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Three-step estimation of latent Markov models with covariates

Francesco Bartolucci∗ Giorgio E. Montanari† Silvia Pandolfi∗‡

Abstract

We propose a modified version of the three-step estimation method for the latent class model with
covariates, which may be used to estimate latent Markov models for longitudinal data. The three-step
estimation approach we propose is based on a preliminary clustering of sample units on the basis of the
time specific responses only. This approach represents an useful estimation tool when a large number
of response variables are observed at each time occasion. In such a context, full maximum likelihood
estimation, which is typically based on the Expectation-Maximization algorithm, may have some
drawbacks, essentially due to the presence of many local maxima of the model likelihood. Moreover,
the EM algorithm may be particularly slow to converge, and may become unstable with complex LM
models. We prove the consistency of the proposed three-step estimator when the number of response
variables tends to infinity. We also show the results of a simulation study aimed at evaluating the
performance of the proposed alternative approach with respect to the full likelihood method. We
finally illustrate an application to a real dataset on the health status of elderly people hosted in
Italian nursing homes.
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1 Introduction

In many applications involving longitudinal data, the interest is often focused on the evolution of a latent

characteristic of a group of individuals over time, which is measured by one or more occasion-specific

response variables. This characteristic may correspond, for instance, to the quality-of-life of subjects

suffering from a certain disease, to a certain type of ability, or to the tendency to commit crimes.

The latent Markov (LM) models of Wiggins (1973) may be usefully applied in such a context; for

a review see Bartolucci et al. (2013). The main assumption underlying these models, known as local

independence, is that the response variables are conditionally independent given a latent process which

follows a Markov chain with a finite number of states and which is typically homogeneous and of first

order. The basic idea behind this assumption is that the latent process fully explains the observable

behavior of a subject; moreover, the latent state to which a subject belongs at a certain occasion only

depends on the latent state at the previous occasion. In the presence of multivariate outcomes (more

response variables for each time occasion), the model allows for a dynamic clustering of subjects also

depending on individual covariates.

LMmodels may be estimated by a Full Maximum Likelihood (FML) method based on the Expectation-

Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977) and recursions which are well

known in the hidden Markov literature (Baum et al., 1970; Zucchini and MacDonald, 2009). However,

especially in the presence of many response variables for each time occasion and individual covariates,

the FML estimation may have some drawbacks, as illustrated in more detail in the following.

In this paper, we propose an estimation approach which may be seen as an extension of the three-step

estimation method for the latent class (LC) model with covariates (Vermunt, 2010). This new estimation

method is based on a preliminary dynamic clustering of subjects on the basis of only the time-specific

responses, and may be seen as a stable alternative to the full likelihood method, which also allows for

fast estimation of the model parameters.

We recall that, when applied to the LC model with covariates, the three-step estimation approach

consists of first fitting a basic LC model for the set of response variables ignoring the covariates. Then, the

subjects are assigned to the latent classes on the basis of their posterior class membership probabilities.

Finally, the association between class membership and individual covariates is investigated through the

estimation of a suitable multinomial logit model (see, among others, Bolck et al., 2004; Lu and Thomas,

2008; Bakk et al., 2013).

In the proposed version of the three-step approach, hereafter 3S, every sample unit is not strictly

assigned to a latent state at each occasion and this latent state can change across time. In this way,
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even the parameters affecting the transition probabilities of the latent Markov chain may be estimated.

We apply this estimation method to the basic LM model and to its extended version which includes

individual covariates.

The performances of the proposed 3S estimation method are assessed through a Monte Carlo sim-

ulation study in comparison with those of the FML method. We also illustrate the approach by an

application based on a real dataset which derives from a project, named ULISSE, on the health status

of elderly people hosted in Italian nursing homes.

The paper is organized as follows. In Section 2 we outline the basic LM model and its extended

version with individual covariates. Section 3 illustrates the estimation of the model on the basis of the

standard FML method, whereas in Section 4 we outline the proposed 3S estimation approach. In Section

5 we illustrate the results of the simulation study, aimed at evaluating the performances of the proposed

estimation approach, and in Section 6 we show the results of the application to real data. Section 7

contains main conclusions.

2 Latent Markov model

In the following, we illustrate the basic latent Markov (LM) model and its extended version which includes

individual covariates.

2.1 Basic LM for multivariate data

Let consider the multivariate case in which we observe a vector Y (t) of r categorical response variables,

Y
(t)
j , with cj categories, from 0 to cj − 1, j = 1, . . . , r, which are available at the t-th time occasion,

t = 1, . . . , T . Let also Y be the vector made up of the union of the vectors Y (t), t = 1, . . . , T .

The model assumes the existence of a latent processU = (U (1), . . . , U (T )) which affects the distribution

of the response variables. Such a process is assumed to follow a first-order Markov chain with state

space {1, . . . , k}, where k is the number of latent states. Under the local independence assumption, the

response vectors Y (1), . . . ,Y (T ) are assumed to be conditional independent given the latent process U .

Moreover, the elements Y
(t)
j within Y (t), t = 1, . . . , T , are conditionally independent given U (t). This

assumption leads to a strong simplification of the model but it can be relaxed by allowing conditional

serial dependence or conditional contemporary dependence (for details, see Bartolucci et al., 2013). Note

also that the LM model may be seen as an extension of the latent class (LC) model (Lazarsfeld, 1950;

Lazarsfeld and Henry, 1968; Goodman, 1974), in which the assumption that each subject belongs to the
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same latent class throughout the survey is suitable relaxed.

The model formulation is based on the following conditional response probabilities:

φjy|u = p(Y
(t)
j = y|U (t) = u), j = 1, . . . , r, u = 1, . . . , k, y = 0, . . . , cj − 1, (1)

which are collected in the matrix Φj of dimension cj × k. Moreover, parameters of the latent process are

the initial probabilities

πu = p(U (1) = u), u = 1, . . . , k,

collected in the vector π, and the transition probabilities

πv|u = p(U (t) = v|U (t−1) = u), t = 2, . . . , T, u, v = 1, . . . , k,

collected in the matrix Π. Note that all these probabilities do not depend on the specific sample unit

since, in its basic version, the LM model does not include individual covariates. Moreover, in this version

the conditional response probabilities and the transition probabilities are time-homogeneous.

The above assumptions imply that the distribution of U may be expressed as

p(U = u) = πu(1)

T
∏

t=2

πu(t)|u(t−1) ,

where u = (u(1), . . . , u(T )) denotes a realization of U . Moreover, the conditional distribution of Y given

U is defined as

p(Y = y|U = u) =

T
∏

t=1

φy(t)|u(t) ,

where y is made by the subvectors y(t) = (y
(t)
1 , . . . , y

(t)
r ), and, in general, due to the assumption of local

independence, we define

φy(t)|u =
r
∏

j=1

φ
jy

(t)
j

|u
.

Finally for the manifest distribution of Y we have

p(y) = p(Y = y) =
∑

u

πu(1)πu(2)|u(1) · · ·πu(T )|u(T−1)φy(1)|u(1)φy(2)|u(2) · · ·φy(T )|u(T ) . (2)

It is important to note that computing p(y) as expressed in (2) involves a sum extended to all the possible

kT configurations of the vector u; this typically requires a considerable computational effort. In order to

efficiently compute such a probability, we can use the Baum-Welch forward recursion (Baum et al., 1970;
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Welch, 2003); see Bartolucci et al. (2013) for details.

2.2 Extended LM model with individual covariates

Let x(t) denote the vector of individual covariates which are available at the t-th time occasion, and let x

denote the vector of all the individual covariates, which is obtained by stacking the vectors x(1), . . . ,x(T ).

In this paper, we consider the case in which the covariates are included in the latent model, so as to

affect the initial and transition probabilities. In this situation, the assumption of local independence and

the assumption that the latent process is of first order still hold. Moreover, the conditional response

probabilities are again time-homogeneous and equal for all subjects as in (1). The initial and transition

probabilities depend instead on the individual covariates through a multinomial logit model

log
p(U (1) = u|x(1))

p(U (1) = 1|x(1))
= β0u + (x(1))′β1u, u > 2, (3)

log
p(U (t) = v|U (t−1) = u,x(t))

p(U (t) = u|U (t−1) = u,x(t))
= γ0uv + (x(t))′γ1uv, t > 2, u 6= v. (4)

In the above expressions, βu = (β0u,β
′
1u)

′ and γuv = (γ0uv,γ
′
1uv)

′ are parameter vectors to be estimated

which are collected in the matrices β and Γ.

The manifest distribution of Y is now conditional to x and may be easily defined as an extension of

(2). The corresponding probability function is denoted by p(y|x).

3 Maximum likelihood estimation

Given a sample of n independent units that provides the response vectors y1, . . . ,yn, and given the

vectors of covariates x1, . . . ,xn, the model log-likelihood assumes the following expression

ℓ(θ) =

n
∑

i=1

log p(yi|xi).

Note that in this case each vector yi is a realization of Y i which is made up of the subvectors y
(t)
i ,

t = 1, . . . , T , that, in turn, have elements y
(t)
ij , j = 1, . . . , r. Moreover, xi may be decomposed into

the time-specific subvectors of covariates x
(1)
i , . . . ,x

(T )
i . Note also that p(yi|xi) corresponds to the

manifest probability of the responses provided by subject i, given the covariates, and θ is the vector of

all free parameters affecting p(yi|xi). The likelihood function can be maximized by the EM algorithm

(Baum et al., 1970; Dempster et al., 1977), as described in the following section.
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3.1 Expectation-Maximization algorithm

The EM algorithm is based on the complete data log-likelihood that we could compute if we knew the

latent state of every subject at each occasion. The complete data are represented by the pairs (ui,yi),

i = 1, . . . , n, where ui = (u
(1)
i , . . . , u

(T )
i ) is the sequence of latent states of subject i. The complete data

log-likelihood has the following expression

ℓ∗(θ) =

n
∑

i=1

[

r
∑

j=1

T
∑

t=1

k
∑

u=1

cj−1
∑

y=0

a
(t)
ijuy logφjy|u +

k
∑

u=1

b
(1)
iu log p(U

(1)
i = u|x(1)

i )

+

T
∑

t=2

k
∑

u=1

k
∑

v=1

b
(t)
iuv log p(U

(t)
i = v|U (t−1)

i = u,x
(t)
i )

]

, (5)

where a
(t)
ijuy is the indicator variable for subject i responding by y at occasion t to response variable j

and belonging to latent state u at the same occasion, b
(t)
iu is the indicator variable for subject i being in

latent state u at occasion t, whereas b
(t)
iuv is the indicator variable for the transition, of subject i, from

state u at occasion t− 1 to state v at occasion t.

