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a b s t r a c t

Many of the methods which deal with the reduction of dimensionality in matrices of data
are based onmathematical techniques such as distance-based algorithms ormatrix decom-
position and eigenvalues. Recently a group of likelihood-based finite mixture models for a
data matrix with binary or count data, using basic Bernoulli or Poisson building blocks has
been developed. This is extended and establishes likelihood-based multivariate methods
for a data matrix with ordinal data which applies fuzzy clustering via finite mixtures to the
ordered stereotypemodel.Model-fitting is performedusing the expectation–maximization
(EM) algorithm, and a fuzzy allocation of rows, columns, and rows and columns simultane-
ously to corresponding clusters is obtained. A simulation study is presentedwhich includes
a variety of scenarios in order to test the reliability of the proposed model. Finally, the re-
sults of the application of the model in two real data sets are shown.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An ordinal variable is one with a categorical data scale which describes order, and where the distinct levels of such a
variable differ in degree of dissimilarity more than in quality (Agresti, 2010). This is different from nominal variables which
vary in quality, not in quantity, and thus the order of listing the categories is irrelevant. For example, Likert scale responses
in a questionnaire might be ‘‘disagree’’, ‘‘neither agree nor disagree’’ or ‘‘agree’’. In his seminal paper, Stevens (1946) called
a scale ordinal if ‘‘any order-preserving transformation will leave the scale form invariant’’. Although the collection and
use of ordinal variables is common, most of the current methods for analyzing them treat the data as if they were nominal
(Hoffman and Franke, 1986) or continuous data (Agresti, 2010). On the one hand, treating an ordered categorical variable as
ordinal rather than nominal provides advantages in the analysis such as simplifying the data description and allowing the
use of more parsimonious models. The nominal approach ignores the intrinsic ordering of the data and thus the statistical
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results are less powerful than they could be. On the other hand, models for continuous variables have similarities to those
for ordinal variables although the use of them with ordinal variables has disadvantages such as the treatment of the output
categories as equally spaced, which theymay not be (see Agresti, 2010, Sections 1.2–1.3 for a list of advantages from treating
an ordinal variable as ordinal rather than nominal or continuous).

Categorical data analysis methods were first developed in the 1960s and 1970s (Bock and Jones, 1968; Snell, 1964),
including loglinearmodels and logistic regression (see the review by Liu and Agresti, 2005). An increasing interest in ordinal
data has since produced the articles by Goodman (1979) and McCullagh (1980) on loglinear modeling relating to ordinal
odds ratios, and logit modeling of cumulative probabilities respectively. Recently, new ordinal data analysis methods have
been introduced such as the proportional odds model version of the cumulative logit model, and the stereotype model with
ordinal scores (Agresti, 2010, Chap. 3 and 4) from which new lines of research have developed. Two recent examples of
these are the application of a stereotype model in a case-control study by Ahn et al. (2009), and a new methodology to fit a
stratified proportional odds model by Mukherjee et al. (2008). In particular, the stereotype model is a paired-category logit
model which is an alternative when the fit of cumulative logits and adjacent-categories logit models in their proportional
odds version is poor. Anderson (1984) proposed this model as nested between the adjacent-categories logit model and the
standard baseline-category logits model (see the review by Agresti, 2002, Chapter 6).

In the research literature, multiple algorithms and techniques have been developed which deal with the clustering of
data such as hierarchical clustering (Johnson, 1967; Kaufman and Rousseeuw, 1990), association analysis (Manly, 2005) and
partition optimization methods such as the k-means clustering algorithm (Jobson, 1992; Lewis et al., 2003; McCune and
Grace, 2002). There has been research on cluster analysis for ordinal data based on latent class models (see Agresti and Lang,
1993; Moustaki, 2000; Vermunt, 2001; DeSantis et al., 2008; Breen and Luijkx, 2010; McPartland and Gormley, 2013 and
the review by Agresti, 2010, Section 10.1). There are a number of clustering methods based on mathematical techniques
such as distance metrics (Everitt et al., 2001), association indices (Wu et al., 2008; Chen et al., 2011), matrix decomposition
and eigenvalues (Quinn and Keough, 2002; Manly, 2005; Wu et al., 2007). However, these do not have a likelihood based
formulation, and do not provide a reliable method of model selection or assessment. A particularly powerful model-based
approach to one-mode clustering based on finite mixtures, with the variables in the columns being utilized to cluster the
subjects in the rows, is provided byMcLachlan and Basford (1988), McLachlan and Peel (2000), Everitt et al. (2001), Böhning
et al. (2007), Wu et al. (2008) and Melnykov and Maitra (2010).

The simultaneous clustering of rows and columns into row clusters and column clusters is called biclustering (or block
clustering or two-mode clustering). Biclustering models based on double k-means have been developed in Vichi (2001) and
Rocci and Vichi (2008). A hierarchical Bayesian procedure for biclustering is given in DeSarbo et al. (2004). Biclustering
using mixtures has been proposed for binary data in Pledger (2000), Arnold et al. (2010) and Labiod and Nadif (2011), and
for count data in Govaert and Nadif (2010). An approach via finitemixtures for binary and count data using basic Bernoulli or
Poisson building blocks has been developed in Govaert andNadif (2010) and Pledger and Arnold (2014). Thiswork expanded
previous research for one-mode fuzzy cluster analysis based on finite mixtures (McLachlan and Basford, 1988; McLachlan
and Peel, 2000; Everitt et al., 2001) to a suite of models including biclustering. Finally, Matechou et al. (2011) have recently
developed biclustering models for ordinal data using the assumption of proportional odds and having a likelihood-based
foundation. The main difference with our work is that we use the assumption of ordinal stereotype model which has the
advantage of allowing us to determine a new spacing of the ordinal categories, dictated by the data.

In this article, we present an extension of the likelihood-basedmodels proposed in Pledger and Arnold (2014) by applying
them tomatriceswith ordinal data by using finitemixtures to define a fuzzy clustering.Weuse the ordered stereotypemodel
introduced by Anderson (1984) in order to formulate the ordinal approach, which has rarely been used so far. Two possible
reasons for this lack of use might be the absence of standard software for model fitting and its unusual structure including
the product of parameters in the linear predictor (Kuss, 2006). The plan of the article is as follows. Section 2 has definitions
of the models and its formulation including fuzzy clustering via finite mixtures. Model fitting by using the iterative EM
algorithm is described in Section 3. Section 4 presents a review of several model comparison measures and a comparison
of eleven information criteria performance. Two real-life examples and simulation studies are given in Section 5, and we
conclude with a discussion in Section 6.

2. Model formulation

In this section, we give the standard definition of the ordered stereotype model (Section 2.1) followed by a modification
to include clustering (Section 2.2). The likelihood for the suite of basic models is provided next (Section 2.3).

2.1. Data and ordered stereotype model definition

For a set ofm ordinal response variables each with q categories measured on a set of n units, the data can be represented
by a n×mmatrix Y where, for instance, the n rows represent the subjects of the study and them columns are the different
questions in a particular questionnaire. Although the number of categories might be different, we assume the same q for all
such questions. If each answer is a selection from q ordered categories (e.g. strongly agree, agree, neutral, disagree, strongly
disagree), then

yij ∈ {1, . . . , q}, i = 1, . . . , n, j = 1, . . . ,m.
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The ordered stereotype model (Anderson, 1984) for the probability that yij takes the category k is characterized by the
following log odds

log


P

yij = k | x


P

yij = 1 | x

 = µk + φkδ
′x, i = 1, . . . , n, j = 1, . . . ,m, k = 2, . . . , q, (1)

where the inclusion of the following monotone increasing constraint

0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 (2)

preserves the variable response Y is ordinal (see Anderson, 1984). The vector x is a set of predictor variables which can
be categorical or continuous, and the vector of parameters δ represents the effects of x on the log odds of the response
variable for the category k relative to the baseline category. The first category is the baseline category, p is the number of
covariates, the parameters {µ2, . . . , µq} are the cut points, and {φ2, . . . , φq} are the parameters which can be interpreted as
the ‘‘scores’’ for the categories of the response variable yij. We restrict µ1 = φ1 = 0 and φq = 1 to ensure identifiability.
With this construction, the category response probabilities in the ordered stereotype model are as follows

P

yij = k | x


=

exp(µk + φkδ
′x)

q
ℓ=1

exp(µℓ + φℓδ
′x)

for k = 1, . . . , q, (3)

where the probability for the baseline category, as defined in (3), satisfies

P

yij = 1 | x


= 1 −

q
ℓ=2

P

yij = ℓ | x


and therefore, since µ1 = φ1 = 0, this probability can be defined as

P

yij = 1 | x


=

1

1 +

q
ℓ=2

exp(µℓ + φℓδ
′x)

.

Greenland (1994) showed that the stereotype model is appropriate when the progression of the response variable occurs
through various stages. Agresti (2010) (see Chapter 4) showed that the stereotype model is equivalent to an ordinal model,
such as the proportional odds version of the adjacent-categories logit model, when the scores {φk} are a linear function of
the different categories of the response variable. An advantage of the stereotype model is that it is more parsimonious than
the baseline-category logit model or themultinomial logistic regressionmodel. In addition, the ordered stereotypemodel is
more flexible than the models including the proportional odds structure such as the version for the cumulative logit model
(Agresti, 2010, Section 4.3.4) as a result of the {φk} parameters. However, the parameters are more difficult to estimate due
to the intrinsic nonlinearity which arises from the product of parameters φkδ

′x in the predictor.

2.2. Ordered stereotype model including clustering

The structure of the linear predictor in the ordered stereotype model can include the predictor variables x as numerical
covariates, or they may simply be related to the effect of the row and column on the observation yij. We consider this latter
situation and build up δ′x only taking into account the row and column effects by using a linear formulation. To do this, we
define {α1, . . . , αn} and {β1, . . . , βm} as the sets of parameters quantifying the main effects of the n rows and m columns
respectively, and the set {γ11, . . . , γnm} are the associations between the different rows and columns. In this way, we can
formulate the following saturated model

log


P

yij = k


P

yij = 1

 = µk + φk(αi + βj + γij), k = 2, . . . , q, i = 1, . . . , n, j = 1, . . . ,m, (4)

where
n

i=1 αi =
m

j=1 βj = 0 and we impose sum-to-zero constraints on each row and column of the association (or
pattern detection) matrix γ . This model has 2q + nm − 4 independent parameters. The relationship between models (3)
and (4) is shown in Appendix A. The most common submodels to formulate from the saturated model are the main effect
model (γij = 0, with 2q + n + m − 5 parameters), the row effect model (βj = γij = 0, 2q + n − 4 parameters), the column
effect model (αi = γij = 0, 2q + m − 4 parameters) and the null model (αi = βj = γij = 0, 2q − 3 parameters).

The main problem with the model in (4) is that the specific row and column effects in this suite of models over-
parametrizes the data structure. This model is not parsimonious and it requires a lot of parameters for describing all the
effects. A way to reduce the dimensionality of the problem is to introduce fuzzy clustering via finite mixtures. Hence, we
obtain the following model formulation including row clustering, column clustering or biclustering.
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• Row clustering

log


P

yij = k | i ∈ r


P

yij = 1 | i ∈ r

 = µk + φk(αr + βj + γrj), k = 2, . . . , q, r = 1, . . . , R, j = 1, . . . ,m.

• Column clustering

log


P

yij = k | j ∈ c


P

yij = 1 | j ∈ c

 = µk + φk(αi + βc + γic), k = 2, . . . , q, i = 1, . . . , n, c = 1, . . . , C .

