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Abstract

This article considers the practical problem in clinical and observational studies where multiple 

treatment or prognostic groups are compared and the observed survival data are subject to right 

censoring. Two possible formulations of multiple comparisons are suggested. Multiple 

Comparisons with a Control (MCC) compare every other group to a control group with respect to 

survival outcomes, for determining which groups are associated with lower risk than the control. 

Multiple Comparisons with the Best (MCB) compare each group to the truly minimum risk group 

and identify the groups that are either with the minimum risk or the practically minimum risk. To 

make a causal statement, potential confounding effects need to be adjusted in the comparisons. 

Propensity score based adjustment is popular in causal inference and can effectively reduce the 

confounding bias. Based on a propensity-score-stratified Cox proportional hazards model, the 

approaches of MCC test and MCB simultaneous confidence intervals for general linear models 

with normal error outcome are extended to survival outcome. This paper specifies the assumptions 

for causal inference on survival outcomes within a potential outcome framework, develops testing 

procedures for multiple comparisons and provides simultaneous confidence intervals. The 

proposed methods are applied to two real data sets from cancer studies for illustration, and a 

simulation study is also presented.
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1. Introduction

Many studies in health and social sciences have time to some event (such as cancer onset or 

marriage dissolution) as their endpoints, and often in such studies researchers are interested 

in comparing multiple treatment or prognostic groups in terms of their survival outcomes. In 

many situations, not all pairwise comparisons are necessary. For example, patients can be 

separated by polymorphism of a gene into different groups and if one genotype is considered 

as normal (control), then the primary focus is on identifying those genotypes whose risks 

exceed that of the control, which is referred to as Multiple Comparisons with a Control 

(MCC). Another case is when the comparisons of particular interest are comparisons with 

the unknown best treatment, named as Multiple Comparisons with the Best (MCB). Suppose 

among six treatments, two are much inferior than the other four. Then it is not of interest 

which of those two is worse, and the conclusion that neither is the best suffices. In addition, 

if the second best treatment is almost as good as the true best treatment, it is useful to 

identify both as practically the best, because there might be other consideration such as cost 

and safety impacting on the choice of treatment. Specifically, MCB compare each group 

with the best of the other groups.

Various multiple comparison procedures were proposed for several types of endpoints in the 

literature. In particular, Dunnett (1955) proposed one-sided normal means method for MCC, 

and MCB has been developed for and applied in general linear model settings to provide 

simultaneous confidence intervals for the difference between each group and the best of the 

others (Hsu, 1996; Hsu et al., 2006). However, comparing several treatment or prognostic 

groups in terms of their survival outcomes has not yet received much attention. Chen (2000) 

proposed procedures of MCC for survival data based on the log-rank tests. Logan et al. 

(2005) considered the general setting of all pairwise comparisons of survival data, 

accounting for correlation among the log-rank tests. Coolen-Maturi et al. (2012) introduced 

nonparametric predictive inference (NPI) for comparison of multiple groups for right-

censored data, which uses lower and upper probabilities for the event that a specific group 

will provide the largest next lifetime. For survival outcome, a common measure of covariate 

effect is hazard ratio comparing a certain treatment or prognostic group with a reference 

group, estimated from the Cox proportional hazards model. It is desirable to develop 

effective methods of MCC and MCB for survival data under right censoring based on the 

Cox model, taking multiplicity of comparison groups into account.

Also, non-randomized clinical trials and observational studies are quite common in health 

and social sciences, where randomized allocation of treatment is not feasible or ethical. In 

the presence of confounders, the Cox model incorporating them as covariates is frequently 

employed and typically allows adjustment for bias, but in some cases, the proportionality 

assumption may be invalid. Further, one needs to determine whether the model is linear in 

confounders and, if not, what transformations are suggested by the data and clinical 

consideration. With respect to the validity of the statistical inferences, the proportional 

hazards assumption is crucial. Alternatively, statistical adjustment based on potential 

outcome framework are popular for evaluating causal relationship (Rubin, 1974). When the 

treatment assignment is strongly ignorable, propensity score based methods were shown to 

yield unbiased results (Rosenbaum and Rubin, 1983). In survival analysis, propensity score 
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matching or stratification have been proposed (Cupples et al., 1995; Nieto and Coresh, 

1996), which are considerably more flexible and robust than the Cox model-based 

regression adjustment. But, little work has been done to conduct multiple comparisons to 

elucidate causal effect with survival outcomes, which is very frequently an objective of a 

clinical or observational study.

