and λ is large, given by (3.5). There is complete separation of predicted values

between the respondents and the nonrespondents. When the procedure searches for

respondents who are “close” to nonrespondents, there are none. In this case, all the

distances are so large that the selection probabilities become nearly equal. Thus, the

PPM hot deck selects donors with approximately equal probability, and yields results

similar to the complete case analysis (MCAR).

We now propose several distance metrics to be able to tell when the predicted

means are too far away, indicating that there are not enough large (or small) values

of Y observed to estimate the mean in the sensitivity analysis even when using λ =∞.
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3.5 Diagnostics for Donor Quality

We want our imputed values to represent a reasonable value for each nonrespon-

dent under the assumed missingness mechanism. This means that we not only need

a large enough sample of respondents to ensure enough potential donors, but they

must also exist across the values of covariates related to missingness [5]. This is an

especially important consideration in the presence of nonignorable missingness. If,

for example, larger values of Y are missing more often than smaller values, there will

be fewer potential donors (or possibly none) with large values of Y available for im-

putation. Unlike a parametric imputation procedure, hot deck imputation is unable

to extrapolate, since only observed values are available for imputation.

After a search of the existing literature we were unable to find commonly used

metrics for measuring the quality of donors that we could adapt for the PPM hot

deck. This may be because many common hot deck procedures create cells of donors,

instead of allowing all respondents to serve as potential donors, and thus the number

of potential donors in a cell is itself a measure of donor quality (i.e., donor avail-

ability). We therefore propose two donor quality metrics for use with the PPM hot

deck to allow us to identify situations in which high quality donors are unavailable.

The measures are dependent on the choice of λ because, as we will illustrate in our

simulation study, quality donors may be available under an MAR assumption (λ = 0)

but not under an MNAR assumption (λ =∞).

The first donor quality metric is based on the average distance from donor to

donee across all respondents and nonrespondents. We call this metric the Mean

Minimum Distance (MMD). For each nonrespondent j, we calculate the minimum

absolute distance to a respondent, δj, where δj = mini |ŷ(1,λ=λ)j − ŷ(0)i |; i = 1, . . . , nobs.
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To obtain the MMD these minimum differences are averaged over the nonrespondents

and standardized by the standard deviation of the outcome among respondents:

MMD =
1

nmis

nmis∑
j=1

δj

s
(0)
yy

(3.8)

A large value of MMD indicates that the average distance from donor to donee is

high. The main purpose of the metric is to identify data sets and specific values of λ

where the bulk of the imputations would come from poor donors. However, individual

values of δj could also be examined to find specific nonrespondents for whom there is

no quality match.

The second donor quality metric is based on the donor selection probabilities

themselves rather than on the distances. This metric is motivated by the fact that

if there are no close donors and all distances are very large there will be little vari-

ation in the selection probabilities, resulting effectively in a simple random sample

of the respondents used for imputation. We call this metric the Mean Variance Se-

lection Probability (MVSP). The MVSP is obtained by first calculating the variance

of the donor selection probabilities for each nonrespondent and then averaging these

variances over nonrespondents,

MV SP =
1

nmis

nmis∑
j=1

V ar
(
lki (ŷ

(1,λ=λ)
j )

)
. (3.9)

If the MVSP is close to zero, this indicates that on average (across nonrespondents)

the donor selection probabilities are close to equal, which effectively results in the

PPM hot deck imputing via a simple random hot deck. This can happen when the

predicted means for nonrespondents are very far away from the predicted means for

the respondents, even when the closeness parameter k used in the distance measure
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is non-zero. As with the MMD, closer inspection of the individual variances could be

used to identify specific nonrespondents with poor donor quality.

We propose calculating both donor quality metrics using the complete sample

of respondents (i.e., not a bootstrap sample), though of course in one particular

bootstrap sample the quality of available donors could be better than in another.

These metrics could alternatively be computed for a particular bootstrap sample,

though we do not consider this further as on average across the bootstrap samples of

the PPM hot deck the metrics should be the same as in the pre-bootstrap sample.

We suggest using both the MMD and the MVSP to determine when close matches

are unobtainable.

3.6 Simulation Studies

We conducted a simulation study to assess the performance of the proposed PPM

hot deck as well as to illustrate the use of the donor quality metrics. In addition

to assessing bias and coverage of the new method under a range of true missingness

mechanisms, we also sought to compare its performance to the Siddique and Belin

nonignorable hot deck (SB hot deck).

3.6.1 Data Generation

Complete data for an outcome yi and single covariate zi were generated from a

bivariate normal distribution, such that

(Zi, Yi) ∼ N2

((
1
1

)
,
(

1 ρ
ρ 1

))
, i = 1, . . . , n. (3.10)

We considered two sample sizes, n = {400, 800}, and three different correlations,

ρ = {0.8, 0.5, 0.2}. We note that the correlation ρ is different from the correlations ρ(0)
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and ρ(1) in the parametric PPM model in (2.20), since here the outcome and proxy will

be unconditionally jointly normal, but in the PPM model they are bivariate normal

conditional on the missing data indicator. As discussed in Andridge (2011), when

missingness is linear in Z and/or Y , correlation between the proxy X and Y (before

deletion) will be equal to ρ for both respondents and nonrespondents. However, if

missingness is quadratic in Z and/or Y , the correlation between Y and X will be

different for respondents and nonrespondents.

The missing data indicator M was generated according to a logistic regression

model,

logit(Pr(mi = 1)|yi, zi)) = γ0 + γZzi + γY yi + γY 2y
2
i , (3.11)

and values of yi were deleted when mi = 1. Values of {γZ , γY , γY 2} were chosen to

induce either MAR or MNAR mechanisms as shown in Table 3.1. The value of γ0 was

chosen to induce either 25% missingness or 50% missingness. Table 3.1 also lists which

value of λ “matches” the missingness mechanism (i.e., MAR corresponds to λ = 0).

For each replication, complete data {(yi, zi), i = 1, . . . , n} were first generated with a

selected n and ρ and then missing values for yi were induced according to one of the

four mechanisms.

3.6.2 Imputation Methods

Our goal was to estimate the mean of Y . We applied both the PPM hot deck

and the SB hot deck to estimate the mean, and also compared these estimates to

the complete case mean. For the PPM hot deck we performed separate analyses

using λ = {0, 1,∞} and for SB hot deck we used the suggested range of c values

(c = {0, 1, 2, 3}) in separate analyses. We excluded the suggested value of c = −1
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since missingness was induced such that larger values of Y were more likely to be

missing; we note that the need to specify positive or negative c values is a disadvantage

of the SB hot deck and discuss this further in the application in Section 3.7. For each

imputation method we created 10 imputed data sets. A total of 500 replications

were used for each combination of n, ρ, and missingness mechanism. To evaluate the

performance of each method, we calculated the average empirical bias in the mean

estimates for each method. We also calculated the actual coverage of a nominal 95%

confidence interval.

In addition, the donor quality metrics described in Section 3.5 were calculated for

each pre-bootstrap sample and are reported as the average MMD and average MVSP

across replicates for each combination of n, ρ, missingness mechanism, and value of λ.

This allows us to illustrate how these metrics could help identify scenarios in which

the PPM hot deck is unable to find quality donors.

3.6.3 Results: Bias

Figure 3.2 shows the estimates of the mean of Y for the complete case analysis

and each imputation method averaged across 500 replications for n = 400 and 25%

missingness. For each population design there are three estimates for the PPM hot

deck, corresponding to the three choices of λ, and four estimates for the SB hot deck,

corresponding to the four choices of c.

In general the mean estimates increase for increasing λ values and for increasing

c values. The spread of these estimates also tends to increase as the correlation

between Y and Z decreases. The exception is for the PPM hot deck with the weakest

correlation (ρ = 0.2). Here the estimate for λ = ∞ shifts down to be close to the
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value for λ = 0, instead of being much larger as it is for the stronger correlations.

This is a consequence of using the distance measure in (2.14) when no close matches

are available and is further discussed in Section 3.6.4. The spread of estimates for

the SB hot deck is much larger than for the PPM hot deck for most scenarios. Mean

estimates for the PPM hot deck with λ = 0 and the SB hot deck with c = 0 are

virtually identical, which is to be expected since they both correspond to an MAR

assumption. However, there do not appear to be other equivalences for other λ and

c values.

When missingness is dependent on Z, the data are MAR. In the first panel of

Figure 3.2 we see that the PPM hot deck with λ = 0 and the SB hot deck with

c = 0 produce nearly unbiased estimates for all values of ρ. This is expected, since

these correspond to an MAR mechanism. Estimates using other values of λ and c are

biased, as would be expected.

When missingness is dependent on Y or Y 2, the PPM hot deck with λ = ∞ is

expected to perform the best, since it assumes MNAR. For these cases it is not clear

which of the SB hot deck estimates should be the most unbiased, since all c values

aside from c = 0 model MNAR mechanisms. In the second panel of Figure 3.2 we

see that when missingness depends on Y and the correlation is strong (ρ = 0.8), the

mean estimate for the PPM hot deck with λ = ∞ is close to unbiased, but as the

correlation weakens the bias becomes larger, with substantial bias for ρ = 0.2.

A similar pattern emerges in the third panel, where missingness depends on Y 2,

with all-around worse performance. There is substantial bias for the PPM hot deck

with λ = ∞ for all correlations, with bias increasing with decreasing correlation.

In these simulations, for the missingness dependent on Y , c = 2 returns the closest
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to unbiased estimates. However, similar to the PPM hot deck, when missingness

depends on Y 2 the SB hot deck does not produce unbiased estimates for any c value.

When missingness is dependent on Z + Y , we expect the PPM hot deck with

λ = 1 to produce the best estimates. However, the method does not perform exactly

as expected as shown in the last panel of Figure 3.2. For the weaker correlations

(ρ = 0.5, 0.2) the estimate using λ = 1 is the least biased, but it is biased. For the

strongest correlation of ρ = 0.8 the least biased method is λ = ∞, though λ = 1 is

close. The SB hot deck gets closer with values of c = 3 and c = 2, but there is no

reason why this should be the case and this result is likely specific to this particular

simulation design.

For weaker proxy values and strong MNAR mechanisms, bias is high for the PPM

hot deck, even when the λ value corresponds to the missingness mechanism. This is

partially due to a limitation of hot deck imputation and not unique to the proposed

method. Hot deck methods can only impute observed values. In our simulation, when

the missing data mechanism is strongly dependent on Y , large values of Y are almost

all missing. Thus the only Y values available for imputation are the values observed

among respondents, which are smaller than the missing values. Fortunately, the donor

quality metrics we propose can help identify these situations, as well as explain the

odd results with the smallest correlation (ρ = 0.2), where the PPM hot deck with

λ =∞ produces mean estimates that are much smaller than would be expected, even

smaller than the MAR estimates when missingness depends on [Z + Y ].

47



3.6.4 Results: Donor Quality Metrics

Table 3.2 displays the donor quality metrics calculated for the PPM hot deck on

the pre-bootstrap sample and averaged across replications. These metrics help flag

scenarios in which the PPM hot deck performed poorly because it could not find

adequately close donors. They also explain the strange performance of the PPM hot

deck with low correlations, where the estimates cluster together for all values of λ.

The MMD measures the average distance from donor to donee, across all respon-

dents and nonrespondents. Since the distance is divided by the standard deviation of

the outcome among respondents, the MMD can be interpreted as the average number

of standard deviations away a donor is from a donee. Table 3.2 shows that for the

MAR mechanism [Z], imputations with λ = 0 will result in close matches – approx-

imately 0.01 standard deviations away or closer on average. However, for MNAR

mechanisms the MMD is larger. Looking at the “matching” λ values for each mecha-

nism (λ =∞ for [Y ] and [Y 2]; λ = 1 for [Z + Y ]), as the correlation goes down, the

MMD goes up. For the [Y ] mechanism, the MMD is reasonably small for the higher

ρ values, but quite large for ρ = 0.2. This corresponds to the poor performance of

the PPM hot deck with the low correlation in this case; an MMD of 0.510 means that

on average donors were a half a standard deviation away from donees – clearly not

good matches. A similar pattern is observed with the [Z + Y ] mechanism; larger ρ

values have relatively small MMD values, but the MMD for ρ = 0.2 is much larger.

For the [Y 2] mechanism the MMD results are even more concerning – not even for

the high correlation is the distance acceptable. This explains why the PPM hot deck
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is biased even for the “matching” λ value; respondent predicted means and nonre-

spondent predicted means are far apart on average, and thus there are no adequately

close donors.

Similar conclusions can be drawn with the MVSP, which measures the variance

in the donor selection probabilities. A large MVSP indicates good variability of the

selection probabilities, meaning that some donors are closer than others. On the other

hand, a small MVSP indicates that all donors are equally far away, likely because there

is little overlap in the respondent and nonrespondent predicted means. Looking at

Table 3.2 we can see that for the MAR mechanism [Z], the MVSP is high for λ = 0

for all correlations, but for the MNAR mechanisms the MVSP decreases for smaller

values of ρ even for the “matching” λ value.