• Biclustering

log


P

yij = k | i ∈ r, j ∈ c


P

yij = 1 | i ∈ r, j ∈ c

 = µk + φk(αr + βc + γrc), k = 2, . . . , q, r = 1, . . . , R, c = 1, . . . , C,

where R ≤ n is the number of row groups, C ≤ m the number of column groups, i ∈ r means row i is classified in the row
cluster r and j ∈ c means column j is classified in the column cluster c. It is important to note that the actual membership
of the rows among the R row-clusters and the columns among the C column-clusters is unknown and, therefore, it is
considered as missing information. Choosing R ≪ n (C ≪ m) ensures that the number of independent parameters in
this model is less than nm. The parameters γrj, γic and γrc may not be necessary in some models, i.e. models without the
interaction between row and column groups, where all rows show similar response patterns over the columns, and vice
versa. Further, we define {π1, . . . , πR} and {κ1, . . . , κC } as the (unknown) proportions of rows and columns in each row
and column group respectively, with

R
r=1 πr =

C
c=1 κc = 1. We can view πr and κc as the a priori row and column

membership probabilities. For the case of the ordered stereotype model including fuzzy biclustering, the model is defined
with (q − 1) cut point parameters µk, (q − 2) score parameters φk, (R − 1) row effect parameters αr , (C − 1) column
effect parameters βc , (R−1)(C −1) associations between row and column parameters γrc , (R−1) row cluster membership
parametersπr and (C −1) column cluster membership parameters κc . In that way, wemay deduce that themodel including
fuzzy rowclustering has 2q+Rm+(R−1)−4 independent parameters, the column clustering version has 2q+nC+(C−1)−4
independent parameters and the biclustering one has 2q + RC + (R − 1) + (C − 1) − 4 independent parameters.

Finally, in the same way as before, we can formulate the probability of the data response yij being equal to the category
k conditional on the appropriate clustering as,

• Row clustering

θrijk = P

yij = k | i ∈ r


=

exp(µk + φk(αr + βj + γrj))
q

ℓ=1
exp(µℓ + φℓ(αr + βj + γrj))

, k = 1, . . . , q, r = 1, . . . , R, j = 1, . . . ,m. (5)

• Column clustering

θicjk = P

yij = k | j ∈ c


=

exp(µk + φk(αi + βc + γic))
q

ℓ=1
exp(µℓ + φℓ(αi + βc + γic))

, k = 1, . . . , q, c = 1, . . . , C, i = 1, . . . , n. (6)

• Biclustering

θricjk = P

yij = k | i ∈ r, j ∈ c


=

exp(µk + φk(αr + βc + γrc))
q

ℓ=1
exp(µℓ + φℓ(αr + βc + γrc))

,

k = 1, . . . , q, r = 1, . . . , R, c = 1, . . . , C . (7)

The inclusion of the interaction term allows for different slopes and possible crossings. The additive version of these models
omits the interaction term.

2.3. Basic models. Likelihoods

In this section, we summarize the likelihood functions for the cases of row clustering, column clustering and biclustering.
The formulation of the complete data log-likelihood is given in each case.

2.3.1. Row clustering
As we noted in the previous section, the unknown data in the case of the row-clustered model is the actual membership

of the rows among the R row-clusters. Thus, the incomplete data likelihood only sums over all possible partitions of rows
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into R clusters:

L(Ω | {yij}) =

R
r1=1

· · ·

R
rn=1

πr1 · · · πrn

n
i=1

m
j=1

q
k=1


θrijk

I(yij=k)
,

where Ω is the parameter vector for the case of row clustering, πri is the a priori row membership probability of row i, θrijk
is the probability of the data response defined in (5). Assuming independence among rows and, conditional on the rows,
independence over the columns, we can simplify the previous incomplete data likelihood to

L(Ω | {yij}) =

n
i=1


R

r=1

πr

m
j=1

q
k=1


θrjk
I(yij=k)


.

We define the unknown row group memberships through the following indicator latent variables,

Zir = I(i ∈ r) =


1 if i ∈ r
0 if i ∉ r i = 1, . . . , n, r = 1, . . . , R, (8)

where i ∈ r indicates that row i is in row group r . It follows that
R

r=1

Zir = 1, i = 1, . . . , n,

and since their a priori row membership probabilities are {πr}

(Zi1, . . . , ZiR) ∼ Multinomial(1; π1, . . . , πR), i = 1, . . . , n.

These indicator latent variables fulfill the following convenient identity
R

r=1

aZiri =

R
r=1

aiZir for any ai ≠ 0.

Consequently, the complete data log-likelihood of this model using the known data {yij} and the unknown data {zir} is as
follows

lc(Ω | {yij}, {zir}) =

n
i=1

R
r=1

zir log(πr) +

n
i=1

m
j=1

q
k=1

R
r=1

zir I(yij = k) log

θrjk

. (9)

2.3.2. Column clustering
The model for the case of clustering the columns but not the rows is similar. It assumes independence among columns

and, conditional on the columns, independence over the rows. Analogous to Zir for row clustering (see (8)) we define the
following indicator latent variables for the unknown data

Xjc = I(j ∈ c) =


1 if j ∈ c
0 if j ∉ c j = 1, . . . ,m, c = 1, . . . , C . (10)

The complete data log-likelihood of this model using the known data {yij} and the unknown data {xjc} is as follows

lc(Ω | {yij}, {xjc}) =

m
j=1

C
c=1

xjc log(κc) +

n
i=1

m
j=1

q
k=1

C
c=1

xjc I(yij = k) log (θick) , (11)

where Ω is the parameter vector for the case of column clustering and κc is the a priori column membership probability.

2.3.3. Biclustering
In the case of clustering the rows and the columns simultaneously, the incomplete data likelihood sums over all possible

partitions of rows into R clusters and over all possible partitions of columns into C clusters, and is given by

L(Ω | {yij}) =

C
c1=1

· · ·

C
cm=1

κc1 · · · κcm

R
r1=1

· · ·

R
rn=1

πr1 · · · πrn

n
i=1

m
j=1

q
k=1


θricjk

I(yij=k)
.

Here Ω is the parameter vector for the case of biclustering and θricjk is the probability of the data response expressed in (7).
Assuming independence among rows and, conditional on the rows, independence over the columns, we can simplify the
previous incomplete data likelihood to

L(Ω | {yij}) =

C
c1=1

· · ·

C
cm=1

κc1 · · · κcm

n
i=1


R

r=1

πr

m
j=1

q
k=1


θrjk
I(yij=k)


, (12)
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which sums over the possible column cluster partitions. Similarly, if we assume independence among columns and,
conditional on the columns, independence over the rows, we obtain the following simplified expression:

L(Ω | {yij}) =

R
r1=1

· · ·

R
rn=1

πr1 · · · πrn

m
j=1


C

c=1

κc

n
i=1

q
k=1

(θick)
I(yij=k)


. (13)

We define the unknown data through the indicator latent variables described in (8) and (10). Consequently, the complete
data log-likelihood of this model using the known data {yij} and the unknown data {zir} and {xjc} is as follows:

lc(Ω | {yij}, {zir}, {xjc}) =

n
i=1

m
j=1

q
k=1

R
r=1

C
c=1

zirxjc I(yij = k) log (θrck)

+

n
i=1

R
r=1

zir log (πr) +

m
j=1

C
c=1

xjc log (κc) . (14)

We estimate the MLEs from this expression by using the EM algorithm. In the E-step, the expected value of the first term
is approximated using the variational approximation employed by Govaert and Nadif (2005) (see Appendix C for details).
With the aim of ensuring a solution avoiding approximations, we use the resulting MLEs from the EM algorithm as starting
points to numerically maximize the incomplete-data log-likelihood (12) (or (13)). We note that during the maximization a
convenient transformation for the row and column membership parameters {πr} and {κc} is sr = logit(πr/

R
ℓ=r πℓ) for

r = 1, . . . , R − 1 and qc = logit(κc/
C

ℓ=c κℓ) for c = 1, . . . , C − 1 respectively. This transformation means that the
parameters sr and qc are unconstrained, taking values over the whole real line.

3. Estimation of the parameters

In this section, we develop a model fitting procedure using the EM algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 1997). One of the most common uses of the EM algorithm is in the case of the estimation of the parameters for
a finite mixture-density model with incomplete data which in this case is the actual unknown cluster membership of each
row and/or column. This method performs a fuzzy assignment of rows and/or columns to clusters based on the posterior
probabilities. In this section, we develop this in detail for the case of clustering the rows but not the columns. It has a easy
interpretation which helps explain of our methodology. The development for other two cases: clustering the columns but
not the rows and biclustering are described in the Appendices B and C.

3.1. The expectation step (E-Step). Row clustering

We apply the E-Step in the EM algorithm by considering the Zir as latent variables. In this manner, we use their a priori
probabilities {πr} and the current values for the parameters so as to evaluate their expected values, Zir , which are the
posterior probabilities that row i is amember of row group r . The conditional expectation of the complete data log-likelihood
at iteration t can be expressed as follows

Q (Ω | Ω(t−1)) = E{zir }|{yij},Ω(t−1)

ℓc(Ω | {yij}, {zir})


=

n
i=1

R
r=1

log(π (t−1)
r )E


zir | {yij}, Ω(t−1)

+

n
i=1

m
j=1

q
k=1

R
r=1

I(yij = k) log

θ

(t−1)
rjk


E

zir | {yij}, Ω(t−1) . (15)

The latent variable Zir is a Bernoulli random variable so that

E

zir | {yij}, Ω(t−1)

= P

zir = 1 | {yij}, Ω(t−1) ,

and applying Bayes’ rule to this expression we obtain

Z (t)
ir = P


zir = 1 | {yij}, Ω(t−1)

=
P

{yij}, Ω(t−1)

| zir = 1

P (zir = 1)

R
ℓ=1

P

{yij}, Ω(t−1) | ziℓ = 1


P (ziℓ = 1)

=

π (t−1)
r

m
j=1

q
k=1

θ (t−1)
rjk

I(yij=k)

R
ℓ=1

π (t−1)
ℓ

m
j=1

q
k=1

θ (t−1)
ℓjk

I(yij=k)
 . (16)
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This is the expected value of the latent variable Zir which defines the posterior probability that row i is in group r once
we have observed {yij}. Finally, we complete the E-step by substituting the previous expression in the complete data
log-likelihood at the iteration t expressed in (15),

Q (Ω | Ω (t−1)) =

n
i=1

R
r=1

Z (t)
ir log(π (t−1)

r ) +

n
i=1

m
j=1

q
k=1

R
r=1

Z (t)
ir I(yij = k) log

θ (t−1)
rjk


. (17)

3.2. The maximization step (M-step). Row clustering

The M-step of the EM algorithm is the global maximization of the previous expression (17) obtained in the E-step. For
the case of finite mixture models, the updated estimation of the term containing the row-cluster proportions {π1, . . . πR}

and the one containing the rest of the parameters Ω are computed independently. Thus, the M-step has two separate parts.
Finally, the maximum-likelihood estimator for the parameter πr in the case that the indicator variables {Z1r , . . . , Znr}

were observable is

πr =
1
n

n
i=1

zir , r = 1, . . . , R.