In this paper, we extend the multiple comparison procedures for normal error outcome in 

general linear models to survival data, and compare groups in terms of log hazard ratios 

obtained from a propensity-score-stratified Cox model, assuming proportional hazards for 

group variable. In Section 2, we introduce the notation and discuss the assumptions for 

causal inference with survival outcomes, in the presence of multiple treatment groups. In 

Section 3, we propose two methods of multiple comparisons under the Cox model. Real data 

examples to illustrate the implementation of our procedures are given in Section 4. Section 5 

provides results from a simulation study. Section 6 concludes the paper with further 

discussions.

2. Notations and Assumptions for Causal Inference with Survival Data

In this section, we introduce the notations and the potential outcome framework for survival 

data, and discuss the assumptions for making causal inference via the propensity score 

adjustment.

2.1. Notations

Suppose we are interested in evaluating the intervention effects among K treatment groups 

and the outcome of interest is time-to-event data with right censoring. Let (T, δ, R, Z) denote 

the observed vector of right-censored data with multiple groups, where T is the possibly 

right-censored event time, δ is the censoring indicator where δ = 1 if T corresponds to an 

event and δ = 0 if T is censored, R is the index for the group membership where R = 1, …, K 

for K different groups, and Z is a p × 1 covariate vector.

To identify the causal effect, we extend the potential outcome framework to survival data. 

The potential outcome framework was formally established by Rubin (1974) for 

dichotomous treatment comparison. With K groups, the potential event times are (S1, S2, ···, 

SK) and the observed event time is represented as, if no censoring,

where  and 1{R=k} is the indicator that patients belong to group k. Similarly, 

the potential censoring times are (C1, C2, ···, CK) and the observed censoring time is

Therefore, the actually observed right-censored event time is T = min(S, C).
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2.2. Assumptions for propensity score adjustment

Propensity score adjustment is widely used in making causal inference with observational 

data. Rosenbaum and Rubin (1983) provided the foundations of the propensity score theory 

for binary-valued groups (K = 2), where the propensity score is defined as the conditional 

probability of being in group R = 1 given a set of observed covariates,

Under strong ignorability assumption, they showed that R⊥Z | e(Z), so individuals from 

each group with the same propensity score are balanced in that the distributions of Z are the 

same regardless of group membership. Later, other researchers have extended the propensity 

score method to multilevel groups (Joffe and Rosenbaum, 1999; Imbens, 2000; Lu et al., 

2001; Imai and van Dyk, 2004).

To facilitate the causal comparison with multiple treatment groups in the presence of 

censoring, we identify the following assumptions based on the potential outcome 

framework.

1. Ignorable treatment assignment for event time:

Condition on a set of observed pretreatment covariates, Z, the treatment assignment 

is independent of the vector of potential event times.

2. Conditional independent censoring given covariates:

Condition on a set of observed pretreatment covariates, Z, the potential censoring 

time is independent of the potential event time for any treatment group.

3. Stable unit-treatment event time:

There is a unique potential event time for each unit and treatment group. This is 

very similar to the original stable unit-treatment value assumption in Rubin (1980) 

and it ensures that different units do not interfere with each other’s outcomes.

Given the first assumption above, it is easy to show the following proposition regarding the 

ignorability condition on the propensity score.

Proposition 1—If treatment assignment is strongly ignorable given Z, then it is strongly 

ignorable given propensity score ẽ(Z); that is
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and

for all k imply

where ẽ(Z) is a vector of the conditional probability for each treatment group.

