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Abstract

In images with low contrast-to-noise ratio (CNR), the information gain from the
observed pixel values can be insufficient to distinguish foreground objects. A
Bayesian approach to this problem is to incorporate prior information about the
objects into a statistical model. This paper introduces a method for representing
spatial prior information as an external field in a hidden Potts model of the
image lattice. The prior distribution of the latent pixel labels is a mixture
of Gaussian fields, centred on the positions of the objects at a previous point
in time. This model is particularly applicable in longitudinal imaging studies,
where the manual segmentation of one image can be used as a prior for automatic
segmentation of subsequent images. The model is demonstrated by application
to cone-beam computed tomography (CT), an imaging modality that exhibits
distortions in pixel values due to X-ray scatter. The external field prior results
in a substantial improvement in segmentation accuracy, reducing the mean pixel
misclassification rate on our test images from 87% to 6%.
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1. Introduction

Longitudinal imaging is a popular method in a wide range of scientific fields
including environment, economics, agriculture, biology, and medicine. Remote
sensing is used for long-term monitoring of land use (Strickland et al., 2011),
water quality (McClain, 2009) and economic growth (Henderson et al., 2011).
X-ray computed tomography (CT), magnetic resonance imaging (MRI) and ul-
trasound are used for in vivo studies of livestock production (Alston et al.,
2007), tumour progression (Albanese et al., 2013) and neurodegenerative dis-
ease (Thompson et al., 2004). These images can exhibit artefacts and distor-
tions such as cloud cover in remote sensing, magnetic field inhomogeneities in
MRI and X-ray scatter in CT. The resulting poor contrast-to-noise ratio (CNR)
creates difficulties in interpreting the images. Multiple images acquired of the
same subject increase the information available compared to that obtained from
a single acquisition. In order to perform well in this setting, an image process-
ing algorithm must efficiently incorporate all of the available knowledge that
characterises the specific types of images encountered.

A Bayesian statistical model can combine information from multiple images
as well as from other sources, such as published studies, previous experiments
and expert opinion. Bayesian methods for image analysis were reviewed by
Hurn et al. (2003a,b). Woolrich (2012) has provided a more recent overview of
methods for analysing medical images, particularly functional MRI. There have
been some interesting developments in the area of informative priors. Grenander
and Miller (2007) defined an information-theoretical framework for representa-
tion of complex anatomical structures and diffeomorphisms. Shyr et al. (2011)
used a library of segmented images as an informative prior for a nonparametric
Bayesian model. The prior distribution of the model parameters can be updated
dynamically, using the posterior distribution of one image as the prior for the
next. For example, Alston et al. (2007) derived informative priors for the means
and variances of a hidden Potts model from an adjacent slice of a CT scan, or
from an earlier scan of the same subject.

In this paper we demonstrate how sources of spatial information can be
incorporated into an external field prior for the hidden Potts model. This prior
is derived from a previous image of the same subject, combined with published
studies of geometric variation. It can be updated sequentially as each image is
processed to build a subject-specific spatial model. The prior can be computed
offline and is amenable to massively parallel implementation. We show that it
improves the accuracy of image segmentation in the presence of noise.

The remainder of this article is organised as follows. Section 2 describes the
hidden Potts model and introduces the external field prior. Bayesian computa-
tion using Markov chain Monte Carlo (MCMC) is described in Section 3. We
review chequerboard updating, path sampling and the algorithm of Swendsen
and Wang (1987) in the context of our method. In Section 4 we illustrate our
methodology using cone-beam CT scans of an electron density (ED) phantom.
The external field prior is well suited to this application, but it would also
be broadly applicable to a range of longitudinal imaging datasets. The article
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concludes with a discussion.

