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Abstract

Accurate information on patterns of introduction and spread of non-native

species is essential for making predictions and management decisions. In many

cases, estimating unknown rates of introduction and spread from observed data

requires evaluating intractable variable-dimensional integrals. In general, infer-

ence on the large class of models containing latent variables of large or variable

dimension precludes exact sampling techniques. Approximate Bayesian com-

putation (ABC) methods provide an alternative to exact sampling but rely on

inefficient conditional simulation of the latent variables. To accomplish this task

efficiently, a new transdimensional Monte Carlo sampler is developed for approx-

imate Bayesian model inference and used to estimate rates of introduction and

spread for the non-native earthworm species Dendrobaena octaedra (Savigny)

along roads in the boreal forest of northern Alberta. Using low and high es-
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timates of introduction and spread rates, the extent of earthworm invasions in

northeastern Alberta was simulated to project the proportion of suitable habitat

invaded in the year following data collection.

Keywords: likelihood-free inference, Markov chain Monte Carlo, non-native

earthworms, reversible jump.

1. Introduction

Biological invasions are occurring at unprecedented rates worldwide [1] but

often remain undetected until invading species have spread extensively. Detailed

records documenting the time of initial introduction and subsequent changes in

distribution are therefore not available for many invasions [2]. This information5

is critical for projection of future expansion and for development of appropriate

management strategies [3]. However, in cases where long-term temporal data is

unavailable, current distribution patterns of non-native species can be used to

infer how the invasion process may have occurred [2, 4].

Invasions that occur below-ground, such as earthworm invasions, can be10

particularly difficult to track over time and may initially proceed unnoticed.

Non-native earthworms are currently spreading in many forests across North

America [5, 6] but have limited ability to disperse actively [7]. Therefore, passive

jump dispersal via abandonment of bait by anglers and transport along roads via

vehicle traffic is thought to be important in their spread [8, 5, 9]. In northern15

hardwood and boreal forests, which are devoid of native earthworm species,

earthworm invasions are causing significant changes to nutrient cycling and soil

structure [10, 5, 11]. These changes have led to cascading effects on songbird

[12] and plant communities [13, 11, 14]. Because earthworms can affect other

species directly, as well as indirectly via changes in the physical environment,20

their invasions may cause substantial changes over a large area of the Canadian

boreal forest in the future. Accurate estimates of earthworm introduction and

spread rates in this region are thus critical for the development of appropriate

management strategies.
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For many invasive species, spread occurs via a combination of diffusive spread25

around invaded sites and jump dispersal to new locations (i.e., stratified diffu-

sion; [15]). Because even rare long-distance jump dispersal events result in

faster spread than would be expected with diffusive spread alone [15], estimates

of both introduction and spread rates are typically needed to predict the future

spatial extent of an invasive species. Introductions of invasive species can be30

described using point process models, while models for diffusive spread following

an introduction are application-dependent and can be complex (e.g., [16]). As

a result, data likelihoods for such models are not often available in closed form.

Approximate Bayesian computation (ABC, [17, 18, 19]) has proven to be a

useful approach for approximate inference on intractable likelihood problems,35

including distinguishing among introduction scenarios and invasion routes of

non-native species (e.g., [20, 21]). It relies on repeated model simulation in

the absence of an explicit likelihood function. Proposed parameter values are

accepted or rejected based on the distance between low-dimensional summaries

of a conditional model realization and the observed data.40

ABC algorithms are generally computationally intensive, and can result in

unreliable estimates when too few proposals are accepted (e.g., [22], lemma 1).

Existing implementations typically construct a Markov chain with a dependent

proposal mechanism defined on a fixed probability space [19]. However, in

many models, the dimensionality of the parameter space varies [23, 24]. In45

this paper we develop a transdimensional ABC algorithm that allows efficient

exploration of parameter subspaces of variable dimension. This approach is

applied to estimate introduction and spread rates of non-native earthworms in

the boreal forest.

The paper is organized as follows. Section 2 describes a general point-process50

model for introduction of an invasive species and its subsequent spread. As the

likelihood function is an intractable integral of variable dimension, a basic ABC

algorithm for obtaining a sample from an approximate posterior distribution

associated with this model is described. The novel transdimensional ABC ap-

proach is then presented as an efficient alternative to existing sampling methods.55
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Section 3 introduces the motivating problem of estimating the rates of intro-

duction and spread of the earthworm species Dendrobaena octaedra (Savigny) in

northern Alberta by combining information from two datasets. The hierarchical

model of the population dynamics is described, and algorithmic implementation

details are provided. Inference results are summarized in Section 4, and are then60

utilized in a spatio-temporal simulation model to project the extent of invasion

in a sample region in Section 5. Concluding remarks are presented in Section 6.

