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Abstract

Classical finite mixture regression is useful for modeling the relationship between scalar 

predictors and scalar responses arising from subpopulations defined by the di ering associations 

between those predictors and responses. The classical finite mixture regression model is extended 

to incorporate functional predictors by taking a wavelet-based approach in which both the 

functional predictors and the component-specific coefficient functions are represented in terms of 

an appropriate wavelet basis. By using the wavelet representation of the model, the coefficients 

corresponding to the functional covariates become the predictors. In this setting, there are typically 

many more predictors than observations. Hence a lasso-type penalization is employed to 

simultaneously perform feature selection and estimation. Specification of the model is discussed 

and a fitting algorithm is provided. The wavelet-based approach is evaluated on synthetic data as 

well as applied to a real data set from a study of the relationship between cognitive ability and di 

usion tensor imaging measures in subjects with multiple sclerosis.1
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1. Introduction

Let  be the scalar response of interest for observation i, i = 1, …, n and let Xi be a 

random predictor process that is square integrable on a compact support  (i.e, 

1Supplementary materials, including R code for implementing the proposed method and conducting analyses, as well as additional 
simulation results can be found in the electronic version of this paper.
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). It is increasingly common to model the relationship between Yi and Xi via 

a functional linear model (FLM) given by:

(1.1)

where α is the scalar intercept and εi is the error term such that εi ~ N(0, σ2). ω is a square 

integrable coefficient function that relates the predictor process to the response. The 

magnitude of ω(t) indicates the relative importance of the predictor Xi at a given value of t. 

If |ω(t0)| is large, this means that changes in the predictor process at t0 are important in 

predicting the response. A variety of approaches have been developed for estimating the 

coefficient function in (1.1) (James, 2002; Cardot et al., 2003; Cardot and Sarda, 2005; 

Ramsay and Silverman, 2005; James and Silverman, 2005; Cai and Hall, 2006; Reiss and 

Ogden, 2007; Müller and Yao, 2008; Zhao et al., 2012).

Although (1.1) is adequate for modeling the relationship between a scalar response and a 

functional predictor when the association between the response and predictor is the same for 

all observations, it is not appropriate for settings in which the coefficient function di ers 

across subgroups of the observations. If there are C different associations corresponding to 

C different coefficient functions then we can think of each observation as coming from one 

of C distinct subpopulations/components and would need C distinct FLMs to adequately 

describe the relationship between the response and the predictor. We are concerned with 

settings in which subpopulation membership is not observed and will need to be estimated 

along with the component-specific coefficient functions. In order to appropriately model the 

relationship between Xi and Yi in this context, we combine finite mixture and functional 

linear modeling strategies.

Although the underlying theory of finite mixture regression models and methods for 

estimating those models have been well-studied when the predictors are scalars (McLachlan 

and Peel, 2000; Schlattmann, 2009), methods for finite mixture regression remain relatively 

undeveloped when the predictors are functions. To our knowledge, Yao et al. (2011) are the 

only ones to investigate such an extension. In their approach to functional mixture 

regression (FMR) models, they first represent each functional predictor in terms of some 

suitably chosen number of functional principal components and apply standard mixture 

regression techniques in the new coordinate space.

The FMR model is given by

(1.2)

where C is the number of components or distinct subpopulations, αr is the rth component-

specific intercept, and ωr is the regression function for the rth group, r = 1, …, C.

In contrast to Yao et al. (2011), we propose to take a wavelet-based approach to FMR 

models. Our approach is distinct from that of Yao et al. (2011) in several ways. First, just as 

with using functional principal components, using a wavelet basis initially provides no 

dimension reduction. However, wavelets are useful for providing sparse representations of 

Ciarleglio and Ogden Page 2

Comput Stat Data Anal. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions so that most of the information about the function is contained in relatively few 

wavelet coefficients. The method that we use to achieve dimension reduction relies on this 

sparsity property and is very different from simply choosing a small number of principal 

components that explain some specified proportion of the variance in the predictors. We 

take a fully functional approach which performs dimension reduction and model estimation 

simultaneously so that dimension reduction is driven by the relationship between the 

functional predictor and the response of interest. This is not the case with the functional 

principal components-based approach. Furthermore, the approach that we present here is 

flexible in that we can choose from a host of wavelet families to represent the functional 

predictors and component coefficient functions. Our approach comes with the added cost of 

needing to select more tuning parameters, but we propose methods for tuning parameter 

selection that perform well in simulations and we show that we can make substantial gains 

in estimation accuracy over using functional principal components when the true component 

coefficient functions are characterized by local features. Finally, it is computationally trivial 

to extend our approach to higher-dimensional predictors such as 2- or 3-dimensional images. 