2. Hidden Potts model

Digital raster images are discretised into a regular lattice of pixels (or voxels,
in 3D). Image segmentation can be viewed as the task of labelling each pixel to
identify which parts of the image correspond to objects and which comprise the
background. If these objects are contiguous then neighbouring pixels are more
likely to share the same label. The Potts (1952) model represents this spatial
dependence as a Markov random field (MRF), which is defined in terms of its
conditional probabilities:

π(zi|zi∼`, β) =
exp {β

∑
i∼` δ(zi, z`)}∑k

j=1 exp {β
∑
i∼` δ(j, z`)}

(1)

where zi ∈ 1 . . . k is the label of pixel i, zi∼` are the labels of the neighbouring
pixels, β is the inverse temperature, and δ(u, v) is the Kronecker delta function.
Thus,

∑
i∼` δ(zi, z`) is a count of the neighbours of pixel i that share the same

label.
If the coordinates of zi are (x, y) in 2 dimensions, then the first-order neigh-

bours are (x−1, y), (x+ 1, y), (x, y−1), (x, y+ 1). Pixels situated at the edge of
the image domain have less than four neighbors. Likewise, voxels in a regular
3D lattice have a maximum of 6 first-order neighbours. Since diagonal vox-
els are conditionally independent, the entire image can be partitioned into two
blocks such that all of the voxels in block1 are independent given the values of
block2 and vice versa (Winkler, 2003, chap. 8). Updating each block separately
reduces the dependence in the posterior samples, providing a computational ad-
vantage of the first-order neighbourhood restriction. This is discussed further
in Section 3.1.

The inverse temperature of the Potts model governs spatial cohesion. When
β = 0 the pixel labels are independent, while if β > 0 then adjacent labels are
more likely to have the same value. At small values of β this has the effect
of smoothing the labels and emphasising patterns in the external field. As
β → ∞ all of the labels have the same value almost surely. Thus, the inverse
temperature can have a substantial influence over the labels that are assigned
to each pixel.

A key question when fitting this type of model is how much smoothing is
appropriate for the observed data. For this reason we would like to treat β
as a free parameter and perform posterior inference to draw samples from its
distribution. The full conditional distribution of β is as follows:

p(β|z) = C(β)−1π(β) exp

{
β
∑
i∼`∈E

δ(zi, z`)

}
(2)

where C(β) is an intractable normalising constant, π(β) is the prior for β, and
E is the set of all unique pairs of neighbours in the lattice. A variety of compu-
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tational methods have been developed for dealing with the intractability of this
distribution, as explained in Section 3.2.

Under the assumption of additive white noise, the pixels that comprise each
object have a mean intensity value µj and variance σ2

j . The hidden Potts model
can thus be viewed as a spatial generalisation of an independent mixture of
Gaussians. The latent labels are related to their corresponding pixel values by
the observation equation:

exp{αi,j} = p(yi|µj , σ2
j , zi=j) = φ(yi|µj , σ2

j ) (3)

where φ(y|µ, σ2) is the Normal density function and α is an external field. This
log-likelihood is combined with the spatial prior to determine the full conditional
distribution of the pixel labels:

p(zi|zi∼`, β,µ,σ2, yi) =
exp {αi,zi + β

∑
i∼` δ(zi, z`)}∑k

j=1 exp {αi,j + β
∑
i∼` δ(j, z`)}

(4)

2.1. External field prior

In this study, we extend the hidden Potts model by defining a prior π(α)
over the external field. This prior incorporates additional information on the
unobserved labels. Such information can be derived from a manual segmenta-
tion of a previous image, combined with a measure of the spatial uncertainty
associated with the labels. Sources of uncertainty include object motion, errors
in labelling, and misalignment between images.

For the purpose of illustration, we consider a simple model of isotropic trans-
lation in two dimensions. The spatial distribution of pixel labels is represented
as a mixture of Gaussians, with one mixture component per pixel. The magni-
tude of the displacement vector can be calculated for each pixel and the resulting
probabilities can be averaged over all of the pixels in the object:

π(αi,j) = log

 1

nj

∑
h∈j

φ
(
∆(h, i)|µ∆, σ

2
∆

) (5)

where nj is the number of pixels in object j, h ∈ j are the pixels in object j,
and ∆(u, v) is the Euclidean distance between the coordinates of pixel u and
pixel v. The locations of the pixels h ∈ j can be obtained from an exemplar
image that has been manually labelled. The mean µ∆ is the average spatial
displacement of the object between images, while the variance σ2

∆ represents
the degree of uncertainty. Fig. 1 illustrates external field priors with increasing
levels of spatial uncertainty for the ED phantom that is described in Section 4.

