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Abstract

A systematic Bayesian framework is developed for physicstained parameter inference of
stochastic dierential equations (SDE) from partial observations. Rtalsionstraints are derived

for stochastic climate models but are applicable for many Bystems. A condition is derived

for global stability of stochastic climate models based pargy conservation. Stochastic cli-
mate models are globally stable when a quadratic form, wisichlated to the cubic nonlinear
operator, is negative definite. A new algorithm for tigodent sampling of such negative definite
matrices is developed and also for imputing unobservedwlaitzh improve the accuracy of the

parameter estimates. The performance of this frameworkalsiated on two conceptual climate
models.
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1. Introduction

In many areas of science the inference of reduced orderdhylgriamic-stochastic models,
which take the form of stochasticftérential equations (SDE), from data is very important. For
many applications running full resolution dynamical madisl computationally prohibitive and
in many situations one is mainly interested in large-scaéures and not the exact evolution
of the fast, small scale features, which typically deteenriime time step size. Thus, reduced
order stochastic models are an attractive alternative.miples are molecular dynamids__k21),
engineering turbulenc@ZO) and climate scie@@ﬂﬁ, 22

The inference of such models has been done using non-pai@methods|(4d, 17)8) from
partial observations. These non-parametric methods negdong time series for reliable pa-
rameter estimates and can be used only for very low-dimeakinodels because of the curse
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of dimension. More importantly, they do not necessarilyyobenservation laws or stability
properties of the full dimensional dynamical system. In ynareas of science one can derive
reduced order models from first principl@( , 31) such teatain fundamental properties of
the full dynamics are still valid. These methods provide ith warametric forms for the model
fitting. Physical constraints then not only constrain theapgeters one has to estimate but they
can also ensure global stability. Thus, there is a need fesyatic physics constrained model
and parameter estimation procedutes$ (32, 28).

For instance, the climate system is governed by conservédios like energy conserva-
tion. Based on this energy conservation property the nofamal of stochastic climate models
has been derived bﬂZG) using the stochastic mode redmt@edure@ﬂﬂﬂlmw).
This procedure allows the systematic derivation of reduareér models from first principles.
This normal form provides a parametric form for parameténegtion from partial observations
which we will use in this study.

The fundamental form of climate models is given by

dz =F +Lz+B(z2), Q)

dt
wherez € RN denotes the N-dimensional state vector, F the externainigrt. a linear and B
a quadratic nonlinear operator. The nonlinear operator &rserving energy - B(z, z). For
current climate models N is of the order of1010°. This shows that running complex climate
models is computationally expensive. But for many applicet like extended-range (periods of
more than 2 weeks), seasonal and decadal climate predidiomis only interested in the large-
scale circulation of the climate system and not whetheethglt be a cyclone over London on a
particular day next year. The large-scale circulation ecatsssfully be predicted using reduced
order modeld (37) ﬁ[IJEZZ).

The stochastic mode reduction proced@ , 25) pesvédsystematic framework for

deriving reduced order climate models with a closure whadte$ account of the impact of the
unresolved modes on the resolved modes. In order to dexdveeel order models one splits the

X\ . .
state vector = y ) into resolvedk and unresolveg modes. The stochastic mode reduction

procedure now enables us to systematically derive a redockt climate model which only
depends ox
dx = (F + Dx + B(x, X) + M(x, X, X)) dt + a(x, o)dW, (2)

whereM denotes a cubic nonlinear teridv,is the Wiener process awdthe difusion parameters.

In this study we will develop a systematic Bayesian framéufor the eficient estimation of
the model parameters using Markov Chain Monte Carlo (MCM@jhads from partial obser-
vations. We are dealing with partial observations becawsaaow only have knowledge of the
few resolved modes and are ignorant about the many unresolved mgdes

Stochastic climate modeling is a complex problem and ewcgilyi estimating the parameters
poses several problems. First, the nonlinearity of clinmatelels requires an approximation of
the likelihood function. While it can be shown that this apgmation converges to the true
likelihood, this is not necessarily the case for real wogglaations. Here we develop a MCMC
algorithm for the first time for stochastic climate modelsl alemonstrate that this algorithm
performs well. Second, the nonlinearity of the problem eautbe space of parameters leading
to stable and physical meaningful solutions to become sasatie dimension of the problem in-
creases. We show that a lot of the posterior mass is on pagaxaties which lead to solutions

2



exploding to infinity in finite time. To solve this problem werilve global stability conditions.
These conditions take the form of a negative definite matiHence, we devise a novel sam-
pling strategy based on sampling non-negative matricesshbfes that this sampling strategy is
computationally #icient and leads to stable solutions.

In sectiori 2 we introduce stochastic climate models and/éednditions for global stability.
Previous studies have shown that reduced climate modéigwédratic nonlinearity experience
unphysical finite time blow up and long time instabiliti@dﬁ@l). Here we use the normal
form of stochastic climate modeE{ZG) and derivéisient conditions for global stability for the
normal form of stochastic climate models. These normal fetoechastic climate models have
cubic nonlinearities. The here derived stability conditis more general than the one in Majda
et al. .) In sectiof]3 we develop a Bayesian frameworkHerdystematic estimation of the
model parameters using physical constraints. Here we o\ dficient way of sampling
negative-definite matrices. Without this constraint the NMC algorithm would produce about
40% unphysical solutions which is clearly very ffieient. Here we also demonstrate that for
these kinds of SDEs imputing data improves the parametienasts considerably. In sectibh 4
we demonstrate the accuracy of our framework on conceplinghie models. We summarize
our results in section 5.