This is due to the fact that there are several software packages available for performing 

wavelet decompositions for 2- or 3-dimensional data. To our knowledge, there is no readily 

available software for performing FPCA for such data.

The rest of the paper is organized as follows. In Section 2, we provide a brief discussion of 

wavelets and the wavelet-based functional linear model followed by specification of the 

wavelet-based (WB) functional finite mixture regression model. In Section 3, we outline an 

algorithm for fitting the WB model. Section 4 discusses the various tuning parameters in the 

WB model. Section 5 presents simulation results showing the performance of the WB 

method and an application of our method to a real data set. We conclude with a brief 

discussion in Section 6.

2. Methodology

2.1. Wavelets, Wavelet Decomposition, and Wavelet Representation of the FLM

We focus here on the wavelet basis for several reasons. Wavelets are particularly well suited 

to handle many types of functional data, especially functional data that contain features on 

multiple scales. They have the ability to adequately represent global and local attributes of 

functions and can handle discontinuities and rapid changes. Furthermore a large class of 

functions can be well represented by a wavelet expansion with relatively few non-zero 

coefficients. This is a desirable property from a computational point of view as it aids in 

achieving the goal of dimension reduction.

In , a wavelet basis is generated by two kinds of functions: a father wavelet, φ(t), and 

a mother wavelet, ψ(t), satisfying  and . Here we restrict ourselves to 

orthonormal wavelet basis families (Daubechies, 1988).

Any particular wavelet basis consists of translated and dilated versions of its father and 

mother wavelets given by φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k) where the integer 

j is the dilation index referring to the scale and k is an integer that serves as a translation 

index. These functions can be adapted via implementation of one of several boundary 
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handling schemes that represent a given function on a specified interval. Without loss of 

generality, we take that interval to be [0,1]. Hence if we assume that ω ∈ L2([0, 1]) then we 

can represent ω in the wavelet domain by

(2.1)

where j0 is an integer that determines the number of scaling functions used in the lowest 

scale representation. The values  and βj,k are the corresponding scaling and wavelet 

coefficients for the functions φj0,k and ψj,k respectively and are given by 

 and .

In practice, the functional predictors are discretely sampled. We assume that we observe a 

dyadic length (N = 2J) vector of function values Xi = (Xi(t1), …, Xi(tN))T where the 

arguments t1, …, tN, are equally spaced and the same for all observations. If the observed 

functional data are not dyadic and/or not regularly spaced then there are several procedures 

that one may employ to obtain dyadic and regularly spaced predictors from the original data. 

One commonly used option is interpolation. To obtain the wavelet and scaling coefficients 

corresponding to the functional predictors we use the discrete wavelet transform (DWT). 

The inverse DWT (IDWT) can be used to reconstruct a vector of functional observations 

from its corresponding wavelet and scaling coefficients. Both the DWT and IDWT can be 

performed using a computationally fast pyramid algorithm (Mallat, 1989). Comprehensive 

treatment of wavelets and their applications in statistics can be found in Ogden (1997); 

Nason (2008); and Vidakovic (1999).

Before moving on to our WB model we first make note of an important consequence of 

using a wavelet-space representation. Note that ω(t) can be expressed as in (2.1) and Xi(t) 

can be expressed as

where the scaling and wavelet coefficients are given respectively by 

 and .

Applying the DWT to the N equally-spaced observations of Xi produces wavelet and scaling 

coefficients that can be put into an (N + 1) × 1 vector denoted by Zi:

(2.2)

where J = log2(N) − 1, kj = 2j − 1, and the first element, 1, corresponds to the intercept.

Because of the orthonormality of the wavelet basis, (1.1) can be simply written as
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(Zhao et al., 2012), or, in matrix notation the linear model is given by

(2.3)

where Y = (Y1, …, Yn)T, Z is an n × (N + 1) matrix with ith row Zi, β is an (N + 1) × 1 vector 

containing the intercept followed by the coefficients arranged in the same order as the vector 

Zi, and ε = (ε1, …, εn)T. The fact that a wavelet-space representation results in a linear model 

has often been exploited in the context of functional regression (Vannucci et al., 2005; 

Amato et al., 2006; Malloy et al., 2010; Zhao et al., 2012; Reiss et al., 2013).