Since this prior information is independent of the data, it can be incorporated
into the Potts model as an external field. The relationship in Eq. (4) is modified
as follows:

p(zi|zi∼`, β,µ,σ2, yi) =
exp {αi,zi + π(αi,zi)}∑k
j=1 exp {αi,j + π(αi,j)}

π(zi|zi∼`, β) (6)
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(a) σ∆ = 14.6mm (b) σ∆ = 21.9mm

(c) σ∆ = 29.2mm (d) σ∆ = 36.5mm

Figure 1: External field priors with increasing levels of spatial uncertainty, rep-
resented by the standard deviation.
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where exp{αi,j} is the likelihood in Eq. (3), π(αi,j) is the external field prior
defined in Eq. (5), and π(zi|zi∼`, β) is the MRF defined by Eq. (1). Further-
more, if the pixel resolution of the image is known in advance, then the values of
π(αi,j) can be calculated offline. This means that much more realistic and so-
phisticated dynamic models could be employed, in order to estimate the spatial
prior distribution from the labels of an exemplar image.

In cases where the pixel resolution is not known in advance, or if there is
mismatch between the pixel coordinates of successive images, the discretisation
of the Gaussian prior into individual π(αi,j) values would need to be performed
at the model fitting stage. This step is computationally intensive, but since the
π(αi,j) values are independent from each other the operation is embarassingly
parallel. Thus the computation of the external field prior would be well suited to
implementation in graphical processing units (GPUs) to meet the performance
requirements of practical, real world applications.

2.2. Sequential Bayesian updating

Unlike the atlas-based methods that are currently employed in medical imag-
ing, this external field prior represents within-subject geometric variation. The
prior can be updated as each image is acquired to gradually build a subject-
specific profile of motion and variability. A machine learning approach to this
problem would be to train the model using a corpus of images from a variety
of subjects, thus forming a generic picture of the typical subject. However, this
fails to account for large differences between individual subjects, thereby con-
flating within-subject and between-subject variability. Our method develops a
subject-specific distribution using a labelled reference image as a starting point,
then updating the prior dynamically as more images of the same subject are
processed.

Alston et al. (2007) introduced a method for updating the parameters µ′j
and σ2′

j of the additive Gaussian noise, using the posterior distribution from
one image as the prior for the next. A similar approach could be used for
the inverse temperature. Although there is no natural conjugate prior for β,
a distribution from the exponential family could be used to approximate the
posterior. A scaled Logistic distribution could represent a posterior with finite
support, or a Gamma could be used for β > 0. When the external field prior is
modelled as a mixture of Gaussian fields, its parameters can also be updated in
a similar manner.

The location of the region of interest in subsequent images is uncertain. For
this reason, we apply weights to the pixel labels according to their posterior
probability. A Monte Carlo estimate of this probability can be obtained by
dividing the number of times that a given pixel was allocated a specific label by
the total number of MCMC iterations (after burn-in):

wi,j =
1

niter

niter∑
t=1

δ(z
(t)
i , j) (7)
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thus wi,j ≥ 0 ∀j ∈ 1 . . . k and
∑k
j=1 wi,j = 1 for each pixel i. It will usually be

necessary to adjust this estimate to account for autocorrelation of the Markov
chain. Even with the chequerboard updating scheme described in Section 3.1,
mixing of MCMC for the hidden Potts model can be less than ideal.