2. Stochastic Climate M odels and Global Stability

Here we study the following D dimensional normal form of stastic climate models (which
has the same structural form as Hg. (2), 5ek (26)):

D | k
X = |ai+ ZBHXJ+ZZ)’|JkXJXk+ZZZ/L1kIXJXkXI (32)

]+l k=1 j=1 k=1 I=1

+ Za.,dV\/, +ZZb.,kx,dwK (3b)

j=1 k=1

which we write for convenience in a more compact form
dx = u(x, A)dt + a(x, o)dW 4)

The parameters, 8, y and are written as one matri&k € RP*P. We allow for the inclusion
of all possible linear, quadratic and cubic terms with fogcterms entering first, followed by
linear, quadratic and then the cubic terms. We include thona matrixA asAi1 = ai, A j+1 =
Bi.i» Aij(j-1)/2+k+D+1 = Vi.jk andA skny = Aijk1. The index function for the cubic term is given
by

DO+1) j(-D(i+1)  kk-1)
5 + 6 + 5 +1. (5)
Global stability implies that the cubic terms act as a na@dindamping. For climate mod-
els energy conservation of the nonlinear operator impliebaj stability. However, in general,
global stability does not necessarily imply energy conaton. The energy equation based only
on the cubic terms can be written as

f(jkI)=1+D+

1dE 2 SR
>4t = x ZZZZA;,f(j,k,l)XinXkN~ (6)

i=1 i=1 j=1 k=1 1=1
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Here we only consider the cubic term because this term withaltely determine global stability.
Majda et al.l(26) have shown that the normal form of stochatitnate models allows for linearly
unstable modes. These linearly unstable modes are agzbueidgh important weather systems
and waves and are an intrinsic and important part of climatéets. Once these linearly unstable
modes have reached a certain amplitude the nonlinear @rims will govern their evolution and,
thus, ensure global stability.
We consider now the vectar with 262 components of the formig_1y2.j = %x; with
1< j<i<D. Nowwe find a negative definite mati# such that|E6)
T 1dE
va_ZdtSO. (7

A sufficient solution is as follows: Let matrid € R(P+DD/2x(D+1)D/2 |y

At i ifk>jand 1<
M1y o _]0, if k>jand b | 8
(-Di/2ei0Dh/2el =) A A, iFK < jand Kk (8)
Ati.i) if k <jand &k,

where 1< j <i < Dand 1< < k < D. While this solution is not necessarily unique the
imposition of this constraint is still necessary in ordereéduce the amount of parameter values
leading to unstable models and, thus, to reduce the conigmaaéexpense of the parameter infer-
ence. As we will show below, not imposing this constraint Veiad to unstable and unphysical
solutions in about 40% of parameter values in our MCMC scheme

In summary, the stochastic climate model in EQl (4) is glybstable if the tensoM is
negative definite anifl determines the components of the cubic operatdihis is an important
result for the constrained parameter estimation of stdichelamate models (26, 32).

3. Physics Constraint Parameter Sampling

We use a Markov Chain Monte Carlo algorithm for the parameference which was pro-
posed by|__(]7) and__(i8 . We use this approach because of itbifigxi For instance, the exact
algorithms by|ﬂ5) and%t6) cannot be easily applied to muttelsional dfusions. Furthermore,
the exact algorithms require that the drift function mustte gradient of a potential; for in-
stance, stochastic climate models cannot be written in adohm.

Our MCMC algorithm first updates theflision parameters (see algorithm 1), then updates
the imputed data (algorithm 2) and finally updates the dafgneters (section 3.2). Téieiently
propose imputed data we us the Modified Linear Bridge san{pkstion 3.1). To physically
constrain the drift parameters we develop a scheme to samaphgive definite matrices (section
3.3 and algorithms 3 and 4).

The novel aspect of our MCMC algorithm is the physics comstisampling which ensures
the stability of the reduced stochastic model. Moreovas, digorithm overcomes the depen-
dency between the fiusion parameters and the missing data by changing variabiles under-
lying Brownian motionW € RY and conditioning on this when performing the parameter tgpda
This ensures consistency between the parameters and th dﬁ). In order to improve the
accuracy of the Euler approximation we introduce latena gi@iints between all pairs of obser-
vations. While this is not trivial for nonlinear models tltian be accomplished by introducing a
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suitable dffusion bridge|_(_;|d38). For this purpose we define a proZesghich conditions on
the endpoinkr, by
Xt — X

dX; = a(X;, o)dZ, + Ldt, Xo = Xo, 9)

T-t
whereT is the next observation time. In discrete time the trans&diom is
X1 — X
Xis1 = Xi + a(Xi, 0)(Zis1 = Zi) + rTn—i : (10)

wherem — 1 is the number of imputed points between two observatioeéinihg the proces&
ensures that the dominating measure is parameter free ancke himproves the performance of
the MH sampler. See Dargaﬁ (9) for more details.

We sampler according to Algorithrill. We use zero-based numbering\ird observation
intervals indexed 0.. N — 2. We assume that the inter-observation tilese all equal and that
there aren— 1 imputed points per interval, giving a time intervaliot A/m. We use the notation
Xi = Xy andy; = u(Xy, A). We assume that we have perfect observations for ease atiorot
but our method can be extended to the case of measuremem(&ego@)). The extension to
variable inter-observation times is straight forward. Bionplicity, we write the algorithm for
perfect observation of the system so that,i = 0,..., N—1 are fixed. In Algorithrifly denotes
a Gaussian distribution argthe Gaussian proposal density (which is defined below il B. 1
andX a covariance matrix (given below in Hg.116).

