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Abstract

In this article, we consider the varying coefficient model, which allows the relationship between 

the predictors and response to vary across the domain of interest, such as time. In applications, it is 

possible that certain predictors only affect the response in particular regions and not everywhere. 

This corresponds to identifying the domain where the varying coefficient is nonzero. Towards this 

goal, local polynomial smoothing and penalized regression are incorporated into one framework. 

Asymptotic properties of our penalized estimators are provided. Specifically, the estimators enjoy 

the oracle properties in the sense that they have the same bias and asymptotic variance as the local 

polynomial estimators as if the sparsity is known as a priori. The choice of appropriate bandwidth 

and computational algorithms are discussed. The proposed method is examined via simulations 

and a real data example.
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1. Introduction

The varying coefficient model (Cleveland, Grosse and Shyu, 1991; Hastie and Tibshirani, 

1993) assumes that the covariate effect may vary depending on the value of an underlying 

variable, such as time. It has been used in a variety of applications, such as longitudinal data 

analysis, and is given by

(1)

where the predictor vector x = (x1, …, xp)⊤ represents p features, and correspondingly, a(U) 

= (a1(U), …, ap(U))⊤ denotes the effect of different features over the domain of the variable 

U. Y is the response we are interested in and ε denotes the random error satisfying E(ε) = 0 

and Var(ε) = σ2(U).
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The varying coefficient model has been extensively studied. Many methods have been 

proposed to estimate its parameters. The first group of estimation methods are based on local 

polynomial smoothing. Examples include, but are not limited to, Fan and Gijbels (1996); 

Wu, Chiang and Hoover (1998); Hoover, Rice, Wu and Yang (1998); Kauermann and Tutz 

(1999); Fan and Zhang (2008). The second is polynomial splines-based methods, such as 

Huang, Wu and Zhou (2002, 2004); Huang and Shen (2004) and references therein. The last 

group is based on smoothing splines as introduced by Hastie and Tibshirani (1993); Hoover, 

Rice, Wu and Yang (1998); Chiang, Rice and Wu (2001) and many others. In this paper, we 

not only consider estimation for the varying coefficient model, but also wish to identify the 

regions in the domain of U where predictors have an effect and the regions where they may 

not. This is similar, although different than variable selection, as selection methods attempt 

to decide whether a variable is active or not while our interest focuses on identifying 

regions.

For variable selection in a traditional linear model, various shrinkage methods have been 

developed. They include least absolute shrinkage and selection operator (LASSO) 

(Tibshirani, 1996), Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001), 

adaptive LASSO (Zou, 2006) and excessively others. Although the LASSO penalty gives 

sparse solutions, it leads to biased estimates for large coefficients due to the linearity of the 

L1 penalty. To remedy this bias issue, Fan and Li (2001) proposed the SCAD penalty and 

showed that the SCAD penalized estimator enjoys the oracle property in the sense that not 

only it can select the correct submodel consistently, but also the asymptotic covariance 

matrix of the estimator is the same as that of the ordinary least squares estimate as if the true 

subset model is known as a priori. To achieve the goal of variable selection for group 

variables, Yuan and Lin (2006) developed the group LASSO penalty which penalized 

coefficients as a group in situations such as a factor in analysis of variance. As with the 

LASSO, the group LASSO estimators do not enjoy the oracle property. As a remedy, Wang, 

Chen and Li (2007) proposed the group SCAD penalty, which again selects variables in a 

group manner.

For the varying coefficient model, some existing works focus on identifying the nonzero 

coefficient functions, which achieves component selection for the varying coefficient 

functions. However, each estimated coefficient function is either zero everywhere or 

nonzero everywhere. For example, Wang et al. (2008) considered the varying coefficient 

model under the framework of a B-spline basis and used the group SCAD to select the 

significant coefficient functions. Wang and Xia (2009) combined local constant regression 

and the group SCAD penalization together to select the components, while Leng (2009) 

directly applied the component selection and smoothing operator (Lin and Zhang, 2006).