However, the data zir are unobserved in our case. In that manner, we use their conditional expectation which we found in
the E-step (16) to replace in the previous expression for the iteration t ,

π (t)
r =

1
n

n
i=1

E

zir | {yij}, Ω(t−1)

=
1
n

n
i=1

Z (t)
ir , r = 1, . . . , R. (18)

To estimate the remaining parameters Ω , we must numerically maximize the conditional expectation of the complete
data log-likelihood (15). In the case of row clustering,

Ω = argmax
Ω


n

i=1

m
j=1

q
k=1

R
r=1

Zir I(yij = k) log

θrjk


,

where the maximization is conditional on the constraints on the parameters. We repeat the two step iteration of the
EM algorithm until convergence, that is until there is a small relative change in the likelihood between two consecutive
iterations:

∥L(Ω(t+1)
| {yij}) − L(Ω(t)

| {yij})∥
∥L(Ω(t) | {yij})∥

≈ 0.

A disadvantage of mixture modeling is that the associated likelihood surface may be multimodal. A comprehensive search
over different starting points is used to avoid finding only a local maximum. Particularly in our case, the iterative process is
repeated 10 timeswith random starting points and the bestMLE (those that lead to higher log-likelihood value) are kept.We
have run experiments testing up to 100 random starting points and itwas sufficientwith 10 repetitions to avoid convergence
to local optima.

Finally, we have implemented the EM algorithm for the ordered stereotypemodel including clustering via finitemixtures
and set up the simulation studybyusing the statistical packageR2.15.1 (RDevelopment Core Team, 2010). Themaximization
was carried out by using the quasi-Newton method provided as an option in optim().

3.3. Reparametrization of the score parameters

The increasing constraint that enforces the scores φ1, . . . , φq to be increasing in the stereotype model defined in (2)
must be imposed during the estimation procedure. Such a constraint is complex to impose during optimization and hence
for convenience we reparametrize φ1, . . . , φq as follows.

We first set νk = logit(φk) for k = 2, . . . , q − 1, which implies that

−∞ ≤ ν2 ≤ ν3 ≤ · · · ≤ νq−1 ≤ ∞.

We then set

νk = νk−1 + euk for − ∞ < uk < ∞, k = 3, . . . , q − 1.

In that manner, our parameter vector {φ1 = 0, φ2, . . . , φq−1, φq = 1} is replaced with {ν2, u3, . . . , uq−1} which has the
same number of parameters but it is more convenient because the new parameter vector Rq−2 is completely unconstrained.
This makes the optimization process more straightforward. Once we find the MLEs of ν2, u3, . . . , uq−1, we can transform
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back to the original set of parameters by

φk =



0 k = 1
1

1 + e−ν2
k = 2

expit


logit(φ2) +

k
ℓ=3

euℓ


k = 3, . . . , q − 1

1 k = q,

where expit(x) = (1 + e−x)−1 is the inverse of the logit function.

4. Model comparison

4.1. Introduction

There are two main approaches to the comparison of a set of candidate likelihood-based models once they are fitted, in
order to decide which one (or group of them) best approximates the (unknown) true model. One approach is to carry out
a hypothesis test by using the likelihood ratio as a test statistic (LRT). Another approach uses information criteria which
are based on a penalized form of the likelihood function where the penalty increases as the number of parameters in the
model increases. Some of the most common information criteria measures are Akaike’s Information Criterion (AIC, Akaike,
1973), its small-sample modification (AICc , Akaike, 1973; Hurvich and Tsai, 1989; Burnham and Anderson, 2002), the Bayes’
Information Criterion (BIC, Schwarz, 1978) or its Integrated Classification Likelihood version (ICL-BIC, Biernacki et al., 1998).

Unlike the LRT, information criteria quantify the differences in goodness of fit between a set of candidate likelihood-
based models (comparative measure of fit), but give no absolute measure of fit. The use of LRT is more computationally
demanding than the information criteria because the LRT requires bootstrapping to obtain the p-value. This quantification
of the significance is not assessed with the information criteria. However, the LRT does not lead to a suitable significance
test in our approach. This occurs because regularity conditions do not hold for −2 log(LRT) to have its usual asymptotic
distribution under the null hypothesis formixture densities. Thus, model selection by LRT tends to overestimate the number
of clusters (Stahl and Sallis, 2012). There has been a lot of published research to formulate theoretical results on the null
distribution of the LRT for finite mixture model through simulation and bootstrapping studies (see the review in McLachlan
and Peel, 2000, Section 6.5). One of the most common way may be using randomization tests (McLachlan, 1987; Manly,
2007; Gotelli and Graves, 1996) to obtain the asymptotic null distribution. However, there is a lack of research on this topic
focused on mixtures based on densities from ordinal variables and it might be a field to explore for future research.

4.2. Simulation study

We set up a simulation study to empirically establish a relationship between our likelihood-based methodology for
ordinal data and the performance of eleven information criteria in order to determine whichwasmost reliable. We evaluate
the following information criteria’s performances: AIC, AICc , BIC, ICL-BIC, AICu (McQuarrie et al., 1997), AIC3 (Bozdogan,
1994), CLC (Biernacki and Govaert, 1997), CAIC (Bozdogan, 1987), NEC (Biernacki et al., 1999), AWE (Banfield and Raftery,
1993) and L (Figueredo and Jain, 2002). Their definitions are given in Table 1.

The results we are interested in are the percentage of simulated experiments where the eleven information criteria
correctly determine the true number of row/column clusters in a set of diverse scenarios. The scenarios are determined
by varying the sample size/subjects (n = 50, 100, 500) and number of measures/questions (m = 5, 10). In addition, we
made variations in the number of row clusters (R = 2, 3, 4), column clusters (C = 2, 3, 4) and the space between the
q = 4 score parameters {φk}. The five scenarios for {φk} may be described by: equal spacing between any pair of adjacent
score parameters (Scenario 1), one pair of adjacent score parameters are very close in value (Scenario 2), one of the mixing
cluster proportions is close to zero (Scenario 3), one pair of adjacent score parameters have the same value (Scenario 4), and
the same as the first scenario but increasing the number of measures to m = 10 (Scenario 5). All the parameters for each
scenario in the row clustering and biclustering cases are shown in Tables D.10 and D.11 in Appendix D.

For each scenario, we drew (h = 100) data sets, and selected the best model for each data set using each information
criterion. Therefore, we worked with a total of 4500 and 6000 data sets for row clustering and biclustering respectively. The
EM algorithm to obtain the estimators is repeated 10 times with random starting points and the estimates with the highest
likelihood are kept.

Fig. 1 is a histogram displaying the percentage of cases in which each information criterion determines the true number
of row clusters across the five scenarios and the factors used in the experimental control. The best performance was AIC
(correctly selecting the number of row clusters in 93.8% of cases), followed by AICc (89.8%) and AICu (82.4%). In the case
of biclustering, the results are very similar as AIC also performs the best, although with a lower percentage of correctly
selecting the number of row and column clusters than the row clustering case (86.1%). AICc and AICu also perform very
well with percentages close to AIC: 85.6% and 84.2% respectively. BIC is underestimating the number of clusters (incorrectly
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Table 1
Information criteria summary table for one-dimension clustering case.

Criteria Definition Proposed for Depending on

AIC
−2ℓ + 2K

Regression

nm(Akaike, 1973)
AICc AIC +

2K(K+1)
nm−K−1(Akaike, 1973)

AICu AIC c + nm log
 nm
nm−K−1


K and nm(McQuarrie et al., 1997)

CAIC
−2ℓ + K(1 + log(nm))(Bozdogan, 1987)

BIC
−2ℓ + K log(nm)(Schwarz, 1978)

AIC3
−2ℓ + 3K

Clustering

K(Bozdogan, 1994)
CLC

−2ℓ + 2EN(R)
EN(·)

(Biernacki and Govaert, 1997)
NEC(R) EN(R)

ℓ(R)−ℓ(1)(Biernacki et al., 1999)
ICL-BIC

−2ℓc + K log(nm)

K , nm and EN(·)
(Biernacki et al., 1998)
AWE

−2ℓc + 2K
 3
2 + log(nm)


(Banfield and Raftery, 1993)
L

−ℓ −
K
2


log( nmπR

12 ) −
R

2 log( nm
12 )

−
R(K+1)

2 K , nm and πR(Figueredo and Jain, 2002)

Notes: nm is the total sample size which is the number of elements in the response matrix Y . K is the number of parameters, R the number of clusters,
πR the mixing cluster proportion, ℓ the maximized incomplete data log-likelihood, ℓc is the maximized complete data log-likelihood (see Eq. (9) for row
clustering and Eq. (11) for column clustering). EN(·) is the entropy function defined by EN(R) = ℓ − ℓc .

Fig. 1. Simulation study results for row clustering. Bars depict the percentage of cases for each information criterion fits the true number of row clusters.

selecting a smaller number of clusters in 56% and 63.2% of cases in row clustering and biclustering respectively). A very poor
performance is obtained by ICL-BIC (correctly selecting the number of clusters in 33.1% and 31.3% of cases in row clustering
and biclustering). Our results are in accordance with Fonseca and Cardoso (2007) for the categorical case.

Tables 2 and 3 show the best 5 information criteria performances in the case of row clustering and biclustering
respectively. In both cases, we can observe that AIC is the best measure over the 5 scenarios and the ranking positions are
exactly the sameover the 5 scenarios. The best performance is scenario 5whichhas the largest number ofmeasuresm. On the
other hand, the worse achievement is scenario 3 which has one of themixing cluster proportion close to zero and, therefore,
the percentage of underestimated number of clusters is higher. Regardless of this challenging scenario configuration, the
AIC and AICc performances are still quite satisfactory (over 75% of fitted cases in row and biclustering).

Our conclusion is that AIC is the best information criteria when dealing with ordinal data and we fit likelihood-based
finite mixture models with the ordinal stereotype model as the components in the mixture. It is important to remark these
results are just evaluating the fact of obtaining the right number of clusters in the mixture, but it does not imply that they
are the best clustering structure for the data.

5. Results

In this section, the reliability of estimation of the stereotype model parameters is demonstrated in a simulation study
(Section 5.1). In addition, we illustrate the stereotype model and our likelihood-based clustering method with two real-



10 D. Fernández et al. / Computational Statistics and Data Analysis ( ) –

Table 2
Model comparison simulation study results. Row clustering. Ranking of the best 5 information criteria measures.

Overall Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

AIC 93.8% 91.4% 97.6% 88.0% 92.9% 99.1%
AICc 89.8% 90.2% 94.8% 74.7% 91.1% 98.2%
AICu 82.4% 79.0% 80.0% 66.7% 88.0% 98.2%
AIC3 67.7% 61.7% 65.6% 56.7% 56.4% 98.2%
BIC 43.7% 41.2% 39.1% 40.0% 39.6% 58.7%

Table 3
Model comparison simulation study results. Biclustering. Ranking of the best 5 information criteria measures.

Overall Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

AIC 86.1% 89.2% 82.3% 80.5% 85.5% 92.8%
AICc 85.6% 89.2% 81.5% 80.0% 84.5% 92.8%
AICu 84.2% 84.8% 80.7% 79.3% 83.3% 92.8%
AIC3 71.2% 75.8% 65.5% 64.7% 66.5% 83.3%
BIC 36.5% 34.5% 35.2% 33.5% 32.3% 47.2%

life examples (Section 5.2). In order to do model selection, the two best information criteria (AIC and AICc) according
to the comparison study (Section 4) are computed together with the most commonly used BIC and ICL-BIC. Thus, their
performances can be compared.