Algorithm 1 Sample parameters entering th&wasion matrix.
Draw o™ ~ q(o*|o)
Initialize & = log(q(olo™)) — log(q(o™*|o)) + log(p(o™)) — log(p(o))
fori=0toN-2do
for j=0tom-2do

1 X X
Zimsj+1 = Zimej + @ (Xim+j, 0) (Xim+j+l — Xim+j — %J'm”)

* * Ximem=Xiny * *
Ximsjr1 = Kime) ¥ — g+ Xy 0N Zime 1 — Zims )
a=a+ |09(¢(Xi*m+j+l; Xi*m+j +/Ji*m+j6’ 6):‘i*m+j) + |09|a(xi*m+j*o-*)|
—10g(#(Xim+j+1; Xim+j + im0, 0Zim+j) — logla(Ximsj, 0)]
end for
end for

Set{o, X} = {o*, X*} with probability min(1 exp()) else retairio, X}

To update missing data between observations we use an imdiepee sampler as iﬂ36)
using the proposal process

dX* = ¢(X*, X7)dt + a(X*, o)dW* | (11)

whereXs is the next observatioX* the proposed data, and whexe<*, o) is the same diusion
function as that in Eq[{4)¢ denotes the modified linear bridge (see below in section Jhi¢
proposal process Eq_{[11) will have a measure that is aledplcdntinuous with respect to the
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target process in Eq.](4) because of their comméisiion function. To update all of the missing
data, we propose a block at a time from Hg.] (11) and then atcegiroposed block according
to the MH ratio. If the inter-observation interval is lardgeeh the acceptance rate may become
very low and so one may sub-sample smaller blocks.

For some intervalwe setX; = Xim and X, = Xi+1ym then we propos; : X; ; and accept
or reject the block using the MH acceptance probability

Ps O3 A) TG Ps(X5,11X5 A)as(Xims j+11 Xime €, 0)

a= — , (12)
Ps (X pml Ximem-1. A) TT7Z9 Ps(Xims 11 Xime j, A)s(X5,11X7, &, 0)
whereps is the transition density of the target
dX; = u(Xi, A)dt+ a(X, o)dWy, Xo = Xo, t€[0,T] (13)

under the Euler approximation over the time intedvahd wherej; denotes the transition density
of the proposal. We choose proposal processes so thatg]ve)(‘g;l is approximately Gaussian
distributed. However, Eq.[{11) is not a true Gaussian pobesause of the state dependent
noise term. Details for updating the missing data are gimeXgorithm[2.

Algorithm 2 Sample missing data between observations.
fori=0toN-2do
Seth = Xim
Seta =0
for j=0tom-2do
Xi, 1 ~ Gs(X7,116(XT, Ximem), 0)

a=a+ Iog(¢(X}‘+1; X]'F + 5”]': 52’;) + |Og(q(5(xim+j+l|§(xim+j, Xim+m), 0))
—10g(¢(Xims+j+1; Xim+j + Stimej» 0Zimej)) — 109(0s (X, 11X], £(X], Xim+m), 7))

end for
a = a + log((Ximsm; X:fn—l + 5/1:"_1, 62‘;}_1))
— 109(¢(Xim+m; Xim+m-1 + OMim+m-1, 0 Zim+m-1))
if exp@) > U(0,1)then
for j=0tom-2do
Xim+j+l = XT+1
end for
end if
end for

Algorithms[d and 2 are combined with standard MH updatestfergarameters entering
into the drift function. First we update thefflision parameters using Algorithm 1, then we
update all imputed data. After that the drift parametershélupdated (see section 3.2). In both
algorithmsX* denotes the proposal which will be generated dependenditigecavailability of
observations. One could use Random-Walk proposals butriname of polynomial models it is
more dficient to implement another Gibbs sampling step. Repeatdtilynating between these
three steps will produce MCMC samples that can be used toa&igtithe parameters. In practice
we increase the amount of missing datantil we see convergence in the marginal distributions
of the parameters.
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3.1. Sampling of Gjusion Paths

Because we want to impute missing data we ne&dient methods for simulating filusion
paths from Eq. [{[3) that are conditioned upon given skart= xo and endXny, = Xy points.
We consider the total time interval, — 7o = A divided intom equidistant sub-intervals so that
Tke1 — Tk = A/m= 6.

HavingN observations, for each o0& 0, 1, 2,...N -1, X, is an observation. Between every
pair of observations the filusion bridge will need to be simulated. We use an indepereigam-
pler with proposal density of the forig(X*|X) = q(X*). Here, we consider proposal processes
of the form of Eq. [(I1L).

We use a Modified Linear Bridge proposal for sampling of pagtars of the drift of equations
of the form of Eq[#. For this purpose we apply Ito’s formuldte drift function of Eq[#. This
gives the approximating process

dZ; = (Q(X)Z¢ + r(X, t))dt + £(X)dB,. (14)
with
_ 0ui(Xs)
Qij B 6Xj
= Wiy 130 P
fi(®) = i(Xs) - Z . X9+ 5 2 A (Xau(X) 7 409

jokl

This is a local linearization of the nonlinearfidision over a small time Windovﬂbmw).
First we construct bridge distributions for general mutiate linear diusions |ﬂ4). If at times
we haveXs = d and at timeTl, X1 = ethen the distribution oK; for 0 < s< t < T can be shown
to be Gaussian with mean

vae(st) =Lt DS T)'mi(s 1) + [(s T)'(N(s T)")'mg (4, T), (15)

where .
I'(st) = f Uy Tet-uQ" gy
S

t t
mi(s.t) = x+f eSU%r(u)du and my(st) = x—f e=U%r(u)du.
S S
The covariance matrix is given by

I(st) =L TI(s T)"T(s 1). (16)

In general this matrix can be computed as follows: if we disizeQ so thatQ = UAU™!
then compute the matriA with components

(U‘lEZTU_T)ii (t-9Aji _ A(s-DA;
AP e L0y P - e "), 17
4 Aii + Ajj ( ) o
then
I(st)= UVUT. (18)

7



The proposal distribution is given by
AKXk 11Xk X, V) = & (Kie1; Vxpx (K6, (K + 1)6), Ly (K, (K + 1)5)) , (19)

wherevy, x, (j6, (j + 1)6) andZy,(jé, (j + 1)6) are given in Eqs[(15) anf{{16) respectively.
In contrast to a linear bridge sampler here we update at eaphted point. This means
recomputing the matricd¥(s, t) at each point, althoug® andU are only calculated once.

