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Abstract

A systematic Bayesian framework is developed for physics constrained parameter inference of
stochastic differential equations (SDE) from partial observations. Physical constraints are derived
for stochastic climate models but are applicable for many fluid systems. A condition is derived
for global stability of stochastic climate models based on energy conservation. Stochastic cli-
mate models are globally stable when a quadratic form, whichis related to the cubic nonlinear
operator, is negative definite. A new algorithm for the efficient sampling of such negative definite
matrices is developed and also for imputing unobserved datawhich improve the accuracy of the
parameter estimates. The performance of this framework is evaluated on two conceptual climate
models.
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1. Introduction

In many areas of science the inference of reduced order hybrid dynamic-stochastic models,
which take the form of stochastic differential equations (SDE), from data is very important. For
many applications running full resolution dynamical models is computationally prohibitive and
in many situations one is mainly interested in large-scale features and not the exact evolution
of the fast, small scale features, which typically determine the time step size. Thus, reduced
order stochastic models are an attractive alternative. Examples are molecular dynamics (21),
engineering turbulence (20) and climate science (14, 15, 22).

The inference of such models has been done using non-parametric methods (40, 17, 8) from
partial observations. These non-parametric methods need very long time series for reliable pa-
rameter estimates and can be used only for very low-dimensional models because of the curse
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of dimension. More importantly, they do not necessarily obey conservation laws or stability
properties of the full dimensional dynamical system. In many areas of science one can derive
reduced order models from first principles (26, 31) such thatcertain fundamental properties of
the full dynamics are still valid. These methods provide us with parametric forms for the model
fitting. Physical constraints then not only constrain the parameters one has to estimate but they
can also ensure global stability. Thus, there is a need for systematic physics constrained model
and parameter estimation procedures (32, 28).

For instance, the climate system is governed by conservation laws like energy conserva-
tion. Based on this energy conservation property the normalform of stochastic climate models
has been derived by (26) using the stochastic mode reductionprocedure (23, 24, 25, 14, 15).
This procedure allows the systematic derivation of reducedorder models from first principles.
This normal form provides a parametric form for parameter estimation from partial observations
which we will use in this study.

The fundamental form of climate models is given by

dz
dt
= F + Lz + B(z, z), (1)

wherez ∈ R
N denotes the N-dimensional state vector, F the external forcing, L a linear and B

a quadratic nonlinear operator. The nonlinear operator B isconserving energyz · B(z, z). For
current climate models N is of the order of 106 − 108. This shows that running complex climate
models is computationally expensive. But for many applications like extended-range (periods of
more than 2 weeks), seasonal and decadal climate predictions one is only interested in the large-
scale circulation of the climate system and not whether there will be a cyclone over London on a
particular day next year. The large-scale circulation can successfully be predicted using reduced
order models (37, 1, 14, 15, 22).

The stochastic mode reduction procedure (23, 24, 25) provides a systematic framework for
deriving reduced order climate models with a closure which takes account of the impact of the
unresolved modes on the resolved modes. In order to derive reduced order models one splits the

state vectorz =
(

x
y

)

into resolvedx and unresolvedy modes. The stochastic mode reduction

procedure now enables us to systematically derive a reducedorder climate model which only
depends onx

dx =
(

F̃ + L̃x + B̃(x, x) + M(x, x, x)
)

dt+ a(x,σ)dW, (2)

whereM denotes a cubic nonlinear term,W is the Wiener process andσ the diffusion parameters.
In this study we will develop a systematic Bayesian framework for the efficient estimation of

the model parameters using Markov Chain Monte Carlo (MCMC) methods from partial obser-
vations. We are dealing with partial observations because we now only have knowledge of the
few resolved modesx and are ignorant about the many unresolved modesy.

Stochastic climate modeling is a complex problem and empirically estimating the parameters
poses several problems. First, the nonlinearity of climatemodels requires an approximation of
the likelihood function. While it can be shown that this approximation converges to the true
likelihood, this is not necessarily the case for real world applications. Here we develop a MCMC
algorithm for the first time for stochastic climate models and demonstrate that this algorithm
performs well. Second, the nonlinearity of the problem causes the space of parameters leading
to stable and physical meaningful solutions to become smallas the dimension of the problem in-
creases. We show that a lot of the posterior mass is on parameter values which lead to solutions
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exploding to infinity in finite time. To solve this problem we derive global stability conditions.
These conditions take the form of a negative definite matrix.Hence, we devise a novel sam-
pling strategy based on sampling non-negative matrices. Weshow that this sampling strategy is
computationally efficient and leads to stable solutions.

In section 2 we introduce stochastic climate models and derive conditions for global stability.
Previous studies have shown that reduced climate models with quadratic nonlinearity experience
unphysical finite time blow up and long time instabilities (19, 27, 28, 41). Here we use the normal
form of stochastic climate models (26) and derive sufficient conditions for global stability for the
normal form of stochastic climate models. These normal formstochastic climate models have
cubic nonlinearities. The here derived stability condition is more general than the one in Majda
et al. (26). In section 3 we develop a Bayesian framework for the systematic estimation of the
model parameters using physical constraints. Here we develop an efficient way of sampling
negative-definite matrices. Without this constraint the MCMC algorithm would produce about
40% unphysical solutions which is clearly very inefficient. Here we also demonstrate that for
these kinds of SDEs imputing data improves the parameter estimates considerably. In section 4
we demonstrate the accuracy of our framework on conceptual climate models. We summarize
our results in section 5.

2. Stochastic Climate Models and Global Stability

Here we study the following D dimensional normal form of stochastic climate models (which
has the same structural form as Eq. (2), see (26)):

dxi =

















αi +

D
∑

j=1

βi, j x j +

D
∑

j+1

j
∑

k=1

γi, j,kx j xk +

D
∑

j=1

j
∑

k=1

k
∑

l=1

λi, j,k,l x j xkxl

















dt (3a)

+

D
∑

j=1

ai, jdWj +

D
∑

j=1

j
∑

k=1

bi, j,kx jdWk. (3b)

which we write for convenience in a more compact form

dx = µ(x,A)dt+ a(x,σ)dW. (4)

The parametersα, β, γ andλ are written as one matrixA ∈ RD×P. We allow for the inclusion
of all possible linear, quadratic and cubic terms with forcing terms entering first, followed by
linear, quadratic and then the cubic terms. We include them into a matrixA asAi,1 = αi , Ai, j+1 =

βi, j , Ai, j( j−1)/2+k+D+1 = γi, j,k andAi, f ( j,k,l) = λi, j,k,l. The index function for the cubic term is given
by

f ( j, k, l) = 1+ D +
D(D + 1)

2
+

j( j − 1)( j + 1)
6

+
k(k− 1)

2
+ l. (5)

Global stability implies that the cubic terms act as a nonlinear damping. For climate mod-
els energy conservation of the nonlinear operator implies global stability. However, in general,
global stability does not necessarily imply energy conservation. The energy equation based only
on the cubic terms can be written as

1
2

dE
dt
=

D
∑

i=1

xi
dxi

dt
=

D
∑

i=1

D
∑

j=1

j
∑

k=1

k
∑

l=1

Ai, f ( j,k,l)xi x j xkxl . (6)
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Here we only consider the cubic term because this term will ultimately determine global stability.
Majda et al. (26) have shown that the normal form of stochastic climate models allows for linearly
unstable modes. These linearly unstable modes are associated with important weather systems
and waves and are an intrinsic and important part of climate models. Once these linearly unstable
modes have reached a certain amplitude the nonlinear cubic terms will govern their evolution and,
thus, ensure global stability.