5.1. Simulation study

We set up a simulation study to test how reliably, in a diverse range of scenarios, wewere able to estimate the parameters
of stereotype models using the EM algorithm. We are not testing model selection here (that was tested in Section 4): we
simulate data sets and then fit the correct model to those data.

The simulation program was written in R, wrapping the likelihood function which was written in C. The design of
the study refers to an ordinal response variable with four categories and we varied the sample size (n = 25, 50,
200, 500, 1000, 5000), the number of columns (m = 5, 10, 15) and the number of row and/or column clusters (R =

2, 3, 4, 5, 6 and C = 2, 3). For each combination of sample size and number of row clusters, a single set of parameters
values was chosen and 100 data sets (replicates) were generated. The MLEs and their standard errors were found for each
replicate. The general results for the score parameters {φk} for row clusteringwithout interaction factors are given in Table 4.
Tables 5 and 6 present the equivalent results for column clustering and biclustering respectively. The simulation scenarios
including the interaction factors for row clustering and biclustering version are shown in Tables E.12 and E.13 in Appendix E.
In each case the tables show the mean of the MLEs and of their corresponding standard errors over the 100 replicates.

For all models (row clustering, column clustering and biclustering) the estimates of the parameters {φk}, {πr} and {κc}

are close to their true values and as expected the variability decreases with increasing the sample size n, and the number
of columns m in the case of column clustering. Fig. 2 shows the 100 separate estimates ofφ2 andφ3 for the row clustering
model with R = 2 row clusters plotted against each other for varying sample sizes. Note that all the estimates in the figure
show the ordering constraint φ2 < φ3, which restricts the estimates to the upper left triangle of the plot. This sequence of
plots shows that the estimation process consistently returned MLEs for the score parameters {φk} close to their true values
(the diamond point in each plot) with reducing standard error as the sample size increases. Figs. E.11 and E.12 in Appendix E
show similar results for the column clustering model with C = 2 clusters and the biclustering model with R = 2 and C = 2
clusters respectively. However, the column clustering model has the drawback that the number of {αi} parameters is large
when the sample size n is increased (e.g., 156 parameters with n = 50, q = 4 and C = 3) and therefore estimators would
be poor with large sample sizes in that case. The consequences of this are that the standard errors are slightly higher than
for row clustering and biclustering even as the number of columnsm increases.

In addition, we have observed that the EM algorithm converges to a point far away from the true value. We do not
notice this problem in the row clustering and biclustering versions but we detected it in approximately 5% of cases with
column clustering when the sample size is n = 50. This problem is apparently caused by the large number of individual row
parameters {αi} in column clustering. Another inherent drawback in finite mixtures is that the likelihood has a multimodal
surface.

Our initial results described above are encouraging in their ability to estimate parameters correctly. However, we were
interested to test the success of the estimation in challenging situations where it might be expected that estimation might
be difficult. We chose two particular scenarios. The first case is when two of the score parameters {φk} have equal values
and, therefore, from the point of view of detecting clustering, we could merge their corresponding response categories. A
second scenario is to set a very small a priori membership probability, e.g. π2 = 0.015, and, consequently, few data units
will be classified in the related cluster. The chosen probability must not be related to the first or last response categories
because there is a relationship with the score parameters (see (18)) and their corresponding score parameters are set to
φ1 = 0 and φq = 1 to avoid identifiability problems. Therefore, it is more interesting to test a free score parameter.
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Table 4
Simulation study. Estimated score parameters for stereotype model including row clustering without interaction factors µk +φk(αr +βj). MLEs and their
standard errors from the score and row membership parameters ({φk}, {πr }) for different number of row clusters R and sample sizes n are shown.

R Numpar True param. n = 200 n = 500 n = 1000 n = 5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 11
φ2 = 0.335 0.366 0.183 0.377 0.114 0.335 0.080 0.336 0.036
φ3 = 0.672 0.682 0.188 0.679 0.115 0.670 0.081 0.671 0.036
π1 = 0.550 0.523 0.046 0.541 0.031 0.553 0.019 0.552 0.009

3 13

φ2 = 0.335 0.330 0.184 0.332 0.114 0.337 0.080 0.335 0.035
φ3 = 0.672 0.669 0.169 0.675 0.103 0.673 0.074 0.674 0.032
π1 = 0.200 0.189 0.021 0.194 0.017 0.187 0.010 0.211 0.004
π2 = 0.500 0.529 0.118 0.491 0.121 0.489 0.091 0.496 0.044

4 15

φ2 = 0.335 0.334 0.160 0.333 0.102 0.331 0.071 0.334 0.032
φ3 = 0.672 0.682 0.158 0.670 0.100 0.668 0.069 0.671 0.031
π1 = 0.150 0.261 0.097 0.080 0.037 0.146 0.028 0.151 0.022
π2 = 0.300 0.241 0.131 0.332 0.048 0.288 0.028 0.289 0.016
π3 = 0.250 0.255 0.133 0.290 0.048 0.263 0.015 0.244 0.008

5 17

φ2 = 0.335 0.331 0.178 0.335 0.110 0.331 0.076 0.336 0.034
φ3 = 0.672 0.678 0.180 0.675 0.112 0.671 0.077 0.673 0.034
π1 = 0.150 0.153 0.027 0.146 0.031 0.145 0.015 0.145 0.003
π2 = 0.300 0.313 0.058 0.326 0.049 0.295 0.027 0.288 0.009
π3 = 0.100 0.092 0.026 0.089 0.032 0.094 0.099 0.102 0.003
π4 = 0.200 0.217 0.032 0.205 0.023 0.199 0.014 0.202 0.003

6 19

φ2 = 0.335 0.325 0.193 0.336 0.121 0.322 0.086 0.333 0.060
φ3 = 0.672 0.671 0.194 0.673 0.119 0.656 0.083 0.671 0.059
π1 = 0.150 0.156 0.033 0.150 0.023 0.139 0.007 0.140 0.004
π2 = 0.300 0.296 0.038 0.302 0.035 0.294 0.010 0.290 0.005
π3 = 0.100 0.093 0.039 0.090 0.027 0.095 0.006 0.096 0.004
π4 = 0.200 0.203 0.034 0.204 0.026 0.200 0.004 0.200 0.003
π5 = 0.150 0.158 0.019 0.161 0.015 0.162 0.006 0.160 0.003

Table 5
Simulation study. Estimated score parameters for stereotype model including column clustering without interaction factors µk + φk(αi + βc ). MLEs and
their standard errors from the score and columnmembership parameters ({φk}, {κc}) for different number of column clusters C , number of columnsm and
sample sizes n are shown.

C Numpar True param.
m = 5 m = 10 m = 15
Mean S.E. Mean S.E. Mean S.E.
n = 25

2 31
φ2 = 0.335 0.291 0.261 0.314 0.143 0.329 0.100
φ3 = 0.672 0.722 0.245 0.652 0.169 0.681 0.103
κ1 = 0.600 0.589 0.190 0.589 0.122 0.588 0.095

3 33

φ2 = 0.335 0.296 0.259 0.307 0.158 0.342 0.090
φ3 = 0.672 0.790 0.283 0.712 0.177 0.682 0.110
κ1 = 0.400 0.371 0.204 0.376 0.124 0.390 0.087
κ2 = 0.200 0.179 0.196 0.195 0.112 0.195 0.086

n = 50

2 56
φ2 = 0.335 0.397 0.215 0.348 0.119 0.335 0.081
φ3 = 0.672 0.736 0.204 0.704 0.111 0.678 0.075
κ1 = 0.600 0.618 0.176 0.609 0.092 0.599 0.063

3 58

φ2 = 0.335 0.386 0.211 0.342 0.116 0.332 0.078
φ3 = 0.672 0.724 0.227 0.693 0.117 0.675 0.065
κ1 = 0.400 0.377 0.183 0.386 0.086 0.403 0.068
κ2 = 0.200 0.204 0.179 0.201 0.083 0.201 0.055

We have simulated these two specific scenarios for the row clustering, column clustering and biclustering models and
Tables E.14–E.16 in Appendix E summarizes the simulation results. These are very satisfactory because our approach can
identify these particular scenarios and get back values close to the true score parameters {φk} in the suite of models tested.
However, some of the approximate 95% confidence intervals for the a priorimembership probabilities {πr} do not cover their
true valueswhen the sample size is higher than n = 1000 and, therefore, the variability is reduced (e.g., row clusteringmodel
with R = 4 clusters with statistical theory (central limit theorem) providing an approximate 95% CI for π3 and n = 5000
(Table E.14) is (0.262, 0.298) when the true value is 0.23). In addition, we have observed the same drawbacks described
above in the column clustering version.
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Table 6
Simulation study. Estimated score parameters for stereotype model including biclustering without interaction factors µk + φk(αr + βc ). MLEs and their
standard errors from the score, row and column membership parameters ({φk}, {πr }, {κc}) for different number of row and column clusters R and C and
sample sizes n are shown.

R C Numpar True param. n = 25 n = 50 n = 100
Mean S.E. Mean S.E. Mean S.E.

2 2 9

φ2 = 0.335 0.354 0.357 0.351 0.266 0.329 0.142
φ3 = 0.672 0.686 0.379 0.658 0.260 0.693 0.143
π1 = 0.600 0.504 0.234 0.671 0.175 0.585 0.139
κ1 = 0.400 0.446 0.231 0.415 0.142 0.409 0.074

2 3 11

φ2 = 0.335 0.319 0.341 0.322 0.243 0.324 0.132
φ3 = 0.672 0.753 0.365 0.693 0.232 0.671 0.142
π1 = 0.600 0.490 0.201 0.522 0.159 0.577 0.086
κ1 = 0.400 0.387 0.209 0.388 0.169 0.411 0.121
κ2 = 0.200 0.229 0.210 0.222 0.177 0.189 0.105

3 2 11

φ2 = 0.335 0.345 0.337 0.342 0.266 0.334 0.155
φ3 = 0.672 0.712 0.302 0.688 0.201 0.669 0.146
π1 = 0.300 0.313 0.209 0.313 0.128 0.301 0.106
π2 = 0.400 0.404 0.200 0.346 0.118 0.367 0.093
κ1 = 0.400 0.381 0.196 0.397 0.131 0.400 0.062

3 3 13

φ2 = 0.335 0.362 0.341 0.355 0.219 0.337 0.145
φ3 = 0.672 0.706 0.300 0.627 0.210 0.664 0.135
π1 = 0.300 0.283 0.202 0.296 0.129 0.311 0.094
π2 = 0.400 0.368 0.181 0.373 0.113 0.398 0.088
κ1 = 0.400 0.388 0.182 0.392 0.095 0.402 0.079
κ2 = 0.200 0.195 0.195 0.197 0.099 0.200 0.081

Fig. 2. Simulation study: convergence ofφ2 andφ3 for the stereotype model including the row clustering (αr + βj) with R = 2 row clusters. n, h, q, m
describe the sample size, the number of replicates, the number of categories and the number of covariates respectively. The diamond point represents the
true value of the parameter.
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Fig. 3. Data set with the ‘‘Applied Statistics’’ course feedback forms. The dotted circle indicates the student number 3 answered the question number 2 as
‘‘agree’’ (coded as 3).

Fig. 4. Histogram of the R = 2 fitted student clusters {φ(i.)} from the row clustering version model.