In this paper, we consider a different problem: detecting the nonzero regions for each 

component of the varying coefficient functions. Specifically, we aim to estimate the nonzero 

domain of each aj(U), which corresponds to the regions where the jth component of x has an 

effect on Y. To this end, we incorporate local polynomial smoothing together with penalized 

regression. More specifically, we combine local linear smoothing and group SCAD 

shrinkage method into one framework, which estimates not only the function coefficients 

but also their nonzero regions. The proposed method involves two tuning parameters, 
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namely the bandwidth used in local polynomial smoothing and the shrinkage parameter used 

in the regularization method. We propose methods to select these two tuning parameters. 

Our theoretical results show that the resulting estimators have the same asymptotic bias and 

variance as the original local polynomial regression estimators.

The rest of paper is organized as follows. Section 2 reviews the local polynomial estimation 

for the varying coefficient model. Section 3 describes our methodology including the 

penalized estimation method and tuning procedure. Asymptotic properties are presented in 

Section 4. Simulation examples in Section 5 are used to evaluate the finite-sample 

performance of the proposed method. In Section 6, we apply our methods to the real data. 

We conclude with some discussions in Section 7.

2. Local polynomial regression for the varying coefficient model

Suppose we have independent and identically distributed (iid) samples 

 from the population (U, x⊤, Y)⊤ satisfying model (1). As a(u) is 

a vector of unspecified functions, a smoothing method must be incorporated for its 

estimation. In this article, we adopt the local linear smoothing for this varying coefficient 

model (Fan and Zhang, 1999). For U in a small neighborhood of u, we can approximate the 

function aj(U), 1 ≤ j ≤ p, by a linear function

. For a fixed point u, denote aj(u) and a′j(u) by aj and bj, respectively, and denote their 

estimates by âj and b̂
j, which estimate the function aj(·) and its derivative at the point u. Note 

that (âj,b̂
j) (1 ≤ j ≤ p) can be estimated via local polynomial regression by solving the 

following optimization problem:

(2)

where a = (a1, …, ap)⊤ and b = (b1, …, bp)⊤, Kh(t) = K(t/h)/h, and K(t) is a kernel function. 

The parameter h > 0 is the bandwidth controlling the size of the local neighborhood. It 

implicitly controls the model complexity. Consequently it is essintial to choose an 

appropriate smoothing bandwidth in local polynomial regression. We will discuss how to 

select the bandwidth h in section 2.1.

The kernel function K(·) is a nonnegative symmetric density function satisfying ∫ K(t)dt = 1. 

There are numerous choices for the kernel function. Examples are Gaussian kernel 

 and Epanechnikov kernel (K(t) = 0.75(1 − t2)+) among many 

others. Typically, the estimates are not sensitive to the choice of the kernel function. In this 

paper, we use the Epanechnikov kernel, which leads to computational efficiency due to its 

bounded support.

Notice here that our loss function is slightly different from the loss function of the traditional 

local polynomial regression for the varying coefficient model (Fan and Zhang, 1999). We 
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have rescaled the original loss function by a term Kh(0). For a fixed h, this change does not 

affect the estimates. However, this scaling is needed later to correctly balance the loss 

function and penalty term since Kh(Ui − u) = K((Ui − h)/h)/h, we include the term Kh(0) to 

eliminate the effect of h so that Kh(Ui − u)/Kh(0) = O(1).

Denote a0 = (a01, …, a0p)⊤ and b0 = (b01, …, b0p)⊤ to be the true values of the coefficient 

functions and their derivatives, respectively, and â = (â01, …, â0p)⊤ and b̂ = (b̂
01, …, b̂

0p)⊤ 

as their corresponding local polynomial regression estimates. Let X = (x1, …, xn)⊤ to be a n 

× p matrix. Further, denote γj = (aj, bj)⊤, 1 ≤ j ≤ p and  be a 2p 

dimensional vector. Define Uu = diag(U1 − u, …, Un − u), where diag(u1, …, un) denotes 

the matrix with (u1, …, un) on the diagonal and zeros elsewhere. Let x(j) be the jth column of 

X and xij be the ijth element of X. Denote Γuj = (x(j),Uux(j)) for 1 ≤ j ≤ p and Γu = (Γu1, 

…,Γup) to be a n × 2p matrix. Define Y = (Y1, …, Yn)⊤ and Wu = diag(Kh(U1−u)/Kh(0), 

…,Kh(Un−u)/Kh(0)). Using these notations, we can write (2) as

(3)

which has the formulation of a weighted least square problem.