2.2. Specification of the WB Functional Mixture Regression Model

If the pairs of functional predictors and scalar responses come from a heterogeneous 

population, where the subpopulations (or components) are determined by C distinct 

associations between the predictors and the response, then there is a unique coefficient 

function, ωr, r = 1, …, C corresponding to each subpopulation. Since, as noted above, the 

predictors are typically discretely sampled at N points, the model we consider is

where  given that observation i belongs to component r and  is the error 

variance in the rth component. (In the appendix, we investigate similar models where the 

error terms are not normally distributed.) Thus, the coefficient functions of interest are given 

by

and our goal is to find estimates for the ’s and the βr,j,k’s.

In this setting, the model of interest is similar to that seen in classical finite mixture 

regression. We have that Yi|Zi for i = 1, …, n are independent and

(2.4)

where βr is the component-specific coefficient vector for component r with the same form as 

β in the model given by (2.3) and πr is the probability that observation i belongs to 

component r. Let  be the 
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((N + 3) · C − 1) × 1 vector of free parameters to be estimated from (2.4), where is the space 

of vectors of the form (π1, …, πC−1) such that πr > 0 for r = 1, …, C − 1, , and 

.

In practice, Xi may be densely sampled and so we may have N >> n. In this case, maximum 

likelihood estimation will provide inaccurate and unstable estimates for each βr and 

consequently poor estimates for each ωr. Since wavelets allow for sparse representation of 

each ωr, most of the information about the coefficient functions to be estimated will be 

contained in a relatively small number of wavelet coefficients. Those wavelet coefficients 

corresponding to unimportant features in the wavelet space will comprise most of the 

elements of βr and will be of negligible magnitude. Thus we consider a lasso-type procedure 

for estimating the C component-specific vectors of wavelet and scaling coefficient values.

Städler et al. (2010) proposed an ℓ1-penalized mixture regression procedure for model fitting 

with general high-dimensional predictors. We make use of this procedure here. We begin by 

first reparameterizing model (2.4) using the following:

Based on this new parameterization, model (2.4) can be written as:

(2.5)

There is a one-to-one mapping from ξ to a new parameter vector

The corresponding log-likelihood for model (2.5) is

(2.6)

To estimate the parameter vector θ in model (2.5), we propose to use 

 that minimizes

(2.7)

where ||φr||1 is the ℓ1-norm of the vector φr. Note that the penalty on each wavelet and 

scaling component coefficient vector φr is proportional to the mixing probability πr. 

Including the mixing proportion in this manner corresponds to the common practice of 

relating the amount of penalty to the sample size, where, in the context of mixture 
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regression, Khalili and Chen (2007) note that the “virtual” sample size from the rth 

component is proportional to πr. Further discussion of the tuning parameters is given in 

Section 4.

Estimation of φr and ρr rather than the direct estimation of βr and σr is considered primarily 

for two reasons. The reparametrization, along with a lasso-type penalty allows for 

penalization of both the coefficient vectors of interest and the error variances within each 

component (Städler et al., 2010) while maintaining convexity of the optimization problem to 

be solved.

The identifiability of finite mixture models is an important consideration. In short, when no 

two distinct sets of parameter values (up to component label switching) define the same 

mixture distribution, the model is identifiable. As noted in Khalili and Chen (2007), 

identifiability depends on the component densities, the maximum possible number of 

components, and the design matrix. Hennig (2000) discusses conditions under which finite 

mixture models are identifiable. In what follows, we assume that the model under 

consideration is identifiable.

3. Fitting WB Functional Mixture Models

WB functional mixture regression models can be fit in three main steps outlined below.

Step 1

Use the DWT to decompose the functional predictors and obtain the corresponding wavelet 

and scaling coefficients for each predictor. Here we must choose the wavelet family (e.g., 

Daubechies’ least asymmetric wavelets), number of vanishing moments, lowest level of 

decomposition (j0 ∈ {0, …, log2(N) − 1}), and method for handling the boundaries (e.g., 

symmetric boundary handling).

The empirical wavelet and scaling coefficients for each predictor curve can be arranged into 

(N + 1) × 1 vectors, denoted Zi, i = 1, …, n, which have the same structure as (2.2). We then 

form Z, an n × (N + 1) matrix with ith row Zi.

Step 2

We carry out an EM-type algorithm for our setting in a manner similar to that described in 

Städler et al. (2010). Details of this step are provided in the Appendix.

Step 3

Use the IDWT to obtain estimates , …,  from the estimates , …, 

respectively.

The EM procedure discussed in Step 2 above requires that we provide initial values for the 

parameters being estimated. We use the following scheme for obtaining these initial values. 