We consider now the vectorv with D(D+1)
2 components of the formv(i−1)i/2+ j = xi x j with

1 ≤ j ≤ i ≤ D. Now we find a negative definite matrixM such that (26)

vTMv =
1
2

dE
dt
≤ 0. (7)

A sufficient solution is as follows: Let matrixM ∈ R(D+1)D/2×(D+1)D/2 be

M(i−1)i/2+ j,(k−1)k/2+l =































Ai, f (i, j,l), if k>j and l≤ j
0, if k> j and l> j
Ai, f (i, j,l) + Ai, f (i, j,k), if k ≤ j and l<k
Ai, f (i, j,l), if k ≤ j and l=k,

(8)

where 1≤ j ≤ i ≤ D and 1≤ l ≤ k ≤ D. While this solution is not necessarily unique the
imposition of this constraint is still necessary in order toreduce the amount of parameter values
leading to unstable models and, thus, to reduce the computational expense of the parameter infer-
ence. As we will show below, not imposing this constraint will lead to unstable and unphysical
solutions in about 40% of parameter values in our MCMC scheme.

In summary, the stochastic climate model in Eq. (4) is globally stable if the tensorM is
negative definite andM determines the components of the cubic operatorλ. This is an important
result for the constrained parameter estimation of stochastic climate models (26, 32).

3. Physics Constraint Parameter Sampling

We use a Markov Chain Monte Carlo algorithm for the parameterinference which was pro-
posed by (7) and (18). We use this approach because of its flexibility. For instance, the exact
algorithms by (5) and (6) cannot be easily applied to multidimensional diffusions. Furthermore,
the exact algorithms require that the drift function must bethe gradient of a potential; for in-
stance, stochastic climate models cannot be written in sucha form.

Our MCMC algorithm first updates the diffusion parameters (see algorithm 1), then updates
the imputed data (algorithm 2) and finally updates the drift parameters (section 3.2). To efficiently
propose imputed data we us the Modified Linear Bridge sampler(section 3.1). To physically
constrain the drift parameters we develop a scheme to samplenegative definite matrices (section
3.3 and algorithms 3 and 4).

The novel aspect of our MCMC algorithm is the physics constraint sampling which ensures
the stability of the reduced stochastic model. Moreover, this algorithm overcomes the depen-
dency between the diffusion parameters and the missing data by changing variablesto the under-
lying Brownian motionW ∈ Rd and conditioning on this when performing the parameter update.
This ensures consistency between the parameters and the path (7, 18). In order to improve the
accuracy of the Euler approximation we introduce latent data points between all pairs of obser-
vations. While this is not trivial for nonlinear models thiscan be accomplished by introducing a
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suitable diffusion bridge (10, 18). For this purpose we define a processZ, which conditions on
the endpointxT , by

dXt = a(Xt,σ)dZt +
xT − Xt

T − t
dt, X0 = x0 , (9)

whereT is the next observation time. In discrete time the transformation is

Xi+1 = Xi + a(Xi ,σ)(Z i+1 − Z i) +
xT − Xi

m− i
(10)

wherem− 1 is the number of imputed points between two observations. Defining the processZ
ensures that the dominating measure is parameter free and, hence, improves the performance of
the MH sampler. See Dargatz (9) for more details.

We sampleσ according to Algorithm 1. We use zero-based numbering andN−1 observation
intervals indexed 0. . .N − 2. We assume that the inter-observation times∆ are all equal and that
there arem−1 imputed points per interval, giving a time interval ofδ = ∆/m. We use the notation
Xi = Xti andµi = µ(Xti , A). We assume that we have perfect observations for ease of notation
but our method can be extended to the case of measurement error (e.g. (18)). The extension to
variable inter-observation times is straight forward. Forsimplicity, we write the algorithm for
perfect observation of the system so thatXim, i = 0, . . . ,N−1 are fixed. In Algorithm 1,φ denotes
a Gaussian distribution andq the Gaussian proposal density (which is defined below in Eq. 19)
andΣ a covariance matrix (given below in Eq. 16).

Algorithm 1 Sample parameters entering the diffusion matrix.
Drawσ∗ ∼ q(σ∗|σ)
Initialize α = log(q(σ|σ∗)) − log(q(σ∗|σ)) + log(p(σ∗)) − log(p(σ))
for i = 0 to N − 2 do

for j = 0 tom− 2 do
Z im+ j+1 = Z im+ j + a−1(Xim+ j ,σ)

(

Xim+ j+1 − Xim+ j −
Xim+m−Xim+ j

m− j

)

X∗im+ j+1 = X∗im+ j +
Xim+m−X∗im+ j

m− j + a(X∗im+ j ,σ
∗)(Z im+ j+1 − Z im+ j)

α = α + log(φ(X∗im+ j+1; X∗im+ j + µ
∗
im+ jδ, δΣ

∗
im+ j) + log |a(X∗im+ j ,σ

∗)|
− log(φ(Xim+ j+1; Xim+ j + µim+ jδ, δΣim+ j) − log |a(Xim+ j ,σ)|

end for
end for
Set{σ, X} = {σ∗, X∗} with probability min(1, exp(α)) else retain{σ, X}

To update missing data between observations we use an independence sampler as in (36)
using the proposal process

dX∗ = ξ(X∗, XT)dt+ a(X∗,σ)dW∗ , (11)

whereXT is the next observation,X∗ the proposed data, and wherea(X∗,σ) is the same diffusion
function as that in Eq. (4).ξ denotes the modified linear bridge (see below in section 3.1). The
proposal process Eq. (11) will have a measure that is absolutely continuous with respect to the
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target process in Eq. (4) because of their common diffusion function. To update all of the missing
data, we propose a block at a time from Eq. (11) and then acceptthe proposed block according
to the MH ratio. If the inter-observation interval is large then the acceptance rate may become
very low and so one may sub-sample smaller blocks.

