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Abstract

Methodology is proposed for the construction of prediction intervals for integrals of Gaussian 

random fields over bounded regions (called block averages in the geostatistical literature) based on 

observations at a finite set of sampling locations. Two bootstrap calibration algorithms are 

proposed, termed indirect and direct, aimed at improving upon plug-in prediction intervals in 

terms of coverage probability. A simulation study is carried out that illustrates the effectiveness of 

both procedures, and these procedures are applied to estimate block averages of chromium traces 

in a potentially contaminated region in Switzerland.
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1 Introduction

In this work we consider the problem of constructing prediction intervals for the integral of a 

spatially varying quantity over a bounded region (also called block average in the 

geostatistical literature), based on observations at a finite set of sampling locations. This 

problem is of importance in many earth sciences, such as hydrology, mining and pollution 

assessment, where interest often centers on spatial averages (rather than on ensemble 

averages). This was, in a mining context, a problem that D.G. Krige considered and that 

motivated G. Matheron to develop the geostatistical methodology named after him (kriging): 

estimating the average bock ore-grade over a mining panel based of measurements of 

internal core-samples (Cressie, 1990; Chilés and Delfiner, 1999). As the data support are 

‘points’ while the support of the quantity of interest is a region of positive area, this is an 

example of what is generically called a change of support problem; see Gotway and Young 

(2002) for an extensive review.
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The problem of ‘point prediction’ of an integral of a random field over a bounded region has 

been considered extensively in the literature, for instance, by Cressie (1993), Chilés and 

Delfiner (1999), Cressie (2006), De Oliveira (2006) and Gotway and Young (2007). But the 

problem of ‘interval prediction’ has not received similar attention, and it could even be 

argued that it has not been adequately explored. When the model covariance parameters are 

not known, the common practice in the above works is to use a two-stage approach: the 

covariance parameters are first estimated and then prediction intervals are computed by 

treating these estimates as if they were the true covariance parameters. This is called the 

plug-in (or estimative) approach. It is by now well known that plug-in prediction intervals 

have coverage properties that differ from the nominal coverage properties and are often 

overly optimistic, having actual coverage probability smaller than the desired coverage 

probability. The main approaches to correct this drawback of plug-in prediction intervals are 

the Bayesian and bootstrap approaches. Both approaches have been explored for the case of 

inference about the quantity of interest at single locations, but similar approaches for the 

case of inference about spatial averages do not seem to have been explored, with the 

exception of the paper by Gelfand, Zhu and Carlin (2001) who proposed a Bayesian 

approach. This work studies bootstrap calibration approaches.

A general idea for the construction of improved prediction intervals is to calibrate plug-in 

prediction intervals, namely, to adjust plug-in prediction limits in such a way that the 

resulting prediction interval has coverage probability closer to the desired coverage 

probability. Two variants of this general idea have been explored that differ on how the 

adjustment is made. In the first variant the adjusted limit is obtained by modifying the 

nominal coverage probability, a variant termed as indirect by Ueki and Fueda (2007). This 

variant was initially proposed by Cox (1975), and later studied further by Atwood (1984), 

Beran (1990), Escobar and Meeker (1999) and Lawless and Fredette (2005). In the second 

variant additive adjustments are made to plug-in prediction limits, a variant termed as direct 

by Ueki and Fueda (2007). This variant was studied by Barndorff-Nielsen and Cox (1994, 

1996), Vidoni (1998) and Ueki and Fueda (2007). For both variants the adjustments can be 

computed either analytically (Cox, 1975; Atwood, 1984; Barndorff-Nielsen and Cox, 1996; 

Vidoni, 1998) or by simulation (Beran, 1990; Escobar and Meeker, 1999; Lawless and 

Fredette, 2005; Ueki and Fueda, 2007). Analytical adjustments are often complex and 

difficult to obtain, while simulation-based adjustments (also called bootstrap calibration) are 

usually more practically feasible. The simulation-based indirect calibration variant has been 

studied and applied for the construction of prediction intervals in random fields at single 

locations by Sjöstedt-de Luna and Young (2003) and De Oliveira and Rui (2009), but 

bootstrap calibration does not seem to have been studied for the construction of prediction 

intervals for spatial averages of random fields.

In this work we study the application of both indirect and direct bootstrap calibration 

strategies to the construction of prediction intervals for spatial averages of Gaussian random 

fields over bounded regions. We extend the indirect bootstrap calibration algorithm 

proposed by Sjöstedt-de Luna and Young (2003) for the construction of prediction intervals 

for the random field at single locations to the construction of prediction intervals for spatial 

averages over bounded regions. Also, we extend the direct bootstrap calibration algorithm 
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proposed by Ueki and Fueda (2007) for i.i.d. data to the construction of prediction intervals 

for spatial averages, which relies on a ‘predictive distribution’ that only depends on the 

covariance parameters. A simulation study is carried out to illustrate the effectiveness of 

both types of calibrated prediction intervals at reducing the coverage probability error of 

plug-in prediction intervals. Finally, the proposed methodology is applied to the construction 

of prediction intervals for spatial averages of chromium traces in a potentially contaminated 

region in Switzerland.

2 Model and Problem Formulation

Consider the random field {Z(s) : s ∈ D} representing the spatial variation of a quantity of 

interest, thought to vary continuously over the region of interest D ⊂ ℝ2. It is assumed that 

D is compact and |D| > 0, where |D| denotes the area of D (or more precisely its Lebesgue 

measure), and Z(·) is an L2 random field, i.e., E{Z2(s)} < ∞ for all s ∈ D. The mean and 

covariance functions of the random field are assumed to be given by

(1)

where f(s) = (f1(s), …, fp(s))′ are known location-dependent covariates, β = (β1, …, βp)′ ∈ ℝp 

are unknown regression parameters, σ2 = var{Z(s)} > 0 is unknown, Kϕ(s, u) is a correlation 

function in ℝ2 that is continuous on D × D, and ϕ is an unknown correlation parameter.