5.2. Real-life data examples

5.2.1. Example 1: applied statistics course feedback
The example is corresponding to a data setwith the responses of 70 students giving feedback about a second year Applied

Statistics course at Victoria University of Wellington. The responses were collected in feedback forms through 10 questions
(e.g. ‘‘The way this course was organised has helpedme to learn’’), where each question had three possible ordinal response
categories: ‘‘disagree’’ (coded as 1), ‘‘neither agree or disagree’’ (coded as 2) and ‘‘agree’’ (coded as 3). Each question was
written so that ‘‘agree’’ indicates a positive view of the course. The whole data set is shown in Table F.18 in Appendix F.

In that way, the dimensions of the data matrix Y with the responses are n = 70 rows (students) and m = 10 columns
(questions) where each observation can take one of the three possible categories. Therefore, we can represent the data in a
matrix as shown in Fig. 3.

Themain goal is to select themodelwhich best represents the data, including determining the number of different groups
in the data. We have fitted a suite of models from the null model (no clustering) to themain effects model and their versions
including row clustering, column clustering and biclustering. For each model, the information criteria AIC, AICc , BIC and
ICL-BIC were computed and the results are summarized in Table 7.

AIC and AICc indicate that the best models are models with main effects without interaction factors (µk + φk(αi + βj))
with AIC = 965.26 and AICc = 987.32, and the stereotype model version including row clustering with R = 2, 3 or 4
row groups and without interaction factors (µk + φk(αr + βj)). Although the main effects model is found to be the best
model, for demonstration purposes we discuss here the row clustered models without interaction factors, which have
greater interpretability. Figs. 4–6 show three histograms depicting a newly-defined average of the fitted scores of student
responses over the 10 questions where each student is allocated to the row group to which she/he belongs with highest
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Table 7
Suite of models fitted for applied statistics course feedback forms data set. For each information criterion, the best model in each group (no clustering, row
clustering, column clustering and biclustering) is shown in boldface.

Model R C npar AIC AICc BIC ICL-BIC

Null model µk 1 1 3 1298.40 1298.46 1312.06 1312.06
Row effects µk + φkαi n 1 72 1224.04 1241.30 1551.72 1551.72
Column effects µk + φkβj 1 m 12 1105.50 1106.03 1160.11 1160.11
Main effects µk + φk(αi + βj) n m 81 965.26 987.32 1333.90 1333.90

Row clustering

µk + φkαr

2 1 5 1251.70 1251.82 1274.45 1302.34
3 1 7 1241.60 1241.82 1273.47 1325.84
4 1 9 1251.56 1251.88 1292.52 1348.77

µk + φk(αr + βj)

2 m 14 1025.75 1026.45 1089.47 1109.82
3 m 16 1013.44 1014.33 1086.25 1117.53
4 m 18 1017.44 1018.56 1099.36 1176.50

µk + φk(αr + βj + γrj)

2 m 23 1042.30 1044.08 1146.98 1167.34
3 m 34 1032.43 1036.23 1187.17 1219.93
4 m 45 1020.08 1026.70 1224.88 1244.90

Column clustering
µk + φkβc

1 2 5 1279.94 1280.06 1242.90 1302.69
1 3 7 1278.59 1278.80 1310.45 1315.47

µk + φk(αi + βc)
n 2 74 1409.09 1427.31 1435.93 1745.82
n 3 76 1430.75 1450.06 1490.43 1776.63

Biclustering

µk + φk(αr + βc)

2 2 7 1115.32 1115.53 1147.18 1182.21
3 2 9 1110.29 1110.61 1151.25 1192.03
4 2 11 1114.29 1114.75 1164.36 1206.08
2 3 9 1060.77 1061.09 1101.73 1138.13
3 3 11 1052.04 1052.49 1102.10 1148.95
4 3 13 1056.04 1056.65 1115.20 1221.54
2 4 11 1064.77 1065.23 1114.83 1151.52
3 4 13 1056.04 1056.65 1115.20 1165.96
4 4 15 1060.04 1060.84 1128.31 1234.04

µk + φk(αr + βc + γrc)

2 2 8 1117.33 1117.59 1153.73 1188.76
3 2 11 1098.29 1098.75 1148.35 1204.03
4 2 14 1104.29 1104.99 1168.01 1278.05
2 3 11 1064.56 1065.01 1114.62 1151.15
3 3 15 1058.96 1059.75 1127.22 1184.06
4 3 19 1127.46 1128.69 1213.93 1325.72
2 4 14 1070.56 1071.26 1134.28 1174.55
3 4 19 1066.96 1068.19 1153.43 1214.02
4 4 24 1076.96 1078.89 1186.18 1285.48

Fig. 5. Histogram of the R = 3 fitted student clusters {φ(i.)} from the row clustering version model.
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Fig. 6. Histogram of the R = 4 fitted student clusters {φ(i.)} from the row clustering version model.

posterior probability. Different shade bars represent the row cluster to which the student is assigned according to the
corresponding model. This average score (along the x-axis) is calculated in the following way. First, we compute the fitted
response probabilities with the estimated parameters over the R row clusters and the q response categories,

P[yij = k | i ∈ r] =
exp(µk +φk(αr +βj))
q

ℓ=1
exp(µℓ +φℓ(αr +βj))

, i = 1, . . . , n, j = 1, . . . ,m, k = 1, . . . , q, r = 1, . . . , R.

From the previous probabilities, we can compute the weighted average over the q categories for each row cluster

φrj =

q
k=1

φkP[yij = k | i ∈ r], i = 1, . . . , n, j = 1, . . . ,m, r = 1, . . . , R.

From here, we can calculate the mean response level of individual i to question j, conditional on its (fuzzy) allocation to the
row clusters:

φ(ij) =

R
r=1

zirφrj, i = 1, . . . , n, j = 1, . . . ,m. (19)

This is a numerical measure of the typical response to question j for members of row group r , appropriately adjusting for
the uneven spacing of the levels of the ordinal response. Finally, we determine the mean of the previous weighted averages
over them columns in order to get the average fitted scores of individual i across all of the questions

φ(i.) =
1
m

m
j=1

φ(ij), i = 1, . . . , n.

Figs. 4–6 display these φ(i.) values for R = 2, 3 and 4 clusters.
Figs. 4 and 5 respectively show two and three clearly distinguished groups. The histogram from Fig. 4 presents twomodes

and Fig. 5 shows two clear modes and one small mode located in the right-tale. However, Fig. 6 where four groups are fitted
shows that the fourth group only includes two students and they are not clearly distinguished from the other three groups.
These graphs illustrate the conclusion from AIC/AICc that among the row clustering models, the model with three student
groups is the best for our data.

Figs. 7 and 8 display the estimated probabilityθrk of a member of group r responding at category level k (Eq. (5)). We
might conclude that the students classified in the first group correspond to those with lowest opinion regarding the course,
the ones in the second group have a more moderate opinion about the course and the students in the third group are those
with more positive (though still heterogeneous) set of opinions.

5.2.2. Example 2: tree presences in Great Smoky Mountains
Weuse a real data set from community ecology as a second example to illustrate our likelihood-based clusteringmethod.

The data set is regarding the distribution of 41 different tree species along 12 different site stations located at altitudes
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Fig. 7. R = 3 student groups. The lines depict the probability for the categoryθri jk = P

yij = k | i ∈ r


(see Eq. (5)) for each group r and the average over

all students (black line). The percentage labeling is the estimated posteriori probabilityπr that member of each group r will respond to questions in each
ordinal category (Eq. (18)).

Fig. 8. R = 3 student group profiles. The percentage represents the probabilityθri jk in each category (Eq. (5)).

between 3500 and 4500 ft and sorted bymoisture level (wetter to drier). The observations consist of percentage of total tree
species present at each station and was presented in R.H. Whittaker’s study of vegetation of the Great Smoky Mountains
(Whittaker, 1956, Table 3). The data set is reproduced in Table 8.

The data include cells with a low but nonzero detection, at levels <0.5%. This missing data cause that the effective
distances between the values do not reflect their interpretative distance. Thus, transformationsmay be required (Hennig and
Liao, 2013) and that presents an appropriate opportunity to replace numerical data with an ordinal scale. In order to apply
our model approach, we transform the original data {xij} regarding tree presence percentage to ordinal response categories
setting

yij =


0 if xij = 0%
1 if 0% < xij ≤ 0.5%
2 if 0.5% < xij ≤ 1%
3 if 1% < xij ≤ 8%
4 if xij > 8%
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Table 8
Great SmokyMountains data (Whittaker, 1956). Presence distribution of tree species along different site stations. All figures are percentages of total stems
presence in station.

Tree species Station number
1 2 3 4 5 6 7 8 9 10 11 12

Fangus grandifolia 10 5 1 1 1 – – – – – – –
Ilex opaca – 1 – <0.5 – – – – – – – –
Picea rubens – <0.5 – <0.5 <0.5 – – – – – – –
Cornus alternifolia 1 1 – <0.5 <0.5 – – – – – – –
Aesculus octandra 8 9 4 2 6 1 – – – – – –
Tilia heterophylla 29 11 9 1 14 3 – – – – – –
Acer spicatum – 16 11 – 17 1 – – – – – –
Acer saccharum 17 7 1 1 5 1 – – – – – –
Prunus serotina 2 1 – 1 <0.5 2 – – – – – –
Fraxinus americana 1 1 – 1 1 <0.5 – – – – – –
Betula allegheniensis 5 17 10 15 4 1 <0.5 – – – – –
Magnolia acuminata – <0.5 – – <0.5 – 1 – – – – –
Magnolia fraseri – – 20 4 1 – 1 – – – – –
Tsuga canadensis 20 22 34 62 18 <0.5 <0.5 1 – – – –
Halesia monticola 5 8 4 1 9 13 3 1 1 – – –
Ilex montana 1 <0.5 – 1 1 1 2 – – – – –
Acer pensylvanicum 1 <0.5 1 3 8 3 <0.5 1 – – – –
Amelanchier laevis – <0.5 – <0.5 <0.5 – – – – – – –
Quercus borealis – 1 – – 2 40 10 4 15 11 2 1
Acer rubrum – 1 – – 1 6 37 21 13 10 8 1
Prunus pensylvanica – – 2 – – – 1 – – – – –
Betula lenta – – 1 4 4 1 2 2 – – – –
Clethra acuminata – – – 1 <0.5 – – – – – – –
Hamamelis virginiana – – – – 2 5 17 7 1 – 2 –
Cornus florida – – – – 1 – <0.5 4 – – – –
Liriodendron tulipifiera – – – – 2 – – 1 – <0.5 – –
Rhododendron calendulaceum – – – – – 1 – 1 4 – – –
Craya glabra – – – – – 4 <0.5 2 6 5 – –
Carya tomentosa – – – – – – – 2 – – – –
Carya ovalis – – – – – – – <0.5 – – – –
Nyssa sylvatica – – 1 – – – 2 4 1 2 7 –
Oxydendrum arboreum – – <0.5 1 – 1 3 8 14 16 1 1
Castanea dentata – – – – 2 5 7 9 10 12 1 –
Sassafras albidum – – – – – 1 1 1 1 4 <0.5 –
Quercus alba – – – – – 2 1 8 24 10 <0.5 –
Robinia pseudoacacia – – – – – 4 5 1 3 8 3 <0.5
Quercus prinus – – – – – 3 4 15 4 16 11 1
Quercus veluntina – – – – – – <0.5 <0.5 1 1 – –
Quercus coccinea – – – – – – 1 – – – – 1
Pinus rigida – – – – – – – 7 1 1 11 46
Pinus pungens – – – – – – – – 1 4 54 49

Table 9
Frequencies of tree presence percentage by station number, in ordinal scale.