The sufficient statistics for π
(
µ∆|σ2

∆

)
∼ N

(
m,σ2

∆/ν
)

and π
(
σ2

∆

)
∼ IG

(
ν
2 ,

νs2

2

)
are the sum of the weights, the weighted mean of the Euclidean distances, and
the weighted variance:

ν̂∆j =

n∑
i=1

wi,j (8)

m̂∆j =
1

ν̂∆j

n∑
i=1

wi,j min
h∈j

∆(h, i) (9)

ŝ2
∆j =

1

ν̂∆j

n∑
i=1

wi,j

(
min
h∈j

∆(h, i)− m̂∆j

)2

(10)

We use the minimum Euclidean distance between each pixel i and the reference
coordinates h ∈ j because the individual pixels are exchangeable. Calculating
the average distance would require O(nj × n) operations, which is infeasible
for nontrivial images. The minimum distances can be precomputed in linear
time for a regular lattice using the algorithm of Maurer et al. (2003). If all of
the subsequent images have the same coordinates and pixel resolution, then the
Euclidean distance transform only needs to be computed once.

Although this approach is computationally efficient, the use of the minimum
distances introduces a bias towards underestimation. An additional factor could
be added to Eq. (9) and (10) to compensate for the bias, but this would also in-
crease the computational cost. For example, minh∈j ∆(h, i) could be augmented
with the average distance between the pixels inside the object:

1

n2
j

∑
g∈j

∑
h∈j

∆(g, h) (11)

This would be tractable for small objects where nj � n.
The hyperparameters of the external field prior can be updated in the usual

manner for the Gaussian distribution:

ν′∆j = n◦j + ν̂∆j (12)

m′∆j =
1

ν′∆j

(
n◦jµ

◦
∆ + ν̂∆jm̂∆j

)
(13)

s2′
∆j =

1

ν′∆j

(
n◦jσ

2◦
∆ + ν̂∆j ŝ

2
∆j +

n◦j ν̂∆j

ν′∆j

(
m̂∆j −m′∆j

)2)
(14)

One option for updating the individual π(αi,j) values for each pixel would
be to take the expectations E

[
σ2′

∆|y
]

and E
[
µ′∆j |y

]
and plug them in to Eq. (5).
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This would be the simplest approach and the least computationally intensive,
but replacing the posterior distributions with point estimates would underes-
timate the level of uncertainty. Alternatively, the external field prior could be
simulated using MCMC, either offline or during model fitting. As previously
mentioned, this would be the preferred option if a more complex dynamic model
was used.

3. Bayesian computation

We use natural conjugate priors for the mean and variance of each mixture
component, so updates can be drawn using Gibbs sampling. However, this
approach is unsuitable for the other parameters of interest. Instead, we use
chequerboard updating for the latent labels and path sampling for the inverse
temperature. Our implementation of these algorithms using RcppArmadillo
(Eddelbuettel and Sanderson, 2014) is available as an R source package with the
electronic version of this article. The details of these algorithms are described
below.

3.1. Chequerboard updating

Algorithm 1 Chequerboard updating for z

1: for all blocks b do
2: for all pixels i ∈ b do
3: for all labels j ∈ 1 . . . k do
4: Compute λj ← p(j|yi, β) according to equation (6)
5: end for
6: Draw zi ∼ Multinomial(λ1, . . . , λk)
7: end for
8: end for

The posterior distribution of the pixel labels is highly correlated, so single-
site Gibbs sampling exhibits very slow mixing (Higdon, 1998). For this reason
we divide the lattice into blocks, as mentioned in Section 2. The pixels within
each block are independent of each other, so they can be updated in paral-
lel. The auxiliary variable bi ∈ {0, 1} allocates each pixel to a block. Winkler
(2003) describes this partially synchronous algorithm as chequerboard updat-
ing, since the alternating allocations of pixels to blocks forms a chequerboard
pattern in two dimensions. The dissertation of Feng (2008) provides a more de-
tailed description and also generalises this algorithm to 3D, as well as to other
neighbourhood schemes.