The data consist of possibly noisy measurements of the random field at distinct sampling 

locations s1, …, sn ∈ D, say Zobs = (Z1,obs, …, Zn,obs)′, where

(2)

here  represent measurement errors independently distributed of the 

random field Z(·) and τ2 ≥ 0 is the so-called nugget effect. The model parameters are then 

the regression parameters β ∈ ℝp and covariance parameters θ = (σ2, ϕ, τ2) ∈ Θ ⊂ ℝq.

The goal is to make inference about a spatial (weighted) average of the random field over a 

subregion of D of positive area, say B ⊆ D, also know as a block average in the 

geostatistical literature. This spatial average is the random variable given by the (stochastic) 

integral

(3)

where w(·) is known, nonnegative and piecewise continuous on D, and the integral is defined 

in mean square sense; its definition and some of its properties are given in the next section. 

For α ∈ (0, 1) we are interested in constructing 100(1 − α)% prediction intervals for ZB, that 

is, we seek random intervals (L(Zobs), U(Zobs)) for which
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where Pβ,θ{·} refers to the joint distribution of ( , ZB) when the true parameter vector is 

(β′, θ).

3 L2 Integration

There is a large body of literature on L2 integration for random fields in the real line (e.g., 

Cramér and Leadbetter, 1967; Tanaka, 1996), but a formal treatment of this for random 

fields in the plane is usually glossed over in the geostatistical literature. For completeness, 

we review in this section the definition of ZB as well as some results that are needed in latter 

sections. The results hold in the Hilbert space L2 = L2({Z(s) : s ∈ D}, ds), with ds being 

Lebesgue measure, and convergence is considered in mean square sense. The proofs are left 

for the Appendix.

The definition of ZB parallels that of Riemann integrals of deterministic bounded functions 

over compact subsets of ℝ2 (Bartle, 1976), in which convergence of sequences of real 

numbers is replaced by L2 convergence of sequences of random variables. Let Δ = {J1, …, 

Jr} denote a finite partition of B, i.e., B = ∪kJk and Jk ∩ Jk′ = Ø if k ≠ k′, and [Δ] = max{|J1|, 

…, |Jr|} denotes the ‘mesh size’ of Δ. A Riemann sum for the random field w(·)Z(·) 

corresponding to the partition Δ is the random variable defined as

where tk is any point in Jk.

Definition 3.1

The random field w(·)Z(·) is said to be L2–integrable on B if, as m → ∞, SB(Δm) converges 

in L2 for every sequence (Δm)m≥1 of finite partitions of B with the property that 

limm→∞[Δm] = 0. In this case the limit is also in L2 and is denoted by the right hand side of 

(3).

Proposition 3.1

Suppose that B is compact, w(s) and μ(s) are piecewise continuous on B and Kϕ(s, u) is 

continuous on B × B. Then ZB exist, i.e., w(·)Z(·) is L2–integrable on B.

Proposition 3.2

Let {Z(s) : s ∈ D} be a random field with mean and covariance functions given in (1), with 

w(s) and μ(s) piecewise continuous on B and Kϕ(s, u) continuous on B × B. Also, let s0 ∈ D 

and B, C ⊆ D both compact. Then
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(4)

(5)

(6)

Proposition 3.3

Let {Z(s) : s ∈ D} be a Gaussian random field with mean and covariance functions given in 

(1), with w(s) and μ(s) piecewise continuous on B and Kϕ(s, u) continuous on B × B. Also, 

let s1, …, sn ∈ D be distinct and B ⊆ D compact. Then

(7)

where X is the n × p matrix (X)ij = fj(si), , with 

, Σθ is the n × n matrix (Σθ)ij = σ2Kϕ(si,sj) + τ21{si = sj}, with 

1{A} the indicator function of A, , and 

.

4 Plug-in Prediction Intervals

In all that follows it is assumed that X has full rank (= p < n) and Σθ is positive definite for 

all θ ∈ Θ. The problem of predicting a spatial average based on point-referenced data has 

been considered extensively in the literature, for instance by Cressie (1993), Chilés and 

Delfiner (1999), and Gotway and Young (2007). The best linear unbiased predictor (BLUP) 

of ZB based on the data Zobs (also know as the universal kriging block predictor) and its 

mean squared prediction error are given, respectively, by

where
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with fB = (f1(B), …, fp(B))′, and fj (B), X, Σθ, KB(ϕ) and KBB(ϕ) defined in Proposition 3.3; 

note from (2) that cov{Zi,obs, ZB} = cov{Z(si), ZB} for all i. The quantities ẐB(θ) and 

do not depend on β, but both depend on the covariance parameters θ. When the random field 

is Gaussian, it follows from (7) and after some algebra that ẐB(θ) = Eβ̂
θ,θ{ZB | Zobs}, where 

 is the best linear unbiased estimator of β. In addition, when 

θ is know, ẐB(θ) is the best unbiased predictor (linear or not) with respect to the squared 

error loss function (Cox, 2004).

If the random field is Gaussian, we have from (7) and after some algebra that

and hence

If the covariance parameters θ were known, then T would be a pivot for the prediction of ZB 

and a 100(1 − α)% prediction interval for ZB would be

(8)

where Φ−1(·) is the quantile function of the standard normal distribution; for now we do not 

make explicit the dependence of LB(·) and UB(·) on the data. In practice the covariance 

parameters θ are not known and have to be estimated from the same data used for prediction, 

say by θ̂ = θ̂(Zobs). The simplest and most common practical solution is to use the so-called 

plug-in (or estimative) prediction interval obtained by replacing θ with θ̂ in (8), i.e., to use IB 

(α, θ̂) as the prediction interval. This solution has a potentially serious drawback. Plug-in 

prediction intervals have coverage probability that differ from the nominal coverage 

probability (that is the one that holds when the true parameter values are used), because they 

do not take into account the sampling variability of parameter estimators. As a result, their 

actual coverage probability tends to be smaller than the nominal coverage probability, and 

the coverage probability error may range from negligible to substantial, depending on the 

observed data and true parameter values.