Ordinal scale 0 1 2 3 4

Tree presence No data recorded ≤0.5% ≤1% ≤8% >8%
Frequency (xij) 285 30 68 65 44

based on an equitable frequency percentage for each category. Table 9 summarizes the frequencies of tree presence data for
this new ordinal scale with 5 categories. Apart from the first category, which is for sites and tree species without presences
recorded, the categories with the highest frequencies are 2 and 3 (tree presence percentages between 0.5% and 8%).

Here it is important to remark that we defined another ordinal scale with six categories in the beginning of the data
analysis. The current category 3was split in two subcategories (from 1% to 2% and from 2% to 8%) in that former ordinal scale.
However, models fitted to these data indicated that the corresponding estimated score parametersφk for those two adjacent
categories were very close to each other. If φk = φk+1 then the adjacent category logit between those two categories, say k
and k + 1 is

log


P

yij = k + 1 | i ∈ r


P

yij = k | i ∈ r

 
= (µk+1 − µk) + (φk+1 − φk)(αr + βj + γrj)

= µk+1 − µk.
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Fig. 9. R = 3 tree presence groups. The lines depict the probability for the categoryθri jk = P

yij = k | i ∈ r


(see Eq. (5)) for each group r and the average

over all students (black line). The percentage labeling is the estimated posteriori probabilityπr that member of each group r will respond to questions in
each ordinal category (Eq. (18)).

Fig. 10. R = 3 tree presence profiles. The percentages represent the probabilityθrk in each category (Eq. (5)).

This implies that the relative frequencies in these two categories are independent of the clustering structure. Therefore
retaining the distinction between k and k + 1 is not informative about the clustering structure. In that case, the model
still holds with the same scores if the ordinal scale is collapsed by combining those two adjacent categories into one single
response category. Since we regard the {µk} as nuisance parameters, this collapsing does not limit our inference in any way.
However, they should not be collapsed if keeping the original ordinal categories entails an ecological interest. Therefore, the
dimensions of the datamatrix Y with the responses are n = 41 tree species andm = 12 site stationswhere each observation
can take one of the 5 possible categories described above.

After fitting a complete set of models and comparing them by using information criteria (see the summarized results in
Table G.19 in Appendix G), the selected model (either using AIC or AICc) was the stereotype model version including row
clustering with R = 3 row groups and with interaction factors (µk + φk(αr + βj + γrj)). Figs. 9 and 10 show the profiles
for the three resultant row clusters. For instance, Fig. 9 depicts that the highest probability for the row cluster number 3
(showed with a line with diamond symbols) is in ordinal category 3 and Fig. 10 shows a first set of bars where the highest
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probabilities are in the categories with tree presence below 1%. Therefore, tree species classified in the first row group are
those with a lower level of presence.

6. Discussion

We have introduced a set of likelihood models based on the ordinal stereotype model and have introduced fuzzy
clustering via finite mixtures in order to reduce the dimensionality of the problem and simplify the interpretation.
Furthermore, we have described a procedure to derive the maximum likelihood estimators of the parameters of the suite of
developedmodels by using the EM algorithm. Computation can be slow in this stage, though we have substantially reduced
the time required by calling C fromR. In addition, we have testedmodel comparison setting up a simulation study conducted
a study in which the results show that AIC, AICc and AICu are consistent information criteria to score fitted models based on
our likelihood-based finite mixture model approach for ordinal data sets. In particular, AIC performs best among the tested
information criteria to select the model with the correct number of clusters in a wide range of scenarios. Finally, we have
demonstrated our approach by means of two examples with real data and have tested the reliability of our methodology
through a simulation study. We have detected that there is an indication of multimodality of the likelihood surface in the
column clustering model. A strategy to deal with this is to implement a convergence strategy where several starting values
are tested over the parameter vector in order to obtain the global maximum.

There are numerous applications for these likelihood-based clusteringmodels in fieldswheremultivariate techniques are
necessary. The advantage of our approach is its likelihood-based foundation because maximum likelihood theory provides
estimators and model selection.

Many count or percentage data sets have extreme variabilities, for example very high counts and very low counts in
ecological community data. Replacing these high counts with ‘‘medium’’ and ‘‘high’’ ordinal categories makes the actual
counts less influential in the model fitting, giving broad categories which enable us to detect major overall patterns.

This approach can be enriched adding covariates if they are available. As the mixture models have an unknown number
of components, a Bayesian approach implementing a reversible jumpMCMC sampler is also feasible (cf. Arnold et al., 2010).
Another possible future interesting development might be to assume random effects for indicated row and column effects
(αi or βj) to reduce the number of unknown parameters.

We have considered the case where responses in each column have the same number of ordinal response levels. This
could be varied but may require a separate set of parameters {µjk} and {φjk}.

An important future development would be new data visualization methods for finite mixtures models based on the
stereotype model. In Figs. 7–10 we have displayed the different group profiles using {φ(i.)} from the data. New visualization
tools may lead to the generation of new hypotheses in data exploration and the identification of patterns in the data. Output
from these models allows us to determine a new spacing of the ordinal categories, dictated by the data. This will lead to
more informative visualization, for example with the equal spacing of categories along the x-axis in Figs. 9 and 10 replaced
with the more appropriate spacing determined by the fitted parameter values. The estimation of the spacing among ordinal
responses in our methodology is an improvement over other ordinal data models such as proportional odds model and
continuation-ratio model although more research in performance comparison with others equivalent methods is needed.
Finally, another research direction to explore would be to compare clustering structures resulting from our methodology
with those with binary, count or continuous data. In particular for data sets which original data is not ordinal and we apply
transformations like in the Example 2 (Section 5.2.2).
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Appendix A. Response probabilities in the ordered stereotype model

In this appendix, we describe the relationship between models (3) and (4), which were formulated in Section 2.2.
From Eq. (4) with the linear predictor including the covariates and

q
k=1 P


yij = k | x


= 1, we calculate

P

yij = 1 | x

 
1 +

q
ℓ=2

exp(µℓ + φℓδ
′x)


= 1.

As µ1 = φ1 = 0 for identifiability reasons, then

P

yij = 1 | x


=

1
q

ℓ=1
exp(µℓ + φℓδ

′x)
. (A.1)

Therefore, Eq. (3) can be obtained from (4) just using the above expression (A.1) for P

yij = 1 | x


.
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Table D.10
Parameter configuration for 5 tested scenarios in the row clustering case.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
m = 5 m = 5 m = 5 m = 5 m = 10

R = 2

π1 = 0.450 π1 = 0.450 π1 = 0.950 π1 = 0.450 π1 = 0.450
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

R = 3

π1 = 0.200 π1 = 0.200 π1 = 0.470 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.050 π2 = 0.500 π2 = 0.500
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634
α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

R = 4

π1 = 0.150 π1 = 0.150 π1 = 0.310 π1 = 0.150 π1 = 0.150
π2 = 0.300 π2 = 0.300 π2 = 0.050 π2 = 0.300 π2 = 0.300
π3 = 0.250 π3 = 0.250 π3 = 0.320 π3 = 0.250 π3 = 0.250
µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814 µ2 = 0.814
µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951 µ3 = 0.951
µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207 µ4 = 0.207
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.662 φ3 = 0.972 φ3 = 0.662 φ3 = 0.500 φ3 = 0.662
α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634 α1 = 3.634
α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819 α2 = −0.819
α3 = 2.911 α3 = 2.911 α3 = 2.911 α3 = 2.911 α3 = 2.911
β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427 β1 = −0.427
β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285 β2 = 1.285
β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872 β3 = 1.872
β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097 β4 = −0.097

Notes: µ1 = 0, φ1 = 0, φ4 = 1 for all the scenarios.
β5 = 2.20, β6 = 3.00, β7 = −2.00, β8 = 3.90 and β9 = −3.50 in Scenario 5.

Appendix B. EM algorithm formulae. Column clustering

In Section 3, we described the model fitting procedure for the row clustering case. In this appendix, the fitting procedure
is formulated for the case of column clustering.

The latent variable relating to the missing information for the actual membership of the columns is Xjc . The posterior
probabilities of membership once we have observed the data {yij} areXjc and the set of a priori probabilities are {κc}. Ω is
the parameter vector for the case of column clustering. For the M-step, we use the sum-to-zero constraints on each row and
column of the γ iteration matrix and on the column effect parameters {βc} (


c βc = 0) in order to avoid identifiability

problems.
The column clustering model-specific formulae of EM-algorithm follow.
E-step:

X (t)
jc =

κ (t−1)
c

n
i=1

q
k=1

θ (t−1)
ick

I(yij=k)

C
ℓ=1

κ (t−1)
ℓ

n
i=1

q
k=1

θ (t−1)
iℓk

I(yij=k)


and

Q (Ω | Ω(t−1)) =

m
j=1

C
c=1

X (t)
jc log(κ (t−1)

c ) +

n
i=1

m
i=1

q
k=1

C
c=1

X (t)
jc I(yij = k) log

θ (t−1)
ick


.
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Table D.11
Parameter configuration for 5 tested scenarios in the biclustering case.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
m = 5 m = 5 m = 5 m = 5 m = 10

R = 2, C = 2

π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450
κ1 = 0.450 κ1 = 0.450 κ1 = 0.950 κ1 = 0.450 κ1 = 0.450
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777

R = 2, C = 3

π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450 π1 = 0.450
κ1 = 0.200 κ1 = 0.200 κ1 = 0.470 κ1 = 0.200 κ1 = 0.200
κ2 = 0.500 κ2 = 0.500 κ2 = 0.050 κ2 = 0.500 κ2 = 0.500
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128
β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212

R = 3, C = 2

π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500
κ1 = 0.450 κ1 = 0.450 κ1 = 0.950 κ1 = 0.450 κ1 = 0.450
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251
β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777 β1 = 0.777

R = 3, C = 3

π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200 π1 = 0.200
π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500 π2 = 0.500
κ1 = 0.200 κ1 = 0.200 κ1 = 0.47 κ1 = 0.20 κ1 = 0.200
κ2 = 0.500 κ2 = 0.500 κ2 = 0.050 κ2 = 0.500 κ2 = 0.500
µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914 µ2 = 0.914
µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511 µ3 = 0.511
µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107 µ4 = 0.107
φ2 = 0.335 φ2 = 0.335 φ2 = 0.335 φ2 = 0.500 φ2 = 0.335
φ3 = 0.672 φ3 = 0.972 φ3 = 0.672 φ3 = 0.500 φ3 = 0.672
α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634 α1 = 1.634
α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251 α2 = 3.251
β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128 β1 = −2.128
β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212 β2 = 3.212

Notes: µ1 = 0, φ1 = 0, φ4 = 1 for all the scenarios.

M-step:

κ (t)
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m
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and

max
Ω


n

i=1

m
j=1

q
k=1

C
c=1

Xjc I(yij = k) log
θick ,

conditional on the identifiability constraints on the parameters.

Appendix C. EM algorithm formulae. Biclustering

In Section 3, we described the model fitting procedure for the row clustering case. In this appendix, the fitting procedure
is formulated for the case of biclustering.
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Table E.12
Simulation study (Section 5.1). Estimated score parameters for stereotypemodel including row clusteringµk +φk(αr +βj +γrj). MLEs and their standard
errors from the score and row membership parameters ({φk}, {πr }) for different number of row clusters R and sample sizes n are shown.