We first assign a weight to each observation corresponding to each of the C distinct 

components. To do this, we randomly assign to each observation i a class, κ, from the set {1, 

…, C}. For observation i and its randomly selected class κ we assign  and for each 
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of the other classes we assign . We then normalize the vector 

of  values, r = 1, …, C to sum to 1. Note that this process can be thought of as an 

initialization of the E-step. This is followed by updating all of the coordinates involved in 

the optimizations in the M-step with initial values of , , and , r = 1, 

…, C, q = 1, …, N + 1. Convergence properties of the algorithm implemented in Step 2. are 

discussed in detail in Städler et al. (2010).

To speed up the EM procedure, we restrict ourselves to updating only the non-zero 

coordinates (active set elements) for 10 out of every 11 iterations of Step 2. This type of 

active set algorithm is used in Meier et al. (2008); Friedman et al. (2010); and Städler et al. 

(2010). After 10 iterations on the active set, we expand to consider all coordinates, both the 

active and non-active, for updating in the 11th iteration. We obtain a possibly new active set 

and continue in this manner until the convergence criteria are satisfied.

4. Tuning Parameters and Their Selection

If the number of components is known a priori or exploratory data analysis suggests a 

particular number of components, then C can be specified outright. However, we often 

employ the mixture modeling approach when the number of components is unknown or 

knowledge of component membership is unavailable.

The value of j0 corresponds to the lowest level of decomposition and can range from 0 to 

log2(N) − 1. Since the predictors are sampled at N points, the DWT provides a 

decomposition that uses a total of N wavelet and scaling functions. Among this set of N 

basis functions, 2j0 will be scaling functions and N −2j0 will be wavelet functions. Hence, 

setting j0 close or equal to 0 results in using fewer scaling functions to represent large-scale 

features and more wavelet functions to represent local details of the function of interest. 

Conversely, setting j0 close or equal to log2(N) − 1 results in using more scaling functions.

The value of λ directly determines the role that the penalty function will have in both 

estimating and selecting variables in the model. Large values of λ force elements of the 

estimated component coefficient vectors to zero while small values result in many non-zero 

estimates.

We will employ two methods for tuning parameter selection. First we consider selecting the 

parameters that minimize the cross-validated value

(4.1)

Here, ℓ(·; ·) denotes the log-likelihood from (2.6) and the estimate  depends on the 

values of the tuning parameters as indexed by the subscripts. We will refer to (4.1) as the 

“predictive loss”. We also consider selecting the parameters that minimize a modified BIC 

criterion. We use the modified BIC measure, proposed by Pan and Shen (2007), which is 

given by
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(4.2)

where de = (N + 3) · C − 1 − q0 is the e ective number of parameters with q0 being the 

number of coefficients estimated to be zero in all of the components.

The cross-validation procedure generally puts more emphasis on predictive ability and 

chooses a model that performs well in this regard. On the other hand, BIC focuses more on 

finding the “true” model and often chooses a simpler one. In the numerical investigations 

discussed below, we found that the cross-validation procedure is sometimes prone to over-

fitting while use of BIC tends to avoid this issue. Compared to BIC, cross-validation is 

computationally demanding and can be prohibitive for large and/or high-dimensional data. 

Based on these characteristics, we are inclined to recommend the use of the modified BIC 

when selecting tuning parameters. Further discussion of these two approaches for tuning 

parameter selection is provided in Section 5.2 and in the appendix.

5. Simulations and Application

We present simulation results that demonstrate various aspects of the WBFMR procedure 

and that draw comparisons to a functional principal components-based (FPC) method 

similar to that proposed by Yao et al. (2011). For each simulation discussed below, we 

generated observations consisting of a discretely sampled one-dimensional functional 

predictor signal, Xi, and a scalar response, Yi whose association with Xi depends on some 

known group membership.

Each functional predictor is a Brownian bridge stochastic process for t ∈ (0, 1) with an 

expected value of 0, covariance given by cov(Xi(t), Xi(s)) = s(1−t) for s < t, and with Xi(0) = 

Xi(1) = 0. We consider various sampling densities for the functional predictors. Specifically, 

we consider data sets where the functional predictors are sampled at N = 64, 128, 256, or 

512 equally-spaced points. A sample of three of these predictors is given in the left panel of 

Figure 1.

The scalar outcomes corresponding to each functional predictor were generated using two 

distinct settings for the component-specific coefficient functions. The first pair of 

component-specific coefficient functions are given by ωs1(t) = −sin(2πt) for the first 

component and ωs2(t) = sin(πt) for the second component. The second pair of component-

specific coefficient functions are given by ωb1 (t) = −3.257e−a(t−0.15)2 + 4.886e−a(t−0.25)2 

−3.257e−a(t−0.5)2 +2.606e−a(t−0.9)2 for the first component and ωb2(t) = 

3.257e−a(t−0.1)2−4.886e−a(t−0.35)2+3.257e−a(t−0.7)2 for the second component where a = 

20000/9. The middle panel of Figure 1 showsωs1 and ωs2 which we will refer to as the 

“smooth” functions while the right panel shows ωb1 and ωb2 which we will refer to as the 

“bumpy” functions.