The EM algorithm alternates the following two steps until convergence:

• E-step: it consists in computing the posterior expected value of each indicator variable involved

in (5) by suitable forward-backward recursions (Baum et al., 1970);

• M-step: it consists in maximizing the complete data log-likelihood expressed as in (5), with each

indicator variable substituted by the corresponding expected value. How to maximize this function

depends on the specific formulation of the model and, in particular, on whether the covariates are

included in the measurement model or in the latent model.

Even if the EM algorithm is typically used to estimate LM models, in real applications the FML

estimators may have some drawback. In particular, it is not uncommon that the number of response

variables for each time occasion is very large, as well as the number of estimated latent states. As an

example, in the application illustrated in Section 6, the dataset consists of r = 75 polytomous items,

with a different number of response categories, and 28 individual covariates, for which we estimate

an LM model with k = 4 latent states. In similar circumstances, the model likelihood may present

many local maxima, requiring then a very high number of random starting values to find the global

maximum. Moreover, the EM algorithm may be particularly slow to converge, and may become unstable

with complex LM models, which also include a large number of time-fixed or time-varying covariates.

All these problems cannot be solved by a direct maximization algorithm, such as the Newton-Raphson
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algorithm which is known to have instability problems even in simpler cases (see, among others, Turner,

2008). The proposed 3S estimation approach allows us to overcome some of these problems without being

computationally intensive. Moreover, this strategy may also be useful to define suitable starting values

for the EM algorithm to be used in the full-maximum likelihood approach.

4 Proposed three-step estimation approach

In the literature on LC models, the three-step approach (Vermunt, 2010) represents an alternative to

the FML method to deal with the inclusion of individual covariates. The latter approach may indeed be

impractical in some applications, especially when the number of covariates is large, as typically happens

in exploratory studies. Moreover, the simultaneous modeling of covariates and latent variables may

introduce additional complexity in selection and estimation of models, with a potentially large number

of parameters (Bakk et al., 2013).

In this section, we introduce a modified version of the three-step approach in order to estimate the

basic LM model and its extended version with individual covariates. More in detail, the proposed 3S

method is based on the following steps:

• Step 1: Fit a basic LC model for the set of response variables in which the responses provided by

the same sample unit at different occasions are considered as corresponding to separated units. On

the basis of this preliminary fitting, performed via the EM algorithm, we obtain the final estimates

of the conditional response probabilities, φ̂jy|u, and the “temporary” estimates of the marginal

probabilities of the latent states ρ̂u = p̂(U
(t)
i = u).

• Step 2: For each subject i compute the posterior expected value of b
(t)
iu and b

(t)
iuv (see equation (5))

only on the basis of the results of the first step as

b̃
(t)
iu ∝ ρ̂u p̂(Y

(t)
i = y

(t)
i |U (t)

i = u) = ρ̂u
∏

j

φ̂
jy

(t)
ij

|u
, t = 1, . . . , T,

b̃
(t)
iuv = b̃

(t−1)
iu b̃

(t)
iv , t = 2, . . . , T.

• Step 3: Maximize the components of the complete data log-likelihood involving the latent structure
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parameters

ℓ̃∗1(β) =
∑

i

∑

u

b̃
(1)
iu log p(U

(1)
i = u|x(1)

i ), (6)

ℓ̃∗2(Γ) =
∑

i

∑

t>2

∑

u

∑

v

b̃
(t)
iuv log p(U

(t)
i = v|U (t−1)

i = u,x
(t)
i ). (7)

For the basic LM model, the third step simply consists in computing

π̃u ∝
∑

i

b̃
(1)
iu ,

π̃v|u ∝
∑

i

∑

t>2

b̃
(t)
iuv.

When we deal with the extended LM model with covariates, the last step consists of estimating β and

Γ, defined in (3) and (4), by fitting multinomial logit models based on a weighed likelihood as defined in

(6) and (7); the corresponding estimates are denoted by β̃ and Γ̃, respectively.

In order to overcome some limitations in the estimation of the parameters of the latent process, we

also consider an improved version of the 3S approach, termed as 3S-IMP, in which the second and the

third steps are iterated until convergence, while keeping the results from the first step fixed. More in

detail, after an initial estimate of the latent structure parameters, each Step 2 is based on computing

b̃
(t)
iu ∝ p̃(U

(t)
i = u|x(t)

i ) p̂(Y
(t)
i = y

(t)
i |U (t)

i = u), t = 1, . . . , T,

b̃
(t)
iuv ∝ p̃(U

(t−1)
i = u|x(t−1)

i ) p̂(Y
(t−1)
i = y

(t−1)
i |U (t−1)

i = u)

× p̃(U
(t)
i = v|U (t−1)

i = u,x
(t)
i ) p̂(Y

(t)
i = y

(t)
i |U (t)

i = v), t = 2, . . . , T.

In the above expressions, the probabilities p̃(·|·) are based on the estimates from the previous iteration.

Finally, each Step 3 is performed in the same way as in the initial version of the algorithm.

As we shall see in more detail in the following section, the proposed 3S estimation algorithm produces

consistent estimates of the conditional response probabilities φ̂jy|u, with easily interpretable results.

Moreover, since the first step is based on fitting a basic LC model, several starting values may be easily

tried and the global maximum of its likelihood may be found with a reasonable effort. Another advantage

with respect to the full likelihood method is that estimation of πu and πv|u, or β and Γ when we include

individual covariates, is fast and there are no problems of multiple solutions. Finally, it is worth noting

that the behavior of the estimator of the parameters of the latent process is expected to improve as
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the number of response variables increases, since more information about clustering is provided by the

response variables.

4.1 Properties of the three-step estimator

In the following we discuss the asymptotic properties of the 3S estimator that hold as the sample size

and the number of response variables tend to infinity, keeping the number of latent states fixed.

Proposition 1. When the sample size n tends to infinity, the three-step estimation method described in

Section 4 produces consistent estimates of the conditional response probabilities φ̂jy|u, provided that the

data are generated from a LM model with a given number of states k.

Proof. Recall that, for the basic LM model for multivariate data, the manifest distribution of each vector

of response variables Y (t) for the t-th time occasion may be written as follows:

p(Y (t) = y(t)) =
∑

u(t)

φy(t)|u(t)πu(1)πu(2)|u(1) . . . πu(t) |u(t−1)

=
∑

u(t)

φy(t)|u(t)λ
(t)

u(t)

=
∑

u(t)





r
∏

j=1

φ
jy

(t)
j

|u(t)



λ
(t)

u(t) , (8)

where

λ
(t)

u(t) = P (U (t) = u(t)) = πu(1)

t
∏

s=2

πu(s)|u(s−1) .

Consider also an alternative data generating process in which, at the first step, we randomly choose the

time occasion t and, at the second step, we obtain ỹ as the response configuration of the sample unit

corresponding to the selected occasion t. Then, for an arbitrary t we have

p(ỹ) =
∑

u





r
∏

j=1

φjyj |u



 λ̄u,

where λ̄u = 1/T
∑

t λ
(t)

u(t) may be interpreted as the average probability, overall the different time oc-

casions, of being in state u. Therefore, by fitting the basic LC model for the set of response variables

in which the responses provided by the same subject at different occasions are considered as separated

sample units, corresponds to consider a likelihood for all vectors ỹ, whose maximization allows us to

obtain consistent estimates of the conditional response probabilities φjy|u.
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When we deal with the extended LM model with individual covariates, expression (8) becomes

p(Y (t) = y(t)) =

∫

x
p(Y (t) = y(t)|x)f(x)dx

=

∫

x

[

∑

u(t)

p(Y (t) = y(t)|U (t) = u(t))P (U (t) = u(t)|x)
]

f(x)dx

=

∫

x

[

∑

u(t)

φy(t)|u(t)P (U (t) = u(t)|x)
]

f(x)dx

=
∑

u(t)

φy(t)|u(t)

∫

x
P (U (t) = u(t)|x)f(x)dx

=
∑

u(t)

φy(t)|u(t)P (U (t) = u(t)) =
∑

u(t)





r
∏

j=1

φ
jy

(t)
j

|u(t)



 λ
(t)

u(t) .

We then conclude that, even in the presence of individual covariates, as n goes to infinity, the 3S estimator

of φjy|u is consistent.

Proposition 2. When the sample size n and the number of response variables r tend to infinity, the

three-step estimation method described in Section 4 produces consistent estimates of the parameters of the

latent process, provided that the data are generated from an LM model with a given number of states k,

and that exists a fixed constant ǫ > 0 such that
∑

y(φjy|u − φjy|v)
2 > ǫ, ∀ v 6= u, ∀ j.

Proof. Consider that, at Step 2 of the proposed 3S estimation method, we can assign the subjects to the

different latent states for each time occasion on the basis of the estimated posterior probabilities, that

may be expressed as

p(U
(t)
i = u|Y (t)

i = y
(t)
i ) =

p(Y
(t)
i = y

(t)
i |U (t)

i = u) p(U
(t)
i = u)

p(Y
(t)
i = y

(t)
i )

=

(

∏r

j=1 φjy
(t)
ij

|u

)

p(U
(t)
i = u)

p(Y
(t)
i = y

(t)
i )

.

When the sample size n and the number of response variables r tend to infinity, provided that these

variables are not independent of the latent variable defining the latent states, the allocation of the

subject tends to the true one with probability which tends to 1 and, therefore, the parameters of the

latent process are consistently estimated.
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5 Simulation study

In the following, we rely on a Monte Carlo simulation study aimed at evaluating the behavior of the

proposed 3S and 3S-IMP estimation algorithms, illustrated in Section 4, in comparison with the FML

method under a benchmark design and other possible scenarios. We consider both estimation of the basic

LM model and of the extended LM model with individual covariates. In particular, we generate sample

data with certain population parameters and we evaluate the performance of the two estimation methods

in terms of bias, standard error, and root mean square error on the basis of 100 simulated samples.

5.1 Basic LM model

For the basic LM model, the benchmark design (Scenario 1) is based on the following setting:

• sample size: n = 500;

• number of time occasions: T = 5;

• number of response variables: r = 5, 10, 20, 50;

• number of categories of the response variables: cj = 2, j = 1, . . . , r;

• number of latent states: k = 2,

• conditional response probability matrix: Φj =

(

0.7 0.3

0.3 0.7

)

j = 1, . . . , r;

• initial probability vector π =

(

0.5

0.5

)

;

• transition probability matrix Π =

(

0.9 0.1

0.1 0.9

)

.

