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Abstract

We consider the problem of estimating parameters of stochastic differential equations (SDEs) with discrete-time obser-

vations that are either completely or partially observed. The transition density between two observations is generally

unknown. We propose an importance sampling approach with an auxiliary parameter when the transition density is

unknown. We embed the auxiliary importance sampler in a penalized maximum likelihood framework which pro-

duces more accurate and computationally efficient parameter estimates. Simulation studies in three different models

illustrate promising improvements of the new penalized simulated maximum likelihood method. The new procedure

is designed for the challenging case when some state variables are unobserved and moreover, observed states are

sparse over time, which commonly arises in ecological studies. We apply this new approach to two epidemics of

chronic wasting disease in mule deer.

Keywords: Chronic wasting disease, Euler-Maruyama scheme, Penalized simulated maximum likelihood

estimation, Partially observed discrete sparse data, Auxiliary importance sampling, Stochastic differential equations

1. Introduction

It is very important for ecologists and wildlife managers to understand the dynamics of infectious diseases, such

as chronic wasting disease (CWD) which is a fatal contagious disease in cervid populations (Miller et al., 2006).

Several ordinary differential equation models have been proposed by Miller et al. (2006) to describe the transmission

mechanism of CWD. Stochastic epidemic models allow more realistic description of the transmission of disease

as compared to deterministic epidemic models (Becker, 1979; Andersson and Britton, 2000). However, parameter

estimation is challenging for discretely observed data for stochastic models (Sørensen, 2004; Jimenez et al., 2005).

Stochastic differential equation (SDE) models are a natural extension of ordinary differential equation models and

they may be simpler to derive and apply than Markov chain models. For example, the transition matrix in Markov

chain models can be very complicated when there are several interacting populations (Allen and Allen, 2003; Allen

∗Corresponding author. Tel: +1(970) 491-7321
Email addresses: sun@stat.colostate.edu (Libo Sun), chihoon@stat.colostate.edu (Chihoon Lee), jah@stat.colostate.edu

(Jennifer A. Hoeting)

Preprint submitted to Computational Statistics and Data Analysis June 15, 2021

ar
X

iv
:1

30
5.

43
90

v4
  [

st
at

.M
E

] 
 8

 S
ep

 2
01

5



et al., 2005). Moreover, SDEs have broader application areas, which include not only ecology and biology but also

economics, finance, bioinformatics, and engineering.

Various methods for inferential problems for SDEs have been developed. The Hermite polynomial expansion ap-

proach proposed by Aı̈t-Sahalia (2002, 2008) may perform poorly if the data are sparsely sampled (Stramer and Yan,

2007b). Moreover, this approach has some restrictions which could limit its application, especially for multivariate

models (Lindström, 2012). Särkkä and Sottinen (2008) proposed an approach which uses an alternative SDE as an im-

portance process and the Girsanov theorem to help evaluate the likelihood ratios of two SDEs. However, the diffusion

coefficient of their model is state-independent, whereas general SDE models allow for a state-dependent diffusion

coefficient. Recent developments have mainly been focused on Bayesian approaches (Eraker, 2001; Golightly and

Wilkinson, 2005, 2006, 2011; Donnet et al., 2010), which can suffer a very slow rate of convergence as the dimension

of the model increases and the data are sparsely sampled. We propose a penalized simulated maximum likelihood

(PSML) approach which is computationally feasible.

For a SDE model the transition density between two observations is known in only a few univariate cases. Ped-

ersen (1995) firstly proposed a simulated maximum likelihood (SML) approach which integrates out the unobserved

states using Monte Carlo integration with importance sampling. We refer to the basic sampler in this approach as

the Pedersen sampler. Although the Pedersen sampler may provide estimates that are arbitrarily close to the true

transition density, it is computationally expensive in practice. Durham and Gallant (2002) proposed several differ-

ent importance samplers in a SML framework to improve the efficiency of the Pedersen sampler. They concluded

their modified Brownian bridge (MBB) sampler has the best performance in terms of accuracy in root mean square

error and efficiency in time. Richard and Zhang (2007) proposed an efficient importance sampling technique which

converts the problem of minimizing the variance of an approximate likelihood to a recursive sequence of auxiliary

least squares optimization problems. Pastorello and Rossi (2010) applied Richard and Zhang’s approach to estimate

the parameters of some univariate SDE models. However, the extension to multivariate SDEs with partially observed

data is not trivial. Lindström (2012) introduced a regularized bridge sampler, which is a weighted combination of the

Pedersen sampler and the MBB sampler, for sparsely sampled data.

The methods of Pedersen (1995) and Durham and Gallant (2002) have mainly been applied in the area of econo-

metrics. Here we propose a methodology to improve the MBB sampler and the regularized sampler and extend them

to the area of ecology. From an inferential viewpoint, practitioners must contend with two major challenges: (a) in

the multivariate state space, some state variables are completely unobserved; (b) observed data are quite sparse over

time. These are common features of ecological data. For example, the number of deaths for CWD in a wild animal

population can be observed or estimated, but the numbers of infected and susceptible animals may be impossible or

costly to obtain. Moreover, the time interval between two consecutive observations could be very long, usually weeks

or even months. With such partially observed sparse data, the MBB approach no longer has the same promising results

as in the univariate case. Although the regularized sampler in Lindström (2012) is designed for sparsely sampled data,

the optimal choice of the weight parameter ρ (which is denoted as α in the cited paper) needs to be determined. We
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propose an importance sampling approach with an auxiliary parameter which provides more accurate estimates of the

parameters of an SDE when the transition density is unknown.We embed the auxiliary importance sampler in a penal-

ized maximum likelihood framework. The penalty term we add to the log likelihood is a constraint on selecting the

importance sampler. We show via simulation studies that our approach improves the accuracy of parameter estimates

and computational efficiency compared to the MBB sampler and the regularized sampler.

The remainder of the paper is organized as follows. In Section 2, we present the general multivariate SDE model.

Section 3 provides brief descriptions of the Pedersen, MBB and regularized samplers. Section 4 describes our method-

ology in detail. Section 5 presents simulation studies for different models. Section 6 illustrates our method on a CWD

dataset as a real world example. Section 7 concludes with a discussion.

2. Background

We begin with the general multivariate SDE model where some state variables are unobserved. Let X(t) =

{X1(t), . . . , Xk(t)}T denote a k-dimensional state variable vector at time t ≥ 0. Consider a multivariate SDE model,

dX(t) = f (X(t), θ)dt + g(X(t), θ)dW(t) (1)

with known initial condition X(t0) = x0, where θ ∈ Θ ⊆ Rp is an unknown p-dimensional parameter vector, W is a

k-dimensional standard Wiener process, and both functions f : Rk ×Θ→ Rk and g : Rk ×Θ→ Rk×k are known. Note

that the derivation below still holds for the case with unknown initial condition X(t0), which can be treated as another

unknown parameter. We assume that the SDE (1) has a unique weak solution. See Øksendal (2010, Chapter 5) for

conditions that ensure this.