Equal proportions of observations were generated in each component. In the first 

component, random error terms were drawn from  and in the second component 

they were drawn from  where σ1 = σ2. Different values for σ1 and σ2 
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corresponding to R2 values of 0.9, 0.7, and 0.5 were used. Here R2 is the the discrete 

approximation to , 

which measures the proportion of variation in the response attributed to the functional 

predictor.

Daubechies’ least asymmetric wavelets with eight vanishing moments were used in all 

simulations, as we found these to provide a good balance between smoothness and compact 

support in prior numerical investigations (not shown here). The WaveThresh package in R 

(Nason, 1998) was used to perform the DWT and IDWT with the periodic boundary 

handling option. Additional results from the simulations discussed below, as well as results 

from additional simulations are available in the online appendix.

5.1. Simulation 1: Comparison of FMR Methods

In the first set of simulations we compare the wavelet-based (WB) and functional principal 

components-based (FPC) mixture regression methods. In all, we consider 24 different 

settings: two types of component coefficient functions (smooth or bumpy), three possible R2 

values (0.9, 0.7, or 0.5), and four possible sampling densities (N = 64, 128, 256, or 512).

For a given simulation run, we generate a training set, a validation set, and a test set all from 

the same setting. Each set is made up of 100 observation pairs consisting of a functional 

predictor and its corresponding scalar response. The training set is used to fit a model for 

each combination of the tuning parameters. The validation set is then used to select the 

combination of tuning parameters that minimizes (4.1) among all combinations of tuning 

parameters. Finally, the model chosen based on the validation set is applied to the test set 

and the corresponding predictive loss is computed. We repeat this procedure 100 times for 

each setting.

Here we treat the number of components as known (i.e., C = 2). For the wavelet-based 

method, we fix the lowest level of decomposition to j0 = 0 in the smooth setting and to j0 = 5 

in the bumpy setting. In extensive prior simulations (not shown here), these decomposition 

levels tended to consistently minimize the predictive loss for each of the settings that we 

consider. The optimal value of λ is chosen from a grid of 100 candidate values. The grids for 

each setting were also selected based on prior simulations. (In these simulations, we plotted 

cross-validated log-likelihood loss values against λ values from very wide and very fine 

grids for several data sets from each of the generative models to see which λ values resulted 

in the minimum log-likelihood loss for each data set. For a given generative model, we then 

constructed the grid of 100 λ values wide enough to span those lambda values that gave the 

minimum log-likelihood losses such that we were confident that the selected λs would fall 

well within the lowest and highest grid values.)

For the functional principal components-based procedure, based on the procedure proposed 

in Yao et al. (2011), the tuning parameters consisted of the number of order four B-spline 

basis functions used in representing the predictor signals and the number of principal 

components to serve as the predictors in the FMR model. The optimal set of tuning 

parameters was selected by first fitting a model for each combination of the number of B-
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spline basis functions and the number of principal components using the training data and 

then picking the pair that minimized (4.1) in the corresponding validation set. The fitted 

model was then applied to the corresponding test data and the predictive loss was obtained. 

We use the FlexMix packge (Leisch, 2004) in R to fit the functional principal components-

based models.

We first consider how the three methods compare with respect to predictive loss based on 

the test sets. Table 1 shows the average predictive loss and standard deviation from the test 

sets in the 100 simulation runs. Lower loss values are preferred. In the smooth setting, we 

note that the wavelet-based method performs comparably to the functional principal 

components-based method while in the bumpy setting, the wavelet-based method appears to 

do better, especially for higher values of R2.

Average estimation performance is illustrated in Figures 2 and 3. The solid and dashed thick 

curves correspond to the point-wise mean estimated component coefficient functions over 

the 100 simulation runs at the specified setting. The solid and dashed thin curves correspond 

to the true component coefficient functions used to generate the scalar responses. 

(Performance for R2 = 0.5 is not shown.) In settings for which the true component 

coefficient functions are smooth, we note that the functional principal components-based 

method appears to do best while the wavelet-based method performs similarly well when the 

functional predictors are densely sampled. Substantial gains in estimation performance by 

the wavelet-based method are evident in the bumpy settings. We note that the wavelet-based 

method does very well in capturing the local features of the component coefficient functions 

and in estimating regions where there is no association between the functional predictor and 

the response while the functional principal components-based method struggles with both of 

these tasks. Additional information regarding Simulation 1, including how we handled label-

switching, is available in the online appendix.