All the algorithms have been implemented by means of a series of R functions with the recursions

implemented in Fortran (gfortran compiler) and were run on a Intel Core i5 processor with 2.5 GHz.

In Table 1 we report the estimation results of the conditional response probabilities obtained by the

FML method and the 3S estimation method. The table only shows the scenario in which r = 5, because

for r = 10, 20, 50 we obtained similar results.

[Table 1 about here.]

These results are in agreement with Proposition 1, according to which the conditional response probabil-

ities are consistently estimated by the proposed approach, even if some loss of efficiency is observed.
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Table 2 concerns estimators FML, 3S and 3S-IMP of the initial probabilities, whereas in Table 3 we

display the estimation results of the transition probabilities obtained by the methods under comparison.

[Table 2 about here.]

[Table 3 about here.]

From the results above we observe that the bias of π̃u is always negligible and its root mean square

error decreases as the number of response variables increases. Moreover, very small differences are found

between the two versions (3S and 3S-IMP) of the proposed estimator. Regarding the three-step estimator

of the transition probabilities, we observe that its bias is higher with few response variables for each time

occasion, especially in the standard version (3S), but it decreases with r. The same happens for the

root mean square error. The 3S-IMP version has better performance, with a bias of π̃v|u which becomes

negligible when r > 20. When r = 50 the results of both versions are very similar to those obtained by

the FML estimator.

In the second scenario defined in our simulation study, we evaluate how a lower persistence of the

Markov chain may influence the performance of the estimation algorithms under comparison. In fact, we

consider the same parameters as in the benchmark design apart from the transition probability matrix,

which is let equal to

Π =

(

0.6 0.4

0.4 0.6

)

.

In this situation, the conditional response probabilities are again consistently estimated by both the FML

and the 3S methods, with very similar results in terms of bias and root mean square error than Scenario 1.

Very similar performances with respect to the benchmark design are also obtained by the estimators of the

parameter πu. Therefore, we report here only the results about estimation of the transition probabilities.

From Table 4 we observe that, with a lower level of persistence of the Markov chain, the behavior of

π̃v|u improves. In particular, we note smaller differences, in terms of bias, standard error, and root mean

square error, between the FML and the 3S estimator and also between the 3S and the 3S-IMP estimator.

[Table 4 about here.]

Under Scenario 3 we consider more separated latent states, with a parameter setting equal to the

benchmark design, apart from the conditional response probability matrix, that is,

Φj =

(

0.9 0.1

0.1 0.9

)

, j = 1, . . . , r.
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In this context, all the estimators improve their performances, leading again to consistent estimates of

the conditional response probabilities φjy|u; we also observe an improvement in estimating the initial

probabilities πu. Focusing only on the transition probabilities, whose estimation is the most challenging,

from Table 5 we observe a great improvement of the 3S approach, with negligible differences in terms of

bias and root mean square error of π̃v|u, with respect to the FML method and between the two versions

of the three-step method, especially when r > 10.

[Table 5 about here.]

The fourth scenario we consider for the basic LM model allows us to evaluate the influence of a larger

number of latent states. We then apply the following setting:

• number of latent states: k = 3;

• conditional response probability matrix: Φj =

(

0.7 0.3 0.5

0.3 0.7 0.5

)

, j = 1, . . . , r;

• initial probability vector: π =









1/3

1/3

1/3









;

• transition probability matrix: Π =









0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6









.

The remaining parameters are left unchanged with respect to the benchmark design.

In such a context the performances of all estimators get worse, with higher bias and root mean square

error; see Table 6 which reports the results regarding the estimation of πv|u. As in the previous scenarios,

the performance of the proposed estimator improves as the number of response variables increases.

[Table 6 about here.]

We finally assess the influence of the sample size n and of the number of time occasions T on the

estimation results by considering the same parameters setting as in Scenario 1 apart from n = 1000 and

T = 8. When the sample size and/or the number of time occasion increase, we observe an expected

improvement of all estimators; for example, the standard error of the estimators decreases, in general,

with
√
n. We do not report here these results for reason of space.

In comparing the estimation approaches, it is relevant to take into account the computing time

required to run the algorithms of interest. In particular, we observe that under the benchmark design

(Scenario 1) the computing time required by the 3S approach is, in all samples, significantly lower than
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that required by the FML approach. On the other hand, the computational cost of the 3S-IMP version

is higher, especially with a few response variables. The number of iterations required by the 3S-IMP

version to reach the convergence goes, in average, from 27 (with r = 5) to 4 (with r = 50). Under

Scenario 2, we observe an increase of the computational cost of the FML estimation algorithm. On the

other hand, the computing time required by the two versions of the three-step algorithm is similar to that

of Scenario 1, with a very similar number of iterations to reach the convergence (from 21 with r = 5, to

4 with r = 50). The third scenario shows a strong decrease of the computing time for all the algorithms,

together with a reduction of the number of iterations to converge required by the 3S-IMP algorithm,

which goes from 6 (with r = 5) to 1 (with r = 50). In this context the computational cost of the 3S

algorithm remains always significantly lower than that of the FML algorithm, whereas, for the 3S-IMP

algorithm, this happens only for r > 20. Finally, when the number of latent states increases (Scenario

4), the computing time required by the FML algorithm becomes significantly higher. We also observe a

strong increase of the number of iterations required by the 3S-IMP approach to reach the convergence,

which goes from 95 (with r = 5) to 15 (with r = 50).

5.2 LM model with individual covariates

For the extended LM model with individual covariates illustrated in Section 2.2, the benchmark design,

which corresponds to Scenario 1 of the basic LM model, is based on the following setting:

• sample size: n = 500;

• number of time occasions: T = 5;

• number of response variables: r = 5, 10, 20, 50;

• number of categories of the response variables: cj = 2, j = 1, . . . , r;

• number of latent states: k = 2;

• number of covariates affecting the initial probabilities: q1 = 2;

• number of covariates affecting the transition probabilities: q2 = 2;

• conditional response probability matrix: Φj =

(

0.7 0.3

0.3 0.7

)

j = 1, . . . , r;

• β =
(

0 0.5 1
)′

;
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• Γ =









log(0.1/0.9) log(0.1/0.9)

0.5 0.5

1 1









.

As for the basic LM model, the estimation results are based on 100 simulated samples; moreover, the

individual covariates have been generated from an AR(1) process with autoregressive parameters equal

to 0.5 and a gaussian noise process with variance equal to 1.

Table 7, in which are reported the results of the FML and the 3S estimators of the probabilities φjy|u

for r = 5, confirms that the proposed approach leads again to consistent estimates of the conditional

response probabilities.

[Table 7 about here.]

Table 8 shows the estimation results of parameters in β obtained by the two methods. From the table,

we note that the 3S estimator has a low bias when r > 20. Moreover, we observe a much lower bias of

the 3S-IMP estimator, whose behavior is similar to that of the FML estimator. The standard error and

the root mean square error decrease as the number of response variables increases.

[Table 8 about here.]

Regarding the three-step estimation of parameters in Γ, we observe that the bias (and the root mean

square error) may be large with a few response variables for each time occasion (see Table 9), but it

decreases with r and it is negligible for r = 50. Moreover, we note an improvement from the 3S to the

3S-IMP version of the algorithm.

[Table 9 about here.]

Scenario 2 of the Monte Carlo simulation study is based on a lower persistence of the Markov chain, that

is obtained by letting the parameters in Γ to be equal to:

Γ =









log(0.4/0.6) log(0.4/0.6)

0.5 0.5

1 1









.

As for the basic LM model, the estimation results of φjy|u and β do not differ much from those

obtained in the benchmark design. We then report here only the results referred to the estimation

of parameters in Γ; see Table 10. In particular, when the Markov chain presents a lower persistence,

we observe an improvement of the performance of the proposed estimator, and smaller differences, in

terms of bias and root mean square error, with respect to the FML estimation method, especially with a
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large number of response variables. We also observe smaller differences between the two versions of the

three-step estimation approach, 3S and 3S-IMP.

[Table 10 about here.]

Under the third scenario, we evaluate the performance of the estimation algorithms with more sep-

arated latent states. In particular, the parameters of the simulation study remain the same as in the

benchmark design, apart from the conditional probability matrix, that is the same as in Scenario 3 of the

basic LM model (Section 5.1). Even in this context, the conditional response probabilities are consistently

estimated by the three-step approach. Moreover, we observe very small differences between the results

obtained by the FML estimator and the 3S and 3S-IMP estimators of parameters in β. Even the 3S

estimator of Γ is affected by the presence of more separated latent states, with a general improvement of

its performances (Table 11), especially with large r.

[Table 11 about here.]

Under Scenario 4 we assess the effect of a larger number of latent states on the performances of the

estimators, by considering the following setting:

• number of latent states: k = 3;

• conditional response probability matrix: Φj =

(

0.9 0.1 0.5

0.1 0.9 0.5

)

;

• β =
(

0 0.5 1 0 0.5 1
)′

;

• Γ =

























log(0.4/0.6) log(0.4/0.6) log(0.4/0.6)

0.5 0.5 0.5

1 1 1

log(0.4/0.6) log(0.4/0.6) log(0.4/0.6)

0.5 0.5 0.5

1 1 1

























.

The remaining parameters are left unchanged with respect to Scenario 1. Even under this scenario,

we can get the same conclusion about estimation of φjy|u and β as in the previous scenarios. About

estimation of parameters in Γ, from Table 12, in which we report only the results for r = 5 and r = 50 for

reason of space, we observe that the bias of the proposed estimator is quite high for r = 5 but it becomes

negligible for larger r, even in the standard version (3S) of the estimator. The behavior of the 3S and

3S-IMP methods, in terms of standard error and root mean square error, is comparable with those of the

FML approach.
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[Table 12 about here.]

As demonstrated in the context of LC models by Bolck et al. (2004) and, more recently, by Vermunt

(2010) and Bakk et al. (2013), all the results above show a bias in the parameter estimates due to

the classification error introduced in the second step, which confirms that, in general, the three-step

approach underestimates the relationship between covariates and class membership. We note this bias in

the estimates of the parameters affecting both the initial and transition probabilities. As already stated,

this bias becomes negligible when the number of response variables increases; moreover, the proposed

3S-IMP version allows us to obtain an improvement of the behavior of the corresponding estimator, with

a less evident bias.