We assume that only a subset of the state process {Xobs(t)}t≥0 can be observed at discrete time points. It is natural

to suppose only Xobs(ti) = {X j(ti), . . . , Xk(ti)} is observed at ti, for 1 < j ≤ k and i = 1, . . . , n, and all other state

variables X−obs(ti) = {X1(ti), . . . , X j−1(ti)}, are unobserved. In the case of complete observation, that is when j = 1, a

similar derivation as below can be obtained. Note that time intervals do not have to be equidistant.

The discrete-time likelihood of model (1) is given by

L(θ) = p(Xobs(t1)|X(t0), θ)
n∏

i=2

p(Xobs(ti)|X(t0), Xobs(t1 : ti−1), θ) (2)

where Xobs(t1 : ti−1) denotes all observations of Xobs from time t1 to ti−1. We omit the parameter θ for brevity from

now on. Notice that the term p(Xobs(ti)|X(t0), Xobs(t1 : ti−1)) is not available in closed form except for simple cases.

However, factoring the likelihood as in (2) allows us to evaluate the likelihood given by

p(Xobs(ti)|X(t0), Xobs(t1 : ti−1)) =

∫
p(Xobs(ti)|X(ti−1))p(X−obs(ti−1)|X(t0), Xobs(t1 : ti−1))dX−obs(ti−1).

A feasible approach to evaluate this integral is via Monte Carlo integration. That requires a method to draw samples

from the distribution of X−obs(ti−1)|X(t0), Xobs(t1 : ti−1). It can be shown that (cf. Durham and Gallant, 2002)

p(X−obs(ti)|X(t0), Xobs(t1 : ti)) ∝
∫

p(X(ti)|X(ti−1))p(X−obs(ti−1)|X(t0), Xobs(t1 : ti−1))dX−obs(ti−1), (3)
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for i = 1, ..., n. Therefore, assuming p(X(ti)|X(ti−1)) is known (see below), iterative application of Monte Carlo

integration (3) yields an approximation of X−obs(t`)|X(t0), Xobs(t1 : t`) for ` ≥ 1. This is similar in spirit to a particle

filter (Durham and Gallant, 2002; Pitt and Shephard, 1999), but our model does not include measurement errors. The

algorithmic form of this simple sequential Monte Carlo algorithm is provided in Appendix A.

It is left to approximate the transition probability density p(X(ti)|X(ti−1)) which has no closed form in most cases.

The Euler-Maruyama scheme (Kloeden and Platen, 1992) is a common approach to approximate the solution of an

SDE, which is given by

X(t + δ) − X(t) ≈ f (X(t), θ)δ + g(X(t), θ)(W(t + δ) −W(t)), (4)

where δ is the step size and W(t + δ) −W(t) follows a multivariate normal distribution with variance matrix δI k×k,

where I is the identity matrix. This Euler-Maruyama scheme works well if the step size is small. Hence, if the time

interval between two observations is small enough, we can approximate p(X(ti)|X(ti−1)) using a multivariate normal

density.

If the time interval between observations is large, the above approximation will introduce bias. We can partition

the interval ti−1 to ti to M subintervals such that δ = (ti − ti−1)/M is small enough for the Euler-Maruyama scheme. By

the Markov property, Pedersen (1995) proved that p(X(ti)|X(ti−1)) can be approximated by

p(M)(X(ti)|X(ti−1)
)
≡

∫ M∏
m=1

p(1)(X(ti−1 + mδ)|X(ti−1 + (m − 1)δ)
)
dX

(
(ti−1 + δ) : (ti − δ)

)
, (5)

where p(1)(·) is the multivariate normal density approximated by Euler-Maruyama scheme.

Then, our goal is to compute p(M)(X(ti)|X(ti−1)). Using importance sampling, we draw i.i.d. J samples, {X( j)((ti−1+

δ) : (ti − δ)), j = 1, · · · , J}, from an importance sampler q, then (5) can be approximated by

1
J

J∑
j=1

h
(
X( j)((ti−1 + δ) : (ti − δ)

))
, (6)

where

h
(
X( j)((ti−1+δ) : (ti − δ)

))
≡

∏M
m=1 p(1)(X( j)(ti−1 + mδ)|X( j)(ti−1 + (m − 1)δ)

)
q
(
X( j)((ti−1 + δ) : (ti − δ))

) . (7)

The convergence of the importance sampling estimator (6) to (5) as J → ∞ is shown by Geweke (1989). The estimator

(6) is an unbiased estimator, regardless of the choice of the importance sampler q. The variance of (6) is given by

Var

1
J

J∑
j=1

h
(
X( j)((ti−1 + δ) : (ti − δ)

)) =
1
J

Var
(
h
(
X
(
(ti−1 + δ) : (ti − δ)

)))

=
1
J


∫ ∏M

m=1

[
p(1)(X(ti−1 + mδ)|X(ti−1 + (m − 1)δ)

)]2

q
(
X((ti−1 + δ) : (ti − δ))

) dX
(
(ti−1 + δ) : (ti − δ)

)
−

[
p(M)(X(ti)|X(ti−1))

]2

 , (8)

which attains its minimum of 0 when

q
(
X((ti−1 + δ) : (ti − δ))

)
=

∏M
m=1 p(1)(X(ti−1 + mδ)|X(ti−1 + (m − 1)δ))

p(M)(X(ti)|X(ti−1))
. (9)
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Thus in theory a single sample is sufficient to approximate p(M)(X(ti)|X(ti−1)). However, in practice this is infeasible

because p(M)(X(ti)|X(ti−1)) is unknown.

In order to decrease the variance (8) and reduce the sample size J, we want to choose an importance sampler

q
(
X((ti−1 + δ) : (ti − δ))

)
that is as close as possible to

∏M
m=1 p(X(ti−1 + mδ)|X(ti−1 + (m − 1)δ)), which is the principle

of choosing the proposal density in importance sampling.

3. Importance samplers for simulated maximum likelihood

Here we review three importance samplers for approximating the transition probability density p(M)(X(ti)|X(ti−1))

in (5). These approaches can be used to compute maximum likelihood estimates of the parameters of the SDE model

(1) (i.e., simulated maximum likelihood estimation). In Section 4 we propose a new penalized simulated maximum

likelihood approach which can be used to improve the performance of all three methods described below.