Let 1 − α be the desired coverage probability (fixed throughout) and θ the true covariance 

parameters. The coverage probability function of the plug-in prediction interval obtained 

from (8) is defined as
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It can be shown that this coverage probability does not depend on the regression parameters 

β, as long as θ̂ is a translation-invariant estimator (i.e., θ̂(Zobs + a) = θ̂(Zobs) for every a ∈ 

ℝn); maximum likelihood and restricted maximum likelihood estimators are translation-

invariant (Sjöstedt-de Luna and Young, 2003; De Oliveira and Rui, 2009). If θ could be 

estimated without error (i.e., θ̂ = θ with probability 1), then IB (α, θ̂) would be a 100(1 − α)

% prediction interval for ZB since πB(α, θ) would be identical to 1 − α. But due to estimation 

error (parameter uncertainty), πB(α, θ) in general depends on both α and θ, and IB (α, θ̂) has 

only nominal coverage probability 1 − α.

5 Calibrated Prediction Intervals

The main approaches that have been considered to account for parameter uncertainty when 

performing predictive inference about Z(s0) include the Bayesian approach (Handcock and 

Stein, 1993; De Oliveira, Kedem and Short, 1997) and bootstrap approaches (Sjöstedt-de 

Luna and Young, 2003; Wang and Wall, 2003; De Oliveira and Rui, 2009; Schelin and 

Sjöstedt-de Luna, 2010).

The goal of calibrating prediction intervals is to adjust the prediction bounds LB (α, θ̂) and 

UB (α, θ̂) to, respectively,  and  say, in such a way that the coverage 

probability of the adjusted prediction interval is closer to 1 − α. Two strategies have been 

previously explored for calibrating prediction intervals which we describe below for the 

construction of prediction intervals for ZB.

5.1 Indirect Calibration

The first calibration strategy, called indirect by Ueki and Fueda (2007), consists of 

achieving the goal by adjusting α in LB (α, θ̂) and UB(α, θ̂), i.e., finding αc ∈ (0, 1) for 

which πB(αc, θ̂) ≈ 1−α, and then use IB(αc, θ̂). This strategy was initially proposed and 

developed by Cox (1975), Altwood (1984) and Beran (1990), and was applied to the 

calibration of prediction intervals for Z(s0) in Gaussian and log-Gaussian random field 

models by, respectively, Sjöstedt-de Luna and Young (2003) and De Oliveira and Rui 

(2009).

This strategy requires estimation of the function πB(x, θ̂) for x ∈ (0, 1), which is carried out 

by simulation using Rao-Blackwellization. For that we write the coverage probability as
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where the probability is computed with respect to the conditional distribution of ZB given 

Zobs and the expectation with respect to the distribution of Zobs, both when β = 0 and θ is the 

true value of the covariance parameters, and from (7) it follows that

The dependence of LB(·) and UB(·) on the data is now made explicit. Hence we have the 

following algorithm for the estimation of πB(x, θ̂):

Algorithm 1—For B ⊆ D do the following:

Step 1. Compute the ML or REML estimate θ̂ = θ̂(zobs) and  from the observed 

data.

Step 2. Simulate M independent and identically distributed samples 

{ } from the Gaussian distribution with mean vector 0 and covariance 

matrix Σθ̂.

Step 3. For each j = 1, …, M compute the ML or REML estimate , and 

compute the quantities  and  from the simulated 

data.

Step 4. For x ∈(0, 1) estimate πB (x, θ̂) by

where , and τ̂
B = τB(θ̂).

The 100(1 −α)% prediction interval for ZB obtained by indirect calibration is IB (αc, θ̂), 

where αc is the root (in x) of the function . For inference about Z(s0) in 

Gaussian random fields, Sjöstedt-de Luna and Young (2003) showed that the existence and 

uniqueness of such root is guaranteed since the function πB (x, θ̂) is continuous and strictly 

decreasing on (0, 1), and limx→0+ πB(x, θ̂) = 1. The proof carries over for inference about 

ZB.

5.2 Direct Calibration

The second calibration strategy, called direct by Ueki and Fueda (2007), consists of 

achieving the goal by separately finding additive adjustments to the prediction limits. 

Specifically, UB(α, θ̂) is adjusted to , say, where dU (·) 

is chosen so that it holds that . The same procedure is done to 

adjust the lower limit LB(·), but using α/2 in place of 1 − α/2 in the computation of the 
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additive adjustment dL(·), so that the coverage probability of ( ) is 

approximately 1 − α. This strategy was initially proposed by Barndorff-Nielsen and Cox 

(1996), but the correction term was only implicitly defined. Vidoni (1998) provided an 

explicit expression for the correction term for models with independent and identically 

distributed observations, and Giummolè and Vidoni (2010) did so for a class of Gaussian 

models. These works carried out the computation of dL(·) and dU (·) analytically, in which 

computations are, in general, either complex or even not feasible for some models. Ueki and 

Fueda (2007) developed, for models with independent and identically distributed 

observations, an asymptotically equivalent expression for the additive adjustment that is 

remarkably simple and can be computed by simulation; we adapt their procedure for the 

model considered here.

The basis for the direct calibration strategy relies on adjusting prediction limits that are 

quantiles of a certain predictive distribution, and this holds for both independent and 

dependent data. For a class of Gaussian models, Giummolè and Vidoni (2010) used direct 

calibration based on the predictive distribution

(9)

and found complex closed-form expressions for the additive adjustments of the plug-in 

prediction limits

Note that the quantiles of  depend on both the regression and covariance 

parameters. Our goal is to adjust the prediction limits in (8), which have exact coverage 

when θ is known. A way to achieve this is to take a (partially) Bayesian approach. If the 

regression parameters have the (improper) prior p(β) ∝ 1 and the covariance parameters 

have a point mass prior at the true value, the conditional (on θ) posterior distribution of β is 

. So instead of , we use the Bayesian predictive 

distribution

(10)

(O’Hagan, 1991). In addition,  also arises as the bootstrap predictive distribution 

proposed in Harris (1989), when θ̂ is assumed known. Some quantiles of  agree 

with the prediction limits in (8), which depend only on the covariance parameters, so the 

frequentist prediction intervals (8) are also Bayesian prediction intervals. Note that ẐB(θ) = 

ηB(β̂, θ, zobs), but σ̂
B(θ) > τB(θ), so (9) and (10) have similar locations, but the latter is 
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always more dispersed. A benefit of using  is that it accounts for the uncertainty 

in the regression parameters, so calibration adjusts only for the uncertainty in the covariance 

parameters. We compute the additive adjustments by adapting to the current model the 

method proposed by Ueki and Fueda (2007). In what follows we describe the method to 

adjust the upper prediction limit UB(·), since adjusting the lower limit is similar.