2. Approximate Bayesian Computation

Let us consider a model for the invasion of a non-native species over a given

region with the vector of unknown model parameters, θ, such as rates of intro-

duction, birth, predation, or spread. A stochastic mechanism generates k ∈ N

introduction events on the spatio-temporal horizon H ⊂ Rd. Denote by x(i) ∈ H
the location of ith, 1 ≤ i ≤ k, latent introduction event, and define the vector

concatenation,

xk = [x(1), · · · , x(k)]> ∈ Hk ⊂ Rdk.

The spatio-temporal spread resulting from the introductions xk follows a de-

terministic or stochastic model, generating the data Y ∈ Y. The dependence65

structure of model components on the parameters θ is illustrated in Figure 1a.

Exact inference for model parameters θ is based on the posterior probability

density,

π(θ | Y ) ∝ p(Y | θ) π(θ), (1)

where the first factor on the right hand side is the likelihood of the data given

θ, and the second is its prior. The model parameters impact the data indirectly70

through the number and configuration of introduction locations, xk, which are

not themselves of interest. Therefore the likelihood in expression (1) is obtained

by integration with respect to the number and location of the latent introduction
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Figure 1: Directed acyclic graph diagram for (a) a general variable-dimensional
invasion model, (b) the specific invasion model studied in our analysis; arrows
denote conditional dependence of parameters; labels next to each node denote
the parameter spaces.

events:

p(Y | θ) =
∞∑

k=0

∫

Hk

p(Y | xk,θ) p(xk | k,θ) p(k | θ) dxk. (2)

Estimation for this class of models poses analytical and computational chal-75

lenges. In practice, evaluating p(Y | xk,θ) is often infeasible, especially under

complex models for interaction and spread, or when the data is only partially

observed in space. Furthermore, the domain of integration in (2) changes di-

mension with the dimension of the latent variable, leading to further difficulties

in obtaining a closed form likelihood. For the motivating invasive species model80

in Section 3, even under simple deterministic linear spread in one dimension,

evaluating the likelihood (2) presents a geometric and combinatorial challenge

whose complexity renders exact inference practically limited. As a result, ap-

proximate simulation-based inference, such as ABC, often becomes the only tool

available to approach such problems.85

2.1. Approximate Bayesian inference for latent variable models

Assume that the model can be forward-simulated to generate a synthetic

dataset D ∈ Y from p(D | xk,θ). Under deterministic spread, p(D | xk,θ) is a

point mass density around a data simulation function.
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ABC replaces (1) with an approximation of the D-augmented posterior den-

sity marginalized over the synthetic data, D, and latent variables, (k,xk). The

approximation is based on the use of a low-dimensional summary statistic func-

tion s(·), as follows:

π(θ | Y ) ∝
∞∑

k

∫

Hk

π(θ) p(k | θ) p(xk | k,θ) p(Y | xk,θ) dxk

∝
∞∑

k=0

∫

Y

∫

Hk

π(θ) p(k | θ) p(xk | k,θ) p(D | xk,θ) p(Y | s(Y ),xk,θ) p(s(Y ) | D) dxk dD

≈
∞∑

k=0

∫

Y

∫

Hk

π(θ) p(k | θ) p(xk | k,θ) p(D | xk,θ) p(s(Y ) | D) dxk dD

≡ πABC(θ | Y ).

The accuracy of the ABC approximation depends on the degree of sufficiency

of the data summary s(Y ) for (θ, k,xk), and on the discrepancy term p(s(Y ) |
D) relating the summarized synthetic data to the observed data by a kernel Kε

with bandwidth ε ≥ 0:

p(s(Y ) | D) = Kε [s(Y ), s(D)] .

When s(Y ) is sufficient for (θ, k,xk) and ε = 0, the ABC posterior density is90

exact. In other words, when p(Y | s(Y ),xk,θ) = p(Y | s(Y )) and p(s(Y ) | D) is

a point mass function centered at s(D), then π(θ | Y ) = πABC(θ | Y ). However,

low-dimensional sufficient statistics cannot in general be obtained when the

likelihood is unknown, so the data summaries employed for ABC are chosen

subjectively, leading to an approximate posterior density [22].95

The bandwidth ε controls the tolerance for the discrepancy between the

summarized real and synthetic data. Effectively, ε controls the trade-off between

the dimension of the summary statistic and Monte Carlo error from too few data

matches (e.g., [22], lemma 1).