3.1. Pedersen sampler

The Pedersen sampler is the first importance sampler proposed to approximate a transition density (Pedersen,

1995; Santa-Clara, 1997). The Pedersen sampler constructs the importance sampler q by simulating J paths on each

subinterval just using the Euler-Maruyama scheme conditional on X(ti−1), so the first M − 1 terms in (7) are canceled.

Hence, (6) reduces to
1
J

J∑
j=1

p(1)(X(ti)|X( j)(ti − δ)). (10)

One can simulate J trajectories of all k-dimensional state process X from time ti−1 to time ti − δ by using the

Euler-Maruyama scheme with the step size δ. Although the Pedersen sampler has a very simple form, it is well known

that it is computationally intensive in practice (Durham and Gallant, 2002), especially for a multivariate SDE model.

The Pedersen sampler can introduce excessive variance in the simulation of all possible transition probabilities even

with a very large number of simulated trajectories.

3.2. Modified Brownian bridge sampler

A more efficient importance sampler is called the modified Brownian bridge (MBB) sampler, which is originally

proposed by Durham and Gallant (2002) for the univariate case and modified by Golightly and Wilkinson (2006) for

the multivariate case. Instead of simulating a path on each subinterval using the Euler approximation based on X(ti−1)

as in Pedersen sampler, this method draws X((ti−1 + δ) : (ti − δ)) conditional on X(ti−1) and Xobs(ti). Here, we outline

the procedure. See Golightly and Wilkinson (2006) for more details.

Let Xm denote X(ti−1 + mδ) and partition the drift and diffusion functions in (1) as

f (X) =

 f−obs(X)

fobs(X)
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and

gT (X)g(X) =

G−obs,−obs(X) G−obs,obs(X)

Gobs,−obs(X) Gobs,obs(X)

 .
Then the MBB sampler draws Xm+1 from the density

q(Xm+1|Xm, Xobs(ti)) = φ(Xm+1; Xm + ηmδ,Σmδ), (11)

where φ(X;µ,Σ) is a multivariate normal density with mean vector µ and covariance matrix Σ. Here

ηm =

 f−obs(Xm) +
G−obs,obs(Xm)

δ(M−m)Gobs,obs(Xm) ∆obs

(Xobs(ti) − Xobs(ti−1 + mδ))/[δ(M − m)]

 , (12)

and

Σm =

G−obs,−obs(Xm) − G−obs,obs(Xm)Gobs,−obs(Xm)
(M−m)Gobs,obs(Xm)

M−m−1
M−m G−obs,obs(Xm)

M−m−1
M−m Gobs,−obs(Xm) M−m−1

M−m Gobs,obs(Xm)

 , (13)

where

∆obs = Xobs(ti) −
[
Xobs(ti−1 + mδ) + fobs(Xm)(M − m − 1)δ

]
for m = 0, 1, · · · ,M − 2. For m = M − 1, we draw X−obs(ti) conditional on XM−1 = X(ti − δ) and Xobs(ti), which is

conditional multivariate normal by the Euler-Maruyama scheme. By recursively drawing from (11) one can obtain a

Brownian bridge, X((ti−1 + δ) : (ti − δ)) conditioned on starting at X(ti−1) and finishing at Xobs(ti).

3.3. Regularized sampler

The MBB sampler can produce a poor approximation because its linear interpolation between two observations

ignores the dynamics of the model in constructing the sample paths, especially when the diffusion dynamics are dom-

inated by the drift term for sparsely sampled data (Lindström, 2012). A regularized sampler which is a weighted

combination of the Pedersen sampler and the MBB sampler is proposed by Lindström (2012) to overcome this limi-

tation. Here we give the explicit form of this regularized sampler.

Let µP and ΣP be the mean and the variance of the Pedersen sampler and µM and ΣM be the mean and the variance

of the MBB sampler. Then the regularized sampler draws Xm+1 from the density

qρ(Xm+1|Xm, Xobs(ti)) = φ(Xm+1; (I − V)µP + VµM , (I − V)ΣP + VΣM), (14)

where I is the identity matrix and

V =
M − m

M − m + ρ(M − m − 1)2I, (15)

where ρ ∈ [0, 1]. The regularized sampler is dominated by the Pedersen sampler initially and is dominated by the

MBB sampler as m → (M − 1) in (15). The regularized sampler depends on the parameter ρ. A large ρ will make

the regularized sampler similar to the Pedersen sampler and a smaller ρ will make it similar to the MBB sampler.

Lindström (2012) used ρ = 0.1 throughout, however, did not propose an algorithm for choosing the optimal ρ. Hence,

a practical algorithm for selecting the optimal ρ is needed for successful implementation of the regularized sampler.

We propose one such approach in the next section.

6



4. Penalized simulated maximum likelihood and auxiliary importance sampling

To find an efficient importance sampler, we need to minimize (8), the variance of the approximation of the tran-

sition density. Here we propose a new approach to minimize the variance; (i) we augment the likelihood with an

auxiliary parameter ρ which tunes the importance sampler to the model parameters and (ii) we maximize the log

likelihood with a constraint on the coefficient of variation of the importance sampler.

4.1. Penalized simulated maximum likelihood

In our penalized simulated maximum likelihood (PSML) approach, we maximize the log likelihood subject to

the sum of the coefficient of variation of the Monte Carlo approximation of the transition density being less than a

prespecified level. Suppose a family of auxiliary importance samplers {qρ} has been selected, where ρ is an auxiliary

or nuisance parameter. Our goal is to find ρ̂ that minimizes the sum of the coefficient of variation of the Monte Carlo

approximation of the transition density.

Let hρ be the importance sampling weights to approximate p(Xobs(ti)|X(t0), Xobs(t1 : ti−1)) in (1). Specifically,

hρ
(
X( j)(ti−1 : (ti − δ))

)
≡

p(1)(Xobs(ti)|X( j)(ti − δ))
∏M−1

m=1 p(1)(X( j)(ti−1 + mδ)|X( j)(ti−1 + (m − 1)δ))

qρ(X( j)(ti−1 : (ti − δ)))
, (16)

where X( j)(ti−1) ≡ {X( j)
−obs(ti−1), Xobs(ti−1)} and qρ is the importance sampler density, e.g., (14) and (20) below. We adopt

the notation hρ to indicate the expression in (16), suppressing the dependence on i and j for notational simplicity. The

PSML estimator (θ̂, ρ̂) is defined by

(θ̂, ρ̂) =arg max
n∑

i=1

log

1
J

J∑
j=1

hρ

 subject to
n∑

i=1

ĉv
(
hρ

)
≤ s, (17)

where s ≥ 0 is a tuning parameter and ĉv(hρ) is the sample coefficient of variation of hρ, which is the sample standard

deviation of the J importance weights hρ divided by their sample mean. Notice that (17) is reminiscent of LASSO

(Tibshirani, 1996), and is equivalent to maximizing a penalized log likelihood,

l∗(θ, ρ) =

n∑
i=1

log

1
J

J∑
j=1

hρ

 − λ n∑
i=1

ĉv(hρ), (18)

where λ in (18) has a one-to-one mapping to s in (17). The reason the coefficient of variation is chosen instead of

the variance is that the former is a normalized measurement which is not affected by the magnitude of the data. This

makes it easier to choose the tuning parameter λ in practice, as will be shown below. When the penalty term is omitted,

the parameter estimates have a large variance because the importance sampler is not well tuned.