The MVSP can also help explain why the PPM hot deck with λ = ∞ produces

unexpected results with weak correlations. In Table 3.2, if we look at the set of

MVSP values for each scenario, we can get an idea of how well matches are being

found for each λ value. For example, for the case with missingness dependent on Z

and a correlation of ρ = 0.8, the MVSP values are all approximately 1.7 for the three

λ values, showing reasonable spread of the selection probabilities. The corresponding

estimates shown in Figure 3.2 reflect this; the estimates are well spread out. However,

when the correlation is ρ = 0.2, the MVSP is drastically lower for λ = ∞ than

for the other two values: 0.07 compared to 1.74 and 1.09. This very small MVSP

means that all the selection probabilities for λ = ∞ are approximately the same for

all potential donors. Thus the imputations are essentially a simple random sample

from the respondents, and the mean estimate gets pulled towards the complete case

estimate as seen in Figure 3.2. Looking at the formula (3.5) for the predicted means,
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we see that the correlation estimate is in the denominator when λ = ∞, and thus

small correlations will lead to larger shifts in the predicted means for nonrespondents

away from the predicted means for respondents. However, the hot deck procedure

simply cannot find good donors for these really large predicted means – all donors are

really far away. No respondent is close, so the donor selection effectively turns into a

simple random sample from the respondents.

3.6.5 Results: Coverage

Figure 3.3 shows coverage for the scenarios in the simulation experiment. For the

highest correlation (ρ = 0.8), the PPM hot deck performs well and as expected for

missingness mechanisms [Z], [Y ], and [Z + Y ], with λ = 0, λ =∞, and λ = 1 having

approximately 95% coverage, respectively. For ρ = 0.5, the same values of λ are the

closest to 95% coverage for those three mechanisms, with [Z + Y ] falling to about

90%. When ρ = 0.2, the PPM hot deck only achieves nominal coverage when the

data are MAR, with λ = 0.

The PPM hot deck has a difficult time achieving nominal coverage for [Y 2] for any

value of λ, for all correlations, with λ = ∞ ranging from about 62% coverage when

ρ = 0.8, to less than 10% coverage when ρ = 0.2. This is not unexpected, since we

saw high bias for this method in these situations. The SB hot deck does have higher

coverage for these scenarios using a value of c = 3, but still is as low as 40% coverage

for ρ = 0.2, with the other values of c obtaining similar results as the PPM hot deck.

Overall, coverage was best for the PPM hot deck when correlation was high. For

the most part, the method followed the pattern we expected, with highest coverage

for the λ value corresponding to the missing data mechanism. The SB hot deck had
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no clear pattern linking the highest coverage to specific combinations of c-values and

missingness mechanisms, similar to what we saw with the bias results.

3.6.6 Effect of Sample Size and Percent Missingness

We also examined the effect that sample size and percent missingness had on the

estimates and coverage of both the PPM hot deck and the SB hot deck (Figures 3.4

and 3.5). We used combinations of n = {400, 800} and 25% and 50% missingness. As

expected, the PPM hot deck estimates are less biased with a larger sample size and

lower percent missingness for a given mechanism. The difference in percent missing

seems to play more of a role in bias than the sample size. In terms of coverage, for

each mechanism, estimates from 25% missingness had closer to nominal coverage than

estimates from 50% missingness, though it was not always the case that n = 800 was

the best. The scenarios with n = 400 and 25% missingness had closer to nominal

coverage for certain mechanism and correlation combinations than n = 800 with 25%

missingness.

Siddique and Belin’s hot deck with c = 0 performs the same as PPM hot deck with

λ = 0 in all settings (the two MARmodels). The values of c that were unbiased (or the

least biased) for the mechanisms discussed above with n = 400 and 25% missingness,

are still unbiased (or the least biased) for the other sample sizes and 50% missingness,

with those values not varying much. For the remaining c values in each setting,

the estimates do change as sample size and missingness change, with the pattern of

higher estimates with 25% missingness, lower estimates with 50% missingness. The

most notable difference between estimates of the PPM hot deck and the SB hot

deck is that the range of the estimates for the SB hot deck becomes very wide over
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the values of c for 50% missingness. For example, with ρ = 0.5, mechanism [Y ],

n = 400 with 50% missingness, the estimates range from approximately 0.81 when

c = 0 to approximately 1.07 when c = 3. This compares to the range of the estimates

for the PPM hot deck from approximately 0.81 when λ = 0 to approximately 0.94

when λ = ∞. Examining coverage for the SB hot deck, one observation is that

for the settings in which a specific c value was unbiased, the same c suffers from

undercoverage. Take ρ = 0.5 and mechanism [Y ]; for all n with either 25% or 50%

missingness, c = 2 was unbiased; and specifically was less biased than PPM hot deck

with λ = ∞. However, the coverage obtained with c = 2 is no better than the

coverage obtained with λ =∞. This pattern holds for all cases when the SB hot deck

was less biased for a value of c than the “best” λ for the PPM hot deck. This may

be due to not having enough variability between MI sets to make the SB hot deck a

fully proper MI procedure.

3.7 Application to OMAS 2012

The 2012 Ohio Medicaid Assessment Survey (OMAS) was a stratified simple ran-

dom sample of telephone numbers of non-institutionalized adult and child populations

living in residential households in Ohio [36]. There was over-sampling in the counties

having the highest density of African-Americans. While there were many variables

with missing data in the OMAS data, for illustrating the proxy pattern-mixture hot

deck we focus on imputation of annual family income, which had the highest rate of

missingness.

The imputation of income as performed by OMAS assumed that the data are

MAR, using a combination of regression imputation and draws from a lognormal
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distribution. The goal of our application of the proxy pattern-mixture hot deck is to

examine the effect that nonignorable missingness may have on estimates of the mean

income. In OMAS, a subset of respondents who did not provide an exact income

value did provide a range for their income; in our application we treat these subjects

as nonrespondents since they did not provide an exact income value. Of the 22,929

participants in the 2012 OMAS, 7,347 did not provide their exact income, a 32%

nonresponse rate. The distribution of observed income values was highly skewed with

some extremely large values of income; the largest three were $2,160,000, $2,460,000

and $11,999,964.

To apply the PPM hot deck, we log-transformed the income values and used

linear regression to create the proxy. Fully observed (or already imputed by OMAS)

covariates included region, number of adults in the household, number of children in

the household, age, gender, race, education, whether or not the respondent owned

his/her home, and type of insurance (none, Medicaid, other insurance). We also

included the final adjusted survey weight as a covariate as recommended for survey

data [37]. Starting with a model that included all pairwise interactions, backwards

selection with a p-value threshold of 0.05 was used to select a final model. The final

model had an R-squared of 28%, and the resulting correlation between the outcome

and proxy among respondents was ρ̂(0) = 0.53, which was a moderately strong proxy.

We applied the PPM hot deck with λ = 0, 1,∞ and also calculated both donor

quality metrics (MMD, MVSP) for each λ value using the pre-bootstrap sample. For

comparison, we also applied the Siddique and Belin hot deck. Unlike the simulation

study, we did not know a priori whether larger or smaller values of income were
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more likely to be missing, and thus applied their recommended range of c values,

c = {−1, 0, 1, 2, 3}.

The reason for log-transforming income was to obtain the “best fitting” model

for income and thus the strongest proxy. However, once donors were found, the

un-transformed income values were imputed via the hot deck. We also applied the

PPM hot deck using untransformed income to create the proxy and find donors;

the strength of the proxy was lower (ρ̂(0) = 0.30) and as a consequence confidence

intervals were wider, but mean estimates were approximately the same for all λ values

(results not shown). The SB hot deck could not be applied to the untransformed

income, because the highly skewed nature of income caused problems when creating

the nonignorable ABB. When values of income were selected into the ABB with

probability proportional to income (or positive powers of income), one very large

income had a very large probability of inclusion into the bootstrap sample (> 0.5)

and thus the ABB consisted of this one respondent being the only one selected into

the ABB.

Figure 3.6 shows estimated means and 95% confidence intervals for income using

complete cases only and after application of the PPM hot deck with λ = {0, 1,∞} and

the SB hot deck with c = {−1, 0, 1, 2, 3}, using D = 20 multiply imputed data sets.

These estimates use the final OMAS survey weights to compute weighted means; this

is an advantage of the multiple imputation approach. We can see that the estimate

of mean income is highest for the complete case analysis, and decreases as the value

of λ increases for the PPM hot deck. As we change the missingness assumption from

MCAR (the complete case estimate), to MAR (λ = 0), to MNAR (λ = 1,∞), the

estimated means decrease, and the width of the confidence intervals increases. The
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decreasing trend suggests that lower values of income are more likely to be missing

than larger values. This is reflected in the mean proxy values; the average proxy

value was 10.32 for respondents and 10.17 for nonrespondents. Neither donor quality

metric indicated any problem with the PPM hot deck finding quality donors. The

MMD values were approximately 0.0004 for all λ values, indicating that close matches

were available on average. The MVSP values (x1000) were consistent across λ values

(≈ 0.033), indicating that λ = ∞ did not result in a simple random sample as was

seen in some scenarios in the simulation study.

Estimates for the PPM hot deck with λ = 0 and the SB hot deck with c = 0 are

similar, as expected, since both assume an MAR mechanism. However, for the SB

hot deck, as c increases, the mean estimates increase. This is expected, since positive

c values mean that larger values of the outcome will get selected into the donor pool

with higher probability. However, as evidenced by the proxy means, for OMAS it

appears that smaller values of income were more likely to be missing. This illustrates

a disadvantage of the SB hot deck compared to the PPM hot deck. The SB hot deck

requires the user to specify the direction of the nonignorable missingness, i.e., whether

large or small values of the outcome are more likely to be missing. With the PPM

hot deck, the method adapts to the data and will impute larger or smaller values of

the outcome depending on the direction of the difference between respondents and

nonrespondents as seen in the proxy.

The imputation performed by OMAS assumed that income values were missing at

random. This analysis shows us that if this assumption is incorrect, if the missingness

in income depended on the missing income values themselves, then OMAS estimates

of mean income would tend to be too large. The resulting confidence intervals for
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MAR (λ = 0) and extreme MNAR (λ =∞) do overlap, but the difference in mean is

around $3,000, a not insubstantial difference.
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3.8 Tables and Figures

Figure 3.1: Distributions for the PPM hot deck for a single imputed data set.

(a) ρ = 0.8, MD mechanism [Z], n=400, 25% Missing

−2 −1 0 1 2 3 4

Correlation:  0.8 ; MD Mechanism:  [Z] ; n=400, 25%Missing
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λ=0

λ=1

λ=∞

(b) ρ = 0.8, MD mechanism [Y2], n=400, 25% Missing
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Correlation:  0.8 ; MD Mechanism:  [Y2] ; n=400, 25%Missing
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Ŷ,Respondents
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λ=0

λ=1

λ=∞

(c) ρ = 0.2, MD mechanism [Z], n=400, 25% Missing

0 5 10

Correlation:  0.2 ; MD Mechanism:  [Z] ; n=400, 25%Missing
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Table 3.1: Parameters for the missing data mechanisms in the simulation study. The
variable(s) in brackets denotes the variable(s) on which missingness depends.

Missingness Missingness Expected Percent Missingness
Mechanism Model closest λ 25% 50%
MAR [Z] λ = 0 −1.6 + 0.5Z −0.5 + 0.5Z
MNAR [Y ] λ =∞ −1.6 + 0.5Y −0.5 + 0.5Y
MNAR [Y 2] λ =∞ −2.1 + 0.5Y 2 −1.0 + 0.5Y 2

MNAR [Z + Y ] λ = 1 −2.1 + 0.5Z + 0.5Y −1.0 + 0.5Z + 0.5Y
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Table 3.2: Mean Minimum Distance (MMD) and Mean Variance Selection Probability
(MVSP)x1000 for the simulation study, calculated on the pre-bootstrap sample of
respondents. Cells shaded gray indicate where the λ value “matches” the missing
data mechanism.

Missing Data Mechanism
[Z] [Y ] [Y 2] [Z + Y ]

ρ λ MMD MVSP MMD MVSP MMD MVSP MMD MVSP

0.8 0 0.012 1.74 0.011 1.74 0.027 1.72 0.018 1.78
1 0.016 1.73 0.013 1.74 0.054 1.65 0.027 1.74
∞ 0.021 1.71 0.016 1.74 0.119 1.51 0.047 1.69

0.5 0 0.008 1.74 0.006 1.74 0.008 1.76 0.009 1.78
1 0.021 1.68 0.010 1.73 0.034 1.65 0.038 1.64
∞ 0.130 1.37 0.037 1.65 0.277 1.10 0.386 0.77

0.2 0 0.003 1.74 0.002 1.74 0.002 1.78 0.003 1.78
1 0.097 1.09 0.013 1.65 0.031 1.52 0.184 0.64
∞ 2.323 0.07 0.510 0.82 1.325 0.43 4.026 0.02
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Figure 3.6: Application of the proxy pattern-mixture hot deck (PPM HD) and the
Siddique and Belin hot deck (SB HD) to the 2012 OMAS to estimate mean income.
The complete case mean (CCA) is also shown.
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Chapter 4: Binary Outcome

We now extend the proposed proxy pattern-mixture hot deck to the imputation of

a binary outcome. This should be attractive since the proposed method should not be

as sensitive to departures from normality as a parametric imputation technique. As

discussed in Andridge (2009) [38], when imputing a continuous variable, the pattern-

mixture model is fairly robust to departures from normality. However, when imputing

a binary variable, violating normality may have more severe consequences, making

the hot deck method more appealing. To implement the proxy pattern-mixture hot

deck for binary imputation, we follow similar steps as with a continuous outcome,

but instead use the methods from [38] and modify donor selection. We note that the

nonignorable hot deck of Siddique and Belin does not have a natural extension to

categorical outcomes. Siddique and Harel (2009) [39] imply that they use the same

predictive mean matching, using the predictive values from linear regression on a

binary outcome.