2.1. Choosing the bandwidth h

The standard approach to choose the bandwidth is based on the trade-off between bias and 

variance. The most straightfoward one is the rule of thumb method, see Fan and Gijbels 

(1996) for details. It is fast in computation. However it highly depends on the asymptotic 

expansion of the bias and variance, and may not work well in small samples. Moreover, the 

optimal bandwidth is based on several unknown quantities, for which good estimates may be 

difficult to obtain. To overcome these deficiencies, we adopt the mean square error (MSE) 

tuning method. For a detailed review, see Fan and Zhang (1999) and Zhang and Lee (2000). 

This method uses information provided by a finite sample and hence carries more 

information about the finite sample. As a result it has the potential of selecting the 

bandwidth more accurately than other methods such as residual squares criterion (RSC) (Fan 

and Gijbels, 1995) and cross validation.

For a fixed smoothing bandwidth h, define MSE(h) as

By direct calculation, we have

(4)

where B(U) = Bias(â(U)), Ω(U) = E(xx⊤|U) and V(U) = Cov(â(U)). The estimated MSE(h) 

is given by
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which depends on the estimates B̂(U), Ω̂(U) and V̂(U) of B(U), Ω(U) and V(U). A grid 

search can be applied to select the optimal bandwidth h which minimizes the .

The estimation of B(U), Ω(U) and V(U) was discussed in Fan and Zhang (2008), and we 

give a brief review here. For each given u, we have Ω(u) = E(xx⊤|u), and we can estimate it 

by a kernel smoother

Fan and Zhang (2008) summarized the forms of the bias B̂(u) and variance V̂ (U). Introduce 

the p × 2p matrix M, where the (j, 2j − 1) (1 ≤ j ≤ n) elements of M are 1, and the remaining 

elements are 0. The estimated bias is given by

where the ith element of τ̂ is

and â(2)(u) and â(3)(u) denote some estimates of the second and third derivatives of function 

a(·) at the point u. These two unknown quantities â(2)(u) and â(3)(u) can be obtained by a 

local cubic fitting with an appropriate pilot bandwidth h*.

The estimated variance is given by

The estimator σ̂2(u) can be obtained as a by product when we use local cubic fitting with a 

pilot bandwidth h*. Denote  and . 

We have

where  is Wu with h replaced by h*.
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The pilot bandwidth h* is used for a pilot local cubic fitting and Fan and Gijbels (1995) 

introduced the RSC to select it. However, they only studied the univariate case, which 

applies to the varying coefficient model with one component. As we are considering the 

varying coefficient model with several components, their method is not applicable. Instead, 

we use a five-fold cross validation to select an optimal smoothing bandwidth for the pilot 

fitting as in Fan and Gijbels (1992) for example. Specifically, we divide the data into five 

roughly equal parts, denoted as  for j = 1, 2, ⋯, 5, where S(j) is 

the set of subject indices corresponding to the jth part. For each j, we treat 

 as the validation data set, and the remaining four parts of data as 

the training data set. For a candidate bandwidth h and each i ∈ S(j), we apply a local 

polynomial fitting to the training data set to estimate a(u) at u = Ui by solving the 

minimization problem similar to (2). After we get the estimates â(Ui) for all i ∈ S(j), we can 

get the corresponding prediction . The cross validation error corresponding to a 

fixed h is defined as

We select the pilot bandwidth h* by minimizing the cross validation error.

3. Penalized local polynomial regression estimation

In practice, it can be of certain interest to detect the nonzero region of each function 

component of the vector a. To achieve this goal, shrinkage methods can be applied. Notice 

that a′j(u) = 0 for u ∈ [c1, c2] as long as aj(u) = 0 for u ∈ [c1, c2]. Consequently if the 

function estimates are zero over certain regions, the corresponding derivative estimates 

should also be zero. Consequently, we treat (aj, bj) as a group and do penalization together 

for each 1 ≤ j ≤ p. To achieve variable selection as well as accurate estimation, a group 

SCAD penalty (Wang, Chen and Li, 2007) is then added to (2) to get sparse solutions for a 
and b.