Let αU (θ) = Pθ{ZB ≤ UB(α, θ̂)} be the coverage probability of the plug-in prediction interval 

(−∞, UB(α, θ̂)). The additive adjustment obtained by applying Ueki and Fueda’s method 

based on the predictive distribution (10) is dU (1−α/2, θ̂) = UB(α, θ̂) − UB(αU (θ̂), θ̂), so the 

adjusted prediction limit is

The quantity αU(θ̂) is not available in closed-form, but can be easily and precisely estimated 

by simulation using Rao-Blackwellization. The resulting adjusted prediction limit is simpler 

to compute than the adjusted prediction limit proposed by Giummolè and Vidoni (2010). 

Additionally, Fonseca, Giummolè and Vidoni (2012) provided an explicit expression of a 

predictive distribution having quantiles approximately equal to . Hence we have the 

following algorithm for the computation of the 100(1 − α)% prediction interval for ZB using 

direct calibration:

Algorithm 2—For B ⊆ D do the following:

Step 1. The same as in Algorithm 1.

Step 2. The same as in Algorithm 1.

Step 3. The same as in Algorithm 1.

Step 4. Estimate αU (θ̂) by

where ,and τ̂
B are the same as in Algorithm 1.

Then compute .

Step 5. Estimate αL(θ̂) = Pθ{ZB ≤ LB(α, θ̂)} by

where  is the same as in Algorithm 1.
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Then compute .

The 100(1−α)% prediction interval for ZB obtained by direct calibration is 

.

6 Simulation Study

In this section we carry out a simulation study to investigate and compare the coverage 

properties of the prediction intervals considered in this work, namely, the plug-in, indirectly 

calibrated and directly calibrated prediction intervals, for integrals of Gaussian random 

fields over bounded regions. Although the calibrated prediction intervals are constructed to 

have better coverage properties than the plug-in prediction interval, it is still important to 

assess in practice the size of the improvement as well as how this improvement might 

depend on some features of the random field.

6.1 Design

We begin by simulating realizations of Gaussian random fields at n = 50 sampling locations 

uniformly distributed over the region D = [0, 2] × [0, 2], as displayed in Figure 1. We used 

as the mean function

and the isotropic exponential covariance function

(11)

where σ2 = 0.5 or 2, and ϕ = 0.2 or 0.8; ||·|| denotes Euclidean norm. The simulated data are 

obtained from (2), with τ2 = 0 (no nugget effect) or σ2/4 (size of nugget is 25% of signal’s 

variance). This setup provides a wide range of data behaviors in terms of trend, variability 

and strength of spatial association. The quantities of interest are the spatial averages (3), 

with w(s) ≡ 1 and the following integration regions of different sizes: B1 = [0.2, 1.8] ×[0.2, 

1.8] (large block), B2 = [0.8, 1.2] × [0.8, 1.2] (medium block), and B3 = [0.975, 1.025] × 

[0.975, 1.025] (small block); see Figure 1. This is done to assess whether the coverage 

probabilities of the prediction intervals may depend on the size of the integration region.

For each of the sixteen possible models (2 means × 2 σ2-values × 2 ϕ-values × 2 τ2-values) 

we simulated 1000 times the data and the three spatial averages jointly. This is done using 

the fact that ( , ZB1, ZB2, ZB3) has multivariate normal distribution with means, 

variances and covariances given in (1) and Proposition 3.2, which follows from a slight 

generalization of Proposition 3.3. Based on each of the simulated datasets, the three types of 

95% prediction intervals (plug-in, indirectly and directly calibrated) were computed for ZB1, 

ZB2 and ZB3. Calibrated prediction intervals were obtained using Algorithms 1 and 2 

described in Section 5, with M = 500 as the bootstrap sample size, and the same bootstrap 

samples were used in both calibration algorithms. For all prediction intervals the parameters 
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were estimated by restricted maximum likelihood. The coverage probability of any of the 

aforementioned types of prediction intervals for ZB was estimated from the simulated data 

by

where B is either B1, B2 or B3 defined above, (LB,k, UB,k) is the prediction interval of the 

same type for ZB computed from the kth simulated dataset, and ZB,k is the spatial average 

that was jointly simulated with the kth dataset. The standard error of any of these coverage 

estimators is approximately .

6.2 Computation

All the computations described in this section were carried out in the R language. The joint 

generation of the simulated datasets and block averages was done with the function 

mvrnorm from the package MASS. The generation of bootstrap samples in Step 2 of 

Algorithms 1 and 2 was done using the function grf, and the parameter estimation in Steps 1 

and 3 was done using the function likfit, both from the package geoR (Ribeiro and Diggle, 

2001).

The tasks of generating the simulated block averages and carrying out Step 3 of Algorithms 

1 and 2 require the computation of μBj(β) given in (4), which in the present context can be 

done exactly. When the mean function is constant we have that μBj(β1) = β1, and when the 

mean function is not constant we have, for Bj = [a, b] × [c, d] say, that

These tasks also require, for different covariance parameters, the repeated computation of 

var{ZBj}, cov{Z(si), ZBj} and cov{ZBj, ZBl} given by (5) and (6), but these are rarely 

available in closed form. These integrals could be approximated by Monte Carlo methods, 

but we found that numerical cubature algorithms were faster and more stable. Specifically, 

we used the function adaptIntegrate from the package cubature to approximate the integrals 

(5) and (6), which uses adaptive multivariate integration.