4.1 The Model

We assume we have fully observed covariates Z and a partially observed binary

outcome Y with missingness indicator M . Following convention, we assume there

exists a latent variable U (unobserved) such that Pr(Yi = 1|mi) = Pr(Ui > 0|mi).
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The covariates Z are used to form a proxy for U (instead of the outcome Y ). Specif-

ically, we take the proxy to be X = α̂0 + α̂Z, where (α̂0, α̂) are estimated from

Pr(Y = 1|Z,M = 0) = Φ(α0 + αZ), the probit regression of Y on Z for respondents.

Since Z is fully observed, we have X for both respondents and nonrespondents, and

the pattern-mixture model is assumed for X and U . We can then apply methods from

the continuous outcome case to estimate the parameters of the model under different

assumptions on the missing data mechanism. However, since the latent variable U

is unobserved for all subjects, we have additional requirements for estimating the

parameters for respondents. We discuss two methods of estimation, Tate’s full MLE

method [40, 41] and a two-step method, proposed by Olsson (1982) [42]. Both have in

common using a cutpoint of the distribution of U to reduce the problem to estimation

of four parameters from five. We discuss the general cutpoint first, then detail the

two estimation methods. We then discuss estimation for the non-respondents.

After creation of the proxy, X, and using the assumption for the latent U , we can

write the conditional distribution of Y given X as

(Y |X = x,M = 0) ∼ Binomial(1, Px) (4.1)

Px = P (U > 0|x,M = 0).

The pattern-mixture model is assumed for the proxy X and the latent variable, U :

(X,U |M = m) ∼ N

(µ(m)
x

µ
(m)
u

)
,

 σ
(m)
xx ρ(m)

√
σ
(m)
xx σ

(m)
uu

ρ(m)

√
σ
(m)
xx σ

(m)
uu σ

(m)
uu

 (4.2)

where ρ(m) = σ
(m)
xu /

√
σ
(m)
xx σ

(m)
uu . This model has 11 parameters: {µ(m)

x , σ
(m)
xx , µ

(m)
u , σ

(m)
uu ,

ρ(m);m = 0, 1} and π1 = Pr(M = 1). For both respondents and nonrespondents,

the joint likelihood of the sample can be factored into two pieces: the marginal
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distribution of X and the conditional distribution of Y given X. We begin with the

respondents. Equation (4.2) implies that the marginal distribution of X givenM = 0

is N(µ
(0)
x , σ

(0)
xx ). These estimates are simply µ̂(0)

x = x̄R and σ̂(0)
xx = s

(0)
xx . However, since

U is unobserved, µ(0)
u , σ

(0)
uu and ρ(0) are unidentified. Without loss of generality, we let

σ
(0)
uu = 1

1−ρ(0)2 which implies Var(U |X,M = 0) = 1.

To formulate the cutpoint of the distribution of U , we use properties of bivariate

normality to write the marginal distribution of U for the respondents as:

(U |m = 0) ∼ N(µ(0)
u , σ(0)

uu ) (4.3)

which gives,

Pr(Y = 1|M = 0) = P(U > 0|M = 0) = Φ

 µ
(0)
u√
σ
(0)
uu


= Φ(ω(0)). (4.4)

Here, we are defining the cutpoint of U , ω(0) = µ
(0)
u /

√
σ
(0)
uu = µ

(0)
u /
√

1
1−ρ(0)2 in stan-

dard units. This has now reduced the problem of estimating three parameters,

{µ(0)
u , σ

(0)
uu , ρ(0)}, to the problem of estimating two: {ω(0), ρ(0)}.

Once the parameters for respondents ({µ(0)
x , σ

(0)
xx , ω(0), ρ(0)}) have been estimated,

the estimates for the nonrespondents’ parameters follow from the same assump-

tions as in the continuous outcome case. For the nonrespondents we only observe

{(X(1)
i ), i = nobs + 1, . . . , n} with no information for the latent U since Y is unob-

served. Equation (4.2) yields the parameters: {µ(1)
x , σ

(1)
xx , µ

(1)
u , σ

(1)
uu , ρ(1)}. Since we

observe X for the nonrespondents, the first two can be estimated as standard maxi-

mum likelihood estimates: {µ̂(1)
x , σ̂

(1)
xx } = {x̄NR, s(1)xx}. Estimation of those parameters
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dealing with U requires the following assumption on the missing data:

Pr(M = 1|X,U, Y ) = f

X 1√
σ
(0)
xx (1− ρ̂(0)2)

+ λU

 . (4.5)

As in the continuous case, the proxy X is scaled to have the same standard deviation

as U and λ is a sensitivity parameter that determines the extent of nonignorability.

This assumption just identifies the remaining parameters and we can write them

as:

µ(1)
u =

ω(0)√
1− ρ(0)2

+
1√

σ
(0)
xx (1− ρ(0)2)

(
λ+ ρ(0)

λρ(0) + 1

)
(µ(1)

x − µ(0)
x )

σ(1)
uu =

1

(1− ρ(0)2)
+

1

σ
(0)
xx (1− ρ̂(0)2)

(
λ+ ρ(0)

λρ(0) + 1

)2

(σ(1)
xx − σ(0)

xx ) (4.6)

ρ(1) =
1√

σ
(1)
xx σ

(1)
uu

ρ(0)
√

σ
(0)
xx

(1− ρ(0)2)
+

1√
σ
(0)
xx (1− ρ(0)2)

(
λ+ ρ(0)

λρ(0) + 1

)
(σ(1)

xx − σ(0)
xx )


The ML estimates of {µ(1)

u , σ
(1)
uu , ρ(1)} are found by substitution of the previously

described MLEs for {µ(0)
x , σ

(0)
xx , ρ(0), ω(0), µ

(1)
x , σ

(1)
xx }.

4.2 Estimation

We have six parameters that require explicit estimation: {µ(0)
x , σ

(0)
xx , ρ(0), ω(0), µ

(1)
x ,

σ
(1)
xx }. We have already discussed using the marginal distribution of X conditional

on respondent status, to obtain estimates {µ̂(0)
x , σ̂

(0)
xx , µ̂

(1)
x , σ̂

(1)
xx } = {x̄R, s(0)xx , x̄NR, s(1)xx}.

We are now interested in the second piece of the likelihood equation that will yield

estimates of ω(0) and ρ(0), but will require more work to maximize:

logL =

nobs∑
j=1

{yj log(Px) + (1− yj) log(1− Px)} (4.7)

72



To define Px, we use properties of bivariate normality, to write the conditional

distribution of U given X and M as:

(U |X = x,m = 0) ∼ N

µ(0)
u +

ρ(0)√
σ
(0)
xx (1− ρ(0)2)

(x− µ(0)
x ), 1

 (4.8)

Therefore,

Px = P (U > 0|X = x,m = 0) (4.9)

= Φ

 ω(0)√
1− ρ(0)2

− ρ(0)√
σ
(0)
xx (1− ρ(0)2)

µ(0)
x +

ρ(0)√
σ
(0)
xx (1− ρ(0)2)

x


= Φ(a(0) + b(0)x)

where b(0) =

√
ρ(0)2

σ
(0)
xx (1−ρ(0)2)

and a(0) = ω(0)√
1−ρ(0)2

− bµ(0)
x .

4.2.1 Full MLE

To find the maximum likelihood estimates of {ω(0), ρ(0)}, we follow the work

of Hannan and Tate (1965) [41]. We note that this is intended for the polyto-

mous outcome, and therefore the cutpoint is opposite our formulation. All following

notation will be in the case we consider; with a dichotomous outcome such that

Pr(Y = 1|M = 0) = Φ(ω(0)), and with a univariate X.

To maximize the likelihood function of the sample (X
(0)
j , Y

(0)
j ) the parameters

(µ
(0)
x , σ

(0)
xx , ω(0), ρ(0)) are transformed to a new set (µ

(0)
x , σ

(0)
xx , a(0), b(0)) to simplify the

information matrix. Using these parameters and the formula for Px, the log-likelihood

equation in (4.7) can be written as

l(a(0), b(0)) =

nR∑
j=1

yj log(Φ(a(0) + b(0)xj)) + (1− yj) log(1− Φ(a(0) + b(0)xj)).

Maximizing the likelihood now requires us to maximize with respect to a(0) and

b(0), which are functions of ω(0) and ρ(0). We will maximize the likelihood using R’s
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‘optim’ function, which maximizes a function using Nelder-Mead and requires initial

values for a(0) and b(0). Hannan and Tate suggest the following equations for the

initial values:

b∗ =

√
r∗2

sxx(1− r∗2)
(4.10)

a∗ =
ω∗√

1− r∗2
− b∗x̄

where r∗ is the biserial estimator of ρ, and ω∗ is Φ−1(ȳR).

Once the maximum likelihood estimates for a(0) and b(0) are found they are trans-

formed to obtain the MLEs for ω(0) and ρ(0):

ρ̂(0) =

√
b̂(0)2s

(0)
xx

1 + b̂(0)2s
(0)
xx

(4.11)

ω̂(0) = (â(0) + b̂(0)x̄)
√

1− ρ̂(0)2 .

4.2.2 Two-Step Estimation

An alternative estimation method for ω(0) and ρ(0) is the two-step method of

Olsson (1982) [42]. The first step is to estimate ω(0) with ω̂(0) = Φ(−1)(ȳR). The

second step uses ω̂(0) in the log-likelihood, and maximizes with respect to ρ(0) only.

This formulation of the estimate of the cutpoint returns a natural estimate of the mean

of Y for the respondents: µ̂(0)
Y = Φ(ω̂(0)) = ȳR. This procedure is computationally

simpler than the simultaneous estimation of the full MLE method, and will produce

similar estimates when the model properties are satisfied (e.g., normality).
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4.2.3 Estimates

In summary, we have the following MLEs for the respondents:

µ̂(0)
x = x̄R

σ̂(0)
xx = s(0)xx

ω̂(0), ρ̂(0) : from maximization (either full MLE or two-step)

µ̂(0)
u = ω̂(0)/

√
1− ρ̂(0)2 = (â(0) + b̂(0)x̄R) (4.12)

σ̂(0)
uu = 1/(1− ρ̂(0)2)

σ̂(0)
xu = ρ̂(0)

√
σ̂
(0)
xx /(1− ρ̂(0)2)

and for the nonrespondents:

µ̂(1)
x = x̄NR

σ̂(1)
xx = s(1)xx

µ̂(1)
u =

ω̂(0)√
1− ρ̂(0)2

+
1√

s
(0)
xx (1− ρ̂(0)2)

(
λ+ ρ̂(0)

λρ̂(0) + 1

)
(x̄NR − x̄R) (4.13)

σ̂(1)
uu =

1

(1− ρ̂(0)2)
+

1

s
(0)
xx (1− ρ̂(0)2)

(
λ+ ρ̂(0)

λρ̂(0) + 1

)2

(s(1)xx − s(0)xx )

ρ̂(1) =
1√

s
(1)
xx σ̂

(1)
uu

ρ̂(0)
√

s
(0)
xx

(1− ρ̂(0)2)
+

1√
s
(0)
xx (1− ρ̂(0)2)

(
λ+ ρ̂(0)

λρ̂(0) + 1

)
(s(1)xx − s(0)xx )


4.3 Fitted Values

As in the case with a continuous outcome Y , to apply the bootstrap proxy hot

deck, we need to match on ‘something’. In the continuous case, we found Ŷ ’s for

all subjects, and matched using the Siddique and Belin distance function. We will

follow the same steps, except we will find Û , where U is the latent variable for Y , and
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is itself unobserved. From Andridge (2009) [38], we have the following conditional

distribution for nonrespondents (m = 1) and respondents (m = 0) of Y :

[ui|xi,mi = m,φ] ∼ N

µ(m)
u + ρ(m)

√
σ
(m)
uu

σ
(m)
xx

(
xi − µ(m)

x

)
, σ(m)

uu

(
1− ρ(m)2

) (4.14)

Substitution of the MLEs from (4.11) and (4.13) yields, for the respondents,

û
(0)
i = µ̂(0)

u + ρ̂(0)

√
σ̂
(0)
uu

σ̂
(0)
xx

(
xi − µ̂(0)

x

)
(4.15)

=
ω̂(0)√

1− ρ̂(0)2
+

√
ρ̂(0)2

s
(0)
xx (1− ρ̂(0)2)

(xi − x̄R),

and for the nonrespondents,

û
(1)
i = µ̂(1)

u + ρ̂(1)

√
σ̂
(1)
uu

σ̂
(1)
xx

(
xi − µ̂(1)

x

)
(4.16)

=
ω̂(0)√

1− ρ̂(0)2
+ ĝλ(xi − x̄R) +

√
s
(0)
xx

s
(1)
xx

(
ρ̂(0)√

1− ρ̂(0)2
− ĝλ

√
s
(0)
xx

)
(xi − x̄NR)

where

ĝλ =
1√

s
(0)
xx (1− ρ̂(0)2)

(
λ+ ρ̂(0)

λρ̂(0) + 1

)
.