Recall that we need to solve the minimization problem (3). It can be rewritten as a least 

square problem with new data :

For a traditional linear model, the covariates are typically adjusted to a same scale before 

adding the penalty. We apply a similar procedure by rescaling each column of the covariate 

 to have a same variance. Denote sj to be the standard deviation of the pseudo 

covariates xij(Kh(Ui −u)/Kh(0))1/2 (1 ≤ i ≤ n) and rj that of xij(Ui−u)(Kh(Ui−u)/Kh(0))1/2 (1 ≤ 

i ≤ n). In other words, (s1, r1, s2, r2, …, sp, rp)⊤ are the standard deviations for each column 

of the pseudo covariate . We can standardize the covariates first and apply 
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penalization thereafter. Yet, a same effect can be achieved by keeping the covariates 

unchanged but adjusting the penalty correspondingly. This is the procedure that we are 

going to adopt in this article, as detailed shortly.

In most situations, such a rescaling is only needed for a better finite sample performance. 

However, for the varying coefficient model, the convergence rates for function estimate, âj, 

and derivative estimate, bĵ, are at different orders. Hence this rescaling is also necessary 

theoretically. We have shown in Lemma 1 in Appendix A that sj = OP (1) and rj = OP (h). 

Based on these results, sj and rj can properly adjust the effect of the different rates of 

convergence of the function and derivative estimates as presented next.

For the local polynomial regression, it is no longer appropriate to use n as the sample size 

because not all observations contribute equally to the estimation at any given location. In 

fact, some will contribute nothing if the kernel has a bounded support. Thus motivated, we 

define the effective sample size as . The penalized local 

polynomial regression estimates  can be obtained by solving

(5)

where the SCAD penalty function Pλ(·) (Fan and Li, 2001) is symmetric with Pλ(0) = 0 and 

its first order derivative defined as

for t > 0 and some constant a > 2. In this paper, we use a = 3.7 as suggested by Fan and Li 

(2001).

For any point u in the domain of U, we can obtain the estimate of a(u) using our penalized 

local polynomial regression method. To detect the nonzero regions for any component of the 

varying coefficient functions, a set of dense grid is chosen over the whole domain of U, say 

(u1, …, uN). We obtain the estimates of a(u) on these grid points first. If the estimates of a 

certain component function are zero on a certain number of consecutive grid points, for 

instance, say estimates of aj(u) are zero on grid points {ul1, ul1+1, …, ul2}, we claim the 

estimate of the function aj(u) is zero over the domain [ul1, ul2].

To present details of our algorithms and regularization parameter selection for the 

penalization, we next introduce some notations. Denote βj = (sjaj, rjbj)⊤, , 

and β0 be the true value of β. Denote  to be the local polynomial estimates 

of , and  to be the penalized local polynomial 

estimates when the regularization parameter is λ.
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3.1. Algorithms

We discuss how to solve (5) in this subsection. For the SCAD penalization problem, Fan and 

Li (2001) proposed the local quadratic approximation (LQA) algorithm to optimize the 

penalized loss function. With LQA, the optimization problem can be solved using a 

modified Newton-Raphson algorithm. The LQA estimator, however, cannot achieve sparse 

solutions directly. A thresholding has to be applied to shrink small coefficients to zero. To 

remedy this issue, Zou and Li (2008) proposed a new approximation method based on local 

linear approximation (LLA). The advantange of the LLA algorithm is that it inherits the 

computational efficiency of LASSO and also produces sparse solutions. Denote 

. Given the estimate  at the kth iteration, we solve

to get updated estimate , where  with ‖·‖ denoting the 

l2-norm of the vector. Repeat the iterations until convergence, and the estimate at the 

convergence is defined as the LLA estimate. The initial value of  can be chosen as the 

unpenalized local polynomial estimates. Based on our limited numerical experience, one 

step estimates already perform very competitively and it is not necessary to iterate further. 

See Zou and Li (2008) for similar discussions. Consequently, the one step estimate is 

adopted due to its computational efficiency.

3.2. Tuning of the regularization parameter

While tuning the regularization parameter λ, we adopt the Bayesian information criterion 

(BIC). Let âλ and b̂
λ be the solutions of the optimization problem (5) for a fixed λ. The BIC 

is given by

where . The degrees 

of freedom (df) are given as , where dj = 2 as 

we use local linear polynomial regression, see Yuan and Lin (2006).