The above functions use algorithms that require the integration region to be a rectangle with 

sides parallel to the axes, which is the case in the present study. But in some contexts the 

integration region may not be a rectangle, for instance when interest centers about a spatial 

average over an administrative region such as a county or state. In such cases the above 

functions can still be used by modifying the weight function and integration region, noting 

that
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with w̃(s) = 1{s ∈ B}w(s) and C a rectangle with sides parallel to the axes that contains B. In 

this case, the area |B| is estimated using the hit-or-miss Monte Carlo algorithm, and μC(β), 

KC(ϕ) and KCC(ϕ) are estimated as before using the weight function w̃(s).

6.3 Results

Table 1 displays estimated coverage probabilities of the 95% plug-in, indirectly calibrated 

and directly calibrated prediction intervals for ZB1 (large block average) under all considered 

models, with the top part of the table displaying the coverage for models with constant mean 

and the bottom part displaying the coverage for models with non-constant mean. As a check 

the table also displays the coverage probabilities of the prediction intervals obtained using 

the true values of the covariance parameters. As expected, the coverage probabilities of the 

plug-in prediction intervals are always smaller than nominal, with an average coverage error 

over all considered models of about 1.75%. On the other hand, the coverage probabilities of 

both calibrated prediction intervals are closer to nominal for all considered models: the 

average coverage errors of indirectly calibrated and directly calibrated prediction intervals 

are, respectively, of about 0.27% and 0.48%. The behavior of the coverage probability 

across all the considered models seems to be about the same for all types of prediction 

intervals.

Tables 2 and 3 display estimated coverage probabilities of the 95% plug-in, indirectly 

calibrated and directly calibrated prediction intervals for, respectively, ZB2 and ZB3, under 

all considered models. Again, the coverage probabilities of the plug-in prediction intervals 

are always smaller than nominal, while the coverage probabilities of both calibrated 

prediction intervals are closer to nominal. For ZB2, the average coverage errors over all 

considered models of the plug-in, indirectly calibrated and directly calibrated are, 

respectively, 2.65%, 0.23% and 0.53%, and for ZB3 the average coverage errors are, 

respectively, 2.50%, 0.22% and 0.33%. It is also observed that for the medium and small 

blocks, the coverage errors of the plug-in prediction intervals tend to be larger in models 

with measurement error (τ2 > 0), while the coverage errors of both calibrated prediction 

intervals tend to be about the same for all considered models. Hence, calibration appears to 

be most useful when the data contain measurement error.

When comparing both calibration strategies, it appears that indirect calibration has a very 

small edge over direct calibration in the sense of having a slightly smaller coverage error, 

while both calibration strategies are computationally about equally intensive. Finally, the 

effectiveness of both calibration strategies do not appear to depend on the size of the block, |

B|.

Finally, we also carried out simulations using n = 200 sampling locations, formed by the 50 

locations displayed Figure 1 plus 150 additional locations uniformly distributed over the 

region. The rest of the simulation design is the same as before, except that we only 
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considered the constant mean function. Table 4 displays estimated coverage probabilities of 

the 95% plug-in, indirectly calibrated and directly calibrated prediction intervals for ZB1 (top 

table), ZB2 (middle table) and ZB3 (bottom table). The main findings are the same as those 

reported before from the simulation with n = 50. In addition, the estimated coverage 

probabilities of all prediction intervals are about the same as those of their respective 

counterparts for n = 50. These findings are discussed further in the next section.

7 Large Sample Behavior

When the data are i.i.d. and independent of the predictand, Barndorff-Nielsen and Cox 

(1994) showed that, provided the parameter estimators are –consistent, plug-in prediction 

intervals are first-order accurate, meaning that the coverage probability error satisfies π(α, θ)

−(1−α) = O(n−1), as n → ∞. For inference about Z(s0) in Gaussian random fields, Sjöstedt-

de Luna and Young (2003, Lemma 3) showed that, under some conditions, plug-in 

prediction intervals are first-order accurate. The asymptotic behavior of the coverage 

probability error of bootstrap calibrated prediction intervals were also studied in the simpler 

situations described above, where it was shown that, under some conditions, these prediction 

intervals are third-order accurate, i.e., their coverage probability error is O(n−3/2) as n ∞. 

(Barndorff-Nielsen and Cox, 1996; Sjöstedt-de Luna and Young, 2003; Ueki and Fueda, 

2007). It is conceivable that similar asymptotic behaviors may also hold for the coverage 

probability error of plug-in and bootstrap calibrated prediction intervals for ZB, but no such 

investigation is attempted here. Also, Sjöstedt-de Luna and Young (2003, Lemma 4) showed 

that the asymptotic coverage probability error of bootstrap calibrated prediction intervals for 

Z(s0) are smaller than those of plug-in prediction intervals. The simulation study in Section 

6 suggests that the same holds for calibrated prediction intervals for ZB.

For the spatial data considered here there are two types of large sample regimes, increasing 

domain asymptotics and infill asymptotics. Under the former, the region D grows in size 

with increasing sample size and the sampling design is such that the distance between 

nearest sampling locations is bounded away from zero. Under the latter, the region D 

remains fixed and the sampling locations become increasingly dense with increasing sample 

size. The properties of parameter estimators under these two asymptotic regimes are quite 

different. For increasing domain asymptotics, Mardia and Marshall (1984) showed that, 

under fairly general conditions holding for several types of covariance functions, maximum 

likelihood estimators are consistent and asymptotically normal. Similar results were shown 

for restricted maximum likelihood estimators by Cressie and Lahiri (1996). On the other 

hand, for infill asymptotics Zhang (2004) showed that, for Gaussian random fields with 

known mean and isotropic Matérn covariance function (which includes the isotropic 

exponential covariance (11) as a particular case), the parameters σ2 and ϕ can not be 

consistently estimated.