We can examine the value of ûi for different values of λ. We use λ = 0, 1,∞ to

represent different missingness assumptions, according to Equation (2.21).

Under the assumption of MAR, λ = 0, and ĝλ=0 = ρ̂(0)√
s
(0)
xx (1−ρ̂(0)2 )

. This yields,

û
(1,λ=0)
i =

ω̂(0)√
1− ρ̂(0)2

+
ρ̂(0)√

s
(0)
xx (1− ρ̂(0)2)

(xi − x̄R) (4.17)
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which is equivalent to û for the respondents. Here, the (xi − xNR) term drops out

because the coefficient equals 0: ρ̂(0)√
1− ρ̂(0)2

√
s
(0)
xx

s
(1)2
xx

− ρ̂(0)√
s
(0)
xx (1− ρ̂(0)2)

s
(0)
xx

s
(1)
xx


=

 ρ̂(0)√
1− ρ̂(0)2

√
s
(0)
xx

s
(1)2
xx

− ρ̂(0)√
(1− ρ̂(0)2)

√
s
(0)
xx

s
(1)2
xx


= 0.

When λ = ∞, which is the extreme MNAR situation, ĝλ=∞ = 1√
s
(0)
xx ρ̂(0)

2
(1−ρ̂(0)2 )

.

Thus,

û
(1,λ=∞)
i =

ω̂(0)√
1− ρ̂(0)2

+
1√

s
(0)
xx ρ̂(0)

2(1− ρ̂(0)2)
(xi − x̄R) (4.18)

+

√
s
(0)
xx

s
(1)2
xx

(
ρ̂(0)

2 − 1

ρ̂(0)
√

1− ρ̂(0)2

)
(xi − x̄NR).

When λ = 1, ĝλ=1 = 1√
s
(0)
xx (1−ρ̂(0)2 )

. Thus,

û
(1,λ=0)
i =

ω̂(0)√
1− ρ̂(0)2

+
1√

s
(0)
xx (1− ρ̂(0)2)

(xi − x̄R) (4.19)

+

√
s
(0)
xx

s
(1)2
xx

(
ρ̂(0) − 1√
1− ρ̂(0)2

)
(xi − x̄NR).

To attempt to simplify the formulas, we can also write the ûi equations in terms

of a(0) and b(0) for the different values of λ. Note that the formulation by Hannan

and Tate (1965) yields ω(0)√
1−ρ(0)2

= a(0) + b(0)µx.

First, for respondents,

û
(0)
i =

ω̂(0)√
1− ρ̂(0)2

+

√
ρ̂(0)2

s
(0)
xx (1− ρ̂(0)2)

(xi − x̄R)

= â(0) + b̂(0)x̄R + b̂(0)(xi − x̄R)

= â(0) + b̂(0)xi
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For nonrespondents,

û
(m=1,λ=0)
i = â(0) + b̂(0)xi (4.20)

û
(m=1,λ=1)
i = û

(m=1,λ=0)
i

+ b̂(0)
(

1− ρ̂(0)

ρ̂(0)

)
(xi − x̄R)− b̂(0)

(
1− ρ̂(0)

ρ̂(0)

)
s
(0)
xx

s
(1)
xx

(xi − x̄NR)

û
(m=1,λ=∞)
i = û

(m=1,λ=1)
i

+
1

ρ̂(0)

[
b̂(0)
(

1− ρ̂(0)

ρ̂(0)

)
(xi − x̄R)− b̂(0)

(
1− ρ̂(0)

ρ̂(0)

)
s
(0)
xx

s
(1)
xx

(xi − x̄NR)

]
.

We can see that for a given nonrespondent, increasing λ from 0 to ∞ will either

increase or decrease the value of û, depending on the relationship between xi, x̄R, x̄NR,

and ρ(0), and how different the variance of the proxy is for the respondents and

nonrespondents. The same term that is added to the predicted mean when λ increases

from 0 to 1 is added when λ increases from 1 to ∞ multiplied by a factor of 1
ρ̂(0)

.

Therefore, if the proxy is very weak, a larger term is added, whereas a strong proxy has

a smaller term. For example, the values of 1
ρ(0)

for values of ρ(0) = {0.1, 0.2, 0.5, 0.8}

are {10, 5, 2, 1.25}.

4.4 Siddique and Belin Distance Measure

Figure (4.1) shows examples of using the Siddique and Belin distance measure on

the û’s for two nonrespondents in simulated data. The top panels are û’s versus abso-

lute distance between the nonrespondent (red line) and each respondent. The middle

panel is û versus the distance (absolute distance to the power k = 3). The bottom

panel is û versus the selection probability. The bottom two panels also separate the

respondents into y = 0 and y = 1. The figures on the left show a pattern typical

of most of the nonrespondents examined, and illustrate that even though the k is
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non-zero, there is only one respondent with a very large probability, and the hot deck

will turn into nearest neighbor. The figures on the right illustrate the less common

result, where there is not one point that stands away from the rest.

4.4.1 Use of Adjustment Cells

Due to what was observed with the selection probabilities, we propose using ad-

justment cells to find donors for the imputations instead of using Siddique and Belin’s

distance measure. Adjustment cells are a common method for hot deck imputation

of a categorical variable [43]. If we use û’s from the respondents and nonrespondents

to form the H cells, we may have the problem that some cells only contain nonre-

spondents (or respondents), due to the different missingness assumptions. Because of

this, we use one suggestion in [43]; we form H = 10 equally sized cells based on the

quantiles of the û(0)’s of the respondents. Then each nonrespondent will be placed

into the closest cell. This closeness is determined by the Euclidean distance between

the û(1)i and the mean of all the û(0)i ’s in the cell. So, nonrespondent i will be placed

in cell h, such that the following is minimized:

∣∣û(1)i − 1

nh

nh∑
j=1

û
(0)
j

∣∣. (4.21)

Here, nh is the total number of respondents in cell h. This will ensure that every cell

containing a nonrespondent has respondents available to be donors, and there will

also be an equal number of possible donors for each nonrespondent. This eliminates

the problem described in Section (4.4) at the cost of possibly increased bias due to

less than perfect matches.

Figure (4.2) illustrates how the û′s figure into the adjustment cells. The first figure

shows results from simulated data that are MAR with a strong proxy (ρ = 0.8). The
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û′s for the nonrespondents were formed using λ = 0. Each pair of boxplots represents

one adjustment cell, with the unshaded boxplot the distribution of û(0)i ’s and the

shaded boxplots the distribution of û(1)i ’s. The tables on the graph display, for the

respondents, the number of 0’s and 1’s (values of Y ) in each adjustment cell. We

can see that there are approximately the same total number of respondents in each

cell, and as the value of û increases (the adjustment cell number increases), the

proportion of 1’s in each cell increase. The table labeled “Imputations” is an example

of a single imputation for the nonrespondents. We first notice that the number of

nonrespondents in each cell varies, from 2 in cell 1 to 27 in cell 10. We also notice

that the cells representing the largest û(1)i values (higher numbered cells) had 1’s

imputed more often. The lower figure contains information for data generated using

a different distribution and missingness mechanism. The data were generated using

an Exponential distribution for Z, the missingness mechanism was MNAR, and the

values of û(1)i were formed using λ = ∞. Note how much larger the û(1)i ’s become,

compared to the upper figure, with a maximum û
(1)
i value for the nonrespondent of

approximately 14 compared to approximately 4 in the upper figure. There is also a

large number of nonrespondents that are closest to the largest adjustment cell, many

with very large values of û(1)i . If the distance measure of Siddique and Belin were

applied, this would likely turn into a simple random hot deck of all the respondents

for those nonrespondents with very large predicted means. The use of adjustment

cells prevents this, and forces the nonrespondents with the largest ûi’s to be matched

to a respondent that is among the largest û(0)i ’s.
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4.5 Formal Steps of the PPM Hot Deck

The steps of the PPM hot deck for imputing a binary outcome are similar to those

for a continuous variable, except that a proxy is created for the latent U instead of

the outcome Y . We also adjust the method through use of adjustment cells to find

the donors. The following are the method’s steps:

For a specified λ representing a chosen missingness assumption, and chosen pa-

rameter estimation method and imputation 1 of D,

1. Bootstrap: Generate a bootstrap sample of the respondents by selecting nobs

with replacement. Denote these respondent outcomes and covariate values as

{Y b
j ,Z

b
j}, where b distinguishes the bootstrap sample from the original sample.

2. Proxy: Create the ProxyX for the latent U for the (bootstrapped) respondents

and nonrespondents. Note that only respondents who are selected into the

bootstrap sample have a proxy created, while all nonrespondents have a proxy

created:

(a) Fit a probit regression of Y on Zb (the bootstrapped respondents),

Pr(Y b = 1|Zb,M = 0) = Φ(α0 + α1Z
b), to obtain regression parameter

estimates (α̂0, α̂1).

(b) Use the estimated coefficients to form the proxy, X, for all nonrespondents

and all respondents in the bootstrap sample:

xi = α̂0 + α̂1zi, i = 1, . . . , n.

3. Predicted Values: For the chosen estimation method, estimate the model

parameters and calculate the predicted values Û based on the pattern-mixture
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model in (4.2) and identifying restriction in (4.5) for the selected value of λ.

Under this model, predicted values for respondents (in the bootstrap sample)

and nonrespondents are given by

û
b(0)
i = µ̂(0)

u + ρ̂(0)

√
σ̂
(0)
uu

s
(0)
xx

(
xbi − x̄bR

)
,

û
(1,λ=λ)
i = µ̂(0)

u +

√
σ̂
b(0)
uu

s
b(0)
xx

(
λ+ ρ̂b(0)

1 + λρ̂b(0)

)(
x̄NR − x̄bR

)
(4.22)

+

ρ̂(0)
√
s
(0)
xx σ̂

(0)
uu

s
(1)
xx

+

√s
b(0)
uu

s
b(0)
xx

· λ+ ρ̂b(0)

λρ̂b(0) + 1

(1− s
b(0)
xx

s
(1)
xx

) (xi − x̄NR) .

We use the superscript b to denote quantities that are calculated on a boot-

strapped sample, to distinguish them from quantities calculated on the whole

sample. For example, x̄bR is the mean of X for the bootstrapped sample of re-

spondents, while x̄NR is the mean of X for the entire sample of nonrespondents.

Note that for respondents the predicted means do not depend on λ. However,

they vary for each cycle through the PPM hot deck because of the bootstrapping

(step 1).

4. Adjustment Cells:

(a) Adjustment cells are created for the bootstrapped respondents. The Û (0)’s

for the bootstrapped respondents are divided into 10 cells, with an equal

number of respondents in each.

(b) The nonrespondents are then placed into one of the 10 groups, by minimiz-

ing the Euclidean distance between the û(1)i value of the nonrespondent,

and the mean of the û(0)i ’s in a cell.
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5. Select and Impute: For each nonrespondent, select a donor by randomly

drawing a donor from the cell with equal probability. Impute the donor’s value of

Y for the missing value of the donee. Repeat this process for all nonrespondents.

6. Repeat steps 1-5 D times to create D complete datasets, composed of the origi-

nal (pre-bootstrap) respondents and the imputed nonrespondent data. This en-

tire process should be completed separately for each value of λ in the sensitivity

analysis.

4.6 Simulation

We conducted a simulation study to assess the bias and coverage of the proxy

pattern-mixture hot deck when estimating the mean of a partially observed binary

outcome. Of particular interest is examining the sensitivity to non-normality of the

proxy X or the latent variable U . For the parametric method, the assumption of

normality in the pattern-mixture model is more critical when Y is binary than when

Y is continuous. For binary Y , we examine the model for the latent U and proxy X:

U = X + ε, where X ⊥ e. We consider three scenarios representing combinations of

normality and various degrees of non-normality of both the proxy X and error term

e. The three scenarios are:

1. Both X and ε are normal

2. X is nonnormal, ε is normal

3. ε is nonnormal, X is normal

Situation (1) does not violate the normality assumption and will serve as the

control. Non-normality of the proxy (situation (2)) is studied in Andridge and Little
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(2009) for the parametric PPM model [38]. Non-normality of X causes the marginal

distribution of U for respondents to be non-normal, which causes the ML estimate of

µ
(0)
y to be biased. Andridge and Little found this to impact the maximum likelihood

method and also the fully Bayesian approach. The multiple imputation method

is fairly robust in this case because the conditional distribution U given X is still

normal. However, when the error term, e, is non-normal, U |X is non-normal and the

MI approach may be affected. The three methods which will be compared are:

1. Proposed PPM hot deck with full maximum likelihood estimation

2. Proposed PPM hot deck with Olsson’s two-step estimation

3. Fully parametric PPM model using multiple imputation

Following results in [38], we expect estimates to be more robust under Olsson’s two-

step method. We note that we do not compare results of the three methods mentioned

above to the Siddique and Belin nonignorable hot deck since, as was previously noted,

the extension of their method to a binary outcome is not straightforward.