The proof follows immediately from Theorem 3 in Rosenbaum and Rubin (1983) and is 

omitted here.

Propensity score adjustment can be implemented in several ways, including matching, 

stratification, weighting, or as regression covariates. Rosenbaum and Rubin (1983) 

advocated the use of propensity score quintiles for stratification with number of strata J = 5, 

which is a choice made in most published applications. This method can effectively reduce 

the covariate imbalance among different comparison groups within each stratum. The 

validity of the stratification procedure requires that the propensity model is correctly 

specified. In practice, the group variable is either ordinal or categorical. For a K-level 

ordinal group variable, a scalar propensity score is available using an ordinal logistic 

regression model

for k = 1, …, K − 1. In this case, propensity score is determined by the scalar α′Z, and the 

major advantage is that we can balance the high-dimensional covariates by adjusting for a 

scalar propensity score. When the group variable is unordered, such as K-level categorical, 

we model the propensity function through a multinomial logistic regression model and 

obtain a set of K − 1 propensity scores. Since a set of propensity scores is estimated for each 

subject, there is no standard rule for stratification. If the number of levels is small, say K = 3, 

each subject have two estimated propensity scores and we could consider 2 × 2 or 3 × 3 

stratification, depending on the sample size. An alternative approach for a categorical group 

variable with a large value of K is to use propensity score regression adjustment, where the 

estimate propensity score is included as a covariate in the regression model of outcome. 

Nevertheless, we illustrate the propensity score adjustment with stratification in the 

applications.

3. Methods of Multiple Comparisons under the Cox Model

To study the causal effect with survival outcome of interest, a propensity-score-stratified 

Cox proportional hazards model is then used. For convenience of discussion, we set group K 
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to be the reference (control) group, and create K − 1 dummy variables (X1, …, XK − 1) to 

denote the group membership, where Xk = 1 if a subject is in group k, otherwise Xk = 0, for k 

= 1, …, K − 1. Note that {R = k} is equivalent to {Xk = 1, Xothers = 0} for k = 1, …, K − 1, 

and {R = K} is equivalent to {X1 = 0, …, XK − 1 = 0}. We consider a stratified Cox model

(1)

where h0j(t) is the arbitrary baseline hazard function for stratum j, and βk, k = 1, …, K − 1, is 

the logarithm of hazard ratio comparing group k to the reference group K in the stratified 

model, adjusting for confounders. The parameterization sets βK = 0. In the following, we 

discuss multiple comparison procedures for survival outcome based on the estimates in 

model (1).

3.1. Multiple comparisons with a control for the Cox model

If one group is considered as the normal control group, group K say, and of primary interest 

is which groups are associated with lower risk than the control group K, then an analogue of 

one-sided Dunnett’s normal means method for MCC (Dunnett, 1955) under our setting is

where the log hazard ratio βk measures the difference between group k and the control group 

K,  is the estimated variance of β̂
k for model (1), and the multiplicity-adjusted critical 

value d is the upper α quantile of the maximum of K − 1 random variables from a 

multivariate normal distribution with means zero and correlation matrix Σ equals the 

correlation matrix of (β̂
1, …, βK̂ − 1). The maximum partial likelihood estimate (β̂

1, …, 

β̂
K − 1) for coefficient vector asymptotically follows a multivariate normal distribution with a 

variance-covariance matrix which can be consistently estimated. Therefore, following the 

discussion in Hsu (1992), if the correlation matrix σ has a one-factor structure, that is, there 

exists constants λ1,, …, λK − 1 with all |λi| < 1 such that the correlation between β̂
i and β̂

j, ρij 

= λiλj for all i ≠ j, or equivalently,

the critical value d can be computed exactly. Having a one-factor structure implies β̂
1, …, 

β̂
K − 1 are conditionally independent, and this conditional independence facilitates critical 

value computation. When the correlation matrix Σ does not have a one-factor structure, the 

factor-analytic approximation of Hsu (1992) can be used to deterministically approximate 

the critical value d. The idea is to use factor analysis algorithms in multivariate analysis to 

find the correlation matrix Σfa with a one-factor structure that most closely approximates the 

correlation matrix Σ, and use the approximate correlation matrix Σfa to compute d. The 

variance reduction technique of Hsu and Nelson (1998) can be used to efficiently 

approximate d by simulation. It has been implemented in statistical software R by the 
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method of Genz and Bretz (1999), which uses a variance-reduced Monte Carlo algorithm to 

compute multivariate normal probabilities for arbitrary Σ.