The constraint,
∑n

i=1 ĉv(hρ) ≤ s in (17), is equivalent to a constraint on the effective sample size (Givens and

Hoeting, 2012, Chapter 6),

N̂(qρ, p) ≡
J

1 + 1
n
∑n

i=1 ĉv2(hρ)
≥

J

1 + s2

n

.
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The effective sample size measures how much the auxiliary importance sampler density qρ differs from the target

density p, and it can be interpreted as J weighted samples are worth N̂(qρ, p) unweighted i.i.d. samples drawn exactly

from target density p. Effective sample size can be used as a measure of computational efficiency.

The tuning parameter s controls how close the auxiliary importance sampler density qρ is to the product of tran-

sition probability densities, the numerator of (7). Let s0 denote the sum of the coefficient of variation for the approx-

imation of the transition density by the Pedersen sampler. When s < s0 the resulting auxiliary importance sampler

will have smaller variance (8) than that from the Pedersen sampler (10). When s = 0, the constraint in (17) requires

that the auxiliary importance sampler qρ attains its ideal case (9). However, as s → 0, λ → ∞ and therefore the log

likelihood plays no role in estimating θ.

The tuning parameter λ in (18) can be estimated using various techniques. We choose the value that minimizes

the estimated prediction error,

ελ ≡
1

nL

L∑
`=1

n∑
i=1

‖X̂
(`)
obs(ti) − Xobs(ti)‖, (19)

where X̂
(`)
obs(ti) is the `th simulated Xobs at observation time ti by the Euler-Maruyama scheme (4) with θ = θ̂(λ) and

‖X‖ is a Euclidean norm of X in Rk. The number of simulations L is chosen arbitrarily and is set to 1000 here. More

details about selecting λ are given in Algorithm 1 in Section 4.3.

4.2. Auxiliary importance sampling

The first class of importance samplers with auxiliary parameter ρ in (16) is given by

qρ(Xm+1|Xm,Xobs(ti)) = φ(Xm+1; Xm + ηmδ, ρΣmδ), (20)

where ηm,Σm are defined in (12) and (13). Hence, ρ ∈ [0, 1] is the shrinkage coefficient, which will be estimated as an

auxiliary parameter in the penalized log likelihood (18). The penalty term in (17) allows estimation of the auxiliary

parameter ρ, which is a feature of PSML, and leads to improved performance over the MBB and regularized sampler

as will be illustrated in Section 5. Note that the MBB sampler is a special case of our auxiliary importance sampler

(20) when λ = 0 and ρ = 1.

We consider the regularized sampler (14) as another class of auxiliary importance samplers with auxiliary param-

eter ρ. The optimal choice of ρ can be determined by maximizing the penalized log likelihood (17). As will be shown

below in Section 5, this leads to improved performance of the regularized sampler as compared to fixing ρ = 0.1 as in

Lindström (2012).

One can also choose other families of auxiliary importance samplers, but the two classes considered above are a

good starting point for illustration of the method. Other distributions, such as the Student’s t distribution, might also

be a suitable choice.
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4.3. Algorithm for PSML

The Algorithm for penalized simulated maximum likelihood estimation is given in Algorithm 1. We consider

two stopping criteria for this algorithm, ε0 and δε . First, ε0 monitors the estimated prediction error ελ in (19). If

the estimated prediction error is sufficiently small, ελ ≤ ε0, then there is no need to tune λ and the algorithm stops.

The criterion δε monitors the change in the estimated prediction error. If the improvement is small or there is no

improvement at all, that is ελ − ελ∗ ≤ δε , then the algorithm stops.

Algorithm 1: Algorithm for penalized simulated maximum likelihood estimation.

Step 1. Pick λ0 > 0, ε0 > 0, δλ > 0, and δε > 0. Let λ = λ0.

Step 2. Find the maximizer (θ̂, ρ̂) of the penalized log likelihood in (18). Compute the estimated prediction

error ελ in (19).

Step 3. If ελ < ε0 then stop, otherwise go to Step 4.

Step 4. Let λ∗ = λ − δλ. Compute ελ∗ .

Step 5. If ελ − ελ∗ > δε then update λ = λ∗ and go back to Step 3, otherwise go to Step 6.

Step 6. If λ < λ0 (i.e. λ was updated from the initial λ0) then stop, otherwise go to Step 7.

Step 7. If ελ < ε0 then stop, otherwise go to Step 8.

Step 8. Let λ∗ = λ + δλ. Compute ελ∗ as in Step 2.

Step 9. If ελ − ελ∗ > δε then update λ = λ∗ and go back to Step 7, otherwise stop.

For Step 1, we find that the initial value λ0 ∈ (0.1, 0.5) works well for our models considered in Section 5. The

values ε0 and δε are data dependent. The parameter δλ is the step size for exploring the space of λ values. We use

δλ = 0.025.

Note that, although this procedure looks computationally intensive, the algorithm converges quickly and is robust

to the choice of λ0 (as will be illustrated in the simulation studies in Section 5). Based on our simulation studies,

we find that the first three steps, Steps 1 to 3, in the procedure are already sufficient to gain an improvement over the

MBB sampler or the regularized sampler.

Note that Algorithm 1 can be extended to a parallel procedure by repeating Step 2 through a grid search with grid

width δλ on the interval λ ∈ (0, c), where c is a constant. In our experience λ ∈ (0, 1) is reasonable. In this case, the

parameter estimates (θ̂, ρ̂) that correspond to the smallest ελ would be the output.

We use the parametric bootstrap (Efron, 1982, Chapter 5) to obtain confidence intervals for the estimator, which
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proceeds as follows. First, based on the parameter estimates from the original dataset of interest, we can generate a

large number of new datasets by using the Euler-Maruyama scheme for the SDE model (4). For each new simulated

dataset, we obtain estimates of parameters using the PSML method described in Algorithm 1. Then we compute the

confidence interval from those estimates using the corresponding quantiles.