Under the data simulation model, the ABC posterior for the general invasion
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model (Figure 1a) is:

πABC (θ | Y ) ∝ π (θ)

∫

Y

∞∑

k=0

∫

Hk

p (D | xk,θ) p (xk | k,θ) p (k | θ) dxk

︸ ︷︷ ︸
p(D|θ)

p (s(Y ) | D) dD.

(3)

Estimates of the mean, mode, or quantiles of πABC (θ | Y ) can now be obtained100

from a Monte Carlo sample. One simple method to produce such a sample is re-

jection ABC [25], shown in Algorithm 1. More efficient ABC-MCMC sampling

strategies rely on dependent proposals for parameters. However, our introduc-

tion model involves the parameter xk whose dimension changes with k, and

therefore we develop a transdimensional sampling approach to avoid further105

approximation (such as the approximation of [26]).

Algorithm 1 rejection ABC

at iteration ` = 0 initialize (θ, k,xk, D)(`)

for iteration ` = 1 to L do

propose θ? ∼ π(θ?)

propose k? ∼ π(k)

conditionally simulate x?k? ∼ p(x?k? | k?,θ?)
generate D? from p(D | x?k? ,θ?)
with probability Kε [s(Y ), s(D?))] set (θ, k,xk, D)(`) ← (θ?, k?,x?k? , D

?),

otherwise set (θ, k,xk, D)(`) ← (θ, k,xk, D)

end for

2.2. Transdimensional Approximate Bayesian Computation

Addressing the problem of low acceptance rates and unreliable estimates

from the approximation in (3), we develop an efficient algorithm for obtain-

ing samples. Instead of relying on conditional simulation on the variable-110

dimensional model subspace, a transdimensional approach [23] is adopted al-

lowing proposals between probability spaces of different dimensions.
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In order to construct transitions between all model spaces of different di-

mension, it is sufficient to define pair-wise transitions between all model index

pairs (i, j) ∈ K ×K, with associated model-specific parameter vectors xi ∈ Rni
115

and xj ∈ Rnj . Model-specific vectors are augmented by auxiliary random vari-

ables, ui ∈ Rmi and uj ∈ Rmj respectively, chosen by convenience under the

constraint ni + mi = nj + mj , which ensures that both model spaces have the

same dimension.

The diffeomorphic transformation φij : Rni × Rmi → Rnj × Rmj is defined120

corresponding to the mapping (xi,ui) → (xj ,uj). For a given transformation

φij with Jacobian |Jij | = |∂φij (xi,ui) /∂(xi,ui)|, a proposed move from model i

to j is constructed by first drawing a vector ui from the density pi(ui), and then

obtaining (xj ,uj) = φij(xi,ui). The inverse mapping (xj ,uj) → (xi,ui) can

be accomplished by using the transformation φji. For simplicity, one generally125

sets mj = 0 for all (i, j) such that nj ≥ ni.
The resulting transdimensional Metropolis-Hastings random walk ABC sam-

pler is described in Algorithm 2 and produces a Markov chain whose stationary

distribution has the desired ABC posterior density (3; proof is provided in the

Appendix) .130

3. Motivating application

3.1. Field methods

Data on earthworm occurrence were collected in the boreal forest of northern

Alberta, Canada between 54.4◦N and 57.8◦N latitude and 110.1◦W and 119.8◦W

longitude (Figure 2; see [27] for further description). We focused on the litter-135

dwelling earthworm Dendrobaena octaedra (Savigny), which is introduced from

Europe and is the most common earthworm species in northern Alberta [9, 27].