5.2. Simulation 2: Tuning Parameter Selection Methods

In the second set of simulations, we investigate selection methods for the tuning parameters 

in the wavelet-based model. We compare selection based on minimizing the 5-fold cross-

validated log-likelihood loss to that based on minimizing the modified BIC criteria given in 

(4.2). We consider three different scenarios for tuning parameter selection:

Scenario 1. Set C = 2 and j0 = 0 (smooth setting) or 5 (bumpy setting); select λ.

Scenario 2. Set j0 = 0 (smooth setting) or 5 (bumpy setting); select C ∈ {1, 2, 3} and λ.

Scenario 3. Set C = 2; select j0 ∈ {0, …, log2(N) − 1} and λ.

We restrict ourselves to a subset of four of the 24 settings from the first group of simulations 

discussed above. Specifically, we compare the three tuning parameter selection scenarios in 

the smooth and bumpy settings when the sampling density of the functional predictors is 

either 128 or 256. In all four settings we have R2 = 0.9. For each of 100 simulation runs at 

each setting, the training set was used to determine the optimal tuning parameters that either 

minimized the 5-fold cross-validated predictive log-likelihood loss or minimized the 

modified BIC criteria. The corresponding test set was used to estimate the test loss in each 

scenario for both selection methods.

Ciarleglio and Ogden Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 2 shows the mean and standard deviation of the log-likelihood loss values from the 

test sets in each setting and for each scenario. The three tuning parameter selection scenarios 

appear to be comparable with respect to predictive log-likelihood loss. This suggests that it 

is possible to achieve similar performance with respect to predictive loss when estimating C 

or j0 from the data as when C and j0 are known.

In Scenario 2, we allowed the data to select the number of components, C. Table 3 shows 

the proportions of simulation runs at each of the three settings for which the number of 

components was chosen to be 1, 2, or 3. The table suggests that 5-fold cross validation has 

greater tendency than BIC to over-fit by estimating more components than truly exist. Hence 

we are inclined to recommend using BIC when selecting the number of components. 

Additional information on Simulation 2 regarding estimation performance and 

computational considerations are provided in the online appendix.

5.3. Application to DTI Data for Subjects with Multiple Sclerosis

We now analyze data from a di usion tensor imaging (DTI) study, discussed in Goldsmith et 

al. (2012), using our wavelet-based functional mixture regression approach. The data are 

from a longitudinal study investigating the cerebral white matter tracts of subjects with 

multiple sclerosis (MS). Here we focus on the baseline observations for the 100 MS 

subjects. In particular, we are interested in the relationship between the fractional anisotropy 

profile (FAP) from the corpus callosum (functional predictor) and the Paced Auditory Serial 

Addition Test (PASAT) score (scalar response).

The PASAT is an assessment tool that measures a subject’s cognitive ability with respect to 

auditory information processing speed and flexibility and also provides information on 

calculation ability (Rosti et al., 2006). The PASAT score ranges from 0 to 60 where lower 

scores indicate some level of dysfunction. The FAP from the corpus callosum is derived 

from DTI, a magnetic resonance imaging modality that is commonly used to track the di 

usion of water in biological tissue. The FAP is a continuous summary of water di usivity that 

is parametrized by the arc length along a curve. The tract profiles are estimated via an 

automated tract-probability-mapping scheme described in Reich et al. (2010). In the data set, 

the FAP predictors are recorded at 93 locations along the corpus callosum. In our analysis, 

we linearly interpolate the FAP curves at 128 equally spaced points before projecting them 

onto a wavelet basis. We used data from 99 of the 100 MS subjects since one subject had 

missing FAP values at several locations along the tract. Figure 4 shows the FAPs for all 99 

MS subjects that we considered as well as those for three subjects with the lowest, median, 

and highest PASAT scores.

We were interested in conducting an analysis that inspects whether the regression 

relationship between corpus callosum FAP and PASAT score varies due to some unknown 

mechanism. We apply our WB functional mixture regression approach in which we used the 

BIC from (4.2) to select the optimal tuning parameters. This approach suggests that there are 

two distinct groups with different coefficient functions describing the association between 

corpus callosum FAP and PASAT score. Figure 5 shows the estimated coefficient functions, 

 and , for each of the two groups. For illustration, Figure 5 also shows the FAPs that 

belong to the groups associated with those functions. To determine which group a subject’s 
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FAP belongs to, we use the estimated group membership indicators from the last iteration of 

the EM algorithm. The indicator of group membership with the the highest value was taken 

to correspond to the group from which the observation came. Using this assignment method, 

there are 52 subjects in Group 1 and 47 in Group 2.