5. Simulation studies

Here, we compare the performances of the MBB sampler, the regularized sampler with ρ = 0.1, and our PSML

with the modified MBB class (20) and the regularized class (14) on simulated datasets for three different models. We

refer to PSML with the modified MBB class (20) as PSML-MBB and refer to PSML with the regularized class (14) as

PSML-Reg. For all the optimization algorithms in this paper, we use an implementation of the Nelder-Mead algorithm

for derivative-free optimization (Varadhan and Borchers, 2011) in R (R Development Core Team, 2011) on an Intel

Xeon W3565 3.2 GHz with CentOS 6 computer. The iterations for optimization of Step 2 of Algorithm 1 will stop

when the absolute difference in function values between successive iterations is below 10−6, which is the default value

in the R dfoptim package. We also use the default value for the maximum number of objective function evaluations

allowed, which is 1500 for all three models below. The initial values for the parameters are chosen arbitrarily (we tried

different initial values and obtained similar results). No parallel algorithm is involved in all the reported computation

times. The time to compute the confidence intervals is not included.

5.1. Ornstein-Uhlenbeck process

We first consider a univariate SDE, the Ornstein - Uhlenbeck process

dX = (θ1 − θ2X)dt + θ3dW, (21)

with known initial condition X(t0), and the parameter θ = (θ1, θ2, θ3) ∈ R × R+ × R+. The parameter θ2 is the speed

of reversion, θ1/θ2 is the long-run equilibrium value of the process, and θ3 is interpreted as the volatility. We generate

100 datasets, each including 100 observations, with initial condition X(t0) = 1, the time interval ti − ti−1 = 1, and

parameter θ0 = (0.0187, 0.2610, 0.0224) as reported in Aı̈t-Sahalia (2002).

The transition density between two observations is given by

X(ti+1)|X(ti) ∼ N
θ1

θ2
+

(
X(ti) −

θ1

θ2

)
e−θ2∆,

θ2
3(1 − e−2θ2∆)

2θ2

 ,
where ∆ = ti+1 − ti for i = 1, . . . , n − 1 (Iacus, 2009, Chapter 3). Hence, the exact likelihood is known for this case

and we can obtain the exact maximum likelihood estimator of the parameters θ. We compute the bias and the root

mean square error (RMSE) of the simulated maximum likelihood estimators θ̂r with respect to the exact maximum

likelihood estimators θ̂MLE, defined by 1
100

∑100
r=1 (̂θr − θ̂MLE) and

√
1

100
∑100

r=1 (̂θr − θ̂MLE)2, respectively. For all the

methods, we consider M = 8 subintervals but with different levels of the number of simulated sample paths J. We set
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Table 1: The bias and RMSE of the simulated maximum likelihood estimates with respect to the exact maximum likelihood estimates for the

Ornstein-Uhlenbeck process (21). All results are multiplied by 104. Both PSML-MBB and PSML-Reg have better performance than the MBB

sampler and the regularized sampler in terms of reducing bias and RMSE, especially when the number of sample paths is small (J = 8).

J = 8 J = 16

Method θ1 θ2 θ3 θ1 θ2 θ3

Bias (×10−4)

MBB 46 382 35 17 121 12

Regularized 12 85 8 7 37 4

PSML-MBB −6 −69 −5 −8 −77 −5

PSML-Reg −2 2 3 −5 −39 5

RMSE (×10−4)

MBB 115 982 93 74 585 57

Regularized 67 505 49 52 406 43

PSML-MBB 16 114 10 15 105 8

PSML-Reg 21 142 15 22 135 13

the ε0 = 0.04, λ0 = 0.25, δλ = 0.025 and δε = 0.001. The initial values for optimization for θ1, θ2, and θ3 are 0.05, 0.5

and 0.05, respectively.

Table 1 shows that both PSML-MBB and PSML-Reg have better performance than the MBB sampler and the

regularized sampler in terms of reducing bias and RMSE, especially when the number of sample paths is small

(J = 8). We find that more accurate estimates can be achieved by introducing the penalty term in the PSML and

selecting the optimal ρ for the regularized class, which is in contrast to the fixed ρ case for the regularized sampler as

studied in Lindström (2012).

Figure 1 shows that some estimates are far away from the exact maximum likelihood estimates for the MBB sam-

pler and the regularized sampler. This typically happens when the estimates based on the log likelihood approximated

by the MBB sampler or the regularized sampler get stuck at the local maxima for optimization. This may be an indi-

cation of the poor approximation of the likelihood, since as the number of sample paths J increases, fewer estimates

have large bias. For a small J a poor choice of proposal distribution, e.g., the MBB and the regularized sampler, could

result in a poor approximation to the likelihood because the approximated likelihood surface is generally more wiggly

when J is small. Thus when J is small it is more common for these methods to mistakenly select a local maximum.

The proposed PSML-MBB and PSML-Reg have better performance in this regard.

Figure 2 indicates that the performance of PSML is robust to the choice of λ0. The improvements of the PSML-

MBB with various λ0’s over the MBB sampler are similar. This makes the algorithm easy to implement in practice.

Clearly, when J is small the difference between the PSML-MBB and the MBB is very large. As the number of sample

paths J increases, the difference between the MBB sampler with the PSML-MBB decreases. However, this is not

always true for other SDE models. See the Lorenz model (22) in the next section for more details.

To obtain a similar level of accuracy as the PSML-MBB with J = 8, the MBB sampler requires at least J = 96.
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Figure 1: Boxplot of the bias of 100 estimates with J = 8 and J = 16 for the Ornstein-Uhlenbeck process (21). The red bold diamond points are

the mean. Note that the PSML greatly reduces the Monte Carlo variability of the estimates.
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Figure 2: The RMSE of the MBB and PSML-MBB estimates with different λ0 for the Ornstein-Uhlenbeck process (21).
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However, the PSML-MBB with J = 8 requires much less time (around 1/5) than the MBB with J = 96. For the

computation time, the PSML with J = 8 takes 90 – 110 seconds and 180 – 200 seconds for J = 16 (for both PSML

classes in Section 4.2). The MBB sampler or the regularized sampler takes 65 – 75 seconds to implement for J = 8,

120 – 140 seconds for J = 16, and 750 – 950 seconds for J = 96. The computational time grows approximating

linearly in J for both algorithms.