This species is not commonly used as bait and therefore transport by vehicles is

the key mechanism involved in passive dispersal [28]. Earthworms were sampled

at roads ranging in age from 6 to 56 years old in 2006. At each road, sampling140

occurred along a 50.25 m transect which ran parallel to the road. Leaf litter
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Algorithm 2 transdimensional ABC

at iteration ` = 0 initialize (θ, k,xk, D)(`) from an area of positive posterior

probability (e.g. via rejection ABC)

for ` = 1 to L do

propose model parameter θ? ∼ q(θ? | θ) and move type from k to k? ∼
q(k? | k)

sample uk ∼ pkk?(uk)

obtain (x?k? ,u
?
k?) = φkk?(xk,uk)

generate synthetic data D? from p(D? | x?k? ,θ?)
calculate:

α =
p (s(Y ) | D?)

p (s(Y ) | D)
×p(x

?
k? | k?,θ?)p(k? | θ?)π(θ?)

p(xk | k,θ)p(k | θ)π(θ)
×q(θ

? | θ)q(k? | k)pk?k(u?k?)

q(θ | θ?)q(k | k?)pkk?(uk)
|Jkk? |

with probability min{1, α} set (θ, k,xk, D)(`) ← (θ?, k?,x?k? , D
?),

otherwise return (θ, k,xk, D)(`) ← (θ, k,xk, D)(`−1)

end for

9
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Figure 2: Survey locations (n=78), represented by black circles, within the
boreal forest of northern Alberta. Sites were clustered into 8 groups according
to spatial location, represented by ovals.
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was hand-sorted to determine earthworm occurrence in six 0.0625 m2 (25 by 25

cm) quadrats with a 9.75m gap between quadrats on each transect. Transects

were 1-2 m into the forest from its edge, with alternate quadrats located ∼5 m

farther into the forest interior. We will hereafter refer to this as the spatial data145

Y .

To examine the spread rate within our study area, additional temporal data

on earthworm occurrence were collected along transects perpendicular to roads

where earthworms were already established (n = 26). These transects were 500

m long, with sampling quadrats every 50 m. Sampling occurred in 2006 [27]150

and again in 2012/13. We subtracted the distance of the farthest quadrat with

earthworms present in 2006 from the distance of the farthest occupied quadrat

in 2012/13 and divided by 6 years. We will refer to this as the temporal data

Z.

3.2. Model inference for earthworm invasions155

We now propose a model for the invasion of earthworms along one spatial

dimension over time. Our framework is applicable for any model with a latent

variable structure, requiring integration with respect to parameters of variable

dimension, as long as data can be obtained by forward-simulation from the

model.160

The 78 observation transects were grouped into eight categories based on

their spatial location on the landscape (Figure 2). Each of these groups con-

tained young, intermediate-aged, and old roads. Observations Ygr ∈ {0, 1}6 for

road r = 1, . . . , ng in group g = 1, . . . , 8 consist of binary error-free measure-

ments of presence or absence at the sampled 6 quadrats of the corresponding165

transect. For notational clarity, we omit dependence of the introduction loca-

tions on k and instead define xgr to be the value of xk associated with group g

and road r.

For every road in the study, we model earthworm introductions and spread

over the spatio-temporal horizon Hgr, defined by the largest possible extent of170

activity that can affect the observed data under our model, as shown in Figure

11
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Figure 3: Simulation horizon, Hgr, consisting of all spatio-temporal locations
where an introduction event will affect the data according to our spread model.
Two introductions and subsequent spread are shown shaded in grey. The data
generated by the illustrated invasion is m (xgr, ν, Tgr) = [1, 0, 0, 1, 1, 0].

3. We assume that the introduction rate is constant within each of the 8 selected

road groups per unit area of Hgr by modelling the k introductions according to

a homogeneous space-time Poisson process with rate λg × Area of Hgr ∈ R+,

measured in introductions/(m×yr) to account for different road ages.175

For a Tgr-year-old road, earthworms are assumed to spread linearly in time

from point-source locations, xgr, at an unknown constant rate, ν ∈ R+ (mea-

sured in m/yr), defining the geometry of the horizon Hgr = H(ν, Tgr) ∈ R2. If

earthworms spread far enough from xgr to overlap with a sampling quadrat, a

presence indicator is recorded as shown in Figure 3. We denote the resulting180

presence or absence of worms at the measurement locations by m(xgr, ν, Tgr).

Since we assume that presence or absence of worms in a quadrat is measured

without error, the data generating mechanism D = m(xgr, ν, Tgr) is condi-

tionally deterministic. For expositional clarity we use the point mass density,

δm(xgr,ν,Tgr), to highlight our use of a conditionally deterministic data generat-185
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ing mechanism.The resulting hierarchical model, illustrated in Figure 1b, is:

Ygr | xgr, ν ∼ δm(xgr,ν,Tgr),

xgr | kgr, ν ∼ Uniform
(
H(ν, Tgr)

)
,

kgr | λg, ν ∼ Poisson
(
λg ×Area of H(ν, Tgr)

)
,

Z | ν ∼ Normal(ν, σ2),

ν ∼ Normal(10, 102),

λg ∼ Exponential(1),

σ2 ∝ 1/σ2.