3.2. Path sampling

The full conditional distribution of the inverse temperature (Eq. 2) involves
an intractable normalising constant, so there is no closed-form solution for sam-
pling from it directly. Gelman and Meng (1998) derived an approximation to
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Figure 2: Approximation of the sufficient statistic by simulation for fixed values
of β, with linear interpolation.
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the log ratio of normalising constants using the path sampling identity:

log

{
C(β◦)
C(β′)

}
=

∫ β◦

β′
E z|β [S(z)] dβ (15)

where β◦ is the current value of the parameter, β′ is the Metropolis-Hastings (M-
H) proposal, S(z) =

∑
i∼`∈E δ(zi, z`) is the sufficient statistic of the Potts model,

and E z|β is the expectation with respect to the distribution of z given β. The
value of this definite integral can be approximated by simulating from the MRF
defined by Eq. (1) for fixed values of β and then interpolating between them.
We used the Swendsen-Wang algorithm for simulating from z|β, as explained
in Section 3.3. Fig. 2 illustrates linear interpolation of S(z) on a 3D lattice for
k = 9 and β ranging from 0 to 2 in increments of 0.1.

Algorithm 2 Path sampling for β

1: Draw random walk proposal β′ ∼ q(β′|β◦)
2: Estimate S(z|β◦) and S(z|β′) by interpolation
3: Evaluate the definite integral in equation (15)
4: Calculate the log M-H acceptance ratio:

log{ρ} = log

{
C(β◦)
C(β′)

}
+ (β′ − β◦)S(z) (16)

5: Draw u ∼ Uniform[0, 1]
6: if u < ρ then
7: set β ← β′

8: end if

Path sampling is explained in further detail by Hurn et al. (2003a) and
Marin and Robert (2007, chap. 8). This algorithm has an advantage over
auxiliary variable methods such as the exchange algorithm (Murray et al., 2006)
or ABC (Grelaud et al., 2009) because the additional simulations are performed
prior to fitting the model, rather than at each iteration. This is particularly
the case when analysing multiple images that all have approximately the same
dimensions, as in the example of Section 4.

3.3. Swendsen-Wang

MCMC takes longer to converge for larger values of β, since the latent labels
tend to keep the same value for many iterations. The algorithm of Swendsen
and Wang (1987) avoids this problem by coalescing adjacent pixels with the
same label into clusters, then updating all of the labels within a cluster to the
same value.

A disadvantage of Algorithm 3 is that it performs poorly in the presence of a
strong external field (Hurn, 1997). Thus it is unsuitable for posterior inference,
but can be used for simulating from z|β as required for path sampling.
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Algorithm 3 Swendsen-Wang for S(z|β)

1: for all edges connecting adjacent pixels i ∼ j ∈ E do
2: Compute edge potentials λi∼j ← 1− exp{−βδ(zi, zj)}
3: Draw bond bi∼j ∼ Bernoulli(p = λi∼j)
4: end for
5: Coalesce bonds into clusters c
6: for all clusters do
7: Draw a new label z′ uniformly from 1 . . . k
8: for all pixels i ∈ c do
9: zi ← z′

10: end for
11: end for

4. Illustration: cone-beam CT

There are two essential ingredients for the external field prior: reference
coordinates, which we derive from a manually-labelled image; and spatial un-
certainty, which we model using published studies of geometric variation. We
have chosen to illustrate our method using cone-beam CT scans because both
of these elements are readily available in a clinical context. However, it should
be noted that this method could also be applied to longitudinal imaging studies
in many other scientific fields, such as satellite remote sensing or confocal laser
microscopy.

Flat-detector, cone-beam CT was introduced in the last decade for image-
guided medical interventions (Jaffray et al., 2002; Kalender, 2011). Since then,
it has been widely adopted for clinical use in dental surgery, brachytherapy
and external-beam radiotherapy. Cone-beam CT produces a 3D image of the
patient similar to conventional, fan-beam CT. The advantage of cone-beam CT
over fan-beam CT is that the X-ray source and the detector panel are mounted
on retractable arms that rotate around the image subject, enabling the image
to be obtained in situ during a medical procedure.