In estimation of causal treatment effect for continuous outcome, Lunce-ford and Davidian 

(2004) developed asymptotic variance estimation of treatment effect estimator based on 

propensity score stratification, and it has a rather complicated form. While they mentioned 

that such theory is not used in practice, and it’s routine to approximate the sampling 

variance by ignoring the additional variance from the estimated propensity score. We 

implement a similar strategy for our setting with survival outcome. In our analysis,  as 

well as the estimated asymptotic variance-covariance matrix are approximated by estimates 

from “estimated-propensity-score-stratified” Cox model. In simulations, we compare 

empirical variance estimate with bootstrap variance estimate to assess the performance of 

the inference procedure.

3.2. Multiple comparisons with the best for the Cox model

We then consider MCB problem of comparing with the unknown best groups and 

determining whether each individual group has a lower risk than the best of the others. The 

purpose is to generalize the procedure of MCB for general linear model (Hsu, 1996) and to 

derive an asymptotical valid MCB method for comparing survival among groups in terms of 

log hazard ratio. The parameters of primary interest are

where βK = 0. If βk − minl≠k βl < 0, then group k is the best, for it is better than every other 

group in terms of a lower hazard. If βk − minl≠k βl > 0, group k is not the best. Further, 

suppose βk − minl≠k βl < ε where ε is a small positive number, then even if we cannot say 

group k is the best, we are sure that it is at least close to the best and has practically 

minimum risk. On the other hand, if the lower confidence bound for βk − minl≠k βl equals 

zero then we can infer group k is not the best. We provide simultaneous confidence intervals 

for the set of parameters of interest, by which the familywise error rate is strongly 

controlled.

Consider K tests for

MCB simultaneous confidence intervals for {maxl≠k(βk − βl), k = 1, …, K} are derived as 

follows. For each k, k = 1, …, K, suppose dk is a constant value such that

(2)
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where  is the estimated variance of β̂
k − β̂

l, and this implies the constant dk is the one-

sided MCC asymptotic critical value with group k as the control. Then for that k,

form simultaneous 100(1 − α)% lower confidence bounds for βk − βl for all l, l ≠ k. Thus, 

maxl≠k(β̂
k − β̂

l − dkσ̂
kl) is a 100(1 − α)% lower confidence bound for maxl≠k(βk − βl). The 

parameter maxl≠k(βk − βl), k = 1, …, K, is negative if k is the unknown index of the best 

group, otherwise, it is positive. Define  where −x− = 

min{x, 0}, then , k = 1, …, K, are simultaneous 100(1 − α)% lower confidence bounds 

for {maxl≠k(βk − βl), k = 1, …, K}.

Further, for each k, we conclude maxl≠k(βk − βl) < 0, or equivalently, accept the null 

hypothesis H0k when . Thus,  is a 100(1 − α)% confidence set for the 

unknown index of the best group with the minimum risk. Lastly, if we define

then, , k = 1, …, K, are simultaneous 100(1 − α)% upper confidence bounds for 

{maxl≠k(βk − βl), k = 1, …, K}. The confidence bounds  and , k = 1, …, K, are derived 

from the same 100(1 − α)% probability event as in (2). Therefore, we have the following 

result, which can be proved rigorously along the lines of Theorem 7.3.1 of Hsu (1996).

Proposition 2—For all β’s, as nk → ∞ for k = 1, …, K,

where nk is the number of subjects in group k.