3.2. Inference for Drift Parameters

Now we give details of the computational implementationhaf sampling of parameters in
the drift function. Since the drift parameters enter limlgave can construct a Gibbs sampler
where their conditional posterior is Gaussian. This gyeiatproves the mixing of the Markov
Chain.

3.2.1. Gibbs Sampler

ConsideN observations with time interval We setY; = X1 — X; and letU € RN-2XP pe
the design matrix of the data, scaleddyrhe columns ofJ are indexed in the same way as the
columns of the parameter matr& For example, a two dimensional system would hve 10
and the following design matrix

1 Xa X X5 XuX, X5, X}

U=4| : : : : : : :
2 2 3
1 XNfl.l XN—LZ XN—l,l XNfl.lfol.Z XN—l,Z XN_1\1
XIZJXL2 XMsz sz
Xs_lifol,Z XN—l.lxs_l\z Xg_lz
The log likelihood can be written
= 1 N1 D p P
LAX) = =5 D ol =5 ) D {Yn -] utkAk)zD%m i (Yt,» - UtkA;k), (20)
t=1 t=11i,j=1 k=1 k=1
where the instantaneous covariance magxs; ; is computed fronilD/rf“ ik = (dik+ 2P @ kX )AY2.

We haveDP parameters to infer in the matriX. We use a zero mean Gaussian prior with
covariance matriX' pir; € RPP*PP. Let A € RPP*PP pe a matrix with components

N-1

-1 -1
AP+ j,(k-1)P+ = Z UtiZprist ik Y + Dorife (i—1)P+j,(k=1)P+ (21)
t=1

wherei,k = 1...Dandj,l = 1...P. Lete € RP? with components
i-1)p+j = Z Ut Zorire o Yo (22)
Tk

The posterior meap;_1)p+j Of A j is given by the solution oAy = b and the posterior covari-
ance is COVA\ j, Acl) = Al 1yp, |k 1jp- o



A 1 1 2
0 10000 0 10000 0 10000 0 10000

Figure 1: Output of a Gibbs sampler for 20 drift parametera tfio dimensional model from Ed](3). The observation
interval iss = 10-3 andT = 10,000. The true values are shown in red.

We applied the above Gibbs sampler to a large data set frora ditmensional model of the
form of Eqg. [3) with random values for thefflision parameters. We chose a fine observation
interval ofé = 10°2 and long observation peridd = 10,000. Fig.[1 displays the trace plots for
all 20 parameters (note that the indices are from 0 rather theas in the text). Using this large
data set the algorithm is able to reproduce the true valumsrsin red.

We performed a further simulation study to test the depecelei the posterior estimates
upon the data set used. We inferred all of the drift pararaéteia simple two dimensional model
of the form of Eq. [(B) using data sets of length= {10, 100 1000 and with observation interval
A = {0.1,0.01,0.001. Note that the dfusion function is arbitrary in this model. The results
are shown in Tablg]l1. For each parameter we estimated therjgssnean and the posterior
10th-90th percentiles. A cell is colored blue where the traleie falls within this range. Note
that if we were using the true likelihood, rather than an agjmation, then we would expect
there to be around 80% blue boxes. The error of the estimatesth data set can be quantified
using the quadratiPosterior Expected Loss (PEL) function

f (7, Xope) = f (0" — 60)°7(6]X,,)d6, (23)
(€]
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wheref represents all of the parametersisthe estimated posterior distribution aéidis the
true value of the parameter.

We performed a test with both the Gibbs sampler and data @mtipat In Tab[2 the data is
observed at interval = 0.1. The smaller intervala = {0.01, 0.001} are obtained by imputing
data withm = {10, 100} respectively. The table shows that imputing data approtaétpaoubles
the Posterior Expected Loss. As expected the confidenaeatgeare broader but with more im-
puted data the algorithm can recover the true values. Thiwskthat our data imputing strategy
successfully improves the parameter estimates.

Our aim is to infer models that can be used for prediction.sTdain be problematic when
dealing with non-linear models as some (generally unknaegipns of the parameter space will
give solutions that explode to infinity with probability 1 hiE is a particular problem when, as
exemplified by Tablgl1, large amounts of data are needed &irrée true values.

To demonstrate this problem we performed an inference oroaltmensional cubic model
usingN = 1,000 observations at = 0.1. For each inferred parameter value we then simulated
the solution fofT = 100. After this time we recorded whether the solution regdifinite values
or had exploded. The marginal posterior distributions @ tubic parameters are plotted in
Fig.[2. Each plot shows two histograms: one in blue recoresltstribution of stable parameter
values and in red are those that exploded. Notice that, wdakirlg at the marginal distributions,
the stable and unstable regions largely overlap; itfisadilt to separate the two regions. In this
case 40% of values were unstable. Tests (not shown) indltatéhis is an even bigger problem
in higher dimensions. Therefore, itis essential to usettaimss on the parameter space to enable
only physically meaningful solutions. The necessary ctimas have been derived in sectidn 2.

Thus, as shown above, when updating the drift parametersnaere thatM is negative
definite. In practice it is dicient to check only whether the symmetric pavt ¢ MT)/2 is
negative-definite. In the next section we will develop a eysitic way of sampling negative
definite matrices.

3.3. Sampling Negative Definite Matrices

To sample negative definite matrices we use the Componeet &lgsrithm (32). Here we
sample the density of a x n matrix M, with normally distributed components, subject to the
constraint that it is negative definite. This algorithm ujgdd component wise and is based on
the following property: ax n matrix is negative definite if and only if all < nleading principal
minors obeyM®|(—1)¢ > 0. Thekth principal minor is the determinant of the upper left k
sub-matrix. Consider the parameters along the main didgésahey only entetM once, each
will have an associated upper bound. The Algorifim 3 worksdlgulating the upper bound
associated with the constraints from each principal miribdoes this to find the least upper
bound and thereby the truncation point of the normal digtidin.