The disadvantage of cone-beam CT is that it is more susceptible to artefacts
induced by X-ray scatter (Siewerdsen and Jaffray, 2001) or high density objects
such as metal implants (Müller and Buzug, 2009) compared to other imaging
modalities. The increased magnitude of X-ray scatter in cone-beam CT is due
to the larger area that is exposed to the X-ray beam. This leads to shading
artefacts that manifest as inhomogeneities in the pixel values. Metal-induced
artefacts can be due to implanted gold fiducial markers or surgical clips inside
the patient. These manifest as streaking and banding in the image. These
distortions result in a lower CNR and thus many methods that can be success-
fully used for analysing conventional, fan-beam CT or other imaging modalities
encounter difficulties when applied to cone-beam CT.

To evaluate the segmentation accuracy of our method, we applied it to 27
cone-beam CT scans of a commercially available electron density (ED) phantom
(CIRS, Inc., 2011). The ED phantom is manufactured from epoxy and contains
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cylindrical inserts that mimic the X-ray absorption of human tissue: lung (in-
hale); lung (exhale); adipose (fatty tissue); breast (50% fat); water-equivalent
solid; muscle; liver; spongy (trabecular) bone; and dense (cortical) bone. Since
the geometry and density of this object are known, the segmentation can be
compared to the ground truth to evaluate accuracy. This provides an advan-
tage over using scans of patients to evaluate the method because in clinical data
the true segmentation is unknown (Bouix et al., 2007). A reference segmen-
tation can be provided by a clinical expert, but this also introduces a source
of error. Due to the irregularity and complexity of the medical images, there
can be significant discrepancies between segmentations of the same image by
different experts (Lütgendorf-Caucig et al., 2011; Weiss et al., 2010).

The 27 cone-beam CT scans were taken with the inner ring of imaging phan-
tom inserts rotated by between 0◦ and 16◦, corresponding to a translation of
between 0mm and 25mm. These displacements were intended to mimic the
physiological variability observed in daily cone-beam CT scans of prostate can-
cer patients, as studied by Frank et al. (2008). We chose to use this as the basis
of our experimental design because image-guided radiotherapy for prostate can-
cer is the most common application of cone-beam CT imaging.

The cone-beam CT scans were acquired using a Varian linear accelerator
with On-Board Imager (OBI) according to the same clinical protocol that is
used for scanning prostate cancer patients. A half bow-tie filter was used to
achieve a 450mm field of view. The dimensions of the reconstructed voxels were
0.88 × 0.88 × 2mm. The images were cropped using external image processing
software (Schneider et al., 2012) to conform to the dimensions of the phantom:
376× 308 pixels and 23 slices, or approximately 330× 270× 46mm. Summary
statistics (observed mean and standard deviation) for each cone-beam CT scan
are summarised in the supplementary material accompanying the electronic ver-
sion of this paper. An axial slice from one of the cone-beam CT scans is shown
in Fig. 3b.

4.1. Priors
The external field prior was precomputed according to Eq. (5). This prior

was centred on the geometry of the ED phantom at 0 offset. We used a mean
displacement of 1.2mm with standard deviation 7.3mm. This spatial variability
corresponds to the prostate motion observed by Frank et al. (2008) in their
study of 15 radiotherapy patients. The external field is illustrated in Fig. 3a.

We also used informative priors for the means and variances of the mixture
components, using a similar method to Alston et al. (2007). To determine the
distribution of pixel intensities for each tissue type, we obtained an independent
set of 26 cone-beam CT scans of the ED phantom. The resulting priors for

µj ∼ N (mj , ϕ
2
j ) and σ2

j ∼ IG
(
ν
2 ,

νs2

2

)
are listed in Table 1.