Proof: Let b denote the unknown index such that βb = min1≤k≤K βk. Define the event E as 

follow:

By the definition of the critical value db, P(E) = 1 − α. First of all, we derive the lower 

confidence bounds for {βk − minl≠k βl, k = 1, …, K}.
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We then derive the upper confidence bounds for {βk−minl≠k βl, k = 1, …, K}.

We have shown E ⊆ E1 ∩ E2. Therefore,

To implement the MCB procedure, it is then required to compute critical values {dk, k = 1, 

…, K}. The techniques for computing MCC critical value discussed in Section 3.1 is used. 

Since β̂
k, k = 1, …, K − 1 are the maximum partial likelihood estimates for model (1), for 

each k, we can use the fact that {β̂
k − β̂

l, l ≠ k} has an asymptotic multivariate normal 

distribution, with a variance-covariance matrix that can be consistently estimated, to 

calculate critical value dk. Similarly, dk can be computed exactly when the correlation matrix 

of {β̂
k − β̂

l, l ≠ k} has a one-factor structure. Otherwise, factor-analytic approximation can be 

used to deterministically approximate dk.

4. Applications

4.1. Bone marrow transplantation for leukemia

Bone marrow transplantation is a standard treatment for acute leukemia, and recovery 

following bone marrow transplant is a complex process. Prognosis for recovery may 

depends on risk factors known at the time of transplantation, such as patient and/or donor 

age and gender, the stage of initial disease, the time from diagnosis to transplantation, etc. A 

study was conducted to illustrate this process and characterize disease-free survival for bone 

marrow transplantation patients of acute leukemia. Details of the study are found in Copelan 
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et al. (1991). In this multi-center clinical trial, a total of 137 patients were treated with bone 

marrow transplants at one of four hospitals. They were followed for relapse or death, with 

the maximum follow-up of 7 years. There were 42 patients who relapsed and 41 who died 

while in remission. The censoring percentage was around 40%. In addition to time to relapse 

or death, several potential risk factors were measured at the time of transplantation. Patients 

were grouped into risk categories based on their initial disease status at the time of 

transplantation as follows: 38 acute lymphoblastic leukemia (ALL) patients, 54 acute 

myelotic leukemia (AML) low-risk patients, and 45 acute myelotic leukemia (AML) high-

risk patients. Other factors measured include recipient and donor gender and age, waiting 

time from diagnosis to transplantation, the French-American-British (FAB) classification 

and graft-versus-host prophylactic combining methotrexate (MTX) status. The primary 

interest is in comparing the disease-free survival of AML low-risk patients with that of ALL 

patients (control), and comparing AML high-risk patients with ALL patients. Since it was 

not a randomized clinical trial, we shall adjust these comparisons to reduce the possible 

confounding bias. We check the proportional hazards assumption for each factor using 

scaled Schoenfeld residual plot and find the nonproportionality of MTX status as shown in 

Figure 1, which suggests a simple Cox model-based regression adjustment is inappropriate. 

Therefore, we execute the proposed MCC procedure based on a propensity-score-stratified 

Cox model.

To calculate the propensity scores, the probability of being in AML low-risk group and that 

of being in AML high-risk group conditioning on gender, age, waiting time, FAB and MTX 

are estimated by a multinomial logistic regression model with ALL patients as the reference 

group. For each patient, we obtain the estimated propensity score for AML low-risk 

(pscore1), and the estimated propensity score for AML high-risk (pscore2). The patients are 

then categorized into 2 × 2 strata based on a vector of estimated propensity scores, (pscore1, 

pscore2). The first stratum contains subjects with both pscore1 and pscore2 higher than their 

sample medians, the second stratum contains subjects with pscore1 higher than its median 

and pscore2 lower than its median, the third stratum contains subjects with pscore1 lower 

than its median and pscore2 higher than its median, and the last stratum contains subjects 

with both pscore1 and pscore2 lower than their medians. The distributions of the potential 

confounders are approximately balanced among the three risk groups within each stratum. In 

the corresponding propensity-score-stratified Cox model, covariate X1 denotes the indicator 

of AML low-risk and X2 denotes the indicator of AML high-risk. A patient has ALL if X1 = 