Here,N_(u, u, o?) is the right truncated normal distribution with mearstandard deviation
o and upper bound. The df-diagonal parameters enter twice so there will be a quadrati
function determining their limits for each leading prinaipninor. For parameters in element
Mi(}‘) there will be an associated quadratic relaa?{fﬁ\/lizj +bi(;‘) M;j +ci(;‘) = 0 where the coficients
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T=10 T =100 T = 1000
0.1 [ 001 [ 0.001 0.1 [ 001 [ 0001 ] 0.1 [ 001 [ 0001
-0 218 ~044 -195 -013 065 064 002 001 002
Ao = (-25,6.89) (-4.793.74) (-6.07,2.2) (-1.070.77) (-029.1.6) (-0.281.58) (-0.13017) (-0.130.17) (-0.130.18)
-5 —204 486 621 254 473 522 284 459 486
Ao1 = (-7.233.04) (0.849.04) (2311012) (1.783.28) (393551) (4.436.03) (27,2.97) (4454.73) (4735)
-0 263 215 163 045 058 013 ~008 ~014 ~019
Aoz = (-0.165.39) (-0.17.4.49) (~0.664) (-0.521.41) (-0.42,1.6) (-0.891.13) (-0.220.05) (-0.270) (-0.32-0.04)
Aoz = 0 154 -017 026 027 001 -017 -001 0 0
3= (-2.755.84) (-3.122.76) (-2623.2) (-0.380.93) (-0.720.73) (-0.880.54) (~0.080.06) (-0.07,0.06) (-0.07,0.06)
-0 -351 061 13 ~096 ~058 ~007 ~001 ~002 ~002
Aos = (-817,1.13) (-343) (-2.325.07) (-2.090.2) (-1.8068) (-1.3,1.16) (-0.040.01) (-0.040.01) (-0.050.01)
-0 032 0 019 066 002 —027 0 001 0
Aos = (-219281) (-2312.31) (-2.112.49) (-0.111.43) (-0.790.84) (~1.050.55) (-0.060.07) (-0.060.07) (-0.07.0.07)
Ags = _3 -088 -258 -317 -18 292 -305 -171 —275 —291
6= (-2.96,1.24) (~4.3,-0.87) (-4.83-1.49) (-2,-16) (-312-271) | (-325-285) | (-177-165) | (-281.-269) |(-297.-285)
-0 058 -132 ~148 005 ~007 ~022 ~002 ~001 0
A7 = (-1.87,3.06) (-33207) (-3540.52) (-0.490.58) (-0.660.51) (-0.790.37) (-0.07.0.04) (~0.06,0.05) (~0.050.06)
Aog = 0 -083 -028 -018 -048 -037 -016 -002 -001 -001
8 = (-31.31) (-2:311.76) (-2.211.86) (~1.030.07) (-0.960.23) (-0.75042) (-0.080.03) (~0.060.04) (-0.07.0.04)
-0 071 —04 ~049 033 004 009 008 01 012
Agg = (-0.11153) (-1.160.38) (-1.260.27) (-0.020.67) (-0.3039) (-0.25,0.44) (0.020.13) (0.040.16) (0.050.17)
~038 221 =3l ~031 ~018 006 002 005 005
Ao = 0 (-5.194.24) (-6.44,2.03) (-5.2129) (-1.22061) (-1.1,0.75) (~0.890.99) (-013017) (-0.1,02) (-0.1,0.2)
A =0 -293 242 167 088 039 033 -006 011 011
11 = (-8.11,2.15) (-~1.646.48) (-2.295.64) (01,1.64) (-04,1.19) (-0.481.12) (-0.2,0.08) (-0.030.25) (-0.040.24)
Air=5 596 42 472 168 456 509 288 47 498
12 = (3228.68) (1.896.63) (2:337.09) (0.72.2.65) (352557) (4.086.12) (2743.02) (4564.84) (4.845.11)
Az =0 268 -141 -188 -1.05 -061 -0.74 -001 -003 -003
13 = (-1.67,6.93) (-4.36,1.57) (-4.741.02) (-1.72-038) (-1.330.1) (-146-002) | (~0.080.05) (-0.1,0.03) (-0.090.04)
Ais=0 -113 467 423 139 078 091 002 003 003
14 = (-5.8436) (1.01.8.45) (047,7.92) (0.24.2.55) (-0.442.03) (-0.332.14) (-0.01,0.05) (0005) (0,0.05)
042 -06 ~084 -022 ~011 ~024 0 ~001 ~002
Ass = 0 (-2.07,2.94) (-2:881.77) (-3.131.45) (~1.01,0.56) (-0.9,0.7) (~1.060.55) (-0.07,0.06) (~0.080.05) (-0.090.04)
Ac =0 -082 012 039 -008 ~004 -002 -003 -008 -009
16 (-2.941.29) (-161,1.83) (-1.262) (-0.280.12) (-0.240.17) (-0.220.19) (-0.090.03) (-014-002) | (-015-003)
Ais = 0 ~046 -321 —297 -071 ~066 -078 001 ~001 0
17 = (~2.952.04) (-528-122) | (-499-093) |(-125-017) |[(-124-008) |(-135-019) | (-0.050.06) (~0.060.04) (~0.050.05)
Arg =0 066 133 163 065 045 058 006 002 003
18 = (~15,2.86) (-0.71.3.35) (-0.4136) (0111.22) (-0.131.04) (-0.01,1.18) (0010.12) (-0.030.08) (-0.020.09)
Ao = —3 —261 -323 ~347 ~146 273 -3.04 -175 —281 —298
19 = (-344-178) | (-402-245) | (-424-269) | (-18-112) (-307-238) | (-339-27) (-181-169) | (-287-275) | (-304-292)
8.48 5.25 4.96 1.19 0.37 0.36 0.43 0.02 0.01