4. Asymptotic properties

Without loss of generality, we assume that only the first 2s components of β are nonzero. 

Denote  and . Denote Γhuj = (x(j)/sj,Uux(j)/rj) for 1 

≤ j ≤ p and Γhu = (Γhu1, …,Γhup). Recall that , which is the 

effective sample size. Our objective function can be written as
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Denote bn = (nh)−1/2. We first state the following conditions:

Conditions (A)

(A1) The bandwidth satisfies nh → ∞ and n1/7h → 0.

(A2) , where .

Condition (A1) is a condition on the bandwidth of the local polynomial regression, which 

guarantees the bias to dominate the variance while estimating the varying coefficient 

functions and their derivatives. Condition (A2) is a condition on the penalty function and the 

strength of the true signals, which can be equivallently written as an = o(bn).

For the SCAD penalty function, we have  when n → ∞ and 

. Moreover, as an ≤ λn, by condition (A2), we have 

, which indicates bn = o(λn). These results will be used in the proof of our paper.

Under Conditions (A), if λn → 0 as n → ∞, we have the following theorems and corollary: 

Theorem 1. Our penalized local polynomial estimate β̂
λ satisfies that ‖β̂

λ− β0‖ = OP (bn).

Theorem 1 gives the consistency rate for our penalized estimate. By theorem 1 and Lemma 

1 in Appendix, we have âλj − aj0 = OP (bn) and b̂
λj − bj0 = OP (bn/h) for any 1 ≤ j ≤ p, which 

indicates that the rate of consistency for our penalized estimates of the varying coefficient 

functions is bn while that of the derivative estimates is bn/n.

Theorem 2. With probability tending to 1, for any βN satisfying ‖ βN − β0N‖ = OP (bn) and 

any constant C > 0, we have

Theorem 2 indicates that we can capture the true zero components with probability going to 

1.

Denote Σs the upper left 2s × 2s submatrix of Σ, where Σ is defined in equation (A.1) in 

Appendix A. Let T(βl) be a matrix function

where βl is a two dimensional vector and I2 is the 2 × 2 identity matrix.
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Denote H = diag(T(β01), …, T(β0s)), which is a 2s × 2s matrix, and 

 which is a 2s dimensional vector.

Theorem 3. Suppose β̂
N is the local polynomial estimator of the nonzero components, and 

β̂
λN is the penalized local polynomial estimator for the nonzero components. We have

Corollary 1. From theorem 3, we can get

where âλN(u) denotes our penalized local polynomial estimates for the nonzero functions.

This corollary shows that when n → ∞, asymptotically âN − a0N and âλN − a0N have a same 

distribution (the asymptotic distribution of âN − a0N is given in Lemma 3 in the Appendix), 

which indicates the oracle property. The distribution of âλN −a0N is asymptotic normal after 

adjusting bias and variance.

5. Simulation example

Simulation studies are conducted to examine the performance of our penalized local 

polynomial regression approach and compare it with that of the local polynomial regression 

method. Specifically, local linear approximation is used for our proposed approach and the 

unpenalized local polynomial comparison approach.

5.1. Example 1

We first consider a univariate case, where the data are simulated from the model Y = xa1(u) 

+ ε with ε ~ N(0, 1). The true function a1(u) is defined as

and it is plotted in panel (a) of Figure 1.

The covariate xi is generated iid from N(0, 4). The data points Ui are chosen as n equally 

spaced design points on [0, 1]. The sample sizes are varied to be n = 100, 200, 500 in the 

simulations. We fix 501 equally spaced grid points on [0, 1] and fit the penalized local 

polynomial regression on each point to estimate a1(·). We also run local polynomial 

regression on these grid points to make comparison.