For some intervali we setX∗0 = Xim andX∗m = X(i+1)m then we proposeX∗1 : X∗m−1 and accept
or reject the block using the MH acceptance probability

α =
pδ(X∗m|X∗m−1, A)

∏m−2
j=0 pδ(X∗j+1|X∗j , A)qδ(Xim+ j+1|Xim+ j , ξ,σ)

pδ(X(i+1)m|Xim+m−1, A)
∏m−2

j=0 pδ(Xim+ j+1|Xim+ j , A)qδ(X∗j+1|X∗j , ξ,σ)
, (12)

wherepδ is the transition density of the target

dXt = µ(Xt, A)dt+ a(Xt,σ)dWt , X0 = x0 , t ∈ [0,T] (13)

under the Euler approximation over the time intervalδ and whereqδ denotes the transition density
of the proposal. We choose proposal processes so that givenX∗j , X∗j+1 is approximately Gaussian
distributed. However, Eq. (11) is not a true Gaussian process because of the state dependent
noise term. Details for updating the missing data are given in Algorithm 2.

Algorithm 2 Sample missing data between observations.
for i = 0 to N − 2 do

SetX∗0 = Xim

Setα = 0
for j = 0 tom− 2 do

X∗j+1 ∼ qδ(X∗j+1|ξ(X∗j , Xim+m),σ)

α = α + log(φ(X∗j+1; X∗j + δµ
∗
j , δΣ

∗
j ) + log(qδ(Xim+ j+1|ξ(Xim+ j , Xim+m),σ))

− log(φ(Xim+ j+1; Xim+ j + δµim+ j , δΣim+ j)) − log(qδ(X∗j+1|X
∗
j , ξ(X∗j , Xim+m),σ))

end for
α = α + log(φ(Xim+m; X∗m−1 + δµ

∗
m−1, δΣ

∗
m−1))

− log(φ(Xim+m; Xim+m−1 + δµim+m−1, δΣim+m−1))
if exp(α) > U(0, 1) then

for j = 0 tom− 2 do
Xim+ j+1 = X∗j+1

end for
end if

end for

Algorithms 1 and 2 are combined with standard MH updates for the parametersA entering
into the drift function. First we update the diffusion parameters using Algorithm 1, then we
update all imputed data. After that the drift parameters will be updated (see section 3.2). In both
algorithmsX∗ denotes the proposal which will be generated dependending on the availability of
observations. One could use Random-Walk proposals but in our case of polynomial models it is
more efficient to implement another Gibbs sampling step. Repeatedlyalternating between these
three steps will produce MCMC samples that can be used to estimate the parameters. In practice
we increase the amount of missing datamuntil we see convergence in the marginal distributions
of the parameters.
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3.1. Sampling of Diffusion Paths

Because we want to impute missing data we need efficient methods for simulating diffusion
paths from Eq. (3) that are conditioned upon given startX0 = x0 and endXm = xm points.
We consider the total time intervalτm − τ0 = ∆ divided intom equidistant sub-intervals so that
τk+1 − τk = ∆/m= δ.

HavingN observations, for each ofi = 0, 1, 2, . . .N−1, Xim is an observation. Between every
pair of observations the diffusion bridge will need to be simulated. We use an independence sam-
pler with proposal density of the formq(X∗|X) = q(X∗). Here, we consider proposal processes
of the form of Eq. (11).

We use a Modified Linear Bridge proposal for sampling of parameters of the drift of equations
of the form of Eq. 4. For this purpose we apply Ito’s formula tothe drift function of Eq. 4. This
gives the approximating process

dZt = (Q(X)Zt + r(X, t))dt+ Σ(X)dBt. (14)

with

Qi j =
∂µi(Xs)
∂x j

r i(t) = µi(Xs) −
∑

j

∂µi

∂x j
X j(s) +

1
2

∑

j,k,l

a jl (Xt)akl(Xt)
∂2µi

∂x j∂xk
(Xt)(t − s)

Σ = a(Xs)

This is a local linearization of the nonlinear diffusion over a small time window (30, 39).
First we construct bridge distributions for general multivariate linear diffusions (4). If at times
we haveXs = d and at timeT, XT = e then the distribution ofXt for 0 ≤ s< t ≤ T can be shown
to be Gaussian with mean

νd,e(s, t) = Γ(t,T)Γ(s,T)−1m+d (s, t) + Γ(s,T)T(Γ(s,T)T)−1m−e (t,T) , (15)

where

Γ(s, t) =
∫ t

s
e(s−u)Q

ΣΣ
Te(t−u)QT

du,

m+x (s, t) = x +
∫ t

s
e(s−u)Qr(u)du and m−x (s, t) = x −

∫ t

s
e(t−u)Q r(u)du.

The covariance matrix is given by

Σ(s, t) = Γ(t,T)Γ(s,T)−1
Γ(s, t) . (16)

In general this matrix can be computed as follows: if we diagonalizeQ so thatQ = UΛU−1

then compute the matrixA with components

Vi j =
(U−1
ΣΣ

TU−T)i j

Λii + Λ j j

(

e(t−s)Λ j j − e(s−t)Λii
)

, (17)

then
Γ(s, t) = UVUT . (18)
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The proposal distribution is given by

q(Xk+1|Xk, Xm,V) = φ
(

Xk+1; νxk,xm(kδ, (k+ 1)δ),Σxk(kδ, (k+ 1)δ)
)

, (19)

whereνx j ,xm( jδ, ( j + 1)δ) andΣx0( jδ, ( j + 1)δ) are given in Eqs. (15) and (16) respectively.
In contrast to a linear bridge sampler here we update at each imputed point. This means

recomputing the matricesΓ(s, t) at each point, althoughQ andU are only calculated once.

3.2. Inference for Drift Parameters

Now we give details of the computational implementation of the sampling of parameters in
the drift function. Since the drift parameters enter linearly we can construct a Gibbs sampler
where their conditional posterior is Gaussian. This greatly improves the mixing of the Markov
Chain.

3.2.1. Gibbs Sampler
ConsiderN observations with time intervalδ. We setYt = Xt+1 − Xt and letU ∈ RN−1×P be

the design matrix of the data, scaled byδ. The columns ofU are indexed in the same way as the
columns of the parameter matrixA. For example, a two dimensional system would haveP = 10
and the following design matrix

U = δ

























1 X1,1 X1,2 X2
1,1 X1,1X1,2 X2

1,2 X3
1,1

...
...

...
...

...
...

...

1 XN−1,1 XN−1,2 X2
N−1,1 XN−1,1XN−1,2 X2

N−1,2 X3
N−1,1

X2
1,1X1,2 X1,1X2

1,2 X3
1,2

...
...

...

X2
N−1,1XN−1,2 XN−1,1X2

N−1,2 X3
N−1,2

























The log likelihood can be written

L(A; X) = −1
2

N−1
∑

t=1

|ΣDri f t t | −
1
2

N−1
∑

t=1

D
∑

i, j=1















Yti −
P

∑

k=1

UtkAik















Σ−1
Dri f t ti j















Yt j −
P

∑

k=1

UtkA jk















, (20)

where the instantaneous covariance matrixΣDri f t t is computed fromΣ1/2
Dri f t t , j,k = (d j,k+

∑D
l=1 el, j,kXt, j)∆1/2.