As indicated above, Sjöstedt-de Luna and Young (2003) showed that, under some 

conditions, plug-in prediction intervals for Z(s0) are first-order accurate and indirectly 

calibrated bootstrap prediction intervals are third-order accurate. Although the required 

conditions may hold under both asymptotic regimes, depending on the type of covariance 

function, they are in general difficult to check. These conditions were checked under both 
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increasing domain and infill asymptotic regimes for the separable exponential covariance 

function in ℝ2, where in both regimes the covariance parameters can be estimated 

consistently. But they were not checked for the isotropic exponential covariance function in 

ℝ2 (Sjöstedt-de Luna and Young, 2003, Section 7). In addition, the results reported in the 

last example of Sjöstedt-de Luna and Young (2003) dealing with infill asymptotics and the 

isotropic exponential covariance function in ℝ2 show that empirical coverages of plug-in 

and indirectly calibrated prediction intervals for Z(s0) do not seem to vary monotonically 

with sample size.

The simulation study carried out in Section 6 uses the isotropic exponential covariance 

function and a sampling design that mimics infill asymptotics, a situation in which 

covariance parameters can not be consistently estimated. The results in there show that both 

strategies for the construction of calibrated prediction intervals for ZB are effective at 

reducing the coverage probability error, when compared to plug-in prediction intervals. 

Nevertheless, the estimated coverage probability errors for both sample sizes (n = 50 and 

200) were similar, which begs the question suggested by a referee: Does it hold that πB (α, 

θ) → 1 − α, as n → ∞ ? Although we do not have a definite answer, we conjecture that the 

apparent lack of consistency of prediction intervals for ZB in the situation considered in 

Section 6 is due to the lack of consistent estimators for the covariance parameters.

To provide some support for the above conjecture, we run a small simulation experiment 

with the same model as before, but now using a design that mimics increasing domain 

asymptotics, for which maximum likelihood estimates of the covariance parameters are 

consistent. We consider Gaussian random field models with constant mean 2 and isotropic 

exponential covariance function (11) with σ2 = 0.5 and ϕ = 0.2; we consider both situations, 

data with no measurement error (τ2 = 0) and data with measurement error in which τ2 = 

0.5/4. We simulated data with three nested designs with sample sizes n = 25, 50 and 200, 

that are sampled from the nested and increasing sampling windows D = [8, 10] × [8, 10], [6, 

12] × [6, 12] and [0, 18] × [0, 18], respectively. For each sampling design we simulated 

1000 times the data and ZB jointly, where B = [8.8, 9.2] × [8.8, 9.2], [8.4, 9.6] × [8.4, 9.6], 

and [7.2, 10.8] × [7.2, 10.8] when n = 25, 50 and 200, respectively. The block size increases 

with the sampling window size in a way that makes |D|/|B| constant. From each of the 

simulated datasets, the three types of 95% prediction intervals for ZB were computed using 

the same algorithms as in Section 6. Table 5 displays the estimated coverage probabilities of 

the three 95% prediction intervals for ZB. It is apparent that the coverage probabilities of the 

plug-in prediction intervals tend to become closer to the nominal coverage as the sample 

size increases. This trend is less apparent for the bootstrap calibrated prediction intervals, 

because they seem to have coverage probabilities close to nominal even for the moderate 

size datasets. This suggests that bootstrap calibrated prediction intervals might be more 

effective in an increasing domain asymptotics scenario, although a complete study is 

required to support such claim.

8 Example

In 1992 a team from the Swiss Federal Institute of Technology at Lausanne collected data on 

contamination levels by heavy metals in a region of about 15 km2 in the Swiss canton of 
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Jura. The data were measurements of traces in top soil of cadmium, chromium, cobalt, 

copper, lead, nickel and zinc at 359 locations scattered throughout the region; see Figure 2. 

The sampling protocol and an initial analysis are described in Atteia, Dubois and Webster 

(1994), and the datasets and geostatistical analyses appear in Goovaerts (1997)2.

We analyze here the chromium (Cr) dataset, measured in parts per million (ppm). 

Exploratory data analysis suggests that the mean of the chromium traces is constant, its 

histogram is close to symmetric, and the data pass the Shapiro-Wilk test of normality at 5% 

level. Figure 3 displays the histogram of the data (left), as well as the empirical 

semivariogram and fitted isotropic exponential semivariogram function (right). Note that the 

empirical semivariogram displays an apparent discontinuity at the origin, which we interpret 

as measurement error. We then assume that the spatial variation of chromium traces over the 

region is reasonably described by a Gaussian random field with constant mean and isotropic 

exponential covariance function3. The restricted maximum likelihood estimates of the model 

parameter are

The Jura canton can be divided in four subregions according to land use type: tillage, 

meadow, pasture and forest. As an illustration, we compute prediction intervals for spatial 

averages of chromium traces over four rectangular blocks, each of which is entirely 

contained into a land use type; the rectangular blocks are displayed in Figure 2 and their 

coordinates and respective land use type are given in Table 6.

For each rectangular block B in Table 6 we computed the 95% plug-in, indirectly calibrated 

and directly calibrated prediction intervals for ZB, where for both calibration strategies we 

used 3000 as the bootstrap sample size. The prediction intervals are displayed in Table 7. 

For each rectangular block the three types of 95% prediction intervals are similar, but in all 

cases the plug-in prediction intervals are narrower than their corresponding calibrated 

prediction intervals. The increase in width of the calibrated prediction intervals ranges from 

about 1.8 to 3.4% of the width of the respective plug-in prediction intervals, and the 

estimated coverage probability of the plug-in prediction intervals range from about 94.2 to 

94.5%. The benefit of calibration in these examples is modest, presumably due to the 

moderate sample size.