R Numpar True param. n = 200 n = 500 n = 1000 n = 5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 15
φ2 = 0.335 0.324 0.235 0.336 0.140 0.337 0.098 0.336 0.044
φ3 = 0.672 0.655 0.206 0.674 0.123 0.672 0.087 0.671 0.038
π1 = 0.550 0.556 0.063 0.542 0.035 0.550 0.024 0.554 0.010

3 21

φ2 = 0.335 0.372 0.236 0.321 0.142 0.331 0.100 0.339 0.069
φ3 = 0.672 0.709 0.165 0.668 0.102 0.678 0.074 0.675 0.052
π1 = 0.200 0.201 0.091 0.219 0.015 0.172 0.008 0.202 0.007
π2 = 0.500 0.353 0.148 0.487 0.114 0.451 0.031 0.491 0.015

4 27

φ2 = 0.335 0.373 0.236 0.374 0.144 0.348 0.093 0.345 0.049
φ3 = 0.672 0.727 0.167 0.771 0.095 0.692 0.070 0.682 0.031
π1 = 0.200 0.084 0.129 0.099 0.118 0.179 0.101 0.181 0.059
π2 = 0.350 0.327 0.201 0.401 0.141 0.334 0.128 0.346 0.022
π3 = 0.230 0.196 0.181 0.259 0.128 0.179 0.099 0.214 0.059

5 33

φ2 = 0.335 0.323 0.243 0.374 0.154 0.335 0.102 0.335 0.073
φ3 = 0.672 0.698 0.152 0.744 0.097 0.684 0.071 0.675 0.050
π1 = 0.200 0.151 0.128 0.214 0.107 0.212 0.051 0.209 0.003
π2 = 0.120 0.114 0.155 0.136 0.121 0.128 0.061 0.121 0.003
π3 = 0.230 0.210 0.186 0.224 0.130 0.228 0.057 0.234 0.008
π4 = 0.300 0.462 0.198 0.440 0.157 0.388 0.111 0.311 0.011

6 39

φ2 = 0.335 0.442 0.238 0.404 0.147 0.333 0.103 0.346 0.071
φ3 = 0.672 0.741 0.166 0.766 0.106 0.709 0.075 0.680 0.056
π1 = 0.150 0.181 0.172 0.167 0.121 0.131 0.081 0.138 0.012
π2 = 0.300 0.182 0.155 0.221 0.091 0.225 0.058 0.227 0.009
π3 = 0.100 0.091 0.161 0.081 0.102 0.087 0.077 0.093 0.014
π4 = 0.200 0.246 0.139 0.166 0.081 0.194 0.044 0.194 0.005
π5 = 0.150 0.235 0.166 0.191 0.118 0.178 0.099 0.165 0.012

The latent variables relating to the missing information for the actual membership of the rows and columns are Zir and
Xjc respectively. The posterior probabilities of membership once we have observed the data {yij} areZir for the rows andXjc
for the columns. The set of a priori probabilities are {πr} (rows) and {κc} (columns). Ω is the parameter vector for the case
of biclustering. For the M-step, we use the sum-to-zero constraints on each row and column of the γ iteration matrix and
on row effect parameters {αr} and column effect parameters {βc} (


r αr =


c βc = 0) in order to avoid identifiability

problems. The biclusteringmodel-specific formulae of EM-algorithm follow (see the detailed formulation of the biclustering
model by Pledger and Arnold, 2014).

E-step:
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 .

The E-step of the EM algorithm calls for the expected value of the complete data log-likelihood taking into account the
fact that the only data unknown is {zir} and {xjc} conditional on the observed data {yij}:

Q (Ω | Ω(t−1)) =

n
i=1

R
r=1

log
π (t−1)

r


E
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log
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I(yij = k) log
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rck


E

zirxjc | {yij}, Ω(t−1) .
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Table E.13
Simulation study (Section 5.1). Estimated score parameters for stereotype model including biclustering µk + φk(αr + βc + γrc ). MLEs and their standard
errors from the score, row and column membership parameters ({φk}, {πr }, {κc}) for different number of row and column clusters R and C and sample
sizes n are shown.

R C Numpar True param. n = 25 n = 50 n = 100
Mean S.E. Mean S.E. Mean S.E.

2 2 10

φ2 = 0.335 0.383 0.304 0.346 0.178 0.339 0.138
φ3 = 0.672 0.705 0.260 0.699 0.232 0.678 0.118
π1 = 0.600 0.604 0.173 0.583 0.107 0.601 0.078
κ1 = 0.400 0.366 0.178 0.407 0.097 0.402 0.076

2 3 13

φ2 = 0.335 0.391 0.325 0.342 0.183 0.337 0.140
φ3 = 0.672 0.696 0.294 0.659 0.197 0.669 0.099
π1 = 0.600 0.628 0.188 0.591 0.087 0.604 0.061
κ1 = 0.400 0.412 0.171 0.398 0.102 0.400 0.088
κ2 = 0.200 0.189 0.168 0.201 0.094 0.199 0.059

3 2 13

φ2 = 0.335 0.298 0.299 0.341 0.131 0.336 0.111
φ3 = 0.672 0.713 0.297 0.693 0.166 0.675 0.109
π1 = 0.300 0.288 0.176 0.304 0.101 0.303 0.077
π2 = 0.400 0.371 0.163 0.388 0.099 0.397 0.065
κ1 = 0.400 0.421 0.181 0.401 0.137 0.400 0.111

3 3 17

φ2 = 0.335 0.401 0.313 0.388 0.201 0.347 0.131
φ3 = 0.672 0.701 0.277 0.669 0.181 0.671 0.093
π1 = 0.300 0.325 0.182 0.312 0.106 0.304 0.066
π2 = 0.400 0.371 0.178 0.381 0.101 0.397 0.071
κ1 = 0.400 0.384 0.157 0.398 0.092 0.402 0.063
κ2 = 0.200 0.219 0.148 0.210 0.104 0.195 0.061

Table E.14
Simulation study (Section 5.1). Estimated score parameters for stereotype model including row clustering µk + φk(αr + βj + γrj) when φ2 = φ3 or π2 is
small. MLEs and their standard errors from the score and rowmembership parameters ({φk}, {πr }) for different number of row clusters R and sample sizes
n are shown.

R Numpar True param. n = 200 n = 500 n = 1000 n = 5000
Mean S.E. Mean S.E. Mean S.E. Mean S.E.

2 15
φ2 = 0.500 0.492 0.221 0.483 0.131 0.501 0.091 0.498 0.041
φ3 = 0.500 0.524 0.089 0.502 0.056 0.511 0.036 0.503 0.017
π1 = 0.550 0.595 0.060 0.572 0.036 0.525 0.027 0.551 0.011

3 21

φ2 = 0.500 0.495 0.217 0.484 0.133 0.492 0.093 0.498 0.040
φ3 = 0.500 0.525 0.456 0.504 0.256 0.509 0.146 0.511 0.094
π1 = 0.200 0.202 0.097 0.180 0.013 0.171 0.010 0.203 0.009
π2 = 0.500 0.495 0.140 0.512 0.087 0.504 0.040 0.453 0.012

4 27

φ2 = 0.500 0.498 0.212 0.520 0.083 0.517 0.067 0.506 0.055
φ3 = 0.500 0.545 0.242 0.491 0.116 0.524 0.063 0.513 0.025
π1 = 0.200 0.196 0.165 0.188 0.102 0.193 0.058 0.197 0.016
π2 = 0.350 0.416 0.181 0.406 0.125 0.373 0.042 0.375 0.012
π3 = 0.230 0.240 0.262 0.285 0.163 0.249 0.021 0.280 0.009

3 21

φ2 = 0.335 0.332 0.228 0.336 0.096 0.334 0.068 0.341 0.047
φ3 = 0.672 0.666 0.207 0.674 0.088 0.661 0.064 0.682 0.045
π1 = 0.400 0.344 0.052 0.419 0.031 0.414 0.018 0.422 0.012
π2 = 0.015 0.010 0.123 0.024 0.065 0.012 0.042 0.019 0.026

The expectations in the former two terms are simplyZir andXjc . However, the lack of a posteriori independence of the {zir}
and {xjc} makes the evaluation of E


zirxjc | {yij}, Ω


computationally expensive as it requires a sum either over all possible

allocations of rows to row groups, or over all possible allocations of columns to column groups.
The variational approximation employed by Govaert and Nadif (2005) is a solution to this problem:

E

zirxjc | {yij}, Ω


≃ E


zir | {yij}, Ω


E

xjc | {yij}, Ω


=ZirXjc .

In that manner, the E-step of the EM algorithm is approximated as:
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Table E.15
Simulation study (Section 5.1). Estimated score parameters for stereotype model including column clustering µk + φk(αi + βc + γ ic ) when φ2 = φ3 or
κ2 is small and m = 15. MLEs and their standard errors from the score and column membership parameters ({φk}, {κc}) for different number of column
clusters C , number of columns m and sample sizes n are shown.

C True param. n = 25 n = 50
Numpar Mean S.E. Numpar Mean S.E.

2
φ2 = 0.700

31
0.776 0.100

56
0.706 0.056

φ3 = 0.700 0.882 0.111 0.856 0.076
κ1 = 0.400 0.382 0.121 0.409 0.097

3

φ2 = 0.700

33

0.761 0.123

58

0.734 0.068
φ3 = 0.700 0.796 0.111 0.768 0.056
κ1 = 0.400 0.411 0.105 0.423 0.045
κ2 = 0.200 0.176 0.077 0.200 0.035

3

φ2 = 0.335

33

0.328 0.209

58

0.362 0.080
φ3 = 0.672 0.713 0.157 0.633 0.140
κ1 = 0.400 0.401 0.170 0.373 0.086
κ2 = 0.015 0.026 0.149 0.027 0.084

Table E.16
Simulation study (Section 5.1). Estimated score parameters for stereotype model including biclustering µk + φk(αr + βc + γrc) when φ2 = φ3 or π2 and
κ2 are small. MLEs and their standard errors from the score, row and column membership parameters ({φk}, {πr }, {κc}) for different number of row and
column clusters R and C and sample sizes n are shown.

R C Numpar True param. n = 25 n = 50 n = 100
Mean S.E. Mean S.E. Mean S.E.