We haveDP parameters to infer in the matrixA. We use a zero mean Gaussian prior with
covariance matrixΓDri f t ∈ RDP×DP. LetΛ ∈ RDP×DP, be a matrix with components

Λ(i−1)P+ j,(k−1)P+l =

N−1
∑

t=1

Ut jΣ
−1
Dri f t tik Utl + Γ

−1
Dri f t (i−1)P+ j,(k−1)P+l (21)

wherei, k = 1 . . .D and j, l = 1 . . .P. Let e ∈ RDP with components

e(i−1)P+ j =
∑

t,k

Ut, jΣ
−1
Dri f t tik Ytk. (22)

The posterior meanµ(i−1)P+ j of Ai, j is given by the solution ofΛµ = b and the posterior covari-
ance is Cov(Ai, j ,Ak,l) = Λ−1

(i−1)P+ j,(k−1)P+l .
8
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Figure 1: Output of a Gibbs sampler for 20 drift parameters ofa two dimensional model from Eq. (3). The observation
interval isδ = 10−3 andT = 10, 000. The true values are shown in red.

We applied the above Gibbs sampler to a large data set from a two dimensional model of the
form of Eq. (3) with random values for the diffusion parameters. We chose a fine observation
interval ofδ = 10−3 and long observation periodT = 10, 000. Fig. 1 displays the trace plots for
all 20 parameters (note that the indices are from 0 rather than 1 as in the text). Using this large
data set the algorithm is able to reproduce the true values shown in red.

We performed a further simulation study to test the dependence of the posterior estimates
upon the data set used. We inferred all of the drift parameters for a simple two dimensional model
of the form of Eq. (3) using data sets of lengthT = {10, 100, 1000} and with observation interval
∆ = {0.1, 0.01, 0.001}. Note that the diffusion function is arbitrary in this model. The results
are shown in Table 1. For each parameter we estimated the posterior mean and the posterior
10th-90th percentiles. A cell is colored blue where the truevalue falls within this range. Note
that if we were using the true likelihood, rather than an approximation, then we would expect
there to be around 80% blue boxes. The error of the estimates for each data set can be quantified
using the quadraticPosterior Expected Loss (PEL) function

f (π̂, Xobs) =
∫

Θ

(θ∗ − θ)2π̂(θ|Xobs)dθ , (23)
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whereθ represents all of the parameters, ˆπ is the estimated posterior distribution andθ∗ is the
true value of the parameter.

We performed a test with both the Gibbs sampler and data imputation. In Tab. 2 the data is
observed at interval∆ = 0.1. The smaller intervals∆ = {0.01, 0.001} are obtained by imputing
data withm= {10, 100} respectively. The table shows that imputing data approximately doubles
the Posterior Expected Loss. As expected the confidence intervals are broader but with more im-
puted data the algorithm can recover the true values. This shows that our data imputing strategy
successfully improves the parameter estimates.

Our aim is to infer models that can be used for prediction. This can be problematic when
dealing with non-linear models as some (generally unknown)regions of the parameter space will
give solutions that explode to infinity with probability 1. This is a particular problem when, as
exemplified by Table 1, large amounts of data are needed to regain the true values.

To demonstrate this problem we performed an inference on a two dimensional cubic model
usingN = 1, 000 observations at∆ = 0.1. For each inferred parameter value we then simulated
the solution forT = 100. After this time we recorded whether the solution retained finite values
or had exploded. The marginal posterior distributions of the cubic parameters are plotted in
Fig. 2. Each plot shows two histograms: one in blue records the distribution of stable parameter
values and in red are those that exploded. Notice that, when looking at the marginal distributions,
the stable and unstable regions largely overlap; it is difficult to separate the two regions. In this
case 40% of values were unstable. Tests (not shown) indicatethat this is an even bigger problem
in higher dimensions. Therefore, it is essential to use constraints on the parameter space to enable
only physically meaningful solutions. The necessary conditions have been derived in section 2.

Thus, as shown above, when updating the drift parameters we ensure thatM is negative
definite. In practice it is sufficient to check only whether the symmetric part (M + MT)/2 is
negative-definite. In the next section we will develop a systematic way of sampling negative
definite matrices.

3.3. Sampling Negative Definite Matrices

To sample negative definite matrices we use the Component Wise algorithm (32). Here we
sample the density of an × n matrix M, with normally distributed components, subject to the
constraint that it is negative definite. This algorithm updatesM component wise and is based on
the following property: an×n matrix is negative definite if and only if allk ≤ n leading principal
minors obey|M(k)|(−1)k > 0. Thekth principal minor is the determinant of the upper leftk × k
sub-matrix. Consider the parameters along the main diagonal. As they only enterM once, each
will have an associated upper bound. The Algorithm 3 works bycalculating the upper bound
associated with the constraints from each principal minor.It does this to find the least upper
bound and thereby the truncation point of the normal distribution.

Here,N−(µ, u, σ2) is the right truncated normal distribution with meanµ, standard deviation
σ and upper boundu. The off-diagonal parameters enter twice so there will be a quadratic
function determining their limits for each leading principal minor. For parameters in element
M(k)

i j there will be an associated quadratic relationa(k)
i j M2

i j+b(k)
i j Mi j+c(k)

i j = 0 where the coefficients
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T = 10 T = 100 T = 1000
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

A00 = 0 2.18

(−2.5,6.89)

−0.44

(−4.79,3.74)

−1.95

(−6.07,2.2)

−0.13

(−1.07,0.77)

0.65

(−0.29,1.6)

0.64

(−0.28,1.58)

0.02

(−0.13,0.17)

0.01

(−0.13,0.17)

0.02

(−0.13,0.18)

A01 = 5 −2.04

(−7.23,3.04)

4.86

(0.84,9.04)

6.21

(2.31,10.12)

2.54

(1.78,3.28)

4.73

(3.93,5.51)

5.22

(4.43,6.03)

2.84

(2.7,2.97)

4.59

(4.45,4.73)

4.86

(4.73,5)

A02 = 0 2.63

(−0.16,5.39)

2.15

(−0.17,4.49)

1.63

(−0.66,4)

0.45

(−0.52,1.41)

0.58

(−0.42,1.6)

0.13

(−0.89,1.13)

−0.08

(−0.22,0.05)

−0.14

(−0.27,0)

−0.19

(−0.32,−0.04)

A03 = 0 1.54

(−2.75,5.84)

−0.17

(−3.12,2.76)

0.26

(−2.62,3.2)

0.27

(−0.38,0.93)

0.01

(−0.72,0.73)

−0.17

(−0.88,0.54)