To examine the performance, we run 200 repetitions of Monte Carlo studies. As the zero 

region for the true function a1(u) is [0.3, 0.7], we define the correct zero coverage 
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(correctzero) as the proportion of region in [0.3, 0.7] that is estimated as zero. The mean of 

correctzero in 100 repetitions will be reported. Moreover, we report the mean square error of 

the penalized local polynomial regression, which is defined as . The 

mean square error of the original local polynomial regression is also reported, which is 

. These MSEs are calculated using numerical integrations based on the 

estimates on the 501 equally spaced grid points. The MSEs are used to evaluate how well we 

estimate the nonparametric function. In addition, we generate an independent test data set, 

which contains N = 501 triples (Ũi, x̃i, Ỹi). The time points Ũi are chosen as 501 equally 

spaced points on [0, 1]. For xĩ and Ỹi in the test data set, they are randomly generated in the 

same way as we have generated the training data set. Define the estimation error (EE) for the 

entire model as

The estimation errors of penalized local polynomial regression and local polynomial 

regression are calculated with ã1 = â1λ and ã1 = â1, respectively. The mean of these 

estimation errors will be reported, which reflects the prediction error. Performance of two 

different methods are reported in Table 1 in terms of the averages of MSE, correctzero, and 

EE over 200 repetitions. The numbers in parentheses are the corresponding standard error.

5.2. Example 2

Next we consider a bivariate case, where the data are simulated from the model Y = x1a1(u)

+x2a2(u)+ε with ε ~ N(0, 1). The first function a1(u) is the same function used in simulation 

1. The second component function a2(u) is defined as

a plot of which is given in panel (b) of Figure 1. It can be seen that a2(u) is not differentiable 

at point 0.4 and 0.6.

The design point Ui and the noise εi are generated in the same way as in Example 1. The 

bivariate covariate xi = (xi1, xi2)T are generate iid from N(0, 4I2). The sample sizes are still 

set as n = 100, 200, 500. For estimation, the penalized local polynomial regression is fitted 

on 501 equally spaced grid points on [0, 1]. An independent test data set with size N = 501 is 

generated in a similar way. The estimation error of the entire model is defined as

for any estimate ã1(·) and ã2(·). We run 200 repetitions of Monte Carlo studies and report 

the average MSE and correctzero for both two functions a1(·) and a2(·). The average 

estimation error for the entire model is also reported. All results are summarized in Table 2.
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From these two simulation examples, we can see that our methods perform better than the 

original local polynomial regression in the sense that it gives smaller estimation error, which 

indicates better prediction. Meanwhile, we can estimate the zero regions of each component 

function quite well. When sample size increases, our method can capture the correct zero 

regions more accurately.

6. Real data application

We apply our method to the Boston housing data, which has been analyzed by various 

authors, see for instance Harrison and Rubinfeld (1978), Belsley, Kuh and Welsch (1980) 

and Ibacache-Pulgar, Paula and Cysneiros (2013). The data set is based on the 1970 US 

census and consists of the median value of owner-occupied homes for 506 census tracks in 

Boston area. The aim of the study is to find the association between the median house value 

(MHV) and various predictors. We treat the median house value as the response and 

consider four predictors: CRIM (per capita crime rate by town), RM (average number of 

rooms per dwelling), TAX (full-value property-tax rate per $10000), NOX (nitric oxides 

concentration parts per 10 million). Figure 2 contains the the scatter plot between the 

outcome variable and each of the four predictors.

We can see from the scatter plot that the outcome variable has a nonlinear relationship with 

each of the four predictors, which motivates us to construct a more complicated model than 

the linear regression. Similar as Fan and Huang (2005), we construct a varying-coefficient 

model by considering an additional variable LSTAT (percentage of lower income status of 

the population). As the distribution of LSTAT is asymmetric, the square root transformation 

is employed to make the resulting distribution symmetric as done in Fan and Huang (2005). 

The histogram of  is plotted in Figure 3. Specifically, we set  as in 

Fan and Huang (2005). In addition, the covariates CRIM, RM, TAX, NOX are denoted as 

x(2), …, x(5), respectively. We set x(1) = 1 to include the intercept term.

We construct the following model

When dealing with the data, we center the response first. We also standardize the covariates 

x(2), …, x(5). Notice that a1(·) is the intercept function, which denotes the mean coefficient 

function. We do not penalize this term because generally the mean coefficient function can 

be any smooth function. We only penalize the function a2(·), a3(·), a4(·), a5(·). We solve

where a = (a1, a2, a3, a4, a5)⊤ and b = (b1, b2, b3, b4, b5)⊤. The Epanechnikov kernel is 

employed, and the bandwidth (h = 1.23) is selected by the MSE tuning method. As we do 

not penalize the intercept term, we change the definition of degree of freedom used in tuning 
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λ by . We use R to implement our method, which is 

available at ?. The estimated functions using our penalized local polynomial regression 

(a1(·), a2(·), a3(·), a4(·), a5(·)) are plotted in panels (a)–(e) of Figure 4.