2 2 10

φ2 = 0.500 0.477 0.361 0.507 0.164 0.522 0.141
φ3 = 0.500 0.602 0.388 0.593 0.208 0.529 0.174
π1 = 0.600 0.573 0.273 0.540 0.110 0.638 0.103
κ1 = 0.400 0.367 0.289 0.406 0.168 0.401 0.062

2 3 13

φ2 = 0.500 0.659 0.346 0.620 0.141 0.539 0.078
φ3 = 0.500 0.664 0.281 0.612 0.205 0.629 0.088
π1 = 0.600 0.514 0.284 0.689 0.149 0.670 0.146
κ1 = 0.400 0.363 0.401 0.410 0.188 0.358 0.089
κ2 = 0.200 0.253 0.311 0.249 0.142 0.237 0.029

3 2 13

φ2 = 0.500 0.628 0.247 0.429 0.164 0.544 0.065
φ3 = 0.500 0.651 0.230 0.576 0.137 0.546 0.060
π1 = 0.300 0.297 0.225 0.278 0.136 0.268 0.037
π2 = 0.400 0.408 0.228 0.409 0.130 0.362 0.059
κ1 = 0.400 0.482 0.285 0.418 0.143 0.409 0.088

3 3 17

φ2 = 0.500 0.404 0.210 0.497 0.106 0.447 0.036
φ3 = 0.500 0.563 0.212 0.558 0.110 0.518 0.039
π1 = 0.300 0.340 0.127 0.317 0.045 0.307 0.014
π2 = 0.400 0.358 0.149 0.396 0.105 0.385 0.014
κ1 = 0.400 0.458 0.141 0.382 0.108 0.399 0.016
κ2 = 0.200 0.239 0.085 0.219 0.076 0.204 0.013

2 3 13

φ2 = 0.335 0.390 0.320 0.338 0.141 0.301 0.057
φ3 = 0.672 0.760 0.271 0.620 0.107 0.642 0.080
π1 = 0.400 0.382 0.142 0.488 0.100 0.423 0.090
κ1 = 0.400 0.457 0.136 0.479 0.185 0.402 0.079
κ2 = 0.015 0.013 0.089 0.014 0.064 0.018 0.018

3 2 13

φ2 = 0.335 0.326 0.223 0.356 0.156 0.332 0.076
φ3 = 0.672 0.691 0.307 0.618 0.146 0.613 0.079
π1 = 0.400 0.463 0.180 0.373 0.068 0.397 0.024
π2 = 0.015 0.028 0.194 0.019 0.078 0.020 0.055
κ1 = 0.400 0.403 0.113 0.385 0.070 0.408 0.033

3 3 17

φ2 = 0.335 0.386 0.256 0.320 0.125 0.331 0.063
φ3 = 0.672 0.685 0.221 0.631 0.140 0.674 0.080
π1 = 0.400 0.391 0.170 0.311 0.098 0.415 0.068
π2 = 0.015 0.025 0.159 0.021 0.079 0.017 0.043
κ1 = 0.400 0.445 0.188 0.386 0.079 0.398 0.038
κ2 = 0.015 0.019 0.130 0.014 0.043 0.022 0.015
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Table F.17
List of 10 questions of applied statistics course feedback forms. Each question was written so that ‘‘agree’’
indicates a positive view of the course.

Questions

Q1. The way this course was organised has helped me to learn.
Disagree Neither agree nor disagree Agree

� � �

Q2. Important course information-such as learning objectives, deadlines, assessments and
grading criteria-was communicated clearly.

Disagree Neither Agree nor Disagree Agree
� � �

Q3. Preparing for the assessments has helped me to learn.
Disagree Neither Agree nor Disagree Agree

� � �

Q4. Comments and feedback I received during the course have helped me learn more effectively.
Disagree Neither Agree nor Disagree Agree

� � �

Q5. This course encouraged me to think critically.
Disagree Neither Agree nor Disagree Agree

� � �

Q6. This course encouraged me to think creatively.
Disagree Neither Agree nor Disagree Agree

� � �

Q7. This course has helped me to develop my communication skills.
Disagree Neither Agree nor Disagree Agree

� � �

Q8. This course has stimulated my interest in learning more about this subject.
Disagree Neither Agree nor Disagree Agree

� � �

Q9. I value highly what I have learned from this course.
Disagree Neither Agree nor Disagree Agree

� � �

Q10. Overall, I would rate the quality of this course as very good:
Disagree Neither Agree nor Disagree Agree

� � �
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,

conditional on the identifiability constraints on the parameters and assume independence betweenZir andXjc .
The variational approximation presents several drawbacks (see e.g. Keribin et al., 2012 for a discussion on this topic). In

our work, we have not employed the variational approximation for the ultimate MLEs. Instead, we have used an alternative
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Table F.18
Applied Statistics feedback form responses. 70 students (rows), 10 questions (Q1–Q10) and 3 categories for each question: ‘‘disagree’’ (coded as 1), ‘‘neither
agree or disagree’’ (coded as 2) and ‘‘agree’’ (coded as 3).

Students ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1 1 1 2 2 2 2 1 1
2 1 1 1 1 3 3 3 3 1 1
3 1 1 1 2 1 2 3 2 2 2
4 2 2 1 1 2 2 3 3 2 2
5 1 1 1 1 2 3 3 3 1 3
6 3 2 1 2 1 3 3 3 2 3
7 1 1 1 3 2 2 3 1 1 1
8 1 1 1 1 1 2 2 1 2 1
9 2 1 1 1 2 3 2 3 1 2

10 1 1 1 1 2 2 2 2 2 2
11 1 1 1 1 1 1 1 1 1 1
12 2 1 1 3 3 3 3 2 1 3
13 2 1 1 2 3 3 3 1 1 2
14 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 2 1 1
16 1 1 1 2 2 1 3 2 1 2
17 1 1 1 2 2 2 2 2 1 2
18 1 1 1 1 1 2 2 1 1 2
19 1 1 1 1 2 2 1 1 1 1
20 2 2 1 2 1 2 2 2 1 2
21 1 1 1 1 1 2 2 1 1 1
22 3 3 1 1 1 1 2 1 1 1
23 1 1 1 1 1 2 2 1 1 1
24 1 1 1 1 1 2 2 2 1 1
25 1 1 1 1 1 2 2 2 1 1
26 1 1 2 2 1 1 2 3 1 2
27 1 1 1 1 1 1 2 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 1 1 1 2 2 2 2 2 2 2
30 1 1 1 2 2 3 3 2 1 2
31 1 1 1 1 1 1 1 2 1 1
32 1 1 1 1 1 2 1 1 1 1
33 2 1 1 2 1 2 2 2 1 2
34 1 1 1 2 2 2 2 2 2 2
35 1 2 1 1 2 2 2 3 1 2
36 1 1 1 2 1 2 1 2 2 2
37 1 1 1 2 2 2 2 2 1 2
38 1 1 1 2 2 2 2 1 1 1
39 1 1 1 1 1 1 1 2 1 2
40 1 1 2 2 1 3 3 1 2 2
41 1 1 1 1 1 3 1 3 1 1
42 1 1 1 1 2 2 2 1 1 1
43 1 1 1 2 2 3 3 3 2 2
44 2 1 1 2 2 3 2 3 1 1
45 3 1 1 2 3 3 3 1 1 3
46 1 1 1 1 2 2 2 2 1 2
47 1 1 1 1 1 2 2 3 1 1
48 1 1 1 2 1 1 2 1 1 2
49 1 1 1 2 1 2 1 2 1 1
50 1 1 1 1 2 2 2 3 2 2
51 1 1 1 1 2 3 3 2 2 2
52 1 1 1 1 1 2 2 3 2 1
53 1 1 1 1 1 1 1 1 1 1
54 2 3 1 3 3 3 3 3 3 2
55 1 1 1 2 1 1 1 2 1 1
56 1 1 1 1 1 1 1 1 1 1
57 1 1 1 2 2 3 2 2 1 1
58 1 1 1 1 1 2 2 2 1 1
59 1 1 1 1 1 1 2 1 2 1
60 2 1 1 2 3 3 3 3 2 2
61 1 1 1 1 1 1 2 1 1 2
62 1 1 1 1 2 2 2 1 1 1
63 1 1 1 2 1 2 2 3 1 2
64 1 1 1 1 3 3 3 3 1 1
65 1 1 1 1 1 1 3 1 1 1
66 1 1 1 2 1 2 2 2 1 2
67 3 1 1 1 1 1 1 3 1 3

(continued on next page)
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Table F.18 (continued)

Students ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

68 1 1 1 1 2 2 2 3 1 1
69 1 3 1 1 2 2 2 2 1 1
70 3 1 1 3 3 3 1 3 1 2

Fig. E.11. Simulation study (Section 5.1): convergence ofφ2 andφ3 for the stereotypemodel including the column clustering (αi +βc)with C = 2 column
clusters. n, h, q, m describe the sample size, the number of replicates, the number of categories and the number of covariates respectively. The diamond
point represents the true value of the parameter.

procedure with the aim of ensuring a solution avoiding approximation. Thus, the MLEs from the EM algorithm are used as
starting points in order to numerically maximize the incomplete-data log-likelihood (12) (or (13)).

Appendix D. Model comparison. Simulations study

Tables D.10 and D.11 summarize the parameter configuration for each scenario in the row clustering and biclustering
cases.

Appendix E. Simulations. Other scenarios

Tables E.12 and E.13 summarize the results for the simulation scenarios (Section 5.1) including the interaction factors
for row clustering and biclustering version respectively. Figs. E.11 and E.12 show the evolution of the convergence for the
estimated score parameters φ2 and φ3 in the case with R = 2 row groups with C = 2 column groups and biclustering
with R = 2 and C = 2 row and column groups, respectively. Tables E.14–E.16 show two particular scenarios described in
Section 5.1 for the row clustering, column clustering and biclustering respectively.

Appendix F. Applied statistics course feedback

The list of questions are shown in Table F.17 and the data set with the responses of 70 students over 10 questions giving
feedback about a second year Applied Statistics course is given in Table F.18.

Appendix G. Tree presences in Great Smoky Mountains

Table G.19 summarize the suite of fitted models for R.H. Whittaker’s study of vegetation of the Great Smoky Mountains
data set (Whittaker, 1956, Table 3). For each model, the information criteria AIC, AICc , BIC and ICL-BIC were computed.
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Fig. E.12. Simulation study (Section 5.1): convergence ofφ2 andφ3 for the stereotype model including the biclustering (αr + βc) with R = 2 row and
C = 2 column clusters. n, h, q, m describe the sample size, the number of replicates, the number of categories and the number of covariates respectively.
The diamond point represents the true value of the parameter.

Table G.19
Suite of models fitted for R.H. Whittaker’s study of vegetation. For each information criterion, the best model in each group (no clustering, row clustering,
column clustering and biclustering) is shown in boldface.

Model R C npar AIC AICc BIC ICL-BIC

Null model µk 1 1 7 671.41 671.70 700.79 700.79
Row effects µk + φkαi n 1 47 572.15 582.77 769.48 769.48
Column effects µk + φkβj 1 m 18 581.09 582.70 656.67 656.67
Main effects µk + φk(αi + βj) n m 58 544.22 560.61 787.83 787.83

Row clustering

µk + φkαr

2 1 9 549.10 549.56 586.88 605.18
3 1 11 553.05 553.70 599.24 617.32
4 1 13 556.94 557.82 611.52 630.75

µk + φk(αr + βj)

2 m 20 555.65 557.62 639.62 655.14
3 m 22 558.91 561.27 651.28 671.11
4 m 24 563.56 566.35 664.32 712.84

µk + φk(αr + βj + γrj)

2 m 31 534.06 538.66 664.21 669.38
3 m 44 518.01 527.30 702.75 712.35
4 m 57 529.27 545.07 768.58 779.42

Column clustering
µk + φkβc

1 2 9 549.10 549.56 586.88 605.18
1 3 11 570.25 570.90 616.43 699.76

µk + φk(αi + βc)
n 2 49 580.88 592.45 646.61 703.41
n 3 51 594.38 606.93 648.50 679.20

Biclustering

µk + φk(αr + βc)

2 2 11 551.49 552.14 597.67 621.13
3 2 13 580.14 581.02 634.72 698.37
2 3 13 581.17 582.12 634.89 697.80
3 3 15 584.14 585.29 647.12 712.45

µk + φk(αr + βc + γrc)

2 2 12 553.49 554.25 603.87 625.57
3 2 15 586.65 587.80 619.63 655.07
2 3 15 559.49 560.63 622.46 657.83
3 3 19 569.77 571.55 649.54 676.11
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