We note that the estimated coefficient function corresponding to Group 2 is identically zero 

at all locations along the profile suggesting no association between FAP and PASAT score 

among MS subjects belonging to this group. The estimated coefficient function for Group 1 

suggests that higher fractional anisotropy values between profile locations of about 0.2 and 

0.7 are associated with higher PASAT scores while higher values between profile locations 

of about 0.7 and 0.9 are associated with lower PASAT scores for those MS subjects 

belonging to Group 1.

Figure 5 also shows the PASAT scores corresponding to the two groups. This plot illustrates 

a distinctive split between the two groups with respect to PASAT score. Overall the model 

may suggest that, among MS subjects with better cognitive function, there is no association 

between corpus callosum FAP and PASAT score whereas among those with worse cognitive 

function, fractional anisotropy values in the middle region of the tract can discriminate 

among the PASAT scores and that greater fractional anisotropy corresponds to higher 

scores.

Finally, we compare the chosen wavelet-based function mixture regression model to the 

wavelet-based FLM (selected to minimize BIC) with respect to leave-one-out cross-

validated relative prediction errors  where 

is the predicted PASAT score for subject i from a model fit on data with subject i removed. 

To determine which estimated coefficient function to use to obtain the predicted PASAT 

score for subject i, we use the following ad hoc method similar to that used in Yao et al. 

(2011): if the observed PASAT score Yi is less than 50 then we use the coefficient function 

that is not identically zero at each profile location and if Yi is 50 or larger then we use the 

zero function. For our model with 2 groups, the CVRPE is 0.0315 and for the wavelet-based 

FLM the CVRPE is 0.0723.

6. Discussion

In this article we present a general wavelet-based approach to functional mixture regression 

which is appropriate to use when modeling the association between a continuous scalar 

response and a functional predictor where the association is not homogeneous across the 

population. We provide a fitting algorithm and demonstrate some properties of the 

corresponding estimators using simulations. Although our approach may be more 

computationally demanding, due in large part to the need to select several tuning parameters, 

when compared with a functional principal components-based approach to functional 

mixture regression, evidence suggests that our method performs better with respect to 

prediction and estimation accuracy when the component coefficient functions defining the 

association between the predictors and responses possess relatively small scale features. 

Furthermore, our approach can be directly and easily extended to handle functional 
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predictors of higher dimensionality including 2- and 3-dimensional images. Existing 

software can be used to obtain a discrete wavelet decomposition of the image and once we 

have the corresponding wavelet coefficients, those coefficients can be organized into a 

vector in which the ordering of the coefficients does not matter. Then model fitting is carried 

out in the the same manner as presented above.

Zhao et al. (2012) note that there are many factors that may be important to the performance 

of a wavelet-based approach like the one we present here. For one, selection of a particular 

wavelet basis for the DWT has an impact on the sparsity of the representation of the 

functional predictor. This is not an issue when using a functional principal components-

based approach since the basis representation is determined by the functional predictors.

Another factor that plays an important role in the performance of our method is tuning 

parameter selection. We looked at two criteria for selecting tuning parameters: minimizing 

the 5-fold cross-validated predictive loss and minimizing a modified BIC value. We found 

that both methods were generally comparable with the BIC method perhaps slightly under-

performing with respect to predictive loss. However, simulations showed that BIC tended to 

select the correct number of components more often and 5-fold cross-validation tended to 

over fit. Estimation performance was generally comparable (see supplementary material) 

between the cross-validation and BIC procedures, and so we recommend using BIC to select 

tuning parameters in practice.

We noted in Section 2.2 that it is common to relate the amount of penalty on the covariates 

to the sample size as is done in (2.7) by including πr in the penalty function. In their ℓ1-

penalized mixture approach, Städler et al. (2010) suggest including an additional tuning 

parameter,, in the form of an exponent on the mixing probability πr. They consider using 

only the values of γ ∈ {0, 1/2, 1}. They suggest using the value of 0 when the true mixing 

proportions are not very different from each other and using 1/2 or 1 when the mixing 

proportions are unbalanced. Our method corresponds to the case where γ = 1. In other 

simulations (not presented here) we compared models that resulted from using different 

values of γ in both balanced and unbalanced settings but generally saw little di erence with 

respect to predictive loss.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left: Sample of three predictor curves (N = 256). Center: Component coefficient functions 

in smooth setting (ωs1 and ωs2). Right: Component coefficient functions in bumpy setting 