4.2. Results
We fitted the hidden Potts model to the data both with and without the

external field prior, to measure the difference in the resulting segmentation ac-
curacy. Both models were run for 55,000 MCMC iterations, discarding the first
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Table 1: Informative priors for µj and σ2
j of the pixel intensity

Tissue Type mj ϕ2
j νj s2

j

Lung (inhale) −612.6 26.882 25 90.062

Lung (exhale) −495.8 26.882 25 89.162

Adipose −316.8 26.882 25 79.362

Breast −295.9 26.882 25 67.422

Water −294.5 26.882 25 152.02

Muscle −263.3 26.882 25 71.552

Liver −259.6 26.882 25 88.502

Spongy Bone −191.1 26.882 25 87.362

Dense Bone 77.9 26.882 25 89.942

(a) External field prior (b) Cone-beam CT scan

(c) Segmentation (without external field) (d) Segmentation (with external field prior)

Figure 3: An example segmentation result for a cone-beam CT scan of the ED
phantom, both with and without the external field prior.
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Table 2: Segmentation Accuracy (DSCj ± σ)

Tissue Type Simple Potts External Field

Lung (inhale) 0.540± 0.037 0.902± 0.009
Lung (exhale) 0.172± 0.008 0.814± 0.022
Adipose 0.059± 0.008 0.704± 0.062
Breast 0.077± 0.011 0.720± 0.048
Water 0.174± 0.003 0.964± 0.003
Muscle 0.035± 0.004 0.697± 0.076
Liver 0.020± 0.007 0.654± 0.033
Spongy Bone 0.094± 0.014 0.758± 0.018
Dense Bone 0.014± 0.001 0.616± 0.151

5,000 as burn-in. This took between 9 and 14 hours per scan on a 2.66GHz
Intel Xeon computer with 12GB RAM, running 64bit GNU/Linux 3.0.38 and
R 2.15.3. As well as monitoring the values of the model parameters µj , σ

2
j and

β, we also calculated the sum of like neighbours and the number of correctly-
classified voxels at each iteration. These additional statistics were used as con-
vergence diagnostics, to check that the model was mixing well and that it had
reached a steady state.

The voxels were labelled according to the most frequently-assigned value of
zi over the remaining 50,000 iterations. Classification accuracy was measured
using the Dice similarity coefficient (Dice, 1945):

DSCj =
2× |̂ ∩ j|
|̂|+ nj

(17)

where DSCj is the Dice similarity coefficient for label j, |̂| is the count of voxels
that were classified with the label j, nj is the number of voxels that are known
to truly belong to component j, and |̂∩ j| is the count of voxels in j that were
labeled correctly.

The results are summarised in Table 2. Individual results for each cone-beam
CT scan are available in the online supplementary material. An example of one
of the segmentations is illustrated in Fig. 3d. When we estimated the effect
size of the external field prior using paired differences, we found that it was
dependent on the tissue type. For soft tissue (adipose, breast, liver and muscle)
the 95% highest posterior density (HPD) interval for the paired differences in
Dice coefficient (with and without the external field) was between 0.64 and 0.66.
The smallest improvement was between 0.34 and 0.38 for lung (inhale). Overall,
the mean voxel misclassification rate improved from 86.8% to 6.2%.

The posterior estimate of the inverse temperature was almost identical for
all 27 cone-beam CT scans. Without the external field prior, the pooled 95%
HPD interval for β was [0.793; 0.795]. With the prior, the HPD interval for β
converged to [1.151; 1.197]. As discussed in Section 4.3, the value of β changes
with the strength of the prior, as measured by the standard deviation.
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Figure 4: The effect of uncertainty (standard deviation) in the external field
prior on segmentation accuracy obtained from 27 cone-beam CT scans, com-
paring the hidden Potts model to an independent mixture of Gaussians (β = 0).

4.3. Sensitivity analysis

The amount of spatial variability in our application is quite small (standard
deviation of 7.3mm) relative to the size of the images (330× 270× 46mm). We
reran the model using external field priors with increasing levels of uncertainty
(2σ∆ up to 5σ∆, illustrated in Fig. 1) to measure the relationship between the
strength of the prior and the resulting segmentation accuracy. The pixel-wise
misclassification rates for the 27 cone-beam CT scans are shown in Fig. 4. We
found that there was a strong relationship, with the proportion of misclassified
pixels increasing sharply at first, but then gradually levelling off. As the uncer-
tainty increases, we would expect that the misclassification rate would approach
86.8%, the accuracy that is observed without the external field prior.