4.6.1 Data Generation

To study bias and coverage of the proxy pattern mixture hot deck, we proceed

by generating a complete data set, and imposing missingness. We are particularly

interested in the sensitivity to non-normality. The overview of simulation steps are

below, followed by the specific details on selecting parameter values. The three dis-

tributions considered for the single covariate Z and the latent U are (1) N(0, 1), (2)

Gamma(shape = 4, scale = 1/2), and (3) Exp(1). They are combined such that at

least one of Z and e is Normally distributed.
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We consider a sample size of N = 400 and correlations of ρ = {0.8, 0.5, 0.2} to

represent strong, moderate and weak proxies for U , respectively.

1. Generate covariate Zi, i = 1, . . . , N according to specified distribution.

2. Create latent U to generate Y for a given value of ρ according to the following

requirements. Specific values are discussed in Section (4.6.2) and shown in

Table 4.1:

(a) Specify α1 such that Corr(U,X) = ρ

(b) Specify α0 such that E[Y ] = 0.3

(c) Generate error e for chosen distribution and set Ui = α0 + α1Zi + ei

3. Create binary Y from the latent U :

(a) Yi = I[ui > 0], i = 1, . . . , N , with I[·] the indicator function.

4. Induce missingness of Y according to a selection model for [M |U,X], inducing

either MAR or MNAR.

Once U has been used to create Y and generate the missingness, it is discarded, re-

sulting in the data {Zi, Yi,Mi}. We used 500 replications and 10 imputed datasets.

For each replication, data were generated and missingness induced to create an in-

complete data set of observed values. Multiple imputation using the PPM hot deck

for all three values of λ was then performed and results combined using standard MI

combining rules.
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4.6.2 Choosing values for the Simulation Study

The three distributions considered are (1) N(0, 1), (2) Gamma(shape = 4, scale

= 1/2), and (3) Exp(1). These all have variance 1, and the Gamma and Exponential

will be shifted to have mean 0, to make calculations simpler. Regardless of the choice

of distribution, we make use of the following equations for finding the values used in

the simulations.

X = a0 + a1Z (4.23)

µx = E[X] = α0 + α1E[Z] = α0 + α1µz

σxx = V ar[X] = V ar(α0 + α1Z) = V ar(α1Z) = α2
1V ar(Z) = α2

1σzz

U = X + e (4.24)

µu = E[U ] = E[X + e] = α0 + α1µz

σuu = V ar(U) = V ar(X + e) = V ar(α0 + α1Z + e) = α2
1σzz + σee

The value of α1 is used to maintain the proper correlation between U and X, and

the value of α0 dictates the mean of Y . For α1, we note:

Cov(U,X) = Cov(X + e,X) = Cov(α0 + α1Z + e, α0 + α1Z)

= Cov(α1Z, a1Z) + Cov(α1Z, e)

= α2
1V ar(Z) + α1 ∗ 0 (4.25)

= α2
1σzz

It follows that the correlation between U and the proxy X is given by

ρ(U,X) =
Cov(U,X)
√
σuuσxx

=
α2
1σzz√

σuuα2
1σzz

=
α1
√
σzz√
σuu

(4.26)
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=
α1
√
σzz√

α2
1σzz + σee

,

which implies,

ρ =
a1
√
σzz√

α2
1σzz + σee

⇐⇒ α1 =
σee√
σzz

ρ√
1− ρ2

. (4.27)

Therefore, since all chosen distributions have variance 1 (i.e., σzz = σee = 1), we

set α1 = ρ/
√

1− ρ2 for all settings. The chosen distribution does matter for the value

of α0 (dictating the mean of Y ), and the calculations follow.

Normal Z, Normal e

When Zi are simulated fromN(0, 1), and the Ui are simulated fromN(α0+α1Zi, 1)

with α1 = ρ/
√

1− ρ2, we have,

E[Y ] = Pr(U > 0) = Φ (µu/
√
σuu) .

In this setting, Φ
(
µu/
√
σuu
)

= Φ
(
α0/
√
α2
1 + 1

)
and α0 is chosen to be α0 =

Φ−1(0.3)
√
α2
1 + 1 such that

E[Y ] = Φ

((
Φ−1(0.3)

√
α2
1 + 1

)
/
√
α2
1 + 1

)
= Φ(Φ−1(0.3)) = 0.3.

Exponential Z, Normal e

To find α0, we begin with the case of non-normal Z (and therefore a non-normal

proxy). Recall that U = X + e = α0 + α1Z + e. We let e ∼ N(0, 1) and Z = Z∗ − 1,

where Z∗ ∼ Exp(1) so that Z has mean 0 and variance 1. We let e∗ ∼ N(α0, 1), and

Z∗∗ ∼ Exp(α1), to make U = Z∗∗+ e∗ a convolution of Z∗∗ and e∗. Theorem 5.2.9 in

Casella and Berger [44] states that if X and Y are independent continuous random

variables with pdf’s fX(x) and fY (y), then the pdf of Z = X + Y is

fZ(z) =

∫ ∞
−∞

fX(w)fY (z − w)dw ≡
∫ ∞
−∞

fX(z − w)fY (w)dw.
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Therefore, we choose α0 such that,

0.3 = E[Y = 1] = Pr(U > 0) =

∫ ∞
0

∫ ∞
−∞

fZ∗∗(w)fe∗(u− w)dwdu (4.28)

where fZ∗∗ is the pdf of Exp(α1) and fe∗ is the pdf of N(α0 − α1, 1).

Gamma Z, Normal e

Similary, when Z ∼ Gamma(4, 0.5), we solve,

0.3 = E[Y = 1] = Pr(U > 0) =

∫ ∞
0

∫ ∞
−∞

fZ∗∗(w)fe∗(u− w)dwdu (4.29)

where fZ∗∗ is the pdf of Gamma(4, α1/2) and fe∗ is the pdf of N(α0 − 2α1, 1) for α0.

Normal Z, Exponential e

We next need to find α0 in the case of non-normal e. Again, we have U = X+e =

α0 + α1Z + e. We let Z ∼ N(0, 1) and e = e∗ − 1, where e∗ ∼ Exp(1) so that

e has mean 0 and variance 1. We then have U = α0 + α1Z + e∗ − 1. If we let

Z∗∗ ∼ N(α0− 1, α2
1), and e∗ ∼ Exp(1), then U = Z∗∗+ e∗ is a convolution of Z∗∗ and

e∗.

Therefore, we choose α0 such that,

0.3 = E[Y = 1] = Pr(U > 0) =

∫ ∞
0

∫ ∞
−∞

fZ∗∗(w)fe∗(u− w)dwdu (4.30)

where fZ∗∗ is the pdf of N(α0 − 1, α2
1) and fe∗ is the pdf of Exp(1).

Normal Z, Gamma e

Similarly, when Z ∼ Gamma(4, 0.5), we solve,

0.3 = E[Y = 1] = Pr(U > 0) =

∫ ∞
0

∫ ∞
−∞

fZ∗∗(w)fe∗(u− w)dwdu (4.31)

where fZ∗∗ is the pdf of N(α0 − 2, α2
1) and fe∗ is the pdf of Gamma(4, 0.5) for α0.
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Missingness Model Missing data on Y was induced according to the selection

model:

logit{Pr(Mi = 1|Zi, Ui)} = γ0 + γZZi + γUUi (4.32)

We only consider MAR ([Z]) and severe MNAR ([U ]). For MAR, we use γz = 0.5,

and γu = 0. For extreme MNAR, we set γz = 0 and γu = 0.5 with γ0 was chosen

to create approximately 25% missingness. To obtain approximately 25% missingness,

we want:

Pr(M = 1|U,Z) =
exp(γ0 + γZZ + γUU)

1 + exp(γ0 + γZZ + γUU)
(4.33)

If the logit equals log(0.25/0.75) we obtain, Pr(M=1 | U,Z) = (0.25/0.75)/(1 +

(0.25/0.75)) = 0.25. For MAR, E[Z] = 0 and γU = 0, yielding E[logit] = γ0

and we set γ0 = log(0.25/0.75). This is true for either Z non-normal or e non-

normal. Under extreme MNAR, E[Z] = 0, and E[e] = 0, implying E[U ] = α0 and

E[logit] = γ0 + γUα0. Therefore, we simply adjust γ0 by substracting γUα0 to obtain

25% missingness. The values are shown in Table 4.1.

4.6.3 Results

We now compare results from the PPM hot deck and the parametric MI method

for two missingness assumptions described previously, changing the distribution of Z,

and therefore the proxy, X, and also changing the distribution of e. For the PPM

hot deck we also show results from using the two different MLE methods, Tate’s full

method (HD FMLE) and Olsson’s two-step method (HD 2-Step). The two methods

made a difference in [38] when changing Z – the overall mean of Y was more biased

using the full MLE method. As we will see, the choice of estimation method does not

significantly impact the estimates for the hot deck.
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Normal Z, Normal e

Table 4.2 contains the results when both Z and the error e are normally dis-

tributed. Results obtained using the full ML estimation method and the two-step

estimation method are similar, and we describe the full MLE results. For the PPM

hot deck, under missing at random, [Z], λ = 0 should produce the best results of all

the λ’s and it does (Table 4.2). It is unbiased for all correlations, (empirical bias=-

0.3%,-0.3%,-0.1%, respectively), and also has nominal coverage (94.6, 95.2, 94.8). For

mechanism MNAR, [U ], λ = ∞ has the least bias and best coverage compared to

λ = 0 and 1. However, it does slightly underestimate the mean, with bias -1.1%,

-1.6%, and -3.5% and has coverage less than 95%, (90.8, 88.8, 77.4), with the results

being worse for the weaker proxy. The confidence interval width shows that, for each

missingness mechanism and correlation, the width increases as λ increases. For each

correlation and missingness mechanism, the estimate of the mean of Y does increase

also as λ increases from 0 to ∞, which is indicative of the fact that larger values of

Y are missing.

Gamma Z, Normal e

Tables 4.3 and 4.4 contain the results from changing the distribution of Z (and

thus the distribution of X). When Z ∼ Gamma(2, 0.5) (Table 4.3), for both MLE

methods, the appropriate λ has least bias and highest coverage for both MAR (λ = 0)

and MNAR (λ = ∞), and all correlations. For correlation 0.8, λ = 0 is unbiased,

with 94.4% coverage under MAR, and λ =∞ is unbiased with ≈ 93% coverage under

MNAR. For correlation 0.5, λ = 0 is still unbiased with nominal coverage (≈ 95%) for

MAR. Under MNAR, λ =∞ is more biased than under ρ = 0.8, with lower coverage

90



(≈ 88%). With a weak proxy, λ = 0 is unbiased and at nominal coverage under MAR.

When data are MNAR, λ =∞ is somewhat biased, and has low coverage (77%). For

all correlations, within each of the three methods, the confidence interval widths also

increase with λ, under each MAR and MNAR. The amount of bias and coverage, for

all situations, are comparable to when Z ∼ N(0, 1), in Table 4.2.

Exponential Z, Normal e

When Z ∼ Exp(1), which is severly skewed, for all but one case the appropriate

λ has least bias and highest coverage (Table 4.4). The one case is for a strong proxy,

ρ = 0.8, under the assumption MAR. Here, λ = 1 has slightly less bias than λ = 0,

but this difference might be negligable, and the coverage for both is nominal (96.2%,

λ = 0; 94.2%, λ = 1). Also, it is not surprising that λ = 1 is relatively unbiased

for this case, since missingness is related to Z, and the correlation between X and

Y is strong. For this distribution, there are a few cases when the full MLE and the

two-step differ in results, mainly in the coverage. The biggest difference is for ρ = 0.8

under MNAR. The ‘correct’ λ, λ = ∞, the full MLE has 88.6% and two-step has

91.0% coverage. Overall, the results of the PPM hot deck with either estimation

method perform similarly to when Z ∼ N(0, 1) and Z ∼ Gamma(4, 0.5), where the

largest bias and the lowest coverage occur when the proxy is weak, and missingness

is MNAR (λ =∞). Confidence interval width is also comparable among the different

distributions.