Finally, the inclusion of individual covariates confirms the advantages, in term of computational cost,

of the three-step estimation method with respect to the full likelihood method. In all scenarios, the

computing time required by both 3S and 3S-IMP algorithms is significantly lower than that required by

the FML algorithm. The number of iterations required by the 3S-IMP version for convergence goes from

a maximum of 37 (with r = 5 in Scenario 4) to a minimum of 1 (with r = 50 in Scenario 3).

6 Empirical illustration

In order to illustrate the proposed estimation approach, we outline an application based on a real dataset

which is derived from a project, named ULISSE (“Un Link Informatico sui Servizi Sanitari Esistenti per

l’Anziano” - “A Computerized Network on Health Care Services for Older People”) aimed at studying the

health status of elderly patients who currently receive health care assistance in Italy; see Lattanzio et al.

(2010). In the analysis here presented, we consider only data referred to the health condition of patients

hosted in 26 nursing homes, which cover n = 911 patients. The project is based on a longitudinal survey

in which the patients were evaluated at admission and then re-evaluated at 6 and 12 month after the

admission; therefore we consider T = 3 time occasions.

The original questionnaire is made of r = 75 polytomously-responded items, with categories ordered

according to increasing difficulty levels in accomplishing a certain task or severeness of a specific aspect

of the health conditions. These items are grouped into eight different sections of the questionnaire,

concerning:

1. Cognitive Conditions (CC);

2. Auditory and View Fields (AVF);
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3. Humor and Behavioral Disorders (HBD);

4. Activities of Daily Living (ADL);

5. Incontinence (I);

6. Nutritional Field (NF);

7. Dental Disorder (DD);

8. Skin Conditions (SC).

The complete list of items for each section, with the corresponding number of responses categories,

is reported in Appendix. In this application, the missing responses to a given item are dealt with the

missing at random assumption (Rubin, 1976; Little and Rubin, 2002).

The extended LM model allows us to consider time-constant and time-varying individual covariates.

In particular, among time-constant covariates we include gender, and dummy variables for coding the

nursing home to which the subject belongs, whereas among time-varying covariates we include age and

time interval between occasions of administration of the questionnaire. Accordingly, we have p1 = 27

covariates affecting the logit for the initial probabilities and p2 = 28 covariates affecting the logit for

the transition probabilities. In order to make the model more parsimonious, we rely on the following

parameterization for the transition probabilities, that is, a multinomial logit based on the difference

between two sets of parameters

log
p(U (t) = v|U (t−1) = u,x(t))

p(U (t) = u|U (t−1) = u,x(t))
= γ0uv + (x

(t)
i )′(γ1u − γ1v). t > 2, u 6= v,

where γ11 = 0 to ensure model identifiability. The parameterization used for modeling the initial proba-

bilities is again based on standard multinomial logit, as defined in (3). For this illustration we consider

a fixed number of latent classes, k = 4. Even considering the above parametrization, the number of free

parameters to be estimated is very large and the computing time required by the full likelihood approach

may become excessive, especially because the EM algorithm requires a large number of random initial-

izations to increase the chance of the convergence to the global maximum of the model log-likelihood. In

such a context, the computational cost of the three-step algorithm is significantly lower than that of the

full likelihood approach, while reaching very similar performance in terms of parameter estimates.

In applying the three-step estimation method to this data, we first fit the basic LC model for the

set of response variables, in which the responses provided by the same subject at different occasions are
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considered as corresponding to separate sample units. By using this approach, we can initialize the EM

algorithm by a number of random starting values equal to 100(k−1) and take the estimates corresponding

to the highest log-likelihood at convergence of the algorithm.

From the first step of the proposed approach we obtain the final estimates of the conditional response

probabilities. Since the items are categorical, with a different number of categories, we compute the

following item mean score to make the interpretation of the results easier:

µ̂j|u =
1

cj − 1

∑

y

y φ̂jy|u, j = 1, . . . , r, u = 1, . . . , k, y = 0, . . . , cj − 1.

In particular, a value of µ̂j|u close to 0 corresponds to a low probability of suffering from a certain pathol-

ogy, whereas a value close to 1 corresponds to a high probability of suffering from the same pathology.

To summarize these results, we also compute the section mean score ˆ̄µd|u as the average of µ̂j|u for the

items composing each section d of the questionnaire, with d = 1, . . . , 8.

In order to interpret the results we order the latent states on the basis of the values of ˆ̄µd|u assumed

in the section denoted by ADL (Activity of Daily Living) of the questionnaire, which is the section with

the highest difference between the maximum and the minimum value of the section mean score across

states. For each latent state, Table 13 shows the values of ˆ̄µd|u, together with the difference between the

maximum and the minimum value of ˆ̄µd|u for each section of the questionnaire.

[Table 13 about here.]

As we can see, smaller differences are observed for sections DD, SC, NF, and HBD which, consequently,

tend to discriminate less between subjects with respect to the other sections. The first state corresponds to

the best health conditions with respect to all the pathologies measured by the sections of the questionnaire,

apart from DD and SC. On the other hand, the fourth state corresponds to cases with the worst health

conditions for almost all the pathologies. Intermediate states show a different case-mix depending on the

section mean score pattern. In particular, the second state corresponds to patients with poor cognitive and

auditory and view conditions (CC and AVF). The third state corresponds to patients with deteriorated

physical conditions with respect to the pathologies measured by section ADL.

Once the conditional response probabilities are estimated by the first step of the proposed approach,

we can estimate the parameters β = (β0u,β
′
1u)

′, γ0uv and γ1u by fitting multinomial logit models with

weights. In Table 14 we report the results of this step. The same table also shows the significance of

the estimates. The standard errors of the estimates has been obtained by a non-parametric bootstrap

based on 99 samples. Note that, in this application, a bootstrap resampling procedure in which the
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parameters are estimated by means of the full likelihood approach is unfeasible, due to the considerable

computational cost required by this approach.

[Table 14 about here.]

From the table we note that gender has a significant effect on the logit of the initial probability,

especially on the probability of being in the last state with respect to the first. The same can be said for

age, which also shows a significant effect on the transition probabilities. Moreover, we note that certain

nursing homes have a higher effect on both the initial and transition probabilities with respect to others.

In such a context, it may be of interest to study the ability of the facilities to retain over time patients

in the initial latent state.

For an easier interpretation of the results, we also report the estimated initial and transition proba-

bilities of the latent Markov process. More in detail, Table 15 shows the means of the estimated initial

probabilities, ¯̃πu, u = 1, . . . , k, with k = 4, for age classes and gender. The results show that, at the

beginning of the study, males have a higher probability of being in the first state, which corresponds to

the best health condition, with respect to females. This is reasonable, as the health status of women

who require admission to nursing homes is likely worse than that of men of the same age. This because

women are typically more able to take care of themselves. Moreover, it is obvious that older patients

(both male and female) have a higher probability of being in in fifth state, corresponding to the worse

health condition.

[Table 15 about here.]

In Table 16 we report the overall means of the estimated transition probabilities, π̃
(t)
v|u, for all subjects

in the sample, whereas in Table 17 we report the means of π̃
(t)
v|u computed for two nursing homes with a

similar number of patients but with different estimated transition matrices.

[Table 16 about here.]

[Table 17 about here.]

According to the tables, we observe a quite high persistence in the same state, especially for the

first and the last state. Moreover, patients classified in the second state present an average transition

probability toward the fourth state, corresponding to severe health conditions, of around 0.15. We also

note a very low probability of transition from higher to lower states, meaning that it is quite unlikely

an improvement of the patients health conditions. This probability drops to zero when we consider the
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transition from the fourth state to the first state, corresponding to the best health status. We finally

observe that different nursing homes may have a very different behavior. As an example, nursing home

nh3 presents a low persistence in the first latent state with a quite high probability of transition toward

the second and the third latent states (between 0.2 and 0.3). On the other hand, nursing home nh25

presents very high persistence probabilities. Moreover, the transition probabilities toward latent states

corresponding to deteriorated conditions are alway lower than 0.05.

7 Conclusions and further developments

In this paper, we propose an extended version of the three-step approach (Vermunt, 2010) to estimate LM

models, which are typically used in applications involving longitudinal data. In such a context, it is not

uncommon that the number of response variables for each time occasion is very large, and many latent

states are specified. Moreover, time-constant and time-varying individual covariates may be included in

the model.

The proposed estimation method may represent a valid alternative to the full maximum likelihood

approach, which is typically based on the EM algorithm. More in detail, when applied to LM models,

the proposed three-step estimation consists of a preliminary clustering of the subjects, on the basis of

the time specific responses only, in which the responses provided by the same subject to different time

occasions are considered as separated units. Moreover, every sample unit is not strictly assigned to a

latent state at each occasion, and this state may change across time, so as to allow the estimation of

the parameters of the latent Markov process. We also propose an improved version of the three-step

estimator, in which the last two steps of the algorithm are iterated until convergence, while keeping fixed

the results from the first step.

We provide a proof that this approach leads to consistent estimates of the conditional response prob-

abilities. Moreover, when the number of response variables tends to infinity, even the parameters of the

latent process are consistently estimated.

We perform a simulation study aimed at assessing the behavior of the proposed estimation algorithms

under different scenarios, in comparison with that of the full maximum likelihood approach. On the

basis of the results of this study, it is possible to conclude that the behavior, in terms of bias and

root mean square error, of the three-step estimator improves with the number of response variables,

with the separation between latent states, and as the level of persistence of the latent Markov chain

decreases. Moreover, we observe that, under certain scenarios, the improved version of the three-step
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method outperforms the standard one, even significantly, with a reduction of the bias, already detected

in the context of LC model, in the estimates of the relationship between class membership and covariates

(Bolck et al., 2004; Vermunt, 2010; Bakk et al., 2013).

The potential of the proposed approach is also illustrated with an application to real data, involving

a very large number of response variables and individual covariates. In such a complex study, we observe

that the proposed three-step estimation method may overcome some of the typical drawbacks of the

full likelihood estimation, first of all the slowness to converge and the presence of many local maxima.

Moreover, a bootstrap resampling procedure aimed at computing the standard errors of the estimates

may be performed with a reasonable effort. The advantage in terms of computational cost may also be

exploited to perform cross-validation, so as to select the number of latent states (Smyth, 2000). Finally,

the results of the three-step estimation method may be used to define sensible starting values of the EM

algorithm in the full maximum likelihood approach, so as to prevent the problem of the multimodality

of the model log-likelihood. All these advantages are obtained while having very similar results in terms

of parameter estimates.