For the PSML-MBB with λ0 = 0.25, the mean of ρ̂ equals 0.94 and the mean of λ̂ equals 0.24. Note that though

ρ̂ is close to 1 for the PSML-MBB, the MBB is equivalent to the PSML-MBB only when ρ = 1 and λ = 0. For the

PSML-Reg with λ0 = 0.25, the mean of ρ̂ equals 0.33 and the mean of λ̂ equals 0.23. We note that the performance

of PSML-Reg presented in Tables 1 – 3 is based on the estimated ρ̂. (We fix ρ = 0.1 for the regularized sampler as

in Lindström (2012).) This indicates the regularized sampler can be improved when ρ is estimated in (14). We have

observed similar ρ̂ values for the other models in the simulation studies considered in this section.

5.2. Stochastic Lorenz 63 model

Next, we consider the stochastic version of the well-known chaotic Lorenz 63 model (Lorenz, 1963; Bengtsson

et al., 2003), which is given by

d


X1

X2

X3

 =


s(X2 − X1)

rX1 − X2 − X1X3

X1X2 − bX3

 dt + σd


W1

W2

W3

 , (22)

where W1, W2, and W3 are three independent Wiener processes.

We again generate 100 datasets, each including 21 observations, with initial condition (−10,−10, 30), time interval

ti − ti−1 = 0.05, and commonly used parameter values θ0 = (s0 = 10, r0 = 28, b0 = 8/3, σ0 = 2) (Bengtsson et al.,

2003). We assume all state variables, (X1, X2, X3)T , are observed at ti for i = 0, . . . , n. In this case, the exact transition

density is no longer available. We can only compute the bias and the RMSE of the simulated maximum likelihood

estimators θ̂r with respect to the true parameters θ0, defined by 1
100

∑100
r=1 (̂θr−θ0) and

√
1

100
∑100

r=1 (̂θr − θ0)2, respectively.

Estimates are obtained using different sample paths J and M = 10 subintervals. We set λ0 = 0.5, ε0 = 3.5, δλ = 0.025

and δε = 0.1. The initial values for optimization are (15, 30, 5, 1).

As shown in Table 2 the MBB sampler performs poorly for the stochastic Lorenz 63 model (22), especially for

the parameters r, b, and σ as Lindström (2012) has observed. This is because the dynamics of the Lorenz model

is dominated by the drift term. The MBB sampler ignores the dynamics of the model and generates paths far from

the actual realization. Moreover, Figure 3 shows that there is no significant increasing trend in the accuracy of the

regularized sampler as the number of sample paths J increases, especially for parameter s. A large J but a fixed ρ,

which controls the weight between the Pedersen and the MBB sampler, still cannot assure the regularized sampler

generates paths close to the actual trajectories. However, the improvement of the PSML-Reg over the MBB and

the regularized sampler is evident. An estimated ρ̂ based on the data in the PSML-Reg plays an important role in

generating efficient proposal trajectories.
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Table 2: The bias and RMSE of the simulated maximum likelihood estimates with respect to the true parameters for the stochastic Lorenz 63 model

(22). The improvement of the PSML-Reg over the MBB and the regularized sampler with different J’s is evident.

Method s r b σ

Bias

MBB (J = 128) 1.86 −15.70 8.92 9.59

Regularized (J = 32) 2.59 −0.25 −0.03 1.54

Regularized (J = 48) 3.79 −0.07 −0.06 1.25

Regularized (J = 64) 3.86 −0.07 0.00 1.17

Regularized (J = 128) 3.89 −0.02 −0.03 0.99

PSML-Reg (J = 32) −1.75 0.00 0.01 0.38

RMSE

MBB (J = 128) 13.31 20.70 15.52 15.36

Regularized (J = 32) 18.56 1.23 0.39 3.70

Regularized (J = 48) 21.82 0.81 0.45 3.26

Regularized (J = 64) 20.57 0.59 0.28 2.76

Regularized (J = 128) 21.79 0.51 0.30 2.54

PSML-Reg (J = 32) 3.54 0.31 0.10 0.54
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Figure 3: The RMSE of the regularized and the PSML-Reg estimates with different J for the stochastic Lorenz 63 model (22).
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Table 3: The bias and RMSE of the simulated maximum likelihood estimates with respect to the true parameters for CWD direct transmission

model (23). Both PSML-MBB and PSML-Reg have better performance than the MBB sampler and the regularized sampler.

Method β µ

Bias

MBB (J = 72) 0.02 0.07

Regularized (J = 72) 0.01 0.07

PSML-MBB (J = 48) 0.01 0.02

PSML-Reg (J = 48) 0.01 0.04

RMSE

MBB (J = 72) 0.07 0.11

Regularized (J = 72) 0.04 0.12

PSML-MBB (J = 48) 0.02 0.05

PSML-Reg (J = 48) 0.02 0.06

In terms of computational time, both the MBB and the regularized samples need 1800 – 2100 seconds for J = 32,

2700 – 3000 seconds for J = 48, 3500 – 4000 seconds for J = 64, and 7000 – 8000 seconds for J = 128. The

PSML-MBB with J = 32 requires 2000 – 2300 seconds.

5.3. CWD direct transmission model

The specific model and background are described in Section 6. Again, we generate 100 datasets, each including 21

annual observations from two distinct CWD epidemics similar to the real dataset in Section 6, by using the CWD direct

transmission model (23) with parameter (β0 = 0.03, µ0 = 0.20). The initial condition X(t0) = (S (t0), I(t0),C(t0))T is

set to be the same as the real dataset. The step size of the Euler-Maruyama scheme is 1/12 of the time interval between

each pair of observations, which is one month in this case. We set λ0 = 0.5, ε0 = 5, δλ = 0.025 and δε = 0.5. The

initial values for optimization for β and µ are 0.05 and 0.5, respectively. Parameter estimates are obtained using

J = 72 sample paths for the MBB sampler and the regularized sampler, which require 2400 – 2700 seconds, and

J = 48 for the PSML-MBB and the PSML-Reg, which require 2000 – 2300 seconds. The exact transition density is

not available for this case. The bias and RMSE of the simulated maximum likelihood estimates with respect to the

true parameters are shown in Table 3, which indicate similar improvements of the PSML-MBB and the PSML-Reg

over the MBB sampler and the regularized sampler. For this simulation the states S and I are unobserved and the time

between observations is long (yearly). The fact that the PSML does well in this context is promising for this and other

applications in ecology. Since the best results are obtained by the PSML-MBB with J = 48 sample paths, we use the

same setting in the real data example in Section 6.