−0.01

(−0.08,0.06)

0

(−0.07,0.06)

0

(−0.07,0.06)

A04 = 0 −3.51

(−8.17,1.13)

0.61

(−3,4.3)

1.3

(−2.32,5.07)

−0.96

(−2.09,0.2)

−0.58

(−1.8,0.68)

−0.07

(−1.3,1.16)

−0.01

(−0.04,0.01)

−0.02

(−0.04,0.01)

−0.02

(−0.05,0.01)

A05 = 0 0.32

(−2.19,2.81)

0

(−2.31,2.31)

0.19

(−2.11,2.49)

0.66

(−0.11,1.43)

0.02

(−0.79,0.84)

−0.27

(−1.05,0.55)

0

(−0.06,0.07)

0.01

(−0.06,0.07)

0

(−0.07,0.07)

A06 = −3 −0.88

(−2.96,1.24)

−2.58

(−4.3,−0.87)

−3.17

(−4.83,−1.49)

−1.8

(−2,−1.6)

−2.92

(−3.12,−2.71)

−3.05

(−3.25,−2.85)

−1.71

(−1.77,−1.65)

−2.75

(−2.81,−2.69)

−2.91

(−2.97,−2.85)

A07 = 0 0.58

(−1.87,3.06)

−1.32

(−3.32,0.7)

−1.48

(−3.54,0.52)

0.05

(−0.49,0.58)

−0.07

(−0.66,0.51)

−0.22

(−0.79,0.37)

−0.02

(−0.07,0.04)

−0.01

(−0.06,0.05)

0

(−0.05,0.06)

A08 = 0 −0.83

(−3,1.31)

−0.28

(−2.31,1.76)

−0.18

(−2.21,1.86)

−0.48

(−1.03,0.07)

−0.37

(−0.96,0.23)

−0.16

(−0.75,0.42)

−0.02

(−0.08,0.03)

−0.01

(−0.06,0.04)

−0.01

(−0.07,0.04)

A09 = 0 0.71

(−0.11,1.53)

−0.4

(−1.16,0.38)

−0.49

(−1.26,0.27)

0.33

(−0.02,0.67)

0.04

(−0.3,0.39)

0.09

(−0.25,0.44)

0.08

(0.02,0.13)

0.1

(0.04,0.16)

0.12

(0.05,0.17)

A10 = 0 −0.38

(−5.19,4.24)

−2.21

(−6.44,2.03)

−1.17

(−5.21,2.9)

−0.31

(−1.22,0.61)

−0.18

(−1.1,0.75)

0.06

(−0.89,0.99)

0.02

(−0.13,0.17)

0.05

(−0.1,0.2)

0.05

(−0.1,0.2)

A11 = 0 −2.93

(−8.11,2.15)

2.42

(−1.64,6.48)

1.67

(−2.29,5.64)

0.88

(0.1,1.64)

0.39

(−0.4,1.19)

0.33

(−0.48,1.12)

−0.06

(−0.2,0.08)

0.11

(−0.03,0.25)

0.11

(−0.04,0.24)

A12 = 5 5.96

(3.22,8.68)

4.2

(1.89,6.63)

4.72

(2.33,7.09)

1.68

(0.72,2.65)

4.56

(3.52,5.57)

5.09

(4.08,6.12)

2.88

(2.74,3.02)

4.7

(4.56,4.84)

4.98

(4.84,5.11)

A13 = 0 2.68

(−1.67,6.93)

−1.41

(−4.36,1.57)

−1.88

(−4.74,1.02)

−1.05

(−1.72,−0.38)

−0.61

(−1.33,0.1)

−0.74

(−1.46,−0.02)

−0.01

(−0.08,0.05)

−0.03

(−0.1,0.03)

−0.03

(−0.09,0.04)

A14 = 0 −1.13

(−5.84,3.6)

4.67

(1.01,8.45)

4.23

(0.47,7.92)

1.39

(0.24,2.55)

0.78

(−0.44,2.03)

0.91

(−0.33,2.14)

0.02

(−0.01,0.05)

0.03

(0,0.05)

0.03

(0,0.05)

A15 = 0 0.42

(−2.07,2.94)

−0.6

(−2.88,1.77)

−0.84

(−3.13,1.45)

−0.22

(−1.01,0.56)

−0.11

(−0.9,0.7)

−0.24

(−1.06,0.55)

0

(−0.07,0.06)

−0.01

(−0.08,0.05)

−0.02

(−0.09,0.04)

A16 = 0 −0.82

(−2.94,1.29)

0.12

(−1.61,1.83)

0.39

(−1.26,2)

−0.08

(−0.28,0.12)

−0.04

(−0.24,0.17)

−0.02

(−0.22,0.19)

−0.03

(−0.09,0.03)

−0.08

(−0.14,−0.02)

−0.09

(−0.15,−0.03)

A17 = 0 −0.46

(−2.95,2.04)

−3.21

(−5.28,−1.22)

−2.97

(−4.99,−0.93)

−0.71

(−1.25,−0.17)

−0.66

(−1.24,−0.08)

−0.78

(−1.35,−0.19)

0.01

(−0.05,0.06)

−0.01

(−0.06,0.04)

0

(−0.05,0.05)

A18 = 0 0.66

(−1.5,2.86)

1.33

(−0.71,3.35)

1.63

(−0.41,3.6)

0.65

(0.11,1.22)

0.45

(−0.13,1.04)

0.58

(−0.01,1.18)

0.06

(0.01,0.12)

0.02

(−0.03,0.08)

0.03

(−0.02,0.09)

A19 = −3 −2.61

(−3.44,−1.78)

−3.23

(−4.02,−2.45)

−3.47

(−4.24,−2.69)

−1.46

(−1.8,−1.12)

−2.73

(−3.07,−2.38)

−3.04

(−3.39,−2.7)

−1.75

(−1.81,−1.69)

−2.81

(−2.87,−2.75)

−2.98

(−3.04,−2.92)

8.48 5.25 4.96 1.19 0.37 0.36 0.43 0.02 0.01

Table 1: Drift parameter estimates for a two dimensional cubic model with arbitrary diffusion function. On the left is the
true value of the parameter. The length of the data set used for the inference is labeled asT and the observation interval
is ∆ = {0.1, 0.01,0.001}. In each cell the parameter is estimated from the posterior mean and in brackets is shown the
10th-90th percentiles of the posterior. The blue coloring is where the true value falls in this range. The bottom of the
table shows the Posterior Expected Loss in each case.
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T = 10 T = 100 T = 1000
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

A00 = 0 2.18

(−2.5,6.89)

−2.46

(−8.46,3.52)

−2.59

(−8.35,3.24)

−0.13

(−1.07,0.77)

−0.68

(−1.84,0.5)

−0.69

(−1.85,0.49)

0.02

(−0.13,0.17)