(4)

The prior on ν is based on related studies of earthworm spread rates [29] but has

an inflated variance to account for differences in soil characteristics and climate

between studies, while the prior on λg reflects the expectation that introduction

events should be relatively rare in the boreal forest.190

Under this simple scenario, the space-time horizon Hgr can be subdivided

into distinct regions whose shape depends on ν and road age, and the effect

on the data of an introduction event occurring within each region can be com-

puted exactly. Therefore, we can obtain p(Ygr | xgr, ν) in closed form using

a geometric and combinatorial argument, and subsequently compute the likeli-195

hood p(Ygr | λ, ν) through integration over these distinct regions, as shown in

the Supplementary Materials. In practice, such lengthy likelihood calculations

are not feasible for general practitioners and their complexity introduces the

potential for errors in implementation. However, forward simulation is often

fast and computationally accessible for practitioners. As the difficulties with200

exact implementation increase with all but the simplest models, we illustrate

transdimensional ABC as a practical alternative for this problem.

Our inference about introduction and spread is based on the marginal ABC

13



posterior density:

πABC
(
λ1, . . . , λ8, ν, σ

2 | Y1,1, . . . Y8,ng
, Z
)
∝ p

(
σ2 | ν, Z

)
p (ν | Z) (5)

8∏

g=1

ng∏

r=1


π (λg) p (s(Ygr) | Dgr)

∞∑

kgr=0

∫

H(ν,Tgr)

p (xgr | kgr, ν) p (kgr | λg, ν) dxgr


 .

We use the transdimensional ABC sampler described in Algorithm 3, which

is a variant of Algorithm 2, implemented with a birth-death proposal for the

number of introductions for each road. A birth-death proposal consists of either205

increasing by one (birth), decreasing by one (death), or maintaining unchanged

the number of introduction events with some probability. This sampling algo-

rithm mimics the data-generating process to produce synthetic data efficiently,

which leads to the fast mixing desired in an ABC algorithm. The birth-death

proposal is a special case of the general transdimensional proposal with Jacobian210

of the transformation given by |J | = 1, because φij is taken to be the identity

function of the auxiliary variables, which are sampled uniformly on Hgr.
Due to the efficiency of this algorithm, we were able to use an error tolerance

of ε = 0, with a point mass kernel distance metric to define the term,

p (s(Ygr) | Dgr) = I {s(Ygr) = s(Dgr)} .

This corresponds to accepting proposed parameters only when the resulting

summarized simulated data matches the observed simulated data exactly. For

the summary statistic, s, we chose a 2-dimensional vector consisting of: (i) the

number of consecutive occupied quadrats (strings of 1s in Ygr), and (ii) the total

number of occupied quadrats:

s(Ygr) =
[

number of strings of consecutive 1s , Σ6
i=1Y

(i)
gr

]>
.

Each consecutive sequence of occupied quadrats (strings of 1s) indicates that

at least one introduction must have occurred. The length of each consecutive

string of occupied quadrats can help distinguish between a recent introduction215
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(e.g. 1 or 2 consecutive occurrences) and one or more old introductions (e.g. 6

consecutive occurrences).

4. Inference Results and Simulation Study

4.1. Inference on introduction and spread rates

For this analysis we performed 250 000 iterations of Algorithm 3 and dis-220

carded the first 25 000 iterations as burn-in. A Geweke convergence diagnostic

was performed comparing the first 50 000 iterations (post burn-in) to the last

50 000 iterations for each of λg, g = 1, . . . , 8 and ν assuming a 4% autocor-

relation. The test statistic returned p-values in the range of 0.17 to 0.65 for

each parameter. Bivariate posterior density heat maps for the introduction and225

spread rates, ν and λg, are shown in Figure 4. The marginal posterior densities

of λg, g = 1, . . . , 8 can be classified into three categories as shown in the top

panel of Figure 5. Groups 4 and 2 have the lowest posterior median rates of

introduction (1.31× 10−5 and 2.69× 10−5 introductions/(m×yr) respectively).