6. Chronic wasting disease example

Deer populations and ecosystems can be severely disrupted by the contagious prion disease, known as chronic

wasting disease (CWD) (Miller et al., 2006). In order to reduce the potential damages caused by CWD, it is important
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to understand the transmission mechanisms of CWD. Several deterministic epidemic models were proposed by Miller

et al. (2006) in order to portray the transmission of CWD. Here, based on one of those deterministic models, we

firstly derive a CWD SDE model using the technique described in Allen (2003, Chapter 8). Then, we implement the

proposed PSML method to the dataset studied in Miller et al. (2006). Their dataset consists of annual observations

of cumulative mortality from two distinct CWD epidemics (Figure 4 upper display) in captive mule deer held at

the Colorado Division of Wildlife Foothills Wildlife Research Facility in Fort Collins, Colorado. The first epidemic

occurred from 1974 to 1985 and the second epidemic occurred in a new deer herd from 1992 to 2001. The dataset

also includes the annual number of new deer added to the herd and the per capita losses due to natural deaths and

removals. We note that the dataset contains no measurement or observation error since it was recorded in a captive

laboratory facility. We assume the direct transmission coefficient β and the per capita CWD mortality rate µ do not

change between two epidemics as such parameters are innate characteristics of the associated disease. Hence we can

combine two epidemics as a single dataset for estimating the parameters.

6.1. CWD direct transmission model

CWD may be transmitted to susceptible animals directly from infected animals (Miller et al., 2006). We portray

this direct transmission using an SDE model. Let X(t) = (S (t), I(t),C(t))T , where S is the number of susceptible

animals, I is the number of infected animals, C is the total number of accumulate deaths from CWD over time. We

assume the initial condition X(t0) = (S (t0), I(t0),C(t0))T is known. Also, our basic assumption is that only C can be

observed at ti, for i = 1, . . . , n, and the other two state variables, S and I, are unobserved. The unknown parameters to

be estimated in the epidemic model are denoted by θ = (β, µ), where β is the direct transmission coefficient, µ is the

per capita CWD mortality rate. Then the direct transmission SDE model is given by

d


S

I

C

 =


a − S (βI + m)

βS I − I(µ + m)

µI

 dt + BdW (23)

where a is the known number of susceptible animals annually added to the population via births or importation, m

is the known per capita natural mortality rate, W = (W1,W2,W3)T is a 3-dimensional standard Wiener process, and

B =
√

Σ is the positive definite square root of the covariance matrix with

Σ =


a + S (βI + m) −βS I 0

−βS I βS I + I(µ + m) −µI

0 −µI µI

 . (24)

Although the SDE model (23) relaxes the assumption of discrete states and non-negative nature of S , I, and dC,

similar SDE models have been used to approximate the transmissions of epidemics in several recent articles (Ionides

et al., 2006; Bhadra et al., 2011; Golightly and Wilkinson, 2011). We also monitor the frequency of estimates in S , I,

and dC; they were rare to the point of negligibility in our analysis.
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Here, we briefly explain how the above SDE model is derived. See Allen (2003, Chapter 8) for more details. Let

Xδ = X(t + δ) − X(t) be the increment during the time interval δ. If δ is sufficiently small, we can assume at most one

animal is infected or died during the time interval δ. The probability of an event that more than one infection or death

has occurred during time δ is of order δ2, which can be neglected. Then we can approximate the mean of Xδ for δ

sufficiently small to order δ by

E[Xδ] ≈ f δ =


a − S (βI + m)

βS I − I(µ + m)

µI

 δ. (25)

Furthermore, we can also approximate the covariance of Xδ for δ sufficiently small by

V[Xδ] = E[(Xδ)(Xδ)T ] − E(Xδ)E(Xδ)T ≈ E[(Xδ)(Xδ)T ] = Σδ. (26)

The matrix Σ in (24) is positive definite and hence has a positive definite square root B =
√

Σ. It can be shown that

(25) and (26) are quantities of order δ. We also assume Xδ follows normal distribution with mean vector f δ and

covariance matrix B2δ = Σδ. Thus,

X(t + δ) ≈ X(t) + f δ + B
√
δη, (27)

where η ∼ N(0,I 3×3) and I is the identity matrix. This is exactly one iteration of the Euler-Maruyama scheme for

a system of SDEs (23). As a result, the dynamical system (27) converges in the mean square sense to the system of

SDEs (23) as δ→ 0.

6.2. Results

The simulated maximum likelihood estimates based on the PSML-MBB with J = 48, and M = 12 are θ̂PSML-MBB

= (β̂, µ̂) = (0.03, 0.21) with 95% confidence intervals [0.027, 0.120] and [0.143, 0.388], respectively, and ρ̂ = 0.86.

Although Durham and Gallant (2002) did not provide confidence intervals based on the MBB approach or a method to

compute them, we use the parametric bootstrap as described in Section 4.3 to obtain them. The estimates based on the

MBB approach with J = 48 are θ̂MBB = (0.03, 0.27) with 95% confidence intervals [0.027, 0.186] and [0.148, 0.599],

which are much wider than those from the PSML-MBB.

To measure the goodness of fit, 100 simulated trajectories of cumulative number of deaths for CWD using

θ̂PSML-MBB are shown in Figure 4. For such a small sample size the estimated parameters from the PSML-MBB

and the CWD direct transmission model capture the pattern of the CWD death data over time. The fit for the second

epidemic is not as good as the first epidemic because we are estimating parameters (µ and β, which remain unchanged

between epidemics) from a theoretical SDE model (23), not estimating a least squares fit to the observed data. The

theoretical model does a remarkably good job at following the observed data. A non-parametric model would likely

provide a close fit to the data in Figure 4 but would not provide the scientifically relevant interpretation sought by

biologists. Miller et al. (2006) proposed a more complex deterministic model, which we could also extend to a cor-

responding stochastic model, however the model quickly becomes over-parameterized due to the limited sample size

and complexity of the model. Therefore, we only consider the direct transmission model.
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Figure 4: Upper display: observed cumulative number of deaths for CWD. Lower display: the 100 simulated trajectories of the cumulative number

of deaths for CWD are obtained by using CWD direct transmission model (23) with estimated parameters from the PSML-MBB. The circled points

are the observed CWD data.