9 Conclusions

As it occurs for interval prediction of random fields at single locations, plug-in prediction 

intervals for spatial averages of Gaussian random fields are overly optimistic in the sense of 

having actual coverage probability smaller than the desired coverage probability. Depending 

on the data and true model, the coverage probability error may range from mild to 

substantial. This work has proposed two bootstrap calibration strategies to construct better 

2Many previous analyses have divided these data into two subsets: a prediction set formed by measurements at 259 locations, and a 
validation set formed by measurements at the remaining 100 locations. The analysis here uses data from all locations.
3The measured traces of the other heavy metals display notably asymmetric distributions.
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prediction intervals that reduce the coverage probability error, and has illustrated their 

effectiveness using a simulation study and a real dataset example. A problem only touched 

upon here, that requires further investigation, is the determination of the large sample 

behavior of these plug-in and bootstrap calibrated prediction intervals.

A natural follow up question is how to construct better prediction intervals for spatial 

averages in some types of non-Gaussian random fields. The application of the calibration 

methodology proposed here for non-Gaussian random fields appears challenging since in 

most cases the conditional distribution of ZB given Zobs is not known; this is the case, for 

instance, in log-Gaussian random fields. Rather than using calibration, Schelin and Sjöstedt-

de Luna (2010) explored a semi-parametric approach to construct hybrid bootstrap 

prediction intervals for Z(s0) that does not require distributional assumptions. We are 

currently exploring the implementation of this approach for the construction of prediction 

intervals for ZB, which will be reported elsewhere.
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Appendix

Below we provide proofs for the results stated in Section 3. These results and their proofs 

are well known for random fields in the line, e.g., Cramér and Leadbetter (1967, Chapter 3) 

and Tanaka (1996, Chapter 2), but a treatment for random fields in the plane is difficult to 

find. In what follows we assume without lost of generality that |B| = 1 (otherwise |B|−1 is 

absorbed by w(s)).

Lemma A.1

(Loève’s criterion for L2 convergence). Let (Tm)m≥1 be a sequence in L2. Then (Tm)m≥1 

converges in L2 if and only E{TmTm′} converges to a finite limit as m, m′ → ∞.
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Proof

See Cramér and Leadbetter (1967) or Tanaka (1996).

Proof of Proposition 3.1

Assume first that μ(s) = 0. By the continuity hypotheses we have that the function 

w(s)w(u)E{Z(s)Z(u)} is Riemann integrable on B × B, so

(12)

Now, let (Δm)m≥1 be a sequence of finite partitions of B with the property that limm →∞[Δm] 

= 0. Then

and this sum converges to the left hand side in (12) as m, m′ → ∞. Hence, w(·)Z(·) is L2–

integrable on B by Lemma A.1. If μ(s) ≠ 0, the result follows by using the decomposition 

Z(s) = μ(s) + W (s) and noting that w(·)μ(·) is Riemann integrable on B.

Proof of Proposition 3.2

Recall that ZB is defined as the L2–limit of SB (Δm), where (Δm)m≥1 is a sequence of finite 

partitions of B with the property that limm→ ∞ [Δm] = 0. Since the order of expectation and 

limit is exchangeable under L2–convergence, we have

where the above integral exist since B is bounded and the integrand is piecewise continuous 

on B. Likewise, since ZB ZC is the L2–limit of SB (Δm)SC (Δm′), where (Δm)m≥1 and (Δm′)m′≥1 

are sequences of finite partitions of, respectively, B and C with the properties that limm→ ∞ 

[Δm] = limm′→ ∞ [Δm′] = 0, we have
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where again the above integral exist since B and C are bounded and the integrand is 

piecewise continuous on B × C. This and (4) imply (6). A similar argument shows that (5) 

holds.

Lemma A.2

Let (Tm)m≥1 be a convergent sequence in L2, where Tm is normally distributed for all m ≥ 1. 

Then its limit is also normally distributed.

Proof

By assumption, the moment generating function of Tm is  for 

some νm ∈ ℝ and ξm ≥ 0. If T is the L2 limit of (Tm)m≥1, we have that as m → ∞, νm → ν 

and ξm → ξ for some ν ∈ ℝ and ξ ≥ 0, and by the continuity of the exponential function, 

ψm(t) → exp (νt + ξ2t2/2) as m → ∞, for every t ∈ ℝ Since convergence in L2 implies 

convergence in distribution, we must have that the moment generating function of T is exp 

(νt + ξ2t2/2), so T is normally distributed.

Proof of Proposition 3.3

Let a0 ∈ ℝ, a ∈ ℝn and (Δm)m≥1 be a sequence of finite partitions of B with the property that 

limm→ ∞[Δm] = 0. Since the random field Z(·) is Gaussian, it holds that the random variables 

Tm:= a′Zobs + a0SB (Δm) have normal distributions for m ≥ 1. In addition

by the definition of ZB. So (Tm)m≥1 converges to a′Zobs + a0ZB in L2. By Lemma A.2, this 

implies that a′Zobs + a0ZB is also normally distributed, which in turn implies (by definition) 

that ( , ZB) has a multivariate Gaussian distribution, since a0 and a are arbitrary. Finally, 

the means, variances and covariances of this joint distribution are given by the assumed 

mean and covariance functions of Z(·), and the results in Proposition 3.2.

De Oliveira and Kone Page 20

Comput Stat Data Anal. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Sampling locations (○) and integration regions: B1 (large block), B2 (medium block) and B3 

(small block).
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Figure 2. 
Map of the Jura region with the 359 sampling locations (○), the land use type subregions 

(color-coded) and four rectangular blocks (red lines).
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Figure 3. 
Histogram of measured chromium traces (left); empirical (○) and fitted (line) semi-

variograms of measured chromium traces (right).
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Table 1

Coverage probabilities of the different types of 95% prediction intervals for ZB1, with n = 50 and B1 = [0.2, 

1.8] × [0.2, 1.8] (large block average). The top of the table displays the coverage for models with constant 

mean function, and the bottom displays the coverage for models with non-constant mean function.