−0.08

(−0.27,0.09)

−0.08

(−0.26,0.09)

A01 = 5 −2.04

(−7.23,3.04)

4.99

(−0.7,10.61)

4.84

(−0.49,10.22)

2.54

(1.78,3.28)

4.89

(3.83,5.97)

4.76

(3.74,5.79)

2.84

(2.7,2.97)

5.04

(4.87,5.21)

4.88

(4.71,5.03)

A02 = 0 2.63

(−0.16,5.39)

0.61

(−2.94,4.05)

0.39

(−2.95,3.75)

0.45

(−0.52,1.41)

−0.06

(−1.42,1.3)

−0.2

(−1.49,1.13)

−0.08

(−0.22,0.05)

−0.26

(−0.44,−0.08)

−0.28

(−0.45,−0.09)

A03 = 0 1.54

(−2.75,5.84)

3.25

(−1.23,8.07)

3.26

(−1.07,7.77)

0.27

(−0.38,0.93)

0.67

(−0.34,1.67)

0.59

(−0.41,1.59)

−0.01

(−0.08,0.06)

0.02

(−0.06,0.1)

0.02

(−0.06,0.09)

A04 = 0 −3.51

(−8.17,1.13)

−2.53

(−7.76,2.61)

−2.53

(−7.61,2.41)

−0.96

(−2.09,0.2)

−1.6

(−3.35,0.18)

−1.41

(−3.14,0.27)

−0.01

(−0.04,0.01)

−0.03

(−0.05,0)

−0.02

(−0.05,0)

A05 = 0 0.32

(−2.19,2.81)

1.85

(−1.6,5.2)

1.85

(−1.43,5.11)

0.66

(−0.11,1.43)

1.18

(0.03,2.32)

1.12

(−0.02,2.25)

0

(−0.06,0.07)

0.05

(−0.04,0.13)

0.05

(−0.04,0.13)

A06 = −3 −0.88

(−2.96,1.24)

−4.06

(−6.63,−1.76)

−4.02

(−6.5,−1.79)

−1.8

(−2,−1.6)

−3.19

(−3.44,−2.94)

−3.06

(−3.3,−2.83)

−1.71

(−1.77,−1.65)

−3.01

(−3.08,−2.94)

−2.92

(−2.98,−2.85)

A07 = 0 0.58

(−1.87,3.06)

0.44

(−2.27,3.17)

0.53

(−2.05,3.23)

0.05

(−0.49,0.58)

0.43

(−0.37,1.27)

0.39

(−0.42,1.19)

−0.02

(−0.07,0.04)

0.03

(−0.04,0.09)

0.03

(−0.03,0.09)

A08 = 0 −0.83

(−3,1.31)

−2.22

(−4.98,0.62)

−2.12

(−4.84,0.65)

−0.48

(−1.03,0.07)

−1

(−1.86,−0.14)

−0.92

(−1.76,−0.09)

−0.02

(−0.08,0.03)

−0.02

(−0.09,0.05)

−0.02

(−0.09,0.05)

A09 = 0 0.71

(−0.11,1.53)

1.29

(0.06,2.61)

1.33

(0.1,2.6)

0.33

(−0.02,0.67)

0.7

(0.17,1.2)

0.71

(0.19,1.2)

0.08

(0.02,0.13)

0.14

(0.05,0.23)

0.15

(0.06,0.23)

A10 = 0 −0.38

(−5.19,4.24)

−4.63

(−10.46,0.84)

−4.46

(−10.07,0.86)

−0.31

(−1.22,0.61)

0.66

(−0.55,1.87)

0.6

(−0.51,1.75)

0.02

(−0.13,0.17)

−0.02

(−0.2,0.16)

−0.01

(−0.2,0.16)

A11 = 0 −2.93

(−8.11,2.15)

2.18

(−3.8,8.3)

2.24

(−3.53,8.27)

0.88

(0.1,1.64)

0.1

(−0.89,1.09)

0.15

(−0.82,1.14)

−0.06

(−0.2,0.08)

0.08

(−0.09,0.26)

0.11

(−0.06,0.29)

A12 = 5 5.96

(3.22,8.68)

8.28

(4.62,11.9)

7.82

(4.39,11.36)

1.68

(0.72,2.65)

5.8

(4.52,7.07)

5.57

(4.36,6.81)

2.88

(2.74,3.02)

5.05

(4.88,5.22)

4.89

(4.72,5.05)

A13 = 0 2.68

(−1.67,6.93)

4.03

(−0.84,9.1)

4.08

(−0.63,8.96)

−1.05

(−1.72,−0.38)

−0.83

(−1.76,0.11)

−0.81

(−1.72,0.1)

−0.01

(−0.08,0.05)

−0.01

(−0.09,0.08)

−0.01

(−0.09,0.08)

A14 = 0 −1.13

(−5.84,3.6)

0.2

(−5.79,6.51)

0.02

(−5.85,6.12)

1.39

(0.24,2.55)

0.12

(−1.44,1.66)

0.07

(−1.43,1.61)

0.02

(−0.01,0.05)

0.03

(0,0.06)

0.03

(0,0.06)

A15 = 0 0.42

(−2.07,2.94)

1.49

(−1.84,5)

1.59

(−1.64,4.85)

−0.22

(−1.01,0.56)

0.15

(−0.89,1.18)

0.2

(−0.8,1.19)

0

(−0.07,0.06)

0.01

(−0.07,0.08)

0

(−0.07,0.08)

A16 = 0 −0.82

(−2.94,1.29)

−3.07

(−5.88,−0.39)

−3.14

(−5.86,−0.5)

−0.08

(−0.28,0.12)

−0.15

(−0.45,0.15)

−0.15

(−0.45,0.15)

−0.03

(−0.09,0.03)

−0.07

(−0.15,0.02)

−0.08

(−0.17,0)

A17 = 0 −0.46

(−2.95,2.04)

−1.37

(−4.65,1.87)

−1.17

(−4.45,1.91)

−0.71

(−1.25,−0.17)

−0.59

(−1.36,0.19)

−0.57

(−1.31,0.17)

0.01

(−0.05,0.06)

0.05

(−0.02,0.12)

0.05

(−0.03,0.12)

A18 = 0 0.66

(−1.5,2.86)

0.3

(−2.65,3.15)

−0.01

(−2.73,2.67)

0.65

(0.11,1.22)

0.24

(−0.51,0.99)

0.18

(−0.54,0.92)

0.06

(0.01,0.12)

0.02

(−0.04,0.08)

0.02

(−0.04,0.08)

A19 = −3 −2.61

(−3.44,−1.78)

−4.44

(−5.58,−3.38)

−4.1

(−5.16,−3.13)

−1.46

(−1.8,−1.12)

−3.09

(−3.53,−2.66)

−2.94

(−3.36,−2.55)

−1.75

(−1.81,−1.69)