Fixing the value of β at the point estimate of 1.2 did not have any significant
effect on segmentation accuracy (mean pairwise difference of 0.1% with standard
deviation of 0.1). In terms of computational cost for path sampling, there was a
mean pairwise difference of 9 hours (standard deviation 4.3 hours) in CPU time.
However, this did not make any significant difference to the elapsed runtime,
due to the variability in execution of the multi-threaded process.
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Figure 5: The effect of uncertainty in the external field prior on the posterior
mean of the inverse temperature for 27 cone-beam CT scans.

We also measured the effect on segmentation accuracy when β was fixed at
zero, which is equivalent to an independent mixture of Gaussians. When σ∆ =
7.3mm the average misclassification rate was 7.3% (mean pairwise difference of
1.07% with standard deviation of 0.03). This indicates that the Potts model
contributed very little to the result. Most of the spatial dependence in the model
was accounted for by the external field prior, while the local smoothing of the
labels made a small but significant difference. When σ∆ was doubled to 14.6mm,
the segmentation accuracy decreased overall but the contribution from the Potts
model was larger (mean pairwise difference of 4.41% with standard deviation of
0.21). When the uncertainty was increased still further, the Potts model actually
made the accuracy worse. This can be seen in Fig. 4 for σ∆ ∈ {21.9, 29.2, 36.5}.
This is because the Potts model relies on the labels of the neighbouring pixels.
If many of the pixels are misclassified, this will then bias the probabilities of the
labels towards an incorrect value.

The value of the inverse temperature obtained by path sampling also changed
as the uncertainty in the prior increased. Fig. 5 shows the posterior mean of β for
the 27 cone-beam CT scans. It is evident from Eq. (4) that β is a free parameter
that balances the strength of spatial association against the external field (which
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in our model is data × prior). The external field prior becomes weaker as the
standard deviation increases, thus the value of β is lower to compensate.

5. Discussion

We have proposed a novel formulation for introducing additional spatial prior
information into the hidden Potts model, via an external field. We fit this model
using a combination of Gibbs sampling, chequerboard updating and path sam-
pling. Our implementation of these algorithms is available in the supplementary
material. The method is particularly applicable in longitudinal imaging, where
the segmentation of one image can be used as a prior for the next. In this paper
we have used the same prior for every image, since we focused on comparing
the results that were obtained when the prior was not used. In a longitudinal
setting it would also be possible to update the prior dynamically as each image
is processed, using a similar approach to Alston et al. (2007) for the mean and
variance.

In situations where the intensity values and spatial homogeneity are insuffi-
cient for accurate classification of the image pixels, an external field prior sub-
stantially improves segmentation accuracy. We demonstrated our method by
applying it to cone-beam CT scans, which are medical images that are used for
image-guided interventions, such as external-beam radiotherapy. The external
field prior improved the pixel misclassification rate from 87% to 6%.

This method shows great potential for application in automated analysis of
daily cone-beam CT scans of radiotherapy patients. By deriving the external
field prior from a patient’s treatment plan, the method would better accommo-
date within-patient variation than the probabilistic anatomical atlases currently
in use. The method could also be applied to other images, such as MRI or
satellite remote sensing. These applications involve repeated observations of a
subject over time. In order for the external field prior to be most effective, the
rate of change in the subject should be gradual, relative to the frequency with
which the process is observed.

Due to the average runtime of ten hours, the MCMC algorithms described
in this paper would be unsuitable for online use during patient treatment. How-
ever, they could be used offline for dose tracking and other monitoring activi-
ties. Approximate algorithms such as iterated conditional modes (ICM; Besag,
1986) or variational Bayes (VB; McGrory et al., 2009) could also be used to
fit the model in time-critical applications such as image-guided radiotherapy.
In Moores et al. (2014) we have previously shown that the hidden Potts model
with external field prior can be fit using ICM with an average runtime of only
9 minutes. A drawback of these methods is that the options for estimating
the inverse temperature are more limited, although a fixed value of β would be
sufficient for most purposes.
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