Normal Z, Gamma e

Tables 4.5, 4.6 display the results when changing the distribution of e. When

e ∼ Gamma(2, 0.5), again there is no significant difference between results using the
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full MLE method and the two-step method (Table 4.5). When data are MAR, λ = 0

has the least bias of all λ’s. The bias decreases from -0.005%, -0.004% to 0.003%

as the correlation between Y and the proxy decreases. The coverage is 94% for all

correlations. For ρ = 0.8, λ = 1 has higher coverage than λ = 0 (≈ 95%), but

is slightly more biased (0.006). Under MNAR, λ = ∞ has the least bias and best

coverage of all λ’s with all ρ’s. The coverage is less than nominal for all; with the

highest at 90.6% coverage for both ρ = 0.8 and ρ = 0.5. For weak proxy, λ = ∞

is biased and under coveraged, but the results compare to those when e is Normal

(Table 4.2).

This was a setting that was not examined in Andridge (2009) [38]. For MAR,

λ = 0 is unbiased and achieves nominal coverage. Similar for MNAR and λ = ∞.

The confidence interval does get very wide when the proxy is weak, with the interval

width of 0.22 under MAR and MNAR, compared to an average width of 0.1 when

the proxy is strong.

Normal Z, Exponential e

For the more severe skewness, e ∼ Exp(1), results in Table 4.6 are similar to those

when e ∼ Gamma(4, 0.5). A few situations have less bias and higher coverage than

the other two distributions examined, specifically for the weakest proxy. For ρ = 0.2,

under MAR, λ = 0 only has -0.001% bias and 95.4% coverage. Under MNAR (again

with ρ = 0.2), λ =∞ has -3.2% bias and 81% coverage. Thus both are slightly better

than when e is less skewed.
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PPM Hot Deck versus Parametric PPM

When the distributions of the proxy and the error term e are both normal, the

parametric PPM has less bias and better coverage than the PPM hot deck for MAR

with λ = 0 and MNAR with λ =∞, for all correlations.

When the distribution of Z (and thus the proxy) is skewed, the results are com-

parable between methods under MAR with λ = 0. Under MNAR with λ = ∞,

the parametric PPM has better coverage, due in part to a wider confidence interval,

especially for the weakest proxy (0.17 versus 0.12 for the hot deck).

When the distribution of e is skewed, again the results are comparable for MAR

with λ = 0 and also under MNAR with λ = ∞ when the proxy is strong. As the

proxy strength decreases, the hot deck is more biased and the confidence interval

width does not become large, so the coverage suffers. For ρ = 0.2, the confidence

interval width is 0.2 for the parameteric PPM, but approximately 0.13 for the hot

deck (for both gamma and exponential).

4.7 Data Applications

We apply PPM hot deck imputation to data from the Surveillance, Epidemiology,

and End Results (SEER) program, from the National Cancer Institute, for imputation

of estrogen receptor (ER) status for breast cancer subjects. Trends in breast cancer

incidence and survival are of interest, and we estimate percent of ER positive (ER+)

status each year from 1992 to 2010. In a second application, the PPM hot deck is

used to impute a missing binary outcome, but instead of estimating the overall mean,

we estimate the coefficients from a logistic regression analysis. The data are from

Troxel [22].
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4.7.1 SEER

At the time of analysis, the SEER 1992-2010 database contained information on

487,515 breast cancer subjects with 14.8% missing estrogen receptor (ER) status, as

well as with missingness on other covariates. To implement the PPM hot deck, we

used only cases that were complete on everything except ER status. This created a

data set of n = 348, 465 individuals with 9% missing ER status. Following Howlader

(2012) [45], ER status was recategorized into 3 categories: (1) ER+ (Positive or

Borderline Positive) (2) ER- (Negative) and (3) Missing ER status (Test not done,

test done but results missing, or unknown).

The proxy was created using a probit regression of ER status on the following cat-

egorical variables: SEER registry (18 states), year of diagnosis (1992-2010), Hispanic

(Spanish, Hispanic, Latino versus Non-Spanish-Hispanic-Latino), age (categorical),

race (White, Black, American Indian/Alaskan Native, Asian or Pacific Islander), his-

tology (ductal, lobular, mixed, other), tumor size ((0, 1], (1, 2], (2, 3], (3, 4], (5,+])cm,

grade (well differentiated, moderately differentiated, poorly differentiated, undiffer-

entiated), nodes (positive, negative), mets (yes, no), surgery (yes, no).

The proxy pattern-mixture model hot deck imputed missing ER status for each

of three missingness assumptions, represented by λ = {0, 1,∞}. Estimates of model

parameters were found using both the full ML estimation and the two-step method.

Ten multiply imputed data sets were created for each λ and estimation method com-

bination. They were then subset by year of diagnosis, and for each year, the mean

ER+ was computed and estimates combined using standard MI combining rules.
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There were only slight differences between the estimates using the full MLE

method and the two-step method. While there were some differences between meth-

ods for each parameter and λ value, they did not greatly impact the hot deck method.

We suspect that it is due to everyone being shifted the same amount when using pos-

sibly biased estimates.

As just stated, the differences between estimates of the mean ER+ status were

negligible using hot deck, so we present only results for the two-step method. Fig-

ure 4.3 shows the trend of mean ER+ status from 1992 to 2010 for the complete cases

and the three values of λ. Numerical values of percent missingness (and therefore

percent imputed) are along the x-axis. Overall, the mean ER+ status increases from

≈ 0.74 to ≈ 0.83 in 2010, with occasional decreases, as observed from 2002 to 2006.

For each year, the mean ER+ status decreases as λ increases from 0 to ∞ suggest-

ing that if the missingness is extremely nonignorable, the true mean would be less

than that under an MAR model. Due to the large sample size and the small percent

missing, the difference between these estimates is not large; the largest difference

between the estimate for λ = 0 and the estimate for λ = ∞ was 0.0074 in 1992.

These estimates were 0.7467 for λ = 0, and 0.739 for λ = ∞. This compares to the

nearly identical estimates in 2010: 0.832 and 0.831 for λ = 0 and λ =∞, respectively.

We can see that with the higher percentage missingness (the earlier diagnosis years),

the difference between the λ estimates is larger, whereas when the percent missing

decreases to 2%, as in 2010, the difference is negligible. Starting in 2004, percent

missing drops to below 5.1%. As noted in [45], this drop was due to the Collaborative

Staging System that was proposed in 2004 and required ER status to be recorded.

There was also not a large difference between the estimates from a complete case
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analysis and the estimates assuming MAR (λ = 0), with the CC estimates higher

than the MAR estimate in some years, yet smaller in others. The largest difference

was in 1999, when the CC estimate was 0.7776 and the MAR estimate was 0.7738.

4.7.2 Comparing to ISNI

Troxel et al. (2004) apply their index of sensitivity to nonignorability (ISNI) to

a sexual behavior survey data set originally analyzed by Raab and Donnelly (1999)

[22, 24]. The simplified analysis consisted of using two categorical covariates, gender

and faculty (medical or non-medical) to predict sexual behavior (yes/no outcome) of

students at the University of Edinburgh. The response rate ranged from 59% (non-

medical males) to 77.1% (medical females). We applied our PPM hot deck method

to these data, using 20 MI data sets for each value of λ = {0, 1,∞}.

Using the original dataset, prior to bootstrapping respondents, we can calculate

the proxy X and the maximum likelihood estimates using both the full method and

the two-step method. There were 37.6% subjects missing the outcome. The mean

of X for the respondents was 0.624, whereas the mean of X for the nonrespondents

was 0.647, suggesting that nonrespondents were more likely to respond as a ‘Yes’,

which is what the authors believed. The estimated Pearson correlation of Y and X,

was low, at 0.11. Using the full and two-step methods produced similar estimates,

0.134. This indicates the proxy is rather weak with a relatively high (for hot deck)

38% nonresponse rate.

Figure 4.4 is a visualization of the use of adjustment cells with only two dichoto-

mous predictor variables. The û′s were calculated on the observed data (no boot-

strapping). The top row shows the adjustment cells formed by the respondents, with
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each cell containing the number of respondents in that cell and also the percentage

of respondents in the cell with Y = 1. The scale on the x-axis has been edited for

illustration purposes. Since we only have Faculty and Gender for our predictors along

with their interaction term, we have only four covariate patterns, leading to four val-

ues of û. Since there are only four covariate patterns, we use those four values of û

of the respondents for the adjustment cells, and everyone in the cell has the same

value of û, so the mean is the value of û. For nonrespondents, the values of û increase

on average as the value of λ increases. To place nonrespondents in an adjustment

cell, we minimize the distance between the value of û and the mean û in each cell.

The arrows on the figure represent which cell the nonrespondents will be placed in.

For λ = 0, the û(1) match those of the respondents, and they are placed in the cor-

responding cells. For λ = 1, all nonrespondents are closest to either the 3rd or 4th

adjustment cell. Both of these cells contain 75% 1’s, so taking an SRS within the

cells means that on average, we will be imputing approximately 75% 1’s. For λ =∞,

the û′s become very spread out, with the largest value at 21.22. If we were using the

distance measure of Siddique and Belin, this might be a case when the distances are

so large and this would turn into a SRS of all the respondents when imputing those

large nonrespondents. Using Adjustment Cells, these nonrespondents get placed in

the adjustment cell corresponding to the largest value of û, which also has the largest

percentage of 1’s. Note that the order of the covariate patterns in relationship to the

û’s change between the MAR and the MNAR models.

Troxel et al. were interested in comparing the coefficients of the ignorable model

with the ISNI, to the coefficients of the non-ignorable model fit in [24]. Figure 4.5 is

the table of coefficient estimates from [22]. The top line is the ignorable model that
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Troxel fit; the nonignorable model is one of the models in Raab (1999) [24]. They

compare each coefficient from the ignorable model added to ISNI to the nonignorable

model. They state that if people who failed to respond are more likely to have a

positive outcome, then to go from the ignorable model to the nonignorable model, we

would subtract the ISNI (e.g., for the faculty coefficient: -0.73 - 0.17 = -0.90). If they

were more likely to have responded ‘no’, we would add the ISNI, and the nonignorable

model estimate would be -0.56. They also conclude that the intercept term and the

faculty term are sensitive to nonignorability, since the ratio of the ISNI to the SE is

large (7.39, 1.16, respectively). On the other hand, gender and the interaction are

not sensitive. It seems unintuitive for a main effect to be sensitive to nonignorability

but not the interaction term.

Table 4.7 shows the MI estimates for each value of λ for the PPM hot deck with

20 imputations. When λ = 0, our results are very similar to that of the ignorable

model of Troxel, with comparable standard errors. When changing from λ = 0 to

λ 6= 0, we can see that the gender coefficient does not significantly change, and neither

does the intercept. The Faculty coefficient is the only coefficient that really changes

among the models. This is a slightly different conclusion to Troxel, which stated

that both the intercept and the faculty term were sensitive to nonignorability. The

coefficient of faculty does change, from -0.70 to -0.57 (λ = 1) and -0.52 (λ = ∞).

This is actually comparable to the ‘other’ coefficient option given by Troxel. However,

our interaction coefficient also decreases, whereas theirs increases. They seem to be

hitting the boundary of filling everyone in as a ‘yes’ response, whereas our model does

not hit this boundary.
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4.8 Tables and Figures

Figure 4.1: For nonrespondents i = 30 (left figures) and i = 40 (right figures), plots
of û(0)i ’s for all respondents and û(1)i for the indicated nonrespondent (red line), versus
the absolute distance (upper figures), Siddique and Belin’s distance measure with
k = 3 (middle figures), and the selection probability (lower figures).
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Figure 4.2: Distribution of Û ’s versus adjustment cells. Data for top figure was
generated with ρ = 0.8 with a normal proxy, normal error, and an MAR mechanism;
ûi’s created with λ = 0. Lower figure has an exponentially distributed proxy with
ρ = 0.8, MNAR mechanism, and λ =∞ was used to create ûi’s.
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Table 4.1: Parameter values used in the simulations. Each scenario assumes the other
variable is Standard Normal; i.e., the rows with e ∼G(4,0.5) assume Z ∼N(0,1).

MAR MNAR
Z ρ α0 α1 γ0 γ0

Z ∼ N(0,1) 0.8 -0.874 1.333 -1.099 -0.662
0.5 -6.055 0.577 -1.099 1.929
0.2 -0.535 0.204 -1.099 -0.831

Z ∼ G(4,0.5) 0.8 -0.740 1.333 -1.099 -0.729
0.5 -0.587 0.577 -1.099 -0.805
0.2 -0.535 0.204 -1.099 -0.831

Z ∼ Exp(1) 0.8 -0.600 1.333 -1.099 -0.799
0.5 -0.560 0.577 -1.099 -0.819
0.2 -0.530 0.204 -1.099 -0.834

MAR MNAR
e ρ α0 α1 γ0 γ0

e ∼ N(0,1) 0.8 -0.874 1.333 -1.099 -0.662
0.5 -6.055 0.577 -1.099 1.929
0.2 -0.535 0.204 -1.099 -0.831

e ∼ G(4,0.5) 0.8 -0.820 1.333 -1.099 -0.689
0.5 -0.490 0.577 -1.099 -0.854
0.2 -0.380 0.204 -1.099 -0.909

e ∼ Exp(1) 0.8 -0.760 1.333 -1.099 -0.719
0.5 -0.360 0.577 -1.099 -0.919
0.2 -0.210 0.204 -1.099 -0.994
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Table 4.2: Empirical bias, 95% interval coverage and average interval length for six ar-
tificial populations with n = 400, 25% missingness, covariate distribution Z ∼ N(0, 1)
and error distribution, e ∼ N(0, 1). HD FMLE: Hot deck with full maximum likeli-
hood; HD 2-Step: Hot deck with modified maximum likelihood; Para MI: parametric
PPMA with multiple imputation. 10 imputed data sets were created for all methods.
Results over 500 replicates.