Finally, It is worth noting that, throughout the paper, we consider the case of categorical response

variables because this is the typical case of application of LM models. However, we plan to extend the

proposed estimation approach when the outcomes are all continuous, or in the case of mixed outcomes,

and of latent variables with different state spaces. Moreover, further research is necessary to find a

method for easily obtaining reliable standard errors for the parameter estimates, without the need of

implementing a bootstrap procedure.

Appendix

[Table 18 about here.]
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FML
bias(φ̂j1|u) se(φ̂j1|u) rmse(φ̂j1|u)

j u = 1 u = 2 u = 1 u = 2 u = 1 u = 2

1 0.0011 -0.0017 0.0149 0.0154 0.0149 0.0155
2 0.0008 -0.0031 0.0152 0.0155 0.0152 0.0158
3 -0.0030 -0.0015 0.0154 0.0146 0.0157 0.0147
4 -0.0002 0.0005 0.0148 0.0145 0.0148 0.0145
5 -0.0014 0.0012 0.0148 0.0142 0.0148 0.0143

3S and 3S-IMP
bias(φ̂j1|u) se(φ̂j1|u) rmse(φ̂j1|u)

j u = 1 u = 2 u = 1 u = 2 u = 1 u = 2

1 -0.0020 -0.0042 0.0201 0.0211 0.0202 0.0216
2 -0.0030 -0.0051 0.0203 0.0206 0.0205 0.0213
3 -0.0071 -0.0034 0.0204 0.0200 0.0216 0.0203
4 -0.0024 -0.0032 0.0213 0.0197 0.0215 0.0200
5 -0.0038 -0.0023 0.0202 0.0191 0.0205 0.0193

Table 1: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step estimators of the conditional response probabilities φj1|u under Scenario 1, with r = 5 and

Φj =
(

0.7 0.3
0.3 0.7

)

FML
r bias(π̂1) se(π̂1) rmse(π̂1)

5 0.0025 0.0289 0.0290
10 0.0013 0.0239 0.0239
20 0.0011 0.0218 0.0219
50 0.0014 0.0245 0.0245

3S
r bias(π̃1) se(π̃1) rmse(π̃1)

5 0.0048 0.0328 0.0332
10 0.0006 0.0234 0.0234
20 0.0015 0.0213 0.0213
50 0.0015 0.0245 0.0245

3S-IMP
bias(π̃1) se(π̃1) rmse(π̃1)

5 0.0029 0.0367 0.0368
10 0.0008 0.0259 0.0260
20 0.0016 0.0220 0.0220
50 0.0015 0.0245 0.0246

Table 2: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step (standard and improved) estimators of the initial probabilities π1 under Scenario 1 with

π =
(

0.5
0.5

)
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FML
bias(π̂v|u) se(π̂v|u) rmse(π̂v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 0.0007 -0.0007 0.0156 0.0156 0.0156 0.0156
2 -0.0014 0.0014 0.0147 0.0147 0.0147 0.0147

10
1 -0.0013 0.0013 0.0125 0.0125 0.0126 0.0126
2 0.0006 -0.0006 0.0125 0.0125 0.0125 0.0125

20
1 -0.0013 0.0013 0.0090 0.0090 0.0091 0.0091
2 0.0013 -0.0013 0.0108 0.0108 0.0109 0.0109

50
1 -0.0001 0.0001 0.0084 0.0084 0.0084 0.0084
2 0.0002 -0.0002 0.0102 0.0102 0.0102 0.0102

3S
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.2997 0.2997 0.0273 0.0273 0.3009 0.3009
2 0.2881 -0.2881 0.0269 0.0269 0.2894 0.2894

10
1 -0.1872 0.1872 0.0143 0.0143 0.1877 0.1877
2 0.1875 -0.1875 0.0146 0.0146 0.1880 0.1880

20
1 -0.0717 0.0717 0.0098 0.0098 0.0724 0.0724
2 0.0714 -0.0714 0.0118 0.0118 0.0724 0.0724

50
1 -0.0040 0.0040 0.0086 0.0086 0.0094 0.0094
2 0.0041 -0.0041 0.0103 0.0103 0.0111 0.0111

3S-IMP
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.1771 0.1771 0.0214 0.0214 0.1784 0.1784
2 0.1690 -0.1690 0.0222 0.0222 0.1704 0.1704

10
1 -0.0865 0.0865 0.0140 0.0140 0.0877 0.0877
2 0.0871 -0.0871 0.0138 0.0138 0.0882 0.0882

20
1 -0.0278 0.0278 0.0094 0.0094 0.0293 0.0293
2 0.0277 -0.0277 0.0113 0.0113 0.0299 0.0299

50
1 -0.0014 0.0014 0.0085 0.0085 0.0086 0.0086
2 0.0016 -0.0016 0.0102 0.0102 0.0103 0.0103

Table 3: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood
and the three-step (standard and improved) estimators of the transition probabilities πv|u under Scenario

1 with Π =
(

0.9 0.1
0.1 0.9

)
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FML
bias(π̂v|u) se(π̂v|u) rmse(π̂v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 0.0030 -0.0030 0.0317 0.0317 0.0319 0.0319
2 0.0013 -0.0013 0.0376 0.0376 0.0377 0.0377

10
1 -0.0050 0.0050 0.0194 0.0194 0.0201 0.0201
2 0.0010 -0.0010 0.0229 0.0229 0.0229 0.0229

20
1 0.0026 -0.0026 0.0167 0.0167 0.0169 0.0169
2 -0.0012 0.0012 0.0180 0.0180 0.0181 0.0181

50
1 -0.0007 0.0007 0.0147 0.0147 0.0147 0.0147
2 -0.0016 0.0016 0.0147 0.0147 0.0148 0.0148

3S
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.0741 0.0741 0.0293 0.0293 0.0797 0.0797
2 0.0724 -0.0724 0.0321 0.0321 0.0792 0.0792

10
1 -0.0495 0.0495 0.0160 0.0160 0.0520 0.0520
2 0.0467 -0.0467 0.0180 0.0180 0.0500 0.0500

20
1 -0.0150 0.0150 0.0150 0.0150 0.0212 0.0212
2 0.0166 -0.0166 0.0165 0.0165 0.0234 0.0234

50
1 -0.0017 0.0017 0.0146 0.0146 0.0147 0.0147
2 -0.0006 0.0006 0.0146 0.0146 0.0146 0.0146

3S-IMP
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.0481 0.0481 0.0297 0.0297 0.0565 0.0565
2 0.0480 -0.0480 0.0345 0.0345 0.0591 0.0591

10
1 -0.0304 0.0304 0.0175 0.0175 0.0351 0.0351
2 0.0274 -0.0274 0.0202 0.0202 0.0340 0.0340

20
1 -0.0066 0.0066 0.0159 0.0159 0.0172 0.0172
2 0.0080 -0.0080 0.0173 0.0173 0.0191 0.0191

50
1 -0.0012 0.0012 0.0147 0.0147 0.0147 0.0147
2 -0.0011 0.0011 0.0147 0.0147 0.0147 0.0147

Table 4: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step (standard and improved) estimators of the transition probabilities πv|u under Scenario 2

with Π =
(

0.6 0.4
0.4 0.6

)
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FML
bias(π̂v|u) se(π̂v|u) rmse(π̂v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.0023 0.0023 0.0106 0.0106 0.0109 0.0109
2 0.0010 -0.0010 0.0101 0.0101 0.0101 0.0101

10
1 -0.0019 0.0019 0.0102 0.0102 0.0104 0.0104
2 -0.0002 0.0002 0.0097 0.0097 0.0097 0.0097

20
1 0.0004 -0.0004 0.0103 0.0103 0.0103 0.0103
2 -0.0015 0.0015 0.0094 0.0094 0.0095 0.0095

50
1 0.0004 -0.0004 0.0083 0.0083 0.0084 0.0084
2 0.0002 -0.0002 0.0084 0.0084 0.0084 0.0084

3S
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.0265 0.0265 0.0108 0.0108 0.0286 0.0286
2 0.0254 -0.0254 0.0102 0.0102 0.0274 0.0274

10
1 -0.0035 0.0035 0.0104 0.0104 0.0109 0.0109
2 0.0014 -0.0014 0.0097 0.0097 0.0098 0.0098

20
1 0.0004 -0.0004 0.0103 0.0103 0.0104 0.0104
2 -0.0015 0.0015 0.0094 0.0094 0.0095 0.0095

50
1 0.0004 -0.0004 0.0083 0.0083 0.0084 0.0084
2 0.0002 -0.0002 0.0084 0.0084 0.0084 0.0084

3S-IMP
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 1 v = 2 v = 1 v = 2

5
1 -0.0116 0.0116 0.0108 0.0108 0.0158 0.0158
2 0.0104 -0.0104 0.0101 0.0101 0.0145 0.0145

10
1 -0.0024 0.0024 0.0102 0.0102 0.0105 0.0105
2 0.0003 -0.0003 0.0097 0.0097 0.0097 0.0097

20
1 0.0004 -0.0004 0.0103 0.0103 0.0104 0.0104
2 -0.0015 0.0015 0.0094 0.0094 0.0095 0.0095

50
1 0.0004 -0.0004 0.0083 0.0083 0.0084 0.0084
2 0.0002 -0.0002 0.0084 0.0084 0.0084 0.0084

Table 5: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step (standard and improved) estimators of the transition probabilities πv|u under Scenario 3

with Π =
(

0.9 0.1
0.1 0.9

)
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FML
bias(π̂v|u) se(π̂v|u) rmse(π̂v|u)

r u v = 1 v = 2 v = 3 v = 1 v = 2 v = 3 v = 1 v = 2 v = 3

5
1 -0.080 0.044 0.036 0.257 0.240 0.156 0.270 0.244 0.160
2 -0.060 0.033 0.026 0.151 0.211 0.227 0.163 0.214 0.229
3 -0.004 0.041 -0.037 0.151 0.163 0.174 0.151 0.168 0.178

10
1 -0.095 0.053 0.042 0.247 0.171 0.149 0.265 0.179 0.155
2 0.040 -0.114 0.074 0.181 0.245 0.216 0.186 0.270 0.228
3 0.017 0.045 -0.062 0.154 0.203 0.214 0.155 0.208 0.222

50
1 -0.002 0.003 -0.001 0.023 0.021 0.017 0.023 0.021 0.017
2 0.001 0.001 -0.002 0.021 0.028 0.016 0.021 0.028 0.017
3 -0.003 0.004 -0.001 0.016 0.019 0.022 0.017 0.019 0.022