0 and X2 = 0. The point estimates of log hazard ratios are β̂
1 = −0.997 for comparing AML 

low-risk with ALL, and β̂
2 = −0.186 for comparing AML high-risk with ALL. For α = 0.05, 

with estimated variance-covariance matrix of (β̂
1, β̂

2),

the one-sided multiplicity-adjusted critical value d = 1.872, based on the factor-analytic 

approximation. We have β̂
1 + dσ̂

1 = −0.750 < 0 and β̂
2 + dσ̂2 = 0.087 > 0. Therefore, 

adjusting for potential confounders, at the 95% confidence level, we conclude that AML 
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low-risk patients have a significant lower risk of leukemia relapse or death compared with 

ALL patients, while AML high-risk patients have a non-significant lower risk of leukemia 

relapse or death compared with ALL patients.

4.2. Death times of male laryngeal cancer patients

The proposed MCB procedure is applied to survival data of male laryngeal cancer patients. 

A study of 90 males diagnosed with cancer of the larynx during the period 1970–1978 at a 

Dutch hospital is reported (Kardaun, 1983). Times (in years) between first treatment and 

either death or the end of the study (January 1, 1983) are recorded. Also recorded are 

patient’s age at diagnosis, the year of diagnosis, and the stage of the patient’s cancer. The 

four stages of disease in the study were based on the T.N.M. classification used by the 

American Joint Committee for Cancer Staging. The stages have 4 levels, and are ordered 

from least serious (Stage I) to most serious (Stage IV). We focus on identifying stages with 

the minimum risk of death (the best), and the multiple comparisons need to be adjusted for 

potential confounders. The proportionality assumption for cancer stage is not violated. 

However, since the effect of age at diagnosis tends not to be linear based on a martingale 

residual plot in Figure 2, the confounding adjustment is implemented by propensity score 

stratification. Cancer stage is an ordinal variable, so a scalar propensity score can be 

obtained by an ordinal logistic regression model with age at diagnosis and the year of 

diagnosis as covariates, and is used for stratification. We then categorize the patients into 5 

strata by the quintiles of estimated propensity scores. The log hazard ratios comparing 

survival among different disease stages are estimated from a propensity-score-stratified Cox 

model, where covariate X1 denotes the indicator of Stage I, X2 denotes the indicator of Stage 

II, X3 denotes the indicator of Stage III, and Stage IV is the reference group with X1 = X2 = 

X3 = 0. Our parameterization sets β4 = 0, and β̂
k estimates βk − β4 for k = 1, 2, 3.

The point estimates of log hazard ratios are β̂
1 = −1.656 for Stage I against Stage IV, β̂

2 = 

−1.759 for Stage II against Stage IV, and β̂
3 = −1.024 for Stage III against Stage IV. The 

estimated variance-covariance matrix of (β̂
1, β̂

2, β̂
3) is

For α = 0.05, based on the factor-analytic approximation, the critical values d1, d2, d3 and d4 

are 2.365, 2.317, 2.371 and 2.324, respectively. To perform the proposed MCB procedure, 

we first calculate the lower confidence bounds  and  using the critical 

values. The lower confidence bounds turn out to be −1.002, −1.186, −0.217 and 0. 

Therefore, the confidence set G for the unknown minimum risk groups is {1, 2, 3}, which 

implies that Stage IV does not have the minimum risk of death and there exists other group 

with lower risk. Then we compute the upper confidence bounds , k = 1, …, 4, which are
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in this case. They turn out to be 1.186, 1.002, 1.802 and 2.991. Thus, at the 95% confidence 

level, the MCB simultaneous confidence intervals for Stage I, II III and IV minus the best of 

the others are:

So at the 95% confidence level, one can say Stage IV is not the stage with the minimum 

risk. Stage I is within 1.186 of the best, Stage II is within 1.002 of the best and Stage III is 

within 1.802 of the best, but it is insufficient to decide which of them gets the minimum risk. 