Groups 1, 3, 5, and 8 have posterior median introduction rates in the mid-range230

(4.03× 10−5, 4.12× 10−5, 3.50× 10−5, and 4.09× 10−5 introductions/(m×yr)

respectively). Finally, groups 6 and 7 have the highest posterior median intro-

duction rates (6.53×10−5, 7.38×10−5 introductions/(m×yr) respectively). The

marginal posterior of ν is shown in the middle panel of Figure 5, where the pos-

terior median was estimated at 13.93 m/yr with a 95% credible interval between235

10.60 and 16.99 m/yr. The bottom panel of Figure 5 shows the marginal den-

sity of spatio-temporal introduction locations, πABC
(
x1,11 | Y1,1, . . . Y8,ng

, Z
)
,

from a 26 year old road in group 1. The associated presence or absence data,

Y1,11 = [1, 1, 0, 0, 1, 0], indicates an absence between two consecutive “split” ob-

served presences. The split between subsequent presence measurements induces240

the distinct marginal density of introductions over the spatio-temporal hori-

zon. This posterior non-uniformity suggests that employing any ABC sampling

scheme that generates all introduction events, xgr, from the uniform prior will

be extremely inefficient, and supports the use of a transdimensional approach.
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Algorithm 3 birth-death ABC

at step ` = 0, initialize (λ, ν, k,x)(`) from an area of positive posterior prob-

ability and generate D from m(x, ν, T )

for ` = 1 to L do

sample σ2(`) ∼ p(σ2 | ν(`−1)λ(`−1),x(`−1), k(`−1), Y, Z)

sample ν(`) ∼ p(ν | λ(`−1),x(`−1), k(`−1), σ2(`), Y, Z)

for g = 1 to 8 do

sample λ
(`)
g ∼ p(λ | ν(`),x(`−1)

g , k(`−1), σ2(`), Y, Z)

for r = 1 to ng do

sample x
(`)
gr from p(xgr | ν(`), λ(`)g , k

(`−1)
gr , σ2(`), Ygr, Z)

generate synthetic data Dgr from m(xgr, ν
(`), Tgr)

propose b ∼ Discrete Uniform{−1, 0, 1} and set k?gr = k
(`−1)
gr + b

if b = 1 then

sample x ∼ U
[
H(ν(`), Tgr)

]

x?gr = [x
(`)
gr ; x]

else if b = −1 then

generate d ∼ Uniform{1, . . . , k(`−1)gr }
x?gr = (x

(`)
gr )−d

else

x?gr = x
(`)
gr

end if

generate synthetic data D?
gr from m(x?gr, ν

(`), Tgr) and calculate:

α =
p (s(Y ) | D?)

p (s(Y ) | D)
× p(x?gr | k?gr)p(k?gr)
p(x

(`)
gr | k(`)gr )p(k

(`)
gr )
× q(k?gr | k(`−1)gr )

q(k
(`−1)
gr | k?gr)

if min{1, α} ≥ Uniform(0, 1) then

set (k
(`)
gr ,x

(`)
gr , D

(`)
gr )← (k?gr,x

?
gr, D

?
gr)

else

set (k
(`)
gr ,x

(`)
gr , D

(`)
gr )← (k

(`−1)
gr ,x

(`−1)
gr , D

(`−1)
gr )

end if

end for

end for

end for
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Figure 4: Marginal posterior densities of spread rate (vertical axis) and intro-
duction rate (horizontal axis) by group of roads. Red dots indicate the values
of (λ, ν) used for the predictive simulation described in Section 5.

4.2. Simulation Study245

A simulation study was conducted to examine the degree of posterior ap-

proximation resulting from summarizing the data by the statistic s, as well as

the appropriateness of the model for describing the invasion process. Although

these effects are difficult to distinguish from a simulation study, we are able to

attribute low coverage for two of the road groups studied to model specification.250

We considered several options for simulation study designs. Generating data

according to Model (4) given model parameters drawn from the full ABC poste-

rior, πABC
(
λ1, . . . , λ8, ν, k1,1, . . . , k8,ng

,x1,1, . . . ,x8,ng
| Y1,1, . . . , Y8,ng

, Z
)
, would

yield data summaries which exactly match the real observed data summaries.