The basic reproductive number R0, which is the average number of secondary cases generated by one infected

individual over the course of its infectious period when the entire population is susceptible, is important in biology

and epidemiology (Anderson and May, 1992). Usually people consider the situation in which the majority of a closed

population is susceptible, that is S (t0)/N ≈ 1. For deterministic models, if R0 > 1 then the infection will be spread in

a population, and if R0 ≤ 1, the infection will die out monotonically. For stochastic models, the probability that there

is no epidemic equals 1 if R0 ≤ 1 and ( 1
R0

)I(t0) if R0 > 1 (Allen and Burgin, 2000), where I(t0) is the initial number

of infected animals. The traditional interpretation of R0 is not available here because the population is not closed; a

in (23) is the known number of susceptible annually added to the population. However, we want to point out that our

method can be used to estimate R0 for cases when the population is closed and the other assumptions of R0 hold. For

example, assuming a natural mortality rate of m = 0.15 (Miller et al., 2006), the corresponding estimate for the basic

reproductive number R0 equals β̂N0/(̂µ + m) ≈ 0.16N0 with 95% confidence interval [0.06N0, 0.42N0], where N0 is

the initial population or susceptible size. Hence, we would expect that CWD will spread if a few infected animals,

like one or two, are introduced to a closed susceptible population with size at least 1/0.06 ≈ 17 animals.
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7. Conclusion and discussion

The dynamics of many ecological problems can be well described by a multivariate stochastic differential equation

system. However, the transition densities of discrete-time observations are unknown for most interesting models.

We propose the penalized simulated maximum likelihood approach, which provides a balanced approach to achieve

accurate parameter estimates with efficient computation times for these complex stochastic models. The key idea is the

introduction of a penalty term to select a better importance sampler in order to reduce the number of simulated sample

paths. We compare the new method to the MBB sampler and the regularized sampler for three different models in

simulation studies and also show an application for a real dataset. From those results, we conclude that the penalized

simulated maximum likelihood approach is an improvement over the MBB sampler and the regularized sampler while

keeping the computational cost low.

Note that it is possible to extend the penalized simulated maximum likelihood approach to allow for measurement

errors in our observed data. The main challenge is still constructing effective and efficient importance samplers to

approximate the transition probability density. The detailed statistical procedures are left as further work. Alternative

approaches, such as methods that do not require evaluation of the likelihood function, have been proposed in both

frequentist (Bretó et al., 2009) and Bayesian analysis (Andrieu et al., 2010; Sun et al., 2014).

Markov jump processes offer an alternative approach to using SDE models (Toni et al., 2009; Drovandi and

Pettitt, 2011). A Markov jump model particularly takes into account the discreteness of the data. However, a Markov

jump model may be too simple. For example, the SDE models considered here allow modeling of the covariance

between state variables. In contrast, a Markov jump model cannot capture such a dependence structure among the

state variables.

Stramer and Yan (2007a) concluded the optimal choice for the number of Monte Carlo simulations J in (6) is

of the order O(M2) for the MBB approach, where M is the number of subintervals between two observations. One

can choose a number smaller than this as a starting point for the proposed penalized simulated maximum likelihood

method in practice. More formal guidance is under investigation. Moreover, a formal study about the tuning parameter

λ needs further development.

We find it is quite challenging to derive the theoretical properties of the maximum likelihood estimator based

on either simulated likelihood (e.g., Pedersen and MBB) or penalized simulated likelihood (e.g., PSML). Pedersen

(1995) and Geweke (1989) showed that the importance sampling estimator (6) converges to the transition density

p(X(ti)|X(ti−1)). However, the properties of the MLE based on (6) (e.g., the estimator based on MBB or PSML) have

not been established. The theoretical work, such as the convergence and the asymptotic distribution of the estimators,

will be considered as future work.

Note that uncertainty in ρ̂ is not accounted for in the bootstrap confidence intervals for the SDE parameters. This

parameter is a nuisance parameter and is not used for simulated new datasets in the bootstrap algorithm. Methods

to account for the effect of estimating ρ on bootstrap intervals for the process model parameters are a topic of future
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Appendix A. Sequential Monte Carlo for stochastic differential equations with partially observed discrete

data.

A sequential Monte Carlo or particle filter scheme can be described as follows. Repeat the following steps for

i = 1, . . . , n,

(a). Sample X∗( j)
−obs(ti) ∼ q(X−obs(ti)|X( j)(ti−1), Xobs(ti)) for j = 1, . . . , J, where X( j)(t0) ≡ X(t0) and q is an importance

sampler.

(b). Compute the weights

ω
( j)
i =

p(M)(X∗( j)(ti)|X( j)(ti−1))

q(X∗( j)
−obs(ti)|X

( j)(ti−1), Xobs(ti))
,

and W ( j)
i ∝ ω

( j)
i , where X∗( j)(ti) ≡ {X

∗( j)
−obs(ti), Xobs(ti)} and p(M) in the numerator is defined in (5).

(c). Resample J times with replacement from {X∗(1)
−obs(ti), . . . , X

∗(J)
−obs(ti)} with probabilities given by {W (1)

i , . . . ,W (J)
i } to

obtain J equally-weighted particles {X(1)
−obs(ti), . . . , X

(J)
−obs(ti)}.

References

References

Aı̈t-Sahalia, Y., 2002. Transition densities for interest rate and other nonlinear diffusions. The Journal of Finance 54 (4), 1361–1395.

Aı̈t-Sahalia, Y., 2008. Closed-form likelihood expansions for multivariate diffusions. The Annals of Statistics 2 (36), 906–937.

Allen, E. J., Allen, L. J., Schurz, H., 2005. A comparison of persistence-time estimation for discrete and continuous stochastic population models

that include demographic and environmental variability. Mathematical biosciences 196 (1), 14–38.

Allen, L. J., 2003. An Introduction to Stochastic Processes with Applications to Biology. Pearson/Prentice Hall Upper Saddle River (New Jersey).

Allen, L. J., Allen, E. J., 2003. A comparison of three different stochastic population models with regard to persistence time. Theoretical Population

Biology 64 (4), 439–449.

21



Allen, L. J., Burgin, A. M., 2000. Comparison of deterministic and stochastic SIS and SIR models in discrete time. Mathematical Biosciences

163 (1), 1–33.

Anderson, R., May, R., 1992. Infectious Diseases of Humans: Dynamics and Control. Wiley Online Library.

Andersson, H., Britton, T., 2000. Stochastic epidemic models and their statistical analysis. Springer Verlag.

Andrieu, C., Doucet, A., Holenstein, R., 2010. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 72 (3), 269–342.

Becker, N., 1979. The uses of epidemic models. Biometrics 35 (1), 295–305.

Bengtsson, T., Snyder, C., Nychka, D., 2003. Toward a nonlinear ensemble filter for high-dimensional systems. Journal of Geophysical Research:

Atmospheres (1984–2012) 108 (D24).

Bhadra, A., Ionides, E. L., Laneri, K., Pascual, M., Bouma, M., Dhiman, R. C., 2011. Malaria in northwest india: Data analysis via partially
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