If a log hazard ratio no bigger than 1.200 compared to the theoretical lowest log hazard ratio 

is considered practically minimum risk, then Stage I and Stage II can be inferred as 

practically minimum risk groups.

5. Simulation

A simulation study is conducted to assess performance of the proposed MCB method of 

comparing survival among multiple groups adjusting for confounding effect, based on 

multiplicity-adjusted simultaneous confidence intervals. We first consider a case of K = 4 

groups, under independent and covariate-dependent censoring, respectively. A sample is 

generated as follows: (i) the covariate Z (confounder) is generated from a Bernoulli 

distribution with Z ~ Bernoulli(0.5); (ii) the treatment group variable R is generated given Z 

with probability P{R = (1, 2, 3, 4)} = (1/4, 1/4−z/4, 1/4, 1/4+z/4); (iii) based on the 

simulated R, we create variables X1, X2 and X3 which are indicators of group 1, group 2 and 

group 3; (iv) the survival times are generated from a Cox proportional hazards function

where (β1, β2, β3) = (−1.5, −1, −0.5) for increasing risk of failure with higher group level and 

group 4 is the reference group; (v) In Scenario 1, the censoring times are independently 

generated from a uniform distribution with a censoring proportion of around 30%, and in 

Scenario 2, the censoring times depend on the confounder Z and are generated from an 

exponential distribution with a censoring proportion of around 35%. With (β1, β2, β3, β4) = 

(−1.5, −1, −0.5, 0), the true values of the set of parameters for MCB {βk − minl≠k βl, k = 1, 

… 4} are (−0.5, 0.5, 1, 1.5). The simulation is repeated 10000 times with sample size n = 

250, 500 and 1000. Next, we consider K = 6 groups. The simulation settings keep the same 

except: (i) the group variable R is generated given Z with probability P{R = (1, 2, 3, 4, 5, 6)} 

= (1/6, 1/6 − z/6, 1/6, 1/6 + z/6, 1/6, 1/6); (ii) based on the simulated R, we create variables 

X1, X2, X3, X4 and X5 which are indicators of groups 1–5; (iii) the survival times are 
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generated from a Cox proportional hazards function h(T = t | X1 = x1, X2 = x2, X3 = x3, X4 = 

x4, X5 = x5, Z = z) = exp(β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + z), where (β1, β2, β3, β4, β5) = 

(−1.25, −1, −0.75, −0.5, −0.25) and group 6 is the reference group.

For each simulated data set, we fit an ordinal logistic regression model of R on Z to estimate 

the propensity score, and use the propensity score stratification to adjust for the confounding 

effect from Z. The proposed MCB method is applied to derive simultaneous confidence 

intervals, using estimates from a propensity-score-stratified Cox model with group 

indicators as covariates. Table 1 summarizes the simulation results on estimation of 

regression coefficients (β1, β2, β3) for K = 4, including the empirical bias, empirical standard 

error and average bootstrap standard error. Under both independent and covariate-dependent 

censoring, the empirical biases are small and decrease as sample size increases. The 

bootstrap standard errors agree with the empirical standard errors, implying that the 

inference procedure performs reasonably well. Table 2 presents the simulation results of 

MCB method, which includes the estimated simultaneous coverage probabilities of 90% and 

95% MCB confidence intervals, for different values of K and n, under independent and 

covariate-dependent censoring. For both censoring schemes, the estimated simultaneous 

coverage probabilities of MCB confidence intervals based on normal approximation are 

slightly higher than the nominal level. The coverage probabilities get closer to the nominal 

level for smaller K or larger n. The reason for the over-coverage might be related to normal 

approximation. For example, to compare group k and group l based on the asymptotic 

normality of β̂
k and β̂

l, one refers a statistic

to the standard normal distribution or t distribution for all β’s. However, there is a 

correlation between β̂
k − β̂

l and σ̂β̂k − β̂l, which depends on β’s, therefore, the statistic is not 

as pivotal as one would expect.