3S
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 3 v = 1 v = 2 v = 3 v = 1 v = 2 v = 3

5
1 -0.275 0.199 0.076 0.131 0.138 0.143 0.305 0.242 0.162
2 0.094 -0.185 0.091 0.116 0.142 0.142 0.149 0.233 0.168
3 0.076 0.207 -0.283 0.117 0.150 0.157 0.140 0.255 0.324

10
1 -0.178 0.095 0.083 0.115 0.114 0.098 0.212 0.148 0.129
2 0.155 -0.288 0.134 0.085 0.116 0.096 0.176 0.311 0.165
3 0.110 0.099 -0.208 0.103 0.117 0.127 0.150 0.153 0.244

50
1 -0.077 0.071 0.006 0.020 0.016 0.014 0.080 0.073 0.015
2 0.075 -0.145 0.070 0.016 0.025 0.014 0.076 0.147 0.072
3 0.003 0.073 -0.076 0.013 0.017 0.020 0.013 0.075 0.079

3S-IMP
bias(π̃v|u) se(π̃v|u) rmse(π̃v|u)

r u v = 1 v = 2 v = 3 v = 1 v = 2 v = 3 v = 1 v = 2 v = 3

5
1 -0.236 0.183 0.053 0.142 0.126 0.133 0.275 0.222 0.143
2 0.088 -0.172 0.083 0.105 0.140 0.130 0.137 0.222 0.155
3 0.045 0.205 -0.249 0.115 0.164 0.167 0.123 0.262 0.300

10
1 -0.135 0.092 0.043 0.120 0.120 0.087 0.181 0.151 0.097
2 0.142 -0.270 0.128 0.074 0.128 0.092 0.160 0.299 0.157
3 0.075 0.086 -0.160 0.094 0.119 0.139 0.120 0.146 0.212

50
1 -0.042 0.042 0.001 0.022 0.020 0.015 0.048 0.046 0.015
2 0.043 -0.083 0.040 0.019 0.028 0.015 0.047 0.088 0.043
3 -0.003 0.045 -0.042 0.014 0.019 0.021 0.014 0.049 0.047

Table 6: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step (standard and improved) estimators of the transition probabilities πv|u under Scenario 4

with Π =

(

0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

)
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FML
Bias(φ̂j1|u) se(φ̂j1|u) rmse(φ̂j1|u)

j u = 1 u = 2 u = 1 u = 2 u = 1 u = 2

1 0.0004 0.0018 0.0150 0.0158 0.0150 0.0159
2 0.0003 -0.0001 0.0182 0.0144 0.0182 0.0144
3 0.0003 0.0014 0.0156 0.0174 0.0156 0.0174
4 -0.0003 0.0011 0.0138 0.0152 0.0138 0.0153
5 -0.0009 0.0009 0.0159 0.0184 0.0159 0.0184

3S and 3S-IMP
Bias(φ̂j1|u) se(φ̂j1|u) rmse(φ̂j1|u)

j u = 1 u = 2 u = 1 u = 2 u = 1 u = 2

1 -0.0020 0.0022 0.0211 0.0226 0.0212 0.0227
2 -0.0020 0.0001 0.0229 0.0200 0.0229 0.0200
3 -0.0009 0.0005 0.0222 0.0232 0.0222 0.0232
4 -0.0005 -0.0012 0.0213 0.0207 0.0213 0.0208
5 -0.0023 0.0000 0.0205 0.0230 0.0206 0.0230

Table 7: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood
and the three-step (standard and improved) estimators of the conditional response probabilities φj1|u under

Scenario 1 with individual covariates, r = 5 and Φj =
(

0.7 0.3
0.3 0.7

)
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FML
r bias(β̂) se(β̂) rmse(β̂)

5
0.0287 0.1386 0.1415
0.0096 0.1448 0.1451
-0.0004 0.1610 0.1610

10
0.0077 0.1197 0.1199
-0.0106 0.1246 0.1250
0.0055 0.1266 0.1267

20
-0.0167 0.1029 0.1042
-0.0147 0.1137 0.1147
0.0266 0.1247 0.1275

50
0.0045 0.0938 0.0939
0.0129 0.1049 0.1056
-0.0092 0.1185 0.1189

3S
r bias(β̃) se(β̃) rmse(β̃)

5
0.0006 0.1689 0.1689
-0.2734 0.0687 0.2819
-0.5714 0.0641 0.5750

10
-0.0156 0.1100 0.1111
-0.1818 0.0858 0.2011
-0.3453 0.0820 0.3549

20
-0.0186 0.0928 0.0947
-0.0778 0.1008 0.1273
-0.1065 0.1065 0.1507

50
0.0045 0.0937 0.0938
0.0091 0.1035 0.1039
-0.0181 0.1168 0.1182

3S-IMP
r bias(β̃) se(β̃) rmse(β̃)

5
0.0438 0.2018 0.2065
0.0191 0.1594 0.1605
-0.0128 0.1737 0.1741

10
0.0081 0.1331 0.1334
-0.0111 0.1346 0.1350
-0.0004 0.1372 0.1372

20
-0.0126 0.1015 0.1023
-0.0147 0.1136 0.1145
0.0288 0.1265 0.1297

50
0.0047 0.0942 0.0943
0.0133 0.1050 0.1059
-0.0096 0.1185 0.1189

Table 8: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood and
the three-step (standard and improved) estimators of β under Scenario 1 with individual covariates and
β = (0 0.5 1)

′
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FML
r bias(Γ̂) se(Γ̂) rmse(Γ̂)

5
-0.0554 -0.0539 0.2323 0.2320 0.2388 0.2382
0.0268 0.0100 0.1545 0.1497 0.1568 0.1501
0.0350 0.0482 0.2018 0.1818 0.2048 0.1881

10
-0.0109 -0.0063 0.1652 0.1775 0.1656 0.1777
0.0094 0.0048 0.1173 0.1056 0.1177 0.1057
0.0239 -0.0084 0.1330 0.1393 0.1351 0.1396

20
-0.0256 -0.0373 0.1403 0.1479 0.1426 0.1526
0.0020 0.0055 0.0857 0.0851 0.0857 0.0853
0.0154 0.0247 0.1091 0.1168 0.1102 0.1194

50
-0.0145 -0.0036 0.1109 0.1387 0.1118 0.1387
-0.0018 0.0079 0.0794 0.0962 0.0794 0.0965
0.0148 -0.0132 0.0968 0.1030 0.0979 0.1039

3S
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
1.7805 1.8592 0.1379 0.1369 1.7858 1.8642
-0.4244 -0.4588 0.0365 0.0369 0.4260 0.4603
-0.8548 -0.9021 0.0371 0.0355 0.8556 0.9028

10
1.3428 1.4333 0.0786 0.0742 1.3451 1.4352
-0.3462 -0.3788 0.0510 0.0433 0.3500 0.3813
-0.6885 -0.7610 0.0475 0.0524 0.6902 0.7628

20
0.6996 0.7677 0.0811 0.0865 0.7043 0.7726
-0.2023 -0.2235 0.0594 0.0576 0.2109 0.2308
-0.3990 -0.4391 0.0660 0.0707 0.4044 0.4448

50
0.0453 0.0634 0.1077 0.1318 0.1168 0.1463
-0.0219 -0.0133 0.0779 0.0929 0.0809 0.0939
-0.0203 -0.0525 0.0948 0.0983 0.0969 0.1114

3S-IMP
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
1.2476 1.3172 0.1288 0.1279 1.2542 1.3234
-0.3066 -0.3544 0.0801 0.0774 0.3169 0.3628
-0.6253 -0.6870 0.0911 0.0771 0.6319 0.6913

10
0.7678 0.8329 0.0985 0.0935 0.7741 0.8382
-0.2010 -0.2300 0.0859 0.0736 0.2186 0.2415
-0.3918 -0.4713 0.0830 0.0876 0.4005 0.4793

20
0.2746 0.3031 0.1148 0.1101 0.2976 0.3224
-0.0800 -0.0901 0.0724 0.0725 0.1079 0.1156
-0.1495 -0.1691 0.0946 0.0940 0.1769 0.1935

50
0.0056 0.0186 0.1103 0.1370 0.1105 0.1382
-0.0083 0.0009 0.0798 0.0955 0.0802 0.0955
0.0028 -0.0261 0.0958 0.1015 0.0958 0.1048

Table 9: Bias, standard error (se) and root mean square error (rmse) of the full maximum likelihood
and the three-step (standard and improved) estimators of Γ, under Scenario 1 with individual covariates

and Γ =

(

log(0.1/0.9) log(0.1/0.9)
0.5 0.5
1 1

)
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FML
r bias(Γ̂) se(Γ̂) rmse(Γ̂)

5
-0.0028 0.0006 0.1351 0.1287 0.1351 0.1287
0.0091 0.0288 0.1232 0.1147 0.1235 0.1183
0.0475 0.0132 0.1563 0.1512 0.1634 0.1518

10
0.0108 -0.0119 0.0764 0.0980 0.0771 0.0987
-0.0055 0.0047 0.0840 0.0962 0.0842 0.0963
0.0196 0.0272 0.1066 0.1166 0.1084 0.1198

20
0.0018 -0.0085 0.0825 0.0809 0.0825 0.0814
-0.0140 0.0047 0.0803 0.0717 0.0815 0.0718
0.0057 -0.0016 0.0872 0.0850 0.0874 0.0850

50
0.0077 0.0069 0.0655 0.0700 0.0659 0.0704
0.0070 0.0041 0.0653 0.0734 0.0656 0.0735
0.0079 0.0091 0.0740 0.0740 0.0745 0.0745

3S
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
0.2533 0.3936 0.1220 0.1273 0.2811 0.4137
-0.3981 -0.3984 0.0340 0.0317 0.3995 0.3997
-0.7825 -0.8156 0.0377 0.0342 0.7834 0.8163

10
0.1929 0.2696 0.0648 0.0734 0.2035 0.2795
-0.2828 -0.2926 0.0483 0.0503 0.2869 0.2969
-0.5548 -0.5750 0.0438 0.0479 0.5565 0.5770

20
0.0884 0.1144 0.0728 0.0682 0.1145 0.1332
-0.1319 -0.1293 0.0625 0.0562 0.1459 0.1410
-0.2446 -0.2685 0.0636 0.0599 0.2528 0.2751

50
0.0133 0.0142 0.0642 0.0678 0.0655 0.0693
-0.0011 -0.0047 0.0649 0.0714 0.0649 0.0715
-0.0079 -0.0071 0.0707 0.0737 0.0712 0.0740