−3.06

(−3.14,−2.99)

−2.97

(−3.04,−2.9)

8.48 11.06 10.32 1.19 0.76 0.68 0.43 0.01 0.01

Table 2: Drift parameter estimates for a two dimensional cubic model with arbitrary diffusion function. On the left is the
true value of the parameter. The data used is the same as that of Table 1 sampled at the∆ = 0.1 interval. In this case data
is imputed to obtain the intervals∆ = {0.01, 0.001}. The bottom of the table shows the Posterior Expected Loss ineach
case.
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Figure 2: Marginal distributions of the cubic parameters inferred from a data set withN = 1, 000 observations at interval
∆ = 0.1. The blue histogram shows the parameters that gave stable solutions to the SDE, while the red is for those that
gave unstable solutions. The true values are given by the redlines.
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Algorithm 3 Sample parameters along diagonal
for i = 1 to n do

Ui=0
for j = i to n do

x = −
(

∑ j
k , i
k = 1

(−1)i+kMik |M( j)
{−i},{−k}|

)

/|M( j)
{−i},{−i}|

end for
if x < Ui then

Ui = x
end if
Mii ∼ N−(µi ,Ui , σ

2
i )

end for

are functions of the other parameters. These coefficients are found to be

a(k)
i j = −|M(k)

/{i, j},/{i, j}| (24a)

b(k)
i j = (−1)i+ j

j−1
∑

k , i
k = 1

M jk(−1) j−1+k|M(k)
/{i, j},/{ j,k}| (24b)

+(−1)i+ j
N

∑

k , i
k = j + 1

M jk(−1) j+k|M(k)
/{i, j},/{ j,k}| (24c)

+ (−1)i+ j
i−1
∑

k , j
k = 1

Mik(−1)i−1+k|M(k)
/{i, j},/{i,k}| (24d)

+(−1)i+ j
N

∑

k , j
k = i + 1

Mik(−1)i+k|M(k)
/{i, j},/{i,k}| (24e)

c(k)
i j =

N
∑

k , j
k = 1

Mik(−1)i+k



























k−1
∑

l , i
l = 1

M jl (−1) j−1+l |M(k)
/{i, j},/{l,k}|+ (24f)

N
∑

l , i
l = k + 1

M jl (−1) j+l |M(k)
/{i, j},/{l,k}|



























, (24g)

where |M(k)
/{i, j},/{l,k}| represents thekth principal minor with rowsi and j and columnsl and k

removed. For each componentMi j this quadratic form can be solved to give upper and lower
bounds on the parameter. The matrixM can be cycled through updating each parameter in turn.
Algorithm 4 describes the sampling of off-diagonal elements using the coefficients in Eq. (24g).
Here, the notation,N+− (µ, u−, u+, σ2) refers to the doubly truncated normal distribution with mean
µ, left truncationu−, right truncationu+ and standard deviationσ.

To simulate from truncated normal distributions we are using the inverse Cumulative Density
Function (CDF) method. One simply calculates the corresponding CDF of the lower and upper
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Algorithm 4 Sample parameters off diagonal
for i = 1 to n do

for j = i + 1 ton do
u+ = ∞
u− = −∞
for k = j to n do

Calculatea(k)
i j , b(k)

i j andc(k)
i j and solvea(k)

i j x2 + b(k)
i j x+ c(k)

i j = 0.
Set mn= min(x1, x2) and mx = max(x1, x2)

end for
if mx< u+ then

u+ = mx
end if
if mn> u− then

u− = mn
end if
Mi j ∼ N+− (µi j , u−, u+, σ2

i j )
end for

end for

boundaries and then draws a uniform random variable betweenthese numbers. Inverting the
CDF gives a random variable from the Normal distribution restricted to this region.

For our problem we use the rejection sampler method proposedby (34). This method draws
uncorrelated samples directly from the target density. Rejection sampling from a distribution
h(x) is based on a proposal distributiong(x) such thath(x) ≤ Cg(x) holds for some constantC
and all of the support ofh(x). For a one sided truncated Normal the exponential distribution is a
good proposal. First it is translated to coincide with the truncation point, then the rate parameter
is optimized in order to closely match the tail of the Normal distribution.

g(z;α, µ−) = αexp(−α(z− µ−))Iz≥µ− (25)

The optimal value ofα is calculated by maximizing the expected acceptance probability and is
shown to be

α∗(µ−) =
µ− +

√

(µ−)2 + 4

2
(26)

More details are given in (34).
We performed a numerical study to compare the standard Normal and Exponential proposals.

The efficiency of proposingx from the standard normal and then accepting ifx > µ− falls to
approximately 0.023 while for the optimized exponential proposal it is approximately 0.5.

For the doubly truncated Normal one uses either an exponential or uniform distribution, as a
proposal, depending upon the size of the truncated region. If the following holds

u+ > u− +
2
√

e

u− +
√

(u−)2 + 4
exp(

(u−)2 − u−
√

(u−)2 + 4
4

)

then it can be shown that the exponential is more efficient, otherwise the uniform is better (34).
Fig. 3 shows both the uniform and exponential approximations for both cases.
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Figure 3: Doubly truncated normal distribution. The top figure hasu− = 2 andu+ = 3 and is better approximated with
the exponential distribution. The bottom figure hasu− = 2 andu+ = 2.5 and the uniform is more efficient.
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We use Algorithms 3 and 4, along with the methods of sampling truncated Normal variables,
to sample the stability matrixM. We tested this algorithm on a three dimensional model with
T = 100. In this case the dimension ofM is n = D(D+1)/2 = 6. Note that this MCMC algorithm
still mixes well. Fig. 4 compares the posterior distributions estimated from the Component Wise
Algorithm and the standard Gibbs sampler. Notice the large differences between the distributions
in each case. Similar results (not shown) are obtained for the off diagonal parameters using
Algorithm 4.

4. Results

4.1. Deterministic Double Well Potential Model

The first conceptual climate model we consider is a cubic model coupled to the chaotic
Lorenz system (29). It is fully deterministic and consists of a slow variable which can be thought
of as representing a climate process and three fast variables which can be thought of as repre-
senting chaotic weather fluctuations. The slow variable moves inside a double well potential and
is perturbed by the chaotic Lorenz system, which acts effectively as noise whenǫ → 0. The
equations are as follows

dx
dt

= x− x3 +
4

90ǫ
y2 (27a)

dy1

dt
=

10
ǫ2

(y2 − y1) (27b)

dy2

dt
=

1
ǫ2

(28y1 − y2 − y1y3) (27c)

dy3

dt
=

1
ǫ2

(y1y2 −
8
3

y3) . (27d)

Sample paths are displayed in Fig. 5. We now fit a one dimensional cubic SDE to the data. We
just consider the general cubic form (26)

dXt = (a1 + a2Xt + a3X2
t + a4X3

t )dt+ σdWt (28)

and estimate all of the parameters{a1, a2, a3, a4, σ} from sparse observations of the system: again
using∆ = 10.0 andN = 1000. To update the drift parameters we use the Gibbs samplerof
Section 3.2.1. The estimated posterior distributions are shown in Fig. 6. A lot of imputed data is
needed before the estimates start to converge towards the values predicted by homogenization but
the inference demonstrates that there is enough information in the sparse data set if the likelihood
is well approximated.