From Figure 4, we can see that the variable TAX has no effect on the response when U is 

between 2.6 and 4, and the variable NOX has no effect on the response when U is less than 

2.6 or between 4.3 and 4.7.

We have also calculated the prediction error of our penalized local polynomial regression 

method, and compared the performance with the original local polynomial regression 

method. Specifically, we randomly pick up 300 samples from the data as the training data 

and fit using both methods. After that, we use the remaining 206 data points as our test data, 

and we can get the prediction error given by Σ i∈S(yi − ŷi)2/|S|, where S denote the indices 

for the test data set. We repeat the above step for 100 times by choosing different random 

seeds, and calculate the mean prediction errors for both methods. We have found that the 

mean of our penalized prediction error (with standard error in the parentheses) 37.7(3.0) is 

smaller than that of the original local polynomial regression 39.5(3.1), which indicates that 

we achieve smaller prediction error by using our penalized local polynomial regression 

method.

7. Conclusion and Discussions

In this paper, we propose the domain selection for the varying coefficient model using 

penalized local polynomial regression. Our method can identify the zero regions for each 

coefficient function component and perform estimation simultaneously. We further proved 

that our estimator enjoys the oracle property in the sense that they have the same asymptotic 

distribution as the local polynomial estimates as if the true sparsity is known. We have 

evaluated our method using both simulation examples and the Boston housing data. A 

potential extension of our method is to detect the constant regions for each coefficient 

function, which can be achieved by penalizing the derivative estimates. But there are some 

potential issues such as which order polynomial to use and how to adjust the original 

function estimates if the derivative over a certain region is zero. These problems are beyond 

the scope of this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Appendix

Appendix A. Lemmas

We will introduce the following Lemmas that would be used in proving the theorems.
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Recall that sj is the standard deviation for the pseudo covariates xij(Kh(Ui−u)/Kh(0))1/2 (1 ≤ i 

≤ n), rj is the standard deviation for the pseudo covariates xij(Ui − u)(Kh(Ui − u)/Kh(0))1/2 (1 

≤ i ≤ n), and the effective sample size is defined as 

Lemma 1. We have sj = OP (1), rj = OP (h) and m = OP (nh).

Denote  which is a 2p × 2p matrix. We divide Ξ into p × p submatrices.

where the 2 × 2 matrix Akl (1 ≤ k, l ≤ p) is as follows:

We will define the new submatrix Bkl as:

Lemma 2. For any 1 ≤ k, l ≤ p, the submatrix Bkl is a 2 × 2 matrix with every element on the 

order of OP (h).

Define Σ to be the following matrix

(A.1)

where every element in Σ is on the order of OP (h).

The following Lemma is taken directly from Theorem 1 of Fan and Zhang (2008).

Lemma 3. Under the conditions in Zhang and Lee (2000), we have

with

where μ2 = ∫ u2K(u)du and ν0 = ∫ K2(u)du, f(u) is the density of u.
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Lemma 4. From Lemma 3 and Fan and Gijbels (1996), we have

Remark: Under condition (A1), We will have â(u) − a(u) = OP (bn) and b̂(u) − b(u) = OP 

(bn/h). Consequently, we can get β̂ − β0 = OP (bn), where β̂ is the local polynomial 

regression estimator and β0 is the true value.

Appendix B. Proof of Lemmas

Proof of Lemma 1:

For the following proof, we will denote C as a constant term. Let f(t) be the density function 

of the random variable Ui. We can see

and

As a result, we can get V ar{xij(Ui−u)(Kh(Ui−u)/Kh(0)}1/2) = OP (h2). Consequently, 

Similarly, we will have sj = OP (1).

For the effective sample size m, we have
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Similarly, we have V ar(m) = O(nh). As nh = o(1), we can see that 

.

Proof of Lemma 2:

We can see

For the mean, one has

For the variance, we can use similar technique and get

As sj = OP (1) and rj = OP (h), we will get . 

Similarly, we obtain  and 

.