Table 1: Drift parameter estimates for a two dimensionalcuiodel with arbitrary diusion function. On the left is the
true value of the parameter. The length of the data set usebdanference is labeled dsand the observation interval
is A = {0.1,0.01,0.001. In each cell the parameter is estimated from the postereamand in brackets is shown the
10th-90th percentiles of the posterior. The blue colormgvhere the true value falls in this range. The bottom of the
table shows the Posterior Expected Loss in each case.
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T=10 T =100 T = 1000
0.1 0.01 | 0.001 0.1 | 0.01 | 0.001 | 0.1 | 0.01 | 0.001
Ago = 0 218 -246 -259 -013 -068 -069 002 -008 -008
0 = (-25,6.89) (-8463.52) (-8.353.24) (-1.070.77) (-1.8405) (~1.850.49) (-0.13017) (-0.27,0.09) (-0.260.09)
-5 —204 499 484 254 489 476 284 504 488
Ao1 = (-7.233.04) (-0.7,1061) (-0.491022) (1.783.28) (3835.97) (3.745.79) (27,2.97) (4.87521) (4715.03)
-0 263 061 039 045 ~006 ~02 ~008 ~026 ~028
Aoz = (-0.165.39) (~2.944.05) (~2.953.75) (-0.521.41) (-14213) (-1.491.13) (-0.220.05) (-044-008) | (~0.45-0.09)
Aoz = 0 154 325 326 027 067 059 -001 002 002
3= (-2.755.84) (-1.238.07) (-1.07,7.77) (-0.380.93) (-0.341.67) (~0.41,159) (~0.080.06) (-0.060.1) (-0.060.09)
-0 -351 —253 ~253 ~096 -16 —141 ~001 ~003 ~002
Aos = (-817.13) (-7.762.61) (-7.612.41) (-2.090.2) (-3.350.18) (-3.140.27) (-0.040,01) (~0.050) (-0.050)
Ags = 0 032 185 185 066 118 112 0 005 005
5= (-219281) (-165.2) (-1.43511) (-0.111.43) (0.032.32) (-0.022.25) (-0.060.07) (-0.040.13) (-0.040.13)
3 -088 -4.06 -4.02 -18 -319 -306 -171 -301 -2.92
Aos = — (~2.961.24) (-6.63-176) | (-65-1.79) (-2,-16) (-344-294) | (-33-2383) (-177-165) | (-308-294) | (-2.98-285)
-0 058 044 053 005 043 039 ~002 003 003
Ao7 = (-1.87,3.06) (-227317) (-2.053.23) (-0.490.58) (-037,1.27) (-0.421.19) (-0.07.0.04) (-0.040.09) (-0.030.09)
Aog = 0 ~083 222 212 -048 -1 -092 -002 -002 -002
8 = (-31.31) (~4.980.62) (~4.84,0.65) (~1.030.07) (-186-014) | (-176-009) | (-0.08003) (~0.090.05) (-0.090.05)
-0 071 129 133 033 07 071 008 0.14 015
Aoy = (-0.11153) (0.06.261) (0.1,26) (-0.020.67) (017,1.2) (0191.2) (0.020.13) (0.050.23) (0.060.23)
A= 0 -038 -463 -4.46 -031 066 06 002 -002 -001
10 (-5.194.24) (-1046084) | (-1007,0.86) (-1.22061) (-0551.87) (~0.511.75) (-0.13017) (-0.20.16) (-020.16)
A 0 -293 218 224 088 01 015 -006 008 011
11 = (-8.11,2.15) (-3883) (-3538.27) (01,1.64) (-0.89,1.09) (-0.821.14) (-02,0.08) (-0.090.26) (-0.060.29)
Ar=5 596 828 7.82 168 58 557 288 505 489
12 = (3228.68) (462119) (4.39,1136) (0.72.2.65) (4527.07) (4.366.81) (2743.02) (4885.22) (4.725.05)
Az =0 268 403 408 -1.05 -083 -081 -001 -001 -001
13 = (-1.67,693) (-0.849.1) (-0.638.96) (-172-038) | (-1.76011) (-1.7201) (-0.080.05) (-0.090.08) (-0.090.08)
Ais=0 -113 02 002 139 012 007 002 003 003
14 = (-5.843.6) (-5.796.51) (-5.856.12) (024255) (~1.441.66) (-1.43161) (-0.01,0.05) (00.06) (0,0.06)
A =0 042 149 159 -022 015 02 0 001 0
15 = (-2.07,2.94) (-1.845) (~1.644.85) (~1.01,0.56) (-0.89,1.18) (-0.8,1.19) (-0.07,0.06) (-0.07,0.08) (-0.07,0.08)
Aic =0 -082 -307 -314 -008 -015 -015 -003 -007 -008
16 = (-2.941.29) (-5.88-039) | (-586-05) (-0.280.12) (-0.450.15) (-0.450.15) (-0.090.03) (-0.150.02) (-0.17.0)
Ais = 0 ~046 -137 =4 -071 ~059 ~057 001 005 005
17 = (~2.952.04) (~4.651.87) (-4.451.91) (-125-017) | (-1.36019) (-1.31017) (~0.050.06) (-0.020.12) (-0.030.12)
Ag =0 066 03 -001 065 024 018 006 002 002
18 = (-~15,2.86) (-2.653.15) (-2.732.67) (011.1.22) (-051,0.99) (-0.540.92) (0010.12) (-0.040.08) (-0.040.08)
Ao = —3 —261 —4.44 —41 ~146 -3.09 —2.94 -175 -3.06 —297
19 = (-344-178) | (-558-338) |(-516-313) | (-18-112) (-353-266) | (-336-255) | (-181-169) | (-314-299) | (-3.04-29)
8.48 11.06 | 10.32 1.19 0.76 0.68 0.43 0.01 0.01

Table 2: Drift parameter estimates for a two dimensionalcoindel with arbitrary diusion function. On the left is the
true value of the parameter. The data used is the same ag Fadtle[1 sampled at th& = 0.1 interval. In this case data
is imputed to obtain the intervals = {0.01,0.001}. The bottom of the table shows the Posterior Expected Losach

case.