Because this would amount to repeating the real data analysis multiple times, we255

deemed this strategy to be unsuitable. An alternative strategy consists of sam-

pling introductions and spread rates from the marginal ABC posterior (5) and

then independently sampling the number and locations of introductions from

πABC(k1,1, . . . , k8,ng
,x1,1, . . . ,x8,ng

| Y1,1, . . . , Y8,ng
, Z). This strategy was also
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Figure 5: Marginal posterior densities for the rate of introduction, λg (top).
Marginal posterior density for the worm spread rate, ν, (middle). Heatmap
showing the marginal posterior of spatio-temporal introductions for the 26 year
old road in group 1 (bottom).
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found unsuitable because of the downward bias on introduction rates resulting260

from the possibility of generating introduction events, xgr, outside of the hori-

zon, H(ν, Tgr). In order to avoid the above issues we generated data from Model

(4) using fixed λg, g = 1 . . . , 8 and ν chosen to be the posterior median values

of group specific introduction rates and overall spread rate, as reported in the

previous section.265

The data generating process and inference were repeated 150 times using

the transdimensional birth-death ABC method described in Algorithm 3 imple-

mented with 250 000 iterations, and 95% credible intervals were computed. A

Geweke diagnostic was performed component-wise for λg, g = 1, . . . , 8 and ν,

comparing the final 100 000 iterations with the initial 100 000 iterations after270

discarding 25 000 iterations for burn-in. In all cases convergence was attained.

Table 1 shows the median of posterior medians, median of posterior standard

deviations (however the skew in the posterior densities implies caution should

be used when interpreting this value), and the proportion of times that the 95%

credible intervals covered the introduction rate used to generate the data. The275

95% credible regions for the simulated datasets covered the true spread rate

100% of the time, and covered the true group specific introduction rates with

reasonable frequency for all road groups, except for road groups 6 and 7.

The large values of the spread rates λ6 and λ7 that were chosen for the simu-

lation study make multiple introduction events likely, especially for older roads.280

However, uniform sampling from p(xgr | kgr, ν) over H(ν, Tgr) given kgr ≥ 1

introductions, generates presence in all quadrats with high probability. This is

in contrast to the sets of split consecutive presence measurements separated by

absences which were observed in the field data. Whereas conditioning on multi-

ple consecutive presence measurements in the field data leads to high estimated285

introduction rates and marginal posterior densities of introduction events such

as that illustrated in Figure 5, a systematic lack of such multiple consecutive

presence measurements in the simulated data leads to an underestimate of the

number and rate of introductions. From this we conclude that for groups 6 and

7, the model assumption that introductions occur according to a homogeneous290
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ν λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

True value 14.216 4.03 2.69 4.12 1.31 3.5 6.53 7.38 4.09
×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

Median of
posterior 15.53 3.14 2.34 3.05 1.87 2.50 3.20 3.90 2.45
medians ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

Median of
posterior 1.23 1.73 2.00 1.52 1.23 1.24 1.42 1.51 1.15
standard ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5 ×10−5

deviations
Percent
of Highest
Posterior 100 100 100 90 100 89.33 60 60.67 89.33
Intervals
containing
True value

Table 1: Simulation study results including the median of posterior medians
and coverage probability of the 95% highest posterior credible intervals.

space-time Poisson process may not be reasonable. A more likely scenario for

these two groups might consist of increased frequency of introductions in recent

years leading to multiple consecutive separated strings of presences. Another

possible culprit may be the assumption of a constant spread rate, which in re-

ality may be hindered by obstacles to spread along roads. These possibilities295

present interesting subjects for further exploration and study of introduction

and spread patterns for these individual regions.

5. Discussion and Prediction

The highest estimated introduction rates were for groups 6 and 7, which are

located in the southwestern part of Alberta’s boreal forest, near the Peace River300

Region. In this area, human settlement and agricultural conversion occurred

earlier and more extensively than in the rest of northern Alberta (Schneider

2002). The higher earthworm introduction rates may thus be related to the

greater intensity and longer history of human activity. However, it is not clear

why groups 2 and 4 had substantially lower introduction rates than other loca-305
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tions, as levels of anthropogenic disturbance are relatively similar to levels for

groups 1, 3, 5, and 8. More intensive sampling at sites along a gradient of human

activity would be needed to examine effects of anthropogenic disturbances on

spatial variability of earthworm introduction rates. In all cases, the introduction

rates estimated using our approach were lower than previously estimated from310

the same dataset [27]. The analysis in [27] yielded an estimated introduction

rate of 1.03×10−3 introductions/(m×yr), under the assumption of no active

dispersal between sampling sites and a spread rate of 10 m/yr as obtained from

literature from other regions. Attributing all occurrences to passive dispersal is

likely to have produced an over-estimate of the introduction rate in [27].315

To illustrate how the introduction and spread rate estimates produced by

this analysis can be used to model invasive species distributions, we modelled

earthworm distribution within the Alberta Pacific Forest Industries Forest Man-

agement Area (Al-Pac FMA), a 59 054 km2 area in north-eastern Alberta.