3S-IMP
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
0.1696 0.2701 0.1240 0.1352 0.2101 0.3020
-0.2665 -0.2640 0.0691 0.0659 0.2754 0.2721
-0.5061 -0.5663 0.0832 0.0721 0.5129 0.5709

10
0.1164 0.1464 0.0715 0.0853 0.1366 0.1694
-0.1625 -0.1680 0.0690 0.0740 0.1765 0.1836
-0.3028 -0.3222 0.0709 0.0779 0.3110 0.3315

20
0.0435 0.0455 0.0787 0.0754 0.0899 0.0881
-0.0666 -0.0584 0.0741 0.0650 0.0996 0.0874
-0.1069 -0.1251 0.0788 0.0746 0.1327 0.1457

50
0.0101 0.0098 0.0648 0.0692 0.0656 0.0699
0.0035 0.0003 0.0654 0.0723 0.0655 0.0723
0.0016 0.0022 0.0735 0.0740 0.0735 0.0740

Table 10: Bias, standard error (se) and root mean square error (rmse) for the full maximum likelihood
and the three-step (standard and improved) estimators of Γ, under Scenario 2 with individual covariates

and Γ =

(

log(0.4/0.6) log(0.4/0.6)
0.5 0.5
1 1

)

33



FML
r bias(Γ̂) se(Γ̂) rmse(Γ̂)

5
-0.0164 0.0019 0.1355 0.1412 0.1365 0.1413
0.0125 0.0120 0.0852 0.0943 0.0861 0.0951
0.0155 0.0014 0.1026 0.1142 0.1038 0.1142

10
-0.0124 -0.0073 0.1120 0.1217 0.1127 0.1220
-0.0154 0.0057 0.0811 0.1042 0.0826 0.1044
0.0104 0.0056 0.0979 0.0944 0.0985 0.0945

20
-0.0094 0.0017 0.1227 0.1314 0.1230 0.1315
0.0052 -0.0153 0.0818 0.0876 0.0820 0.0889
0.0058 0.0177 0.1036 0.1048 0.1037 0.1063

50
-0.0122 -0.0162 0.1327 0.1323 0.1333 0.1333
0.0112 0.0056 0.0893 0.0980 0.0900 0.0981
0.0119 0.0004 0.1095 0.1070 0.1101 0.1070

3S
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
0.3088 0.3578 0.1066 0.1040 0.3267 0.3726
-0.0857 -0.0973 0.0679 0.0786 0.1093 0.1251
-0.1791 -0.2084 0.0856 0.0912 0.1985 0.2275

10
0.0139 0.0202 0.1096 0.1193 0.1104 0.1210
-0.0237 -0.0024 0.0797 0.1029 0.0831 0.1030
-0.0057 -0.0103 0.0950 0.0930 0.0952 0.0936

20
-0.0093 0.0018 0.1227 0.1314 0.1231 0.1314
0.0052 -0.0153 0.0818 0.0876 0.0820 0.0889
0.0058 0.0177 0.1036 0.1048 0.1038 0.1062

50
-0.0122 -0.0162 0.1327 0.1323 0.1333 0.1333
0.0112 0.0056 0.0893 0.0980 0.0900 0.0981
0.0119 0.0004 0.1095 0.1070 0.1101 0.1070

3S-IMP
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5
0.1043 0.1361 0.1253 0.1292 0.1631 0.1877
-0.0219 -0.0297 0.0776 0.0900 0.0807 0.0948
-0.0532 -0.0740 0.0964 0.1064 0.1101 0.1296

10
-0.0042 0.0004 0.1104 0.1210 0.1105 0.1210
-0.0177 0.0037 0.0804 0.1045 0.0823 0.1046
0.0058 0.0017 0.0963 0.0936 0.0965 0.0936

20
-0.0093 0.0017 0.1227 0.1314 0.1230 0.1314
0.0052 -0.0153 0.0818 0.0876 0.0820 0.0889
0.0058 0.0177 0.1036 0.1048 0.1037 0.1062

50
-0.0122 -0.0162 0.1327 0.1323 0.1333 0.1333
0.0112 0.0056 0.0893 0.0980 0.0900 0.0981
0.0119 0.0004 0.1095 0.1070 0.1101 0.1070

Table 11: Bias, standard error (se) and root mean square error (rmse) for the full maximum likelihood
and the three-step (standard and improved) estimators of Γ, under Scenario 3 with individual covariates

and Γ =

(

log(0.1/0.9) log(0.1/0.9)
0.5 0.5
1 1

)
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FML
r bias(Γ̂) se(Γ̂) rmse(Γ̂)

5

-0.025 -0.027 -0.020 0.155 0.128 0.137 0.157 0.131 0.139
0.011 0.010 0.013 0.127 0.125 0.123 0.127 0.125 0.123
-0.008 0.009 -0.005 0.155 0.154 0.134 0.155 0.155 0.135
-0.032 0.011 -0.014 0.141 0.161 0.158 0.145 0.161 0.158
-0.003 -0.012 0.003 0.117 0.109 0.135 0.117 0.110 0.135
-0.007 0.026 -0.003 0.126 0.142 0.132 0.126 0.144 0.132

50

0.006 0.001 0.003 0.085 0.086 0.070 0.085 0.086 0.070
-0.002 0.005 -0.005 0.071 0.068 0.068 0.071 0.068 0.069
0.010 -0.006 -0.001 0.081 0.067 0.071 0.081 0.067 0.071
0.002 0.002 0.009 0.069 0.073 0.068 0.069 0.073 0.069
0.004 0.010 0.007 0.060 0.071 0.067 0.060 0.071 0.068
0.005 0.004 0.010 0.082 0.082 0.080 0.082 0.082 0.081

3S
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5

0.256 0.341 0.080 0.129 0.112 0.158 0.287 0.359 0.178
-0.330 -0.444 -0.213 0.036 0.038 0.054 0.332 0.446 0.219
-0.667 -0.891 -0.438 0.039 0.033 0.056 0.669 0.891 0.442
0.041 0.304 0.291 0.173 0.121 0.141 0.178 0.327 0.323
-0.202 -0.433 -0.341 0.046 0.035 0.041 0.208 0.434 0.343
-0.395 -0.863 -0.682 0.052 0.036 0.043 0.398 0.864 0.684

50

0.000 0.008 0.006 0.071 0.076 0.083 0.071 0.077 0.084
-0.004 0.000 0.011 0.069 0.063 0.063 0.069 0.063 0.064
0.002 -0.018 0.013 0.078 0.068 0.076 0.078 0.070 0.077
-0.002 0.004 0.014 0.065 0.079 0.077 0.065 0.079 0.078
-0.001 -0.006 0.008 0.067 0.071 0.071 0.067 0.072 0.071
0.001 -0.014 0.014 0.086 0.073 0.077 0.086 0.075 0.078

3S-IMP
r bias(Γ̃) se(Γ̃) rmse(Γ̃)

5

0.186 0.192 -0.003 0.139 0.122 0.167 0.233 0.227 0.167
-0.193 -0.330 -0.118 0.082 0.072 0.075 0.209 0.338 0.140
-0.417 -0.663 -0.251 0.088 0.066 0.085 0.426 0.666 0.265
-0.002 0.189 0.223 0.180 0.128 0.159 0.180 0.228 0.274
-0.104 -0.327 -0.230 0.065 0.066 0.086 0.123 0.334 0.245
-0.194 -0.651 -0.450 0.076 0.071 0.097 0.209 0.655 0.460

50

-0.000 0.006 0.006 0.071 0.076 0.083 0.071 0.076 0.084
-0.003 0.002 0.012 0.069 0.063 0.062 0.069 0.063 0.064
0.004 -0.014 0.014 0.078 0.068 0.076 0.078 0.070 0.078
-0.002 0.003 0.013 0.065 0.079 0.077 0.065 0.079 0.078
-0.000 -0.005 0.009 0.067 0.072 0.071 0.067 0.072 0.072
0.002 -0.010 0.016 0.086 0.074 0.077 0.086 0.074 0.078

Table 12: Bias, standard error (se) and root mean square error (rmse) for the full maximum likelihood
and the three-step (standard and improved) estimators of Γ, under Scenario 4 with individual covariates

d
1 2 3 4 5 6 7 8

u (CC) (AVF) (HBD) (ADL) (I) (NF) (DD) (SC)

1 0.1083 0.1356 0.0943 0.1148 0.2837 0.0602 0.2214 0.0227
2 0.6227 0.4023 0.2335 0.2912 0.6653 0.0864 0.2133 0.0204
3 0.1927 0.1896 0.1246 0.6018 0.6736 0.0929 0.2246 0.0546
4 0.7063 0.5718 0.1436 0.7850 0.8977 0.1566 0.2232 0.1076

maxu(ˆ̄µd|u)−
minu(ˆ̄µd|u)

0.5980 0.4362 0.1392 0.6702 0.6140 0.0964 0.0113 0.0872

Table 13: Estimated section mean score, ˆ̄µd|u, for each latent state u and each section d of the question-
naire together with the difference between the largest and the smallest estimated section mean score for
each section.
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initial probabilities transition probabilities
β