MAR MNAR
Empirical Coverage CI Empirical Coverage CI

Bias (%) Width Bias (%) Width

0.8 0 HD FMLE -0.003 94.6 0.102 -0.038 67.6 0.102
HD 2-Step -0.003 94.6 0.102 -0.038 67.8 0.102

Para MI 0.000 95.2 0.102 -0.033 74.0 0.101
1 HD FMLE 0.006 94.0 0.103 -0.026 82.8 0.104

HD 2-Step 0.006 94.0 0.103 -0.026 83.4 0.104
Para MI 0.011 94.0 0.104 -0.019 88.2 0.103

∞ HD FMLE 0.018 91.0 0.106 -0.011 90.8 0.107
HD 2-Step 0.018 91.2 0.106 -0.011 91.0 0.107

Para MI 0.024 88.8 0.108 0.000 94.6 0.112
0.5 0 HD FMLE -0.003 95.2 0.107 -0.045 59.0 0.101

HD 2-Step -0.003 95.0 0.107 -0.045 59.2 0.101
Para MI 0.000 95.4 0.107 -0.043 62.0 0.101

1 HD FMLE 0.017 93.6 0.112 -0.034 72.8 0.105
HD 2-Step 0.017 93.6 0.112 -0.034 73.0 0.105

Para MI 0.024 89.8 0.113 -0.030 78.8 0.108
∞ HD FMLE 0.043 76.2 0.130 -0.016 88.8 0.119

HD 2-Step 0.043 76.2 0.130 -0.016 88.8 0.119
Para MI 0.076 50.2 0.155 -0.003 94.0 0.158

0.2 0 HD FMLE -0.001 94.8 0.107 -0.046 57.4 0.101
HD 2-Step -0.001 94.8 0.107 -0.046 57.4 0.101

Para MI 0.000 95.4 0.108 -0.045 59.2 0.101
1 HD FMLE 0.016 92.6 0.134 -0.041 68.8 0.112

HD 2-Step 0.016 92.8 0.134 -0.041 68.8 0.112
Para MI 0.037 79.0 0.135 -0.039 71.8 0.111

∞ HD FMLE 0.021 92.0 0.146 -0.035 77.4 0.126
HD 2-Step 0.021 92.2 0.146 -0.035 77.4 0.126

Para MI 0.127 26.8 0.199 0.005 97.2 0.208
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Table 4.3: Empirical bias, 95% interval coverage and average interval length for six
artificial populations with n = 400, 25% missingness, covariate distribution Z ∼
Gamma(4, 0.5) and error distribution, e ∼ N(0, 1). HD FMLE: Hot deck with full
maximum likelihood; HD 2-Step: Hot deck with modified maximum likelihood; Para
MI: parametric PPMA with multiple imputation. 10 imputed data sets were created
for all methods. Results over 500 replicates.

MAR MNAR
Empirical Coverage CI Empirical Coverage CI

Bias (%) Width Bias (%) Width

0.8 0 HD FMLE -0.004 94.4 0.102 -0.037 69.4 0.101
HD 2-Step -0.004 94.4 0.102 -0.037 69.8 0.101

Para MI 0.001 93.6 0.100 -0.029 80.2 0.100
1 HD FMLE 0.005 93.2 0.101 -0.024 84.8 0.102

HD 2-Step 0.005 93.0 0.102 -0.024 85.4 0.102
Para MI 0.012 91.6 0.101 -0.013 91.6 0.100

∞ HD FMLE 0.015 91.0 0.103 -0.011 93.2 0.105
HD 2-Step 0.016 90.8 0.103 -0.010 93.4 0.105

Para MI 0.025 86.8 0.103 0.004 96.0 0.103
0.5 0 HD FMLE -0.006 95.0 0.106 -0.045 56.2 0.101

HD 2-Step -0.006 94.8 0.106 -0.045 56.4 0.101
Para MI -0.001 95.2 0.106 -0.041 62.6 0.101

1 HD FMLE 0.011 94.6 0.110 -0.034 72.4 0.104
HD 2-Step 0.011 94.6 0.110 -0.034 72.8 0.104

Para MI 0.027 85.6 0.109 -0.025 81.8 0.105
∞ HD FMLE 0.030 84.2 0.120 -0.019 88.4 0.112

HD 2-Step 0.030 84.8 0.120 -0.019 88.6 0.112
Para MI 0.064 42.6 0.121 0.003 95.8 0.130

0.2 0 HD FMLE -0.004 94.4 0.108 -0.046 56.0 0.101
HD 2-Step -0.004 94.0 0.108 -0.046 56.2 0.101

Para MI -0.002 94.4 0.108 -0.045 58.2 0.102
1 HD FMLE 0.008 93.8 0.123 -0.042 67.4 0.109

HD 2-Step 0.008 93.8 0.123 -0.042 67.2 0.109
Para MI 0.038 76.8 0.130 -0.036 71.2 0.110

∞ HD FMLE 0.016 92.2 0.139 -0.035 77.0 0.123
HD 2-Step 0.016 92.2 0.139 -0.035 76.8 0.123

Para MI 0.096 28.2 0.162 0.005 97.0 0.189
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Table 4.4: Empirical bias, 95% interval coverage and average interval length for six ar-
tificial populations with n = 400, 25% missingness, covariate distribution Z ∼ Exp(1)
and error distribution, e ∼ N(0, 1). HD FMLE: Hot deck with full maximum likeli-
hood; HD 2-Step: Hot deck with modified maximum likelihood; Para MI: parametric
PPMA with multiple imputation. 10 imputed data sets were created for all methods.
Results over 500 replicates.

MAR MNAR
Empirical Coverage CI Empirical Coverage CI

Bias (%) Width Bias (%) Width

0.8 0 HD FMLE -0.006 96.2 0.101 -0.038 64.2 0.100
HD 2-Step -0.006 96.4 0.101 -0.038 64.2 0.101

Para MI 0.001 96.2 0.100 -0.029 78.2 0.098
1 HD FMLE 0.003 94.2 0.101 -0.027 81.0 0.102

HD 2-Step 0.004 94.2 0.101 -0.027 82.4 0.102
Para MI 0.011 95.6 0.100 -0.014 89.8 0.098

∞ HD FMLE 0.011 95.0 0.102 -0.016 88.6 0.103
HD 2-Step 0.013 94.6 0.102 -0.015 91.0 0.103

Para MI 0.023 90.0 0.102 0.003 95.4 0.101
0.5 0 HD FMLE -0.006 94.2 0.106 -0.048 54.8 0.100

HD 2-Step -0.006 94.4 0.106 -0.048 55.0 0.100
Para MI 0.001 96.0 0.106 -0.043 62.4 0.100

1 HD FMLE 0.007 95.2 0.109 -0.039 69.0 0.103
HD 2-Step 0.007 95.4 0.109 -0.039 69.8 0.103

Para MI 0.026 86.0 0.105 -0.026 80.0 0.102
∞ HD FMLE 0.020 92.2 0.115 -0.028 82.4 0.109

HD 2-Step 0.020 91.8 0.115 -0.028 82.8 0.109
Para MI 0.056 48.0 0.110 0.000 95.8 0.116

0.2 0 HD FMLE -0.003 93.6 0.107 -0.046 55.6 0.102
HD 2-Step -0.003 93.6 0.107 -0.046 55.6 0.102

Para MI 0.001 93.0 0.109 -0.045 59.2 0.102
1 HD FMLE 0.007 93.0 0.119 -0.042 65.4 0.109

HD 2-Step 0.007 92.8 0.119 -0.042 65.2 0.109
Para MI 0.039 74.2 0.126 -0.035 72.8 0.110

∞ HD FMLE 0.012 92.2 0.129 -0.035 79.6 0.121
HD 2-Step 0.012 92.2 0.129 -0.035 79.0 0.121

Para MI 0.080 36.8 0.143 0.002 95.0 0.171
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Table 4.5: Empirical bias, 95% interval coverage and average interval length for six
artificial populations with n = 400, 25% missingness, covariate distribution Z ∼
N(0, 1) and error distribution, e ∼ Gamma(4, 0.5). HD FMLE: Hot deck with full
maximum likelihood; HD 2-Step: Hot deck with modified maximum likelihood; Para
MI: parametric PPMA with multiple imputation. 10 imputed data sets were created
for all methods. Results over 500 replicates.

MAR MNAR
Empirical Coverage CI Empirical Coverage CI

Bias (%) Width Bias (%) Width

0.8 0 HD FMLE -0.005 94.0 0.103 -0.041 64.0 0.101
HD 2-Step -0.005 94.0 0.102 -0.041 64.4 0.101

Para MI -0.001 95.0 0.102 -0.036 70.8 0.101
1 HD FMLE 0.006 95.4 0.105 -0.028 78.2 0.102

HD 2-Step 0.006 95.2 0.105 -0.028 78.2 0.102
Para MI 0.011 94.4 0.105 -0.021 86.0 0.104

∞ HD FMLE 0.021 88.8 0.108 -0.009 90.6 0.110
HD 2-Step 0.021 88.6 0.108 -0.009 90.8 0.110

Para MI 0.027 86.0 0.112 0.000 93.0 0.112
0.5 0 HD FMLE -0.004 94.0 0.107 -0.046 55.6 0.101

HD 2-Step -0.004 94.0 0.107 -0.046 55.4 0.101
Para MI -0.002 93.6 0.107 -0.044 57.8 0.101

1 HD FMLE 0.019 89.6 0.115 -0.035 74.4 0.106
HD 2-Step 0.019 89.6 0.114 -0.035 74.0 0.106

Para MI 0.025 87.2 0.115 -0.031 78.6 0.109
∞ HD FMLE 0.047 71.2 0.137 -0.014 90.6 0.126

HD 2-Step 0.047 71.2 0.137 -0.014 90.6 0.126
Para MI 0.088 41.4 0.162 0.002 94.8 0.171

0.2 0 HD FMLE 0.003 93.8 0.108 -0.047 50.6 0.101
HD 2-Step 0.003 93.8 0.108 -0.047 50.2 0.101

Para MI 0.004 93.4 0.108 -0.047 51.8 0.101
1 HD FMLE 0.020 91.4 0.135 -0.043 65.4 0.113

HD 2-Step 0.020 91.0 0.135 -0.043 65.6 0.113
Para MI 0.042 75.0 0.139 -0.041 66.0 0.112

∞ HD FMLE 0.024 93.2 0.147 -0.038 74.8 0.128
HD 2-Step 0.024 93.2 0.147 -0.038 75.0 0.128

Para MI 0.130 30.0 0.220 0.004 95.4 0.216
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Table 4.6: Empirical bias, 95% interval coverage and average interval length for six ar-
tificial populations with n = 400, 25% missingness, covariate distribution Z ∼ N(0, 1)
and error distribution, e ∼ Exp(1). HD FMLE: Hot deck with full maximum likeli-
hood; HD 2-Step: Hot deck with modified maximum likelihood; Para MI: parametric
PPMA with multiple imputation. 10 imputed data sets were created for all methods.
Results over 500 replicates.

MAR MNAR
Empirical Coverage CI Empirical Coverage CI

Bias (%) Width Bias (%) Width

0.8 0 HD FMLE -0.004 95.2 0.102 -0.039 64.6 0.100
HD 2-Step -0.004 95.0 0.102 -0.039 64.6 0.100

Para MI 0.001 96.2 0.103 -0.034 73.6 0.102
1 HD FMLE 0.008 95.2 0.103 -0.025 80.6 0.102

HD 2-Step 0.008 95.4 0.103 -0.025 81.0 0.102
Para MI 0.013 94.2 0.105 -0.019 87.8 0.103

∞ HD FMLE 0.024 85.8 0.110 -0.007 91.2 0.110
HD 2-Step 0.024 85.2 0.110 -0.006 91.4 0.110

Para MI 0.029 83.4 0.111 -0.001 93.2 0.110
0.5 0 HD FMLE -0.004 93.4 0.107 -0.046 59.6 0.101

HD 2-Step -0.004 93.4 0.107 -0.046 59.8 0.101
Para MI -0.001 95.6 0.108 -0.042 64.6 0.101

1 HD FMLE 0.020 91.0 0.115 -0.034 76.4 0.105
HD 2-Step 0.021 90.6 0.115 -0.034 76.2 0.105

Para MI 0.026 86.2 0.115 -0.030 80.6 0.107
∞ HD FMLE 0.054 68.0 0.138 -0.011 93.0 0.126

HD 2-Step 0.054 67.8 0.139 -0.011 93.2 0.126
Para MI 0.087 40.6 0.159 -0.001 96.2 0.162

0.2 0 HD FMLE -0.001 95.4 0.108 -0.043 61.4 0.101
HD 2-Step -0.001 95.4 0.108 -0.043 61.0 0.101

Para MI 0.000 96.4 0.108 -0.043 61.0 0.101
1 HD FMLE 0.018 92.6 0.136 -0.039 73.0 0.113

HD 2-Step 0.018 92.8 0.136 -0.039 73.4 0.113
Para MI 0.036 83.4 0.139 -0.037 74.4 0.111

∞ HD FMLE 0.023 94.4 0.149 -0.032 81.0 0.127
HD 2-Step 0.023 94.0 0.149 -0.032 81.0 0.127

Para MI 0.125 31.4 0.220 0.009 95.6 0.211
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Figure 4.5: Table 3 from Troxel [22]. ML estimates of ignorable and nonignorable
models and ISNI analysis.
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Table 4.7: Results from using the PPM hot deck to estimate the model coefficients
from the Troxel data, for each value of λ = {0, 1,∞}.