(ωb1 and ωb2).
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Figure 2. 
R2 = 0.9; solid and dashed thin curves correspond to the truth; solid and dashed thick curves 

correspond to the point-wise mean estimated component coefficient functions; rows 1 and 3 

depict WB method; rows 2 and 4 depict FPC method.
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Figure 3. 
R2 = 0.7; solid and dashed thin curves correspond to the truth; solid and dashed thick curves 

correspond to the point-wise mean estimated component coefficient functions; rows 1 and 3 

depict WB method; rows 2 and 4 depict FPC method.
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Figure 4. 
FAPs for all subjects (first panel), subject with lowest PASAT score (second panel), subject 

with median PASAT score (third panel), and subject with highest (fourth panel) PASAT 

score.
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Figure 5. 
Top left panels: estimated coefficient functions  (left) and  (right) determined by the 

WB functional mixture regression approach. Bottom left panels: FAP curves for MS 

subjects that correspond to  (left) and for those that correspond to  (right). Right panel: 

PASAT Scores for those in Group 1 (corresponding to ) and in Group 2 (corresponding to 

).
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Table 1

Mean (standard deviation) log-likelihood test loss comparing Wavelet-Based (WB) and Functional Principal 

Components-Based (FPC) methods in different settings.

Smooth

R2 = 0.9 R2 = 0.7 R2 = 0.5

N = 64
WB 644.31 (16.97) 745.71 (17.50) 810.13 (18.54)

FPC 646.28 (19.74) 745.09 (18.95) 811.03 (18.32)

N = 128
WB 784.20 (18.84) 885.43 (20.79) 950.61 (22.96)

FPC 786.58 (21.06) 890.02 (22.99) 955.90 (24.31)

N = 256
WB 923.14 (19.19) 1024.70 (21.45) 1089.17 (21.04)

FPC 926.73 (22.19) 1029.43 (23.96) 1093.04 (23.72)

N = 512
WB 1061.71 (20.74) 1162.09 (21.08) 1225.62 (21.19)

FPC 1064.83 (22.02) 1166.00 (21.48) 1229.20 (21.03)

Bumpy

R2 = 0.9 R2 = 0.7 R2 = 0.5

N = 64
WB 455.61 (19.86) 552.03 (21.09) 611.86 (22.63)

FPC 476.01 (23.40) 562.25 (23.88) 618.21 (22.25)

N = 128
WB 592.84 (21.07) 693.23 (20.46) 756.26 (24.57)

FPC 616.40 (25.35) 703.38 (21.18) 761.40 (24.53)

N = 256
WB 734.67 (18.00) 836.91 (20.46) 897.84 (18.17)

FPC 758.41 (23.01) 849.79 (25.24) 904.03 (23.13)

N = 512
WB 874.30 (20.95) 974.10 (20.55) 1034.70 (21.46)

FPC 895.89 (25.30) 983.39 (22.94) 1040.91 (22.98)
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Table 2

Mean (standard deviation) log-likelihood test loss for different tuning parameter selection scenarios.

Smooth

Scenario 1 Scenario 2 Scenario 3

N = 128 CV 762.64 (20.22) 760.06 (20.29) 758.71 (20.43)

BIC 764.20 (20.78) 764.06 (20.59) 764.00 (20.25)

N = 256 CV 904.45 (17.51) 902.26 (19.25) 900.38 (19.78)

BIC 906.59 (18.13) 906.67 (18.16) 906.42 (18.23)

Bumpy

Scenario 1 Scenario 2 Scenario 3

N = 128 CV 559.52 (31.15) 558.16 (33.11) 562.25 (30.25)

BIC 554.72 (37.74) 556.90 (38.89) 561.98 (33.42)

N = 256 CV 704.18 (34.34) 705.44 (39.56) 699.25 (28.63)

BIC 706.43 (40.35) 705.50 (44.10) 706.77 (30.76)
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Table 3

Proportion of simulation runs at each setting such that the indicated number of components (C) is chosen by 

either 5-fold cross-validation or modified BIC.

Smooth Bumpy

C = 1 C = 2 C = 3 C = 1 C = 2 C = 3

N = 128
CV 0.00 0.62 0.38 0.04 0.76 0.20

BIC 0.00 1.00 0.00 0.05 0.94 0.01

N = 256
CV 0.00 0.59 0.41 0.07 0.72 0.21

BIC 0.00 1.00 0.00 0.05 0.94 0.01
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