2
β

3
β

4
γ

2
γ

3
γ

4

intercept 0.0156 -1.6610 -3.4234 ∗∗ - - -
gender 0.3756 0.5485 ∗ 0.7037 ∗∗ -0.0532 -0.1858 -0.0261

nh1 -0.1961 0.8121 0.0020 -1.0676 -0.0694 -0.9278
nh2 -1.9504 ∗∗ -0.3918 -2.3623 ∗∗∗ -2.2406 ∗ -1.3643 -2.5257 ∗

nh3 -0.1054 -0.4334 -0.2467 0.9412 1.1634 0.4836
nh4 -1.0478 · -0.8929 -1.4349 ∗∗ -1.0167 -0.9319 -1.1176
nh5 -1.2677 · -1.0193 -0.5042 -1.6953 · -0.4376 -1.5519
nh6 -0.6045 -1.1527 -0.5333 -1.1935 -0.0120 -1.8624
nh7 -3.0934 -0.7201 -0.3363 -1.6755 -0.5311 -1.4346
nh8 0.3198 0.8767 0.8430 -1.7931 -1.0027 -2.4452 ∗

nh9 0.0048 0.2805 -0.7442 -2.2255 ∗ -1.4504 · -2.5039 ∗∗

nh10 -2.0851 -1.4617 -3.5955 -2.9837 -1.1377 -2.9800 ∗

nh11 -1.6932 ∗ -1.0069 -1.8672 ∗∗ -2.8173 ∗ -0.9797 -2.5322 ∗

nh12 0.7904 0.5132 1.0443 -1.2102 -1.5142 -2.0071
nh13 -1.5811 · -2.3327 -1.6188 ∗∗ -2.3505 ∗∗ -0.9972 -2.2378 ∗∗

nh14 -0.5118 -0.4459 -6.3197 ∗∗∗ -2.5696 ∗ -0.3511 -1.9662
nh15 -2.1905 -0.3920 -1.4533 · -1.5935 -1.4392 -2.1450
nh16 0.3121 0.2009 0.0735 -0.2615 0.6656 -0.2236
nh17 -0.6438 -0.0830 -0.2925 -1.4858 · -0.9442 -2.7412 ∗∗∗

nh18 5.5294 ∗∗∗ -1.1376 5.5737 ∗∗∗ 0.9654 1.7519 -0.3829
nh19 -0.1291 0.5499 0.2007 -1.5408 · -1.6047 -1.8218 ∗

nh21 0.1693 -0.8810 -0.6420 -1.0734 -1.6393 -1.8884
nh22 -0.1079 0.4034 -0.8618 -0.5954 -0.7328 -2.4313
nh23 0.9074 2.0485 2.4644 -2.5099 -2.2295 -3.2658
nh24 -1.8094 ∗ -0.2122 -0.8197 -2.1891 ∗ -0.8078 -2.3811 ∗∗

nh25 -0.0354 0.9532 -0.2216 -1.9191 · -1.7159 -3.3229 ∗

nh26 -0.0430 -0.1403 -0.4727 -1.9055 ∗ -0.6472 -2.6104 ∗∗

diff-time - - - 0.1753 -0.4054 -0.0320
age 0.0003 0.0149 0.0427 ∗∗ 0.0370 · 0.0542 ∗ 0.0766 ∗∗

∗∗∗significant at the 0.1% level - ∗∗significant at the 1% level - ∗significant at the 5% level - ·significant at the 10% level

Table 14: Estimates of the regression parameter affecting the distribution of the initial and transition
probabilities.

laten states gender
age u M F overall

6 75 1 0.4419 0.2932 0.3672
2 0.2402 0.2608 0.2506
3 0.1584 0.2017 0.1801
4 0.1595 0.2442 0.2021

75 < age 6 85 1 0.3780 0.2819 0.3106
2 0.2161 0.1982 0.2036
3 0.1817 0.2199 0.2085
4 0.2242 0.3000 0.2773

> 85 1 0.3626 0.2610 0.2760
2 0.1777 0.1549 0.1583
3 0.1757 0.2236 0.2165
4 0.2840 0.3605 0.3493

Table 15: Means of the estimated initial probabilities, ¯̃πu, over all the different nursing homes, for age
classes and gender
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latent state u
t latent state v 1 2 3 4

2 1 0.8417 0.0728 0.0703 0.0151
2 0.0259 0.7781 0.0474 0.1486
3 0.0278 0.0525 0.8382 0.0815
4 0.0000 0.0357 0.0217 0.9426

3 1 0.8377 0.0734 0.0733 0.0156
2 0.0253 0.7747 0.0495 0.1505
3 0.0272 0.0531 0.8359 0.0838
4 0.0000 0.0349 0.0222 0.9429

Table 16: Overall means of the estimated transition probabilities, ¯̃π
(t)
v|u

latent state u
t latent state v 1 2 3 4

nh3

2 1 0.4320 0.3129 0.2057 0.0494
2 0.0019 0.8429 0.0273 0.1279
3 0.0031 0.0704 0.8268 0.0997
4 0.0000 0.0354 0.0135 0.9511

3 1 0.4256 0.3057 0.2184 0.0503
2 0.0019 0.8360 0.0292 0.1329
3 0.0030 0.0671 0.8332 0.0966
4 0.0000 0.0344 0.0138 0.9518

nh25

2 1 0.9359 0.0366 0.0253 0.0022
2 0.0372 0.8841 0.0294 0.0493
3 0.0581 0.0695 0.8366 0.0357
4 0.0001 0.0885 0.0345 0.8769

3 1 0.9354 0.0405 0.0219 0.0023
2 0.0342 0.8957 0.0234 0.0467
3 0.0650 0.0859 0.8079 0.0413
4 0.0001 0.0947 0.0289 0.8763

Table 17: Overall means of the estimated transition probabilities, ¯̃π
(t)
v|u for two different nursing homes
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j # cat. item description

Section CC

01 2 Short-term memory (0 = “recalls what recently happened (5 minutes)”, 1 = “does not recall”)
02 2 Long-term memory (0 = “keeps some past memories green”, 1 = “does not keep some past memories green”)
03 2 Memory status (0 = “recalls the actual season”, 1 = “does not recall the actual season”)
04 2 Memory status (0 = “recalls where is his room”, 1 = “does not recall where is his room”)
05 2 Memory status (0 = “recalls the names and faces of the staff”, 1 = “does not recall the names and faces of the staff”)
06 2 Memory status (0 = “recalls where he is”, 1 =“does not recall where he is”)
07 4 Decision about his daily activities (from 0 = “independent decisions” to 3 = “unable to decide”)
08 3 Easily sidetracked (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
09 3 Altered perception or awareness of surrounding (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
10 3 Disorganized speech (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
11 3 Restlessness movements (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
12 3 Lethargic spans (from 0 = “problems absent” to 2 = “problems worsened in the last week”)
13 3 Change in the cognitive conditions during the day (from 0 = “problems absent” to 2 = “problems worsened in the last week”)

Section AVF

14 4 Hearing (from 0 =“no hearing impairment” to 3 = “severe hearing impairment”)
15 4 Ability to make itself understood (from 0 = “understood” to 3 = “seldom/never understood”)
16 3 Clear language (from 0 = “clear language” to 2 = “no language”)
17 4 Ability to understand others (from 0 = “understands” to 3 = “seldom/never understands”)
18 5 Sight in conditions of adequate lighting (from 0 = “no sight impairment” to 4 = “severe sight impairment”)

Section HDB

19 3 Negative statements (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
20 3 Repetitive questions (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
21 3 Repetitive verbalizations (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
22 3 Persistent anger with himself or others (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
23 3 Self deprecation disesteem (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
24 3 Fears that are not real (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
25 3 To believe himself to be dying (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
26 3 To complain about his health (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
27 3 Repeated events anxiety (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
28 3 Unpleasant mood in morning (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
29 3 Insomnia/problems with sleep (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
30 3 Expressions of sad-faced (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
31 3 Easily tears (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
32 3 Repetitive movements (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
33 3 Abstention from activities of interest (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
34 3 Reduced local interactions (from 0 = “symptom not showed” to 2 = “symptom daily showed”)
35 4 To wander aimlessly (from 0 = “problem absent” to 3 = “problem daily encountered”)
36 4 Offensive language (from 0 = “problem absent” to 3 = “problem daily encountered”)
37 4 Physically aggressive (from 0 = “problem absent” to 3 = “problem daily encountered”)
38 4 Socially inappropriate behavior (from 0 = “problem absent” to 3 = “problem daily encountered”)
39 4 To refuse assistance (from 0 = “problem absent” to 3 = “problem daily encountered”)

Section ADL

40 5 Moving to/from lying position (from 0 = “independent” to 4 = “totally dependent”)
41 5 Moving to/from bed, chair, wheelchair (from 0 = “independent” to 4 = “totally dependent”)
42 5 Walking between different points within the room (from 0 = “independent” to 4 = “totally dependent”)
43 5 Walking in the corridor (from 0 = “independent” to 4 = “totally dependent”)
44 5 Walking into the nursing home ward (from 0 = “independent” to 4 = “totally dependent”)
45 5 Walking outside the nursing home ward (from 0 = “independent” to 4 = “totally dependent”)
46 5 Dressing (from 0 = “independent” to 4 = “totally dependent”)
47 5 Eating (from 0 = “independent” to 4 = “totally dependent”)
48 5 Using the toilet room (from 0 = “independent” to 4 = “totally dependent”)
49 5 Personal hygiene (from 0 = “independent” to 4 = “totally dependent”)
50 5 Taking full-body bath/shower (from 0 = “independent” to 4 = “totally dependent”)
51 4 Balance problems (from 0 = “does not have balance problems” to 3 = “needs physical assistance”)
52 3 Mobility in the neck (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
53 3 Mobility in the arm including shoulder or elbow (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
54 3 Movements of the hand including wrist or finger (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
55 3 Mobility in the leg and hip (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
56 3 Mobility in the foot and ankle (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)
57 3 Other movements (0 = “no limitation”, 1 = “unilateral limitation”, 2 = “bilateral limitation”)

Section I

58 5 Fecal incontinence (from 0 = “continence” to 4 = “incontinence”)
59 5 Urinary incontinence (from 0 = “continence” to 4 = “incontinence”)
60 2 Elimination of feces (0 = “adequate”, 1 = “not adequate”)

Section NF

61 2 Chewing problem (0 = “no problem”, 1 = “problems”)
62 2 Swallowing problem (0 = “no problem”, 1 = “problems”)
63 2 Mouth pain (0 = “no problem”, 1 = “problems”)
64 2 Taste of many foods (0 = “does not complain”, 1 = “complains”)
65 2 Hungry (0 = “does not complain”, 1 = “complains”)
66 2 Food on his plate (0 = “does not leave it”, 1 = “leaves it”)

Section DD

67 2 Debris present in mouth prior to going to bed at night (0 = “problem absent”, 1 = “problem present”)
68 2 Dentures/removable bridge (0 = “absent”, 1 = “present”)
69 2 Some/all natural teeth lost and does not have/does not use dentures (or partial plates) (0 = “problem absent”, 1 = “problem present”)
70 2 Broken, loose, or carious teeth (0 = “problem absent” 1 = “problem present”)
71 2 Inflamed gums, swollen or bleeding gums, oral abscesses, ulcers or rashes (0 = “problem absent”, 1 = “problem present”)
72 2 Dentures or removable bridge daily cleaned by resident or staff (0 = “absent”, 1 = “present”)

Section SC

73 5 Pressure ulcer (from 0 = “no pressure ulcer” to 4 = “stage 4”)
74 5 Stasis ulcers (from 0 = “no pressure ulcer” to 4 = “stage 4”)
75 2 Resolved or cured ulcer (0 =“absent”, 1 = “present”)

Table 18: Description of the full set of items.
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