12



20

> >
= Z
[7) |72
= j=
o < ]
[S [s]
<
o
o o
Z © Z
(%} @D o
2 ° e @
5] 5]
=1 o
o Q
=1 =]
=
e 2
3 B <
= & o=
5] /5]
[a] [a]
)
=]
<
=1
<
o
w0
= =
a 2 <
2 e =
5] 5]
o [}

00 05

Figure 2: Marginal distributions of the cubic parametefsrired from a data set witN = 1, 000 observations at interval
A = 0.1. The blue histogram shows the parameters that gave stlhtéss to the SDE, while the red is for those that
gave unstable solutions. The true values are given by thénesl

13



Algorithm 3 Sample parameters along diagonal
fori=1tondo
U;=0
for j=itondo

X = — (ZJ » (_1)i+lek|M(l)H k)l)/|M(])
k=1

{=iL{- Ill
end for
if x < U;jthen
Uj = X
end if
Mi ~ N_(ui, Ui, o?)
end for

are functions of the other parameters. Thesdfmients are found to be

(S (k)
& = M) (242)
j-1
b = (1) > M1y MB (24b)
b
N
. M
+(_1)I+] Z M k( 1)]+ “ ])/“k]| (24C)
S
i-1
~Lk
DT MM (240d)
e
N
. 4 "
HEDM DT MM (24e)
ah
N k-1
K i i K
= Z Mic(—1)"* Z My (=LMool (247)
e i1
N ) §
Z Mjl(_1)J+I|M§“)’“,/{|,k}| P (249)
1k
WherelM (k9 Wl represents thé&th principal minor with rows and j and columnd andk

removed. IJ—'or each componen; this quadratic form can be solved to give upper and lower
bounds on the parameter. The matkixcan be cycled through updating each parameter in turn.
Algorithm[4 describes the sampling offaliagonal elements using the ¢heients in Eq.[(240).
Here, the notation¥V~ (i, u™, u*, o) refers to the doubly truncated normal distribution witheme
u, left truncationu™, right truncatioru* and standard deviatian.

To simulate from truncated normal distributions we are gi$ire inverse Cumulative Density
Function (CDF) method. One simply calculates the corredpmnCDF of the lower and upper

14



Algorithm 4 Sample parameterdtaliagonal

fori=1tondo
for j=i+1tondo
U = o
Uu = -
for k= jtondo
Calculateai(;(), bi(;() andci(;() and solveai(k) X% + bﬂ.‘)x + ci(;() =0.
Set mn = min(Xy, X2) and mx = max(xl, X2)
end for
if mx< u* then
ut = mx
end if
if mn> u™ then
u =mn
end if
Mij ~ N:r(/lij, u, U+,O'i2j
end for
end for

boundaries and then draws a uniform random variable bettre=se numbers. Inverting the
CDF gives a random variable from the Normal distributiortnieted to this region.

For our problem we use the rejection sampler method pro;im)s@). This method draws
uncorrelated samples directly from the target density.e&&n sampling from a distribution
h(x) is based on a proposal distributig(x) such thath(x) < Cg(x) holds for some constat
and all of the support df(x). For a one sided truncated Normal the exponential didfdhus a
good proposal. First it is translated to coincide with thetration point, then the rate parameter
is optimized in order to closely match the tail of the Normiatidbution.

9z a.pu) = aexpCa(z—p7)lzy (25)

The optimal value ofr is calculated by maximizing the expected acceptance pilityadnd is
shown to be
oy M+ N+ 4
@) = (26)
More details are given in (34).

We performed a numerical study to compare the standard Namde&Exponential proposals.
The dficiency of proposing from the standard normal and then accepting i u~ falls to
approximately @23 while for the optimized exponential proposal it is apgmately Q5.

For the doubly truncated Normal one uses either an expaientiniform distribution, as a
proposal, depending upon the size of the truncated reditime following holds

2+/e (U)?—u ()2 + 4)
u + (u)2+4 4
then it can be shown that the exponential is mdfieient, otherwise the uniform is bettér (34).
Fig.[3 shows both the uniform and exponential approximatfonboth cases.
15
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Figure 3: Doubly truncated normal distribution. The top fighasu™ = 2 andu™ = 3 and is better approximated with
the exponential distribution. The bottom figure ias= 2 andu®™ = 2.5 and the uniform is morefiécient.
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We use AlgorithmEI3 arld 4, along with the methods of samptimgaated Normal variables,
to sample the stability matrii. We tested this algorithm on a three dimensional model with
T = 100. In this case the dimensionlfisn = D(D+1)/2 = 6. Note that this MCMC algorithm
still mixes well. Fig[4 compares the posterior distribng@stimated from the Component Wise
Algorithm and the standard Gibbs sampler. Notice the laifjer@nces between the distributions
in each case. Similar results (not shown) are obtained #®rothdiagonal parameters using
Algorithm([4.

4, Results

4.1. Deterministic Double Well Potential Model

The first conceptual climate model we consider is a cubic hodepled to the chaotic
Lorenz systen@g). Itis fully deterministic and considta slow variable which can be thought
of as representing a climate process and three fast vagialiieh can be thought of as repre-
senting chaotic weather fluctuations. The slow variableesanside a double well potential and
is perturbed by the chaotic Lorenz system, which affiscévely as noise whea — 0. The
equations are as follows

dx 4

a = X- X3 + @yz (27a)
d 10
= ) (27b)
dyz 1
v 2(28)’1 — Y2 = Y1Y3) (27¢)
dy3 1 8
v z(YD’z - gys) : (27d)

Sample paths are displayed in Fig. 5. We now fit a one dimeabiubic SDE to the data. We
just consider the general cubic form|(26)

dX = (a1 + apX; + agX? + ayX3)dt + ocdW (28)

and estimate all of the parametéas, a, ag, a4, o} from sparse observations of the system: again
usingA = 10.0 andN = 1000. To update the drift parameters we use the Gibbs sampler
Sectior 3.Z]1. The estimated posterior distributions aosve in Fig.[®. A lot of imputed data is
needed before the estimates start to converge towardsltiesyaedicted by homogenization but
the inference demonstrates that there is enough informititne sparse data set if the likelihood
is well approximated.