σ2 0.5 2.0

ϕ 0.2 0.8 0.2 0.8

τ2 = 0

plug-in 0.930 0.937 0.930 0.940

ind calib 0.947 0.941 0.947 0.949

dir calib 0.947 0.941 0.945 0.948

true params 0.954 0.950 0.948 0.949

τ2 = σ2/4

plug-in 0.933 0.924 0.932 0.936

ind calib 0.949 0.944 0.948 0.948

dir calib 0.947 0.945 0.941 0.947

true params 0.953 0.949 0.952 0.949

τ2 = 0

plug-in 0.938 0.935 0.929 0.935

ind calib 0.955 0.942 0.943 0.950

dir calib 0.951 0.941 0.944 0.948

true params 0.952 0.950 0.954 0.949

τ2 = σ2/4

plug-in 0.928 0.937 0.923 0.939

ind calib 0.943 0.950 0.949 0.951

dir calib 0.939 0.947 0.942 0.949

true params 0.952 0.955 0.951 0.952
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Table 2

Coverage probabilities of the different types of 95% prediction intervals for ZB2, with n = 50 and B2 = [0.8, 

1.2] × [0.8, 1.2] (medium block average). The top of the table displays the coverage for models with constant 

mean function, and the bottom displays the coverage for models with non-constant mean function.

σ2 0.5 2.0

ϕ 0.2 0.8 0.2 0.8

τ2 = 0

plug-in 0.939 0.940 0.939 0.945

ind calib 0.960 0.949 0.958 0.953

dir calib 0.960 0.949 0.954 0.953

true params 0.959 0.959 0.956 0.951

τ2 = σ2/4

plug-in 0.914 0.912 0.905 0.925

ind calib 0.952 0.945 0.942 0.947

dir calib 0.950 0.941 0.939 0.949

true params 0.958 0.952 0.948 0.951

τ2 = 0

plug-in 0.912 0.935 0.915 0.931

ind calib 0.946 0.945 0.942 0.945

dir calib 0.938 0.944 0.935 0.943

true params 0.949 0.947 0.948 0.950

τ2 = σ2/4

plug-in 0.910 0.924 0.912 0.918

ind calib 0.945 0.947 0.945 0.942

dir calib 0.940 0.941 0.940 0.939

true params 0.960 0.960 0.949 0.950
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Table 3

Coverage probabilities of the different types of 95% prediction intervals for ZB3, with n = 50 and B3 = [0.975, 

1.025] × [0.975, 1.025] (small block average). The top of the table displays the coverage for models with 

constant mean function, and the bottom displays the results for coverage with non-constant mean function.

σ2 0.5 2.0

ϕ 0.2 0.8 0.2 0.8

τ2 = 0

plug-in 0.940 0.945 0.941 0.946

ind calib 0.951 0.950 0.952 0.949

dir calib 0.950 0.949 0.951 0.950

true params 0.953 0.952 0.957 .950

τ2 = σ2/4

plug-in 0.902 0.910 0.903 0.923

ind calib 0.947 0.943 0.945 0.950

dir calib 0.939 0.944 0.942 0.951

true params 0.952 0.949 0.951 0.958

τ2 = 0

plug-in 0.925 0.933 0.935 0.931

ind calib 0.945 0.948 0.949 0.950

dir calib 0.944 0.950 0.951 0.947

true params 0.948 0.949 0.950 0.952

τ2 = σ2/4

plug-in 0.912 0.920 0.924 0.910

ind calib 0.947 0.949 0.946 0.944

dir calib 0.945 0.947 0.942 0.945

true params 0.959 0.952 0.957 0.949
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Table 4

Coverage probabilities of the different types of 95% prediction intervals for ZB1 (top table), ZB2 (middle table) 

and ZB3 (bottom table), with n = 200 and constant mean function.

σ2 0.5 2.0

ϕ 0.2 0.8 0.2 0.8

τ2 = 0

plug-in 0.932 0.935 0.931 0.936

ind calib 0.949 0.945 0.942 0.951

dir calib 0.948 0.943 0.946 0.950

τ2 = σ2/4

plug-in 0.928 0.923 0.930 0.932

ind calib 0.942 0.950 0.947 0.951

dir calib 0.944 0.946 0.945 0.951

τ2 = 0

plug-in 0.940 0.939 0.931 0.943

ind calib 0.952 0.949 0.951 0.955

dir calib 0.955 0.947 0.950 0.954

τ2 = σ2/4

plug-in 0.918 0.911 0.906 0.929

ind calib 0.953 0.945 0.944 0.947

dir calib 0.953 0.943 0.940 0.948

τ2 = 0

plug-in 0.941 0.943 0.940 0.945

ind calib 0.952 0.951 0.950 0.949

dir calib 0.950 0.948 0.950 0.951

τ2 = σ2/4

plug-in 0.904 0.912 0.905 0.919

ind calib 0.947 0.943 0.945 0.952

dir calib 0.940 0.946 0.947 0.953
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Table 5

Coverage probabilities of the different types of 95% prediction intervals for ZB with n = 25, 50 and 200 in an 

increasing domain asymptotic regime.

n 25 50 200

τ2 = 0

plug-in 0.905 0.928 0.951

ind calib 0.933 0.953 0.953

dir calib 0.929 0.955 0.953

τ2 = 0.5/4

plug-in 0.890 0.920 0.947

ind calib 0.950 0.944 0.952

dir calib 0.944 0.942 0.949
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Table 6

Coordinates of the rectangular blocks (in km) and their respective land use type.

block block coordinates land use type

1 [3.06, 3.23] × [5.02, 5.38] tillage

2 [1.77, 2.23] × [1.84, 2.63] meadow

3 [1.58, 2.06] × [0.38, 0.78] pasture

4 [3.62, 4.45] × [2.3, 2.88] forest
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Table 7

95% prediction intervals for the spatial averages of chromium traces over the rectangular blocks in Table 6.

block plug-in indirectly calibrated directly calibrated

1 (31.04, 46.66) (30.90, 46.79) (30.90, 46.78)

2 (35.34, 44.04) (35.25, 44.14) (35.24, 44.13)

3 (32.90, 46.64) (32.67, 49.88) (32.66, 46.85)

4 (22.24, 29.58) (21.16, 29.66) (22.17, 29.65)
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