6. Discussion

This paper discusses multiplicity-adjusted inference for survival data that are subject to 

random right-censorship, in presence of confounders. Assumptions for making causal 

comparison among multiple groups are discussed within a potential outcome framework. A 

MCC testing procedure is described to determine which groups have lower risk than the 

control, and MCB simultaneous confidence intervals are provided to identify the groups that 

deliver the minimum risk or the maximum benefit. The testing formulation for multiple 

comparisons has been more popular, but confidence intervals are more informative because 

they not only infer the existence of the difference, but also bound the magnitude of the 

difference. The existing methods for multiple comparisons with survival outcomes are either 

based on log-rank tests (Chen, 2000; Logan et al., 2005) or some nonparametric inference 

(Coolen-Maturi et al., 2012), which may be inconvenient for covariate adjustment in many 

applications. On the contrary, the proposed methods use estimates from the Cox 
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proportional hazards model, which has the advantage of adjusting for confounders and/or 

covariates in a straightforward way.

Specifically, we use propensity score stratification to adjust for the confounding bias and log 

hazard ratios are obtained based on a stratified Cox model for multiple comparisons. The 

correlation structure of log hazard ratio estimates can then be derived, allowing to obtain 

accurate multiplicity-adjusted critical value. The appropriate choice of a model for 

estimating propensity score depends on the nature of the group variable, categorical or 

ordinal. The balanced confounder distributions are expected among the comparison groups 

after stratification, and we suggest some practical guidelines for implementing stratification. 

The multiple comparison procedures with confounding bias adjustment are illustrated with 

two real data sets, where we compare the disease-free survivals of AML low-risk, AML 

high risk groups with that of ALL group for bone marrow transplantation patients, and for 

male laryngeal cancer patients, we identify the disease stage that has the minimum risk or 

practically minimum risk of death. A simulation study is carried out to assess the finite 

sample performance of the proposed MCB method with multiplicity adjustment based on the 

normal approximation. The over-coverage probability of the MCB method remains an 

interesting research problem and will be explored in future work.

There are several limitations to the current work. First, the causal comparison is based on the 

strong ignorability assumption, which requires all confounding variables are observed. In 

practice, this might not be true for many observational studies and unmeasured confounders 

are often of concern. Some sensitivity analysis procedure may be developed to address how 

robust the conclusions are in the presence of unobserved confounding, following the idea of 

Rosenbaum (2002). Second, the Cox model with the proportional hazards assumption for 

group variable is employed after propensity score stratification. However, this assumption 

may also not be appropriate, and in such cases, the subsequent multiple comparison 

procedures are not reliable. It is interesting to investigate performances of testing and 

multiple comparison procedures based on the Cox model when the proportional hazards 

assumption is invalid, and to provide some alternative approach that does not rely on the 

proportional hazards assumption for multiple comparisons. Lastly, we consider multiple 

comparison problems for survival data under right censoring in this paper. In clinical and 

observational studies, survival data may be subject to various types of censoring and 

truncation, such as informative censoring due to competing risk. Therefore, further research 

is required to extend the multiple comparison procedures to these types of data under 

appropriate survival models.
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Figure 1. 
Scaled Schoenfeld residual plot of MTX status
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Figure 2. 
Martingale residual plot of age at diagnosis
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Table 2

Simulation results of MCB approach.

K n 90%CP 95%CP

Ind. Cen.

4 250 92.52 96.24

500 92.15 96.17

1000 91.93 96.06

6 250 92.79 96.48

500 92.55 96.27

1000 92.41 96.13

Dep. Cen.

4 250 93.79 97.19

500 93.49 97.17

1000 93.25 97.08

6 250 93.95 97.58

500 93.78 97.45

1000 93.64 97.33

CP, estimated simultaneous coverage probabilities of MCB confidence intervals (×100); Ind. Cen., independent censoring; Dep. Cen., dependent 
censoring.
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