λ = 0 Mean SD lb ub df FMI
Intercept 1.088 0.051 0.987 1.189 204.820 0.305
Faculty -0.719 0.143 -1.000 -0.438 488.914 0.197
Gender 0.031 0.072 -0.112 0.173 280.447 0.260

Faculty * Gender 0.087 0.199 -0.303 0.477 511.308 0.193

λ = 1 Mean SD lb ub df FMI
Intercept 1.086 0.054 0.979 1.193 136.069 0.374
Faculty -0.576 0.150 -0.871 -0.282 317.519 0.245
Gender 0.019 0.077 -0.134 0.171 149.834 0.356

Faculty * Gender 0.066 0.207 -0.342 0.474 325.070 0.242

λ = inf Mean SD lb ub df FMI
Intercept 1.028 0.112 0.797 1.258 25.820 0.858
Faculty -0.520 0.174 -0.865 -0.174 96.756 0.443
Gender 0.021 0.155 -0.297 0.338 26.724 0.843

Faculty * Gender 0.076 0.236 -0.391 0.542 111.437 0.413
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Chapter 5: Discussions and Conclusions

We have developed a new hot deck imputation procedure that does not assume

ignorability of the nonresponse. We allow for the examination of the impact different

types of missingness may have on estimates through a sensitivity parameter. The

extension of hot deck to nonignorability has not been well-researched, with only one

known method, the nonignorable hot deck of Siddique and Belin [29]. Our proposed

method is first developed for imputation of a partially observed continuous outcome

variable in Chapter 3, and is extended to a binary outcome in Chapter 4. In the

continuous case, we combine elements of the nonignorable hot deck of Siddique and

Belin with those of the parametric proxy pattern-mixture model of Andridge and

Little [35]. The PPM incorporates an intuitive sensitivity analysis in the creation of

the predicted means used for finding matches. For a binary outcome, donor selection

is modified through the use of adjustment cells rather than the use of a distance

metric.

5.1 Continuous Outcome

Chapter 3 introduced the proposed proxy pattern-mixture model (PPM) hot deck.

The key distinction between the proposed PPM hot deck and the Siddique and Belin

SB hot deck is where the correction for nonignorability occurs. The SB hot deck
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corrects for the nonignorability in the ABB step of the MI process, drawing respon-

dents with probability to an assumed function of Y , such as proportional to Y or

to Y 2, creating different “shaped” ABBs. Standard linear regression is used to esti-

mate predicted means for calculating distances and probabilities of donor selection.

Our proposed method adjusts for the nonignorability in the creation of the predicted

means. An ABB is still drawn, but with equal probability, to ensure the MI procedure

is proper. The proxy pattern-mixture model of Andridge and Little is incorporated

into the predicted mean creation. Finally, Siddique and Belin’s distance measure is

used on these predicted means to find the matches between the nonrespondents and

respondents for imputation.

In addition to the advantages of a hot deck procedure in general, we add the ability

to study the impact of various missingness assumptions on estimates. We also show

in the application to OMAS that survey design weights can easily be incorporated

into the analysis. In our simulations and application we estimate means, but we could

also use this method for estimation of regression coefficients, and the ability of the

hot deck to preserve correlations is important for this.

We also propose two new donor quality metrics that can aid in diagnosing sit-

uations where the PPM hot deck is unable to find close matches and imputations

may be suspect. The mean minimum distance (MMD) gives the average distance

from donor to donee (in standard deviations) and can identify cases where there are

no close matches. The mean variance of selection probabilities (MVSP) provides a

summary based on the selection probabilities instead of the distances, and flags situa-

tions where the separation between donors and donees is so large that the imputation

effectively turns into a simple random sampling from the respondents.
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The proposed method is not without limitations. Similar to the parametric proxy

pattern-mixture hot deck, λ is difficult to interpret beyond just MAR versus MNAR

– by combing all the covariates into a univariate proxy variable we lose the connection

between specific covariates and the probability of missingness. Another limitation is

the inability of the PPM hot deck to extrapolate; only observed values can be im-

puted. However, this is a limitation of hot deck procedures in general, and is not

unique to this proposed method. This becomes most important when we assume

missingness is not at random (e.g., λ = ∞) and with a weak proxy. The predicted

means for missing values might be quite different than the predicted means for re-

spondents, such that there are no “close" donors available for imputation. However,

our proposed donor quality metrics can provide some guidance, identifying when there

are no close matches available for imputation, suggesting that the PPM hot deck is

not the best method and perhaps the parametric proxy pattern-mixture method that

can extrapolate beyond the observed values should be used.

5.2 Binary Outcome

In Chapter 4 the work done in Andridge (2009) [38] for extending the parametric

PPM model to a binary outcome allows the hot deck to be naturally extended to

imputation of a binary variable as well. We achieve this by assuming there is a

continuous latent variable with a cutpoint that determines the value of the binary

variable. The proxy X is created by a probit regression, and is considered a proxy

for the latent U . The normal pattern-mixture model is then assumed for the proxy

X and the latent U . Because this latent variable is unobserved for all subjects, this

adds an additional problem when estimating the parameters for the respondents. We

113



implemented and compared two methods used to estimate biserial correlation: Tate’s

full ML estimation and Olsson’s two-step estimator.

The proposed method was further modified from the continuous case in how donors

are selected. We replaced the Siddique and Belin predictive mean matching with a

commonly used method of using the predicted means to create adjustment cells. Non-

respondents now each have the same number of possible donors (number of respon-

dents in each cell), and this procedure also ensures that nonrespondents with large

predicted means will be matched to respondents with the largest predicted means.

This eliminates the problem of a nonrespondent being “too far away” resulting in a

simple random sample of the entire set of respondents. The use of adjustment cells

also allows for an examination of donor quality and availability. Plots, such as in Fig-

ure 4.2 can also be examined. Here, we can view the distribution of the proportion of

Y = 1 for each adjustment cell, hopefully observing that the proportion increases as

the values of û(0)’s increase. We can also gather how many nonrespondents are being

placed in each cell and therefore how many respondents are actually being considered

for possible donation.

We also investigated the robustness to departures from normality of both the

covariates and the distribution of the latent variable. This is where we had expected

to see a difference in the two ML estimation methods. When performing a full ML

estimation method for estimating the overall mean of Y , the full ML procedure is

biased in some cases of non-normality. However, when implemented in the hot deck,

there was no major difference between the performance of the methods. We suspect

that it is because the biased estimates shift everyone when creating predicted means

to find matches, and therefore the subjects that are ‘close’ using unbiased estimates
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are still ‘close’ when using slightly biased estimates. Regardless of the ML method,

the bias and coverage of the ‘correct’ λ with each missingness assumption was similar

regardless of the distribution.

The PPM hot deck was applied to two data sets for imputation of a binary vari-

able. For the SEER data, we imputed ER+ status and estimated the mean for each

diagnosis year from 1992 to 2010. We observed a difference in the estimates for the

earlier years, that suggested under a nonignorable model, the proportion of subjects

ER+ would be less than the proportion under an ignorable model. However, the

differences were not severe, and almost negligible in the later years, due to a very

small percent of missingness.

For a different illustration of the proposed method, we applied the PPM hot deck

to imputation of a binary outcome, but estimated the coefficients of a logistic regres-

sion model instead of the overall mean. Using the different values of the sensitivity

parameter, we were able to obtain a regression model under different missingness as-

sumptions. By examining how each coefficient changed (or did not change), we were

able to assess which coefficients were sensitive to nonignorability.

5.3 Future Work

We now address areas of future work with the proxy pattern-mixture hot deck.

The first involves donor selection in the continuous imputation case. The second

is an extension for the binary method to ordinal outcomes. The third furthers the

application to SEER data by performing cyclical imputation.
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5.3.1 Using Adjustment Cells

Implementation of the adjustment cells for the binary case removed the donor

selection problems observed in the continuous case. The next step is to implement

the adjustment cell method for the continuous outcome case. The use of adjustment

cells in predictive mean matching is a common way to form donor pools. We propose

to implement this in the PPM method for continuous Y , in place of the distance

measure of Siddique and Belin, in hopes to resolve the issue of the hot deck becoming

a simple random sample in some settings. We propose to follow the suggestions of

forming the adjustment cells in [43] and that were implemented in Chapter 4 for the

binary outcome.

From the observations from implementing in the binary case, we expect that we

can resolve the problems for finding donors when the MMD is large and the mean

VSP is approximately zero. Using adjustment cells would prevent the method from

turning into an SRS of the entire pool of respondents. This might also be used in

conjunction with the Siddique and Belin distance measure. Consider the situation

where some nonrespondents have very good matches, but others have large predicted

means. In this case, the distance measure could be used for the nonrespondents with

quality matches, and then the adjustment cells only used for the nonrespondents with

no good matches. This would at least prevent the nonrespondent with the largest û

being matched with the respondent with the smallest û, while not adding bias when

there are quality donors available for some.
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5.3.2 Ordinal Outcomes

We extended the proxy pattern-mixture hot deck from imputation of a continuous

variable to that of a categorical binary variable. The next step is naturally to extend

the method to handle ordinal outcomes. Both methods for estimating biserial corre-

lation have been extended to polyserial correlation, which is what we would need to

apply.

When we had the binary outcome, there was a single cutpoint of the underlying

distribution of the latent variable. When we have an outcome with J categories, we

will need to estimate J − 1 cutpoints.

The relationship between the categorical outcome Y and the latent variable U is

given by:

Y = yj if ωj−1 ≤ U < ωj, j = 1, 2, . . . , J (5.1)

We set ω0 = −∞ and ωc = +∞. It is also assumed that yj−1 < yj for j = 2, . . . , J

and ωj−1 < ωj for j = 2, . . . , c− 1.

As discussed in [38], the probit regression for an ordinal outcome is Pr(Y ≤

j|Z,M = 0) =Pr(U ≤ ωj) = Φ(ωj + αZ) and we set the proxy to X = α̂Z. The

pattern-mixture model is assumed for the proxy X and the latent U , but now the

latent U has J−1 cutpoints. Without loss of generality, we take µ(0)
u = 0 and σ(0)

uu = 1.

To estimate the polyserial correlation coefficient ρ(0) and the J − 1 cutpoints for

respondents, we describe the procedure following the two-step estimation of Olsson

(1982) [42]. Now, the first step of the method solves:

ωj = Φ−1(Pj) j = 1, . . . , J − 1, (5.2)
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where Pj is the cumulative marginal proportions of Y . In the binary case, we had

ω(0) = Φ−1(ȳR).

The ‘second step’ is still to maximize the log likelihood using the estimates of ωj

found in the first step, using the conditional distribution of Y |X:

Pr(Y = j|X) = Φ

(
ω
(0)
j − ρ(0)Z∗√

1− ρ(0)2

)
− Φ

(
ω
(0)
j−1 − ρ(0)Z∗√

1− ρ(0)2

)
(5.3)

where Z∗ is the standardized version of X(0). Then the estimate of ρ(0) is found by

maximizing

l =

NR∑
i=1

log p(yi|xi) (5.4)

with respect to ρ(0) only.

Once these have been estimated, the formulas for û’s will follow as in Section 4.3.

All steps that follow will be the same, with forming adjustment cells based on û(0),

placing the nonrespondent to the closest cell, and taking a simple random sample

within the cell for the nonrespondent. The value of Y imputed will then be one of

the J possible values Y can take.

5.3.3 SEER Imputation

Another area for future work is with the application to the SEER data set. The

implementation in Chapter 4 only considered subjects that were complete cases on

every covariate (used in the analysis) except ER status. This decreased the sample

size from 487,515 to 348,465. We can remedy this by imputing the missingness in a

cyclical manner, by starting with imputation of the variable with the least missing.

Imputation of other variables would be via an ignorable (MAR) method such as stan-

dard hot deck, and imputation of ER status conditional on these previously imputed

covariates would use the PPM hot deck.
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