For Lemma 3, see Zhang and Lee (2000) for detailed proof.

For Lemma 4, we can use the similar technique in Fan and Gijbels (1996).
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Appendix C. Proof of Theorems and Corollary

Proof of Theorem 1:

We write our tuning parameter λ as λn because the tuning parameter depends on the sample 

size. Let αn = bn +an. Denote L(β) = (Y − Γhuβ)⊤Wu(Y − Γhuβ). We want to show that for 

any ε > 0, there exists a large constant C such that

(C.1)

which implies β̂
λ − β0 = OP (αn).

As Pλn(0) = 0, we will have

By Lemma 2, we have . As β̂ is the minimizer of L(β), we will have (∂L(β)/∂ 

β)|β=β̂ = 0, which indicates A2 = 0. By Lemma 4, ‖ β̂ − β0‖ = OP (bn), so we will have 

, so by choosing a sufficient large C, A1 dominates A3. For the term A4, we 

have
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By Lemma 1, we have  which is dominated by A1. We will also 

have , which is also dominated by A1. As a result, (C.1) holds, which 

indicates β̂
λ − β0 = OP (αn). Further, under condition (A2), we will have β̂

λ − β0 = OP (bn).

Proof of Theorem 2:

We need to prove

(C.2)

holds for any s + 1 ≤ j ≤ p. If β̂
λj ≠ 0, it should be the solution of the following equation

We can see
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where Σj is the (2j − 1)th and 2jth row of the matrix Σ. For B2, under Condition (A2), we 

have . Under Condition (A2), we will have P(‖B2‖ > ‖B1‖) 

→ 1, which indicates with probability tending to one, (C.2) does not hold. Thus β̂
λj must 

locate at the place where Q(β) is not differentiable. Since the only place Q(β) is not 

differentiable for βj is the origin, we will have P(‖ β̂
λj‖ = 0) → 1 for any s + 1 ≤ j ≤ p.

Proof of Theorem 3:

Let L(β) = (Y − Γhuβ)⊤Wu(Y − Γhuβ). We will have

for 1 ≤ j ≤ s. Note that β̂
λN is a consistent estimator,
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where Σjl denotes the (2j −1, 2l−1), (2j −1, 2l), (2j, 2l−1), (2j, 2l) elements of the matrix Σ.

We will have

We can write

Proof of Corollary 1
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From Theorem 3, we can get

Under Condition (A2), as Σs = OP (h) and mH/2n = o(h), the first term T1 is approximately 

cov−1/2(β̂
N)(β̂

λN − β0N). We can easily see that the second term T2 is negligible compared to 

the first term. Similarly, as bn = o(1/n), the fourth term T4 is negligible compared to the first 

term. As a result, we can get

(C.

3)

From Lemma 3, we can get

where aN(u) denotes the components that are nonzero. As a result, we can get from (C.3) 

that

where âλN(u) denotes our penalized local polynomial estimates for the function value. This 

shows the oracle property.
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Figure 1. 
Plots of a1(u) (left) and a2(u) (right) for simulation examples.
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Figure 2. 
Scatter plots: Panel (a): MHV versus CRIM, Panel (a): MHV versus RM, Panel (a): MHV 

versus TAX, Panel (a): MHV versus NOX.
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Figure 3. 

Histogram for .
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Figure 4. 
The penalized local polynomial estimates for the coefficient functions. Panels (a) (b) (c) (d) 

and (e) correspond to the estimates of the coefficient functions corresponding to the 

intercept, the variables CRIM, RM, TAX and NOX, respectively.
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Table 1

Simulation results for the univariate case using penalized local polynomial regression and original local 

polynomial regression (denoted as Penalized and Original, respectively) when sample size varies.

Sample size Method MSE correctzero EE

n = 100 Penalized 0.0229(0.0015) 0.9895 (0.003) 0.077 (0.005)

Original 0.0220(0.0009) – 0.084 (0.003)

n = 200 Penalized 0.0099(0.0008) 0.9903 (0.004) 0.034 (0.002)

Original 0.0114(0.0004) – 0.044 (0.002)

n = 500 Penalized 0.0035(0.0001) 0.9964 (0.002) 0.013 (0.0004)

Original 0.0048(0.0002) – 0.019 (0.0006)
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