Figure 7 shows the predictive skill of the one dimensional reduced model forσ estimated
for variousm. We use the empirical mean estimate for the parameter values. Figures 7a and
7b show that the reduced model can reproduce the double well distribution of the full model
although the separation of each well is underestimated form = 2 andm = 4 due to the larger
noise. Form≥ 8 the model reproduces well the full models marginal distribution for x. It is not
clear whether there is much difference betweenm= 8 andm= 64. However, observing Figures
7c and 7d we see that the autocorrelation function for the full model is much better approximated
whenm = 64. This shows that the ability of our framework to impute data is a powerful way of
deriving accurate reduced order models.
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Figure 4: Estimated posterior distributions for parameters from a two dimensional model of the form Eq. 3 with N=
100 and= 0.1. The parameters, which are randomly generated, are written in the matrix notation introduced in Section
3.2.1. The histograms are the posterior distributions withuninformative prior, in red are the posterior distributions
for parameters with stable SDEs and in black are the posterior distributions which include the stability matrix prior
information derived in this chapter.
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Figure 5: Example path of x of the chaotic Lorenz system: Eq. (27d)

4.2. Model Reduction for Triad Systems
Now we apply our model fitting procedure to a triad model with ahigh dimensional deter-

ministic system with two slow, climate variables coupled tofast chaotic dynamics. The reduction
strategy has two challenges: to successfully approximate the deterministic variables by a stochas-
tic process and to be insensitive to a lack of time scale separation.

The full system is given by

dx1

dt
=

b1

ǫ
x2y1 (29a)

dx2

dt
=

b2

ǫ
x1y1 (29b)

dyk

dt
=

b3

ǫ
x1x2δ1,k − Re

ik
2ǫ2

∑

p+q+k=0

û∗pû∗q (29c)

dzk

dt
= −Im

ik
2ǫ2

∑

p+q+k=0

û∗pû∗q, (29d)

whereuk = yk+ izk. This system is stable provided that the energy is conserved: b1+b2+b3 = 0.
We use the valuesb = {0.9,−0.5−0.4} (our results are insensitive over a wide range of parameter
values) and we choose a cut off of Λ = 50. Sample paths are displayed in Fig. 8. We are
interested in eliminatingy leaving equations for justx1 andx2. The small parameterǫ represents
the time scales within the system. The variablesy have fastest time scale of orderO(1/ǫ2)
compared toO(1/ǫ) for x1 andx2. As ǫ → 0 we can use the method of homogenization for SDEs
to eliminate the fast variables and this gives

dx1(t) =
b1

γ
(b3x2

2(t) +
σ2

2γ
b2)x1(t)dt+

σ

γ
b1x2(t)dWt (30a)

dx2(t) =
b2

γ
(b3x2

1(t) +
σ2

2γ
b1)x2(t)dt+

σ

γ
b2x1(t)dWt , (30b)

where unknown parametersσ andγ have been introduced. Here we estimate them using the
Algorithms 1 and 2 from observations of the climate variables alone. For convenience we con-
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Figure 6: Posterior distribution estimates from MCMC output applied to a sparse data set (∆ = 10). Different distributions
correspond to increasing amounts of missing data. The distribution in brown, form = 64, agrees with the theoretical
values predicted by the homogenization procedure. In the model simulationǫ = 0.01 has been used. Black line: m=1,
red line: m=2, green line: m=4, blue line: m=8, light blue line: m=16, magenta line: m=32, brown line: m=64.

sider the inference problem where the model Eq. (30) is driven by two independent Brownian
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Figure 7: Predictive statistics for the reduced double wellmodel coupled to chaotic Lorenz system: Eq. (27d) for two
values ofǫ. In each plot the lines correspond to the inferred one dimensional model for differentm.

motions.
Posterior estimates for the caseǫ = 0.8 are shown in Fig. 9. This value corresponds to a

moderately small, though realistic (14), amount of time scale separation. As Fig. 9 demonstrates,
increasing the number of imputed data leads to a convergenceand, thus, to an improvement of
the posterior estimates.

We apply the inference to a data set with total timeT = 500 and observation interval∆ = 0.1.
We simulate the system forǫ = {0.1, 0.25, 0.5, 0.8,1.0}. Fig. 10 shows the predictive probability
densities and autocorrelation functions for Eq. 30. In eachcase the data is simulated from the
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Figure 8: Example path ofx1 (black line) andx2 (red line) from the triad model: Eq. (29)

full model Eq. 29, then the parameters are estimated using the reduced model Eq. 30 and this
reduced model is simulated to calculate the predictive statistics. The posterior mean estimates
were computed for m= 16 missing data values (it was veried that the posteriors form= 16 and m
< 16 gave consistent estimates). The reduced model Eq. 30 withempirical parameter estimates
is also plotted. This model is referred to as the reduced model in Figure 10. The reduced model
is able to reproduce the non-trivial shape of the PDF very well. This suggests tha reduced order
models fitted from observed data can be used for extreme valuestudies (16).

The autocorrelation functions have been collapsed onto thereduced model by rescaling the
output interval of the prediction by their value ofǫ; this has been done for convenience of dis-
playing the results. The data collapse is very good for all model simulations with the models with
ǫ < 0.5 being closest to the reduced model. This implies that the parameter estimates for each
case are partially compensating for the changing time scaleseparation. This provides evidence
for the potential of using reduced order modelling strategies even in systems with only moderate
time scale separation.

5. Summary

Here we developed a systematic Bayesian framework for the inference of the parameter of
SDEs constrained by the physics of the underlying system. The physical constraints not only
constrain the parameter space but also enforce global stability of the reduced order models.

For climate models we derive a constraint based on energy conservation which ensures global
stability of the effective SDE. This constraint takes the form of a negative definite matrix. We
then develop a new algorithm for the sampling of negative definite matrices. We also develop a
new algorithm for imputing data and show that imputing data improves the accuracy considerly
of the parameter estimation. We demonstrated its power successfully on two conceptual climate
models.

While we focused on climate models in this study our method isgeneral enough that it can
also be applied to other areas of fluid dynamics. Furthermore, also many other physical systems
observe conservation laws and, thus, stability conditionscan be derived which will be useful for
parameter estimation procedures.
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Figure 9: Posterior estimates of drift parameters for two dimensional cubic model fitted to the triad-Burgers equation for
ǫ = 0.8.
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