Figure[T shows the predictive skill of the one dimensiondlud model for- estimated
for variousm. We use the empirical mean estimate for the parameter vakigsired ¥a and
[Zb show that the reduced model can reproduce the double ig&ibdtion of the full model
although the separation of each well is underestimatedhfer 2 andm = 4 due to the larger
noise. Fom > 8 the model reproduces well the full models marginal distidn for x. It is not
clear whether there is muchftérence betweem = 8 andm = 64. However, observing Figures
[c and¥d we see that the autocorrelation function for tHerfatlel is much better approximated
whenm = 64. This shows that the ability of our framework to imputeadiata powerful way of
deriving accurate reduced order models.
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Figure 5: Example path of x of the chaotic Lorenz system: Eddy

4.2. Model Reduction for Triad Systems

Now we apply our model fitting procedure to a triad model withigh dimensional deter-
ministic system with two slow, climate variables couplefktst chaotic dynamics. The reduction
strategy has two challenges: to successfully approxirhatdéterministic variables by a stochas-
tic process and to be insensitive to a lack of time scale s¢ipar

The full system is given by

dx b

i o (29a)

d b

= D (29b)

d b ik ~r

d—);k = fxlxzdl,k - Re—2 g (29c¢)

p+g+k=0

dz ik

H = —ImZ—E2 Z Upuq, (29d)
p+g+k=0

whereuy = Yy +iz. This system is stable provided that the energy is consebyeeh, + b; = 0.

We use the values = {0.9, —0.5— 0.4} (our results are insensitive over a wide range of parameter
values) and we choose a cuf of A = 50. Sample paths are displayed in F[J. 8. We are
interested in eliminating leaving equations for just; andx,. The small parameterrepresents

the time scales within the system. The variabjesave fastest time scale of ordéx1/e?)
compared t@(1/¢€) for x; andx,. Ase — 0 we can use the method of homogenization for SDEs
to eliminate the fast variables and this gives

by 5 o2 o

dx(t) = —(03x(t) + —by)xy(t)dt + —byx,(t)dW§ (30a)
Y 2y Y
by 5 o2 o

dx(t) = —(baxy(t) + —by)xa(t)dt + —baxy (t)dW, (30b)
Y 2y Y

where unknown parametessandy have been introduced. Here we estimate them using the
Algorithms[d andR from observations of the climate varialdone. For convenience we con-
19
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sider the inference problem where the model Eql (30) is drivetwo independent Brownian

20



Invariant Distribution Invariant Distribution

Density
Density

0.0

T T — =
-15 -10 -05 00 05 10 15
X X

(a) Invariant distribution with e = 0.1.
Histogram is for the full system, the
lines correspond to different m.

Lag

(¢) Autocorrelation function for € = 0.1.
Bars are for the full system.

(b) Invariant distribution with e = 0.01.
Histogram is for the whole system, the
lines correspond to different m.

ACF
|
{

o |- Wity
e —T—— — —— —— —

0 20 40 60 80 100
Lag

(d) Autocorrelation function for € =
0.01. Bars are for the full system.

Figure 7: Predictive statistics for the reduced double weldel coupled to chaotic Lorenz system: Hg. {27d) for two
values ofe. In each plot the lines correspond to the inferred one dimeasmodel for diferentm.

motions.

Posterior estimates for the case= 0.8 are shown in Fig[]9. This value corresponds to a
moderately small, though realistE{lél), amount of timdessaparation. As Fi.]9 demonstrates,
increasing the number of imputed data leads to a convergamtehus, to an improvement of
the posterior estimates.

We apply the inference to a data set with total time 500 and observation intervAl= 0.1.

We simulate the system fer= {0.1,0.25, 0.5, 0.8, 1.0}. Fig.[10 shows the predictive probability
densities and autocorrelation functions for [Eg] 30. In ezae the data is simulated from the
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full model Eq.[29, then the parameters are estimated usigettiuced model Eq._BO and this
reduced model is simulated to calculate the predictivéssizg. The posterior mean estimates
were computed for & 16 missing data values (it was veried that the posterionsferl6 and m

< 16 gave consistent estimates). The reduced moddlEq. 3Gwigirical parameter estimates
is also plotted. This model is referred to as the reduced iindgure[10. The reduced model

is able to reproduce the non-trivial shape of the PDF very.Wélis suggests tha reduced order
models fitted from observed data can be used for extreme saldees|(16).

The autocorrelation functions have been collapsed ontodtieced model by rescaling the
output interval of the prediction by their value @fthis has been done for convenience of dis-
playing the results. The data collapse is very good for atlehsimulations with the models with
€ < 0.5 being closest to the reduced model. This implies that tharpeter estimates for each
case are partially compensating for the changing time se&garation. This provides evidence
for the potential of using reduced order modelling strags@ven in systems with only moderate
time scale separation.

5. Summary

Here we developed a systematic Bayesian framework for tieeence of the parameter of
SDEs constrained by the physics of the underlying systene pltysical constraints not only
constrain the parameter space but also enforce globalistaifithe reduced order models.

For climate models we derive a constraint based on energecaeation which ensures global
stability of the dfective SDE. This constraint takes the form of a negative defmatrix. We
then develop a new algorithm for the sampling of negativenitefmatrices. We also develop a
new algorithm for imputing data and show that imputing datprioves the accuracy considerly
of the parameter estimation. We demonstrated its poweesstdly on two conceptual climate
models.

While we focused on climate models in this study our methagkiseral enough that it can
also be applied to other areas of fluid dynamics. Furthernadge many other physical systems
observe conservation laws and, thus, stability conditaamsbe derived which will be useful for
parameter estimation procedures.
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