We obtained road network and Alberta Vegetation Inventory (AVI) data from320

Alberta-Pacific Forest Industries and additional data on road ages from the

Mistakiis Institute. In ArcGIS 10.1, we generated points every 10 m along

the road network, randomly invaded these points using the introduction rate

from our analysis, and created buffers around invaded points using the spread

rate, as described in [27]. We produced a map of the predicted areal extent325

of earthworms for 2006 (the year for which we were able to obtain road age

data), which was intersected with a GIS layer containing forest habitat suitable

for invasion. All forest types were considered to be suitable except stands in

which black spruce Picea mariana or tamarack Larix laricina were dominant,

as such forests have highly acidic soils and are thus less likely to be colonized by330

earthworms [30, 31]. Because we did not have a large number of sites sampled

representatively across the Al-Pac FMA, we created the maps in Figure 6 based

on three sets of introduction and spread rates, corresponding to high, middle,

and low estimates. The extreme values (frequent introduction with fast spread

vs rare introduction with slow spread) were used to heuristically illustrate the335

magnitude of the prediction uncertainty for the areal extent of earthworms in
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Figure 6: Enlarged area within the Al-Pac FMA simulation region (left). Pre-
dicted areal extent of earthworms for 2006 (right) are indicated in black under
three different combinations of introduction and spread rate: (A) 1.5915×10−6

introductions per meter of road per year and 11.596 m/yr; and (B) 3.7011×10−5

introductions/(m×yr) and 16.655 m/yr; (C) 1.03× 10−3 introductions/(m×yr)
and 10 m/yr, as reported in [27].

2006, while the middle values were used to illustrate predictions of the extent

after 50 years following data collection. Since the Al-Pac FMA is located be-

tween groups 1-4, a low value of (λ, ν) was selected from the lower end of the

bivariate posterior distributions for groups 2 and 4, while a high value of (λ, ν)340

was selected from the higher end of the distributions for groups 1 and 3. The

middle value was taken to be the median of the four group posteriors. All three

points are shown in Figure 4.

The total area of suitable habitat within the Al-Pac FMA in 2006 was 24

449.3 km2, with a total road length of 22 068 km. Using an introduction rate of345

1.5915×10−6 introductions per meter of road per year and a spread rate of 11.596

m/yr, our model predicts that 8.02 km2 (.03%) of suitable habitat was invaded
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Figure 7: Al-Pac FMA simulation region. Predicted areal extent of earthworms
for 2006 (above) and 2056 (below) are indicated in black under an introduction
rate of 4.0×10−5 introductions per meter of road per year and a spread rate of
14.0932 m/yr. The area invaded is 691.17 km2 (2.83% of suitable habitat) in
2006 and 9404.36 km2 (38.46% of suitable habitat) in 2056.
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by 2006. When using the higher values of 3.7011× 10−5 introductions/(m×yr)

and 16.655 m/yr, the model predicts that 905.65km2 was invaded (3.70% of

total suitable habitat). Both maps are shown in Figure 6. In comparison,350

Cameron and Bayne (2009) predicted 9.09% of the total area within the Al-Pac

FMA would be invaded by earthworms based on their higher estimated rate

of introduction of 1.03×10−3 introductions/(m×yr), and a fixed, non-estimated

spread rate of 10 m/yr. However, our current approach to estimating the spread

and introduction rates accounts for active dispersal and should produce more355

realistic estimates.

The increase in efficiency of the proposed transdimensional ABC algorithm

over traditional fixed-dimensional formulations such as Metropolis-Hastings ABC

is illustrated in Figure 1. A heat map of the approximate marginal density of

introduction locations for one particular road is shown. Because the location360

vector changes dimension with the number of introductions, a fixed-dimensional

ABC algorithm requires a forward-simulation step (rejection ABC) for the con-

ditional simulation of this parameter. Instead, a transdimensional kernel allows

us to make use of dependent proposals, thereby reducing Monte Carlo error

when the areas of prior and posterior probabilities do not match. In this case,365

the prior on introduction locations is uniform over the event horizon, but the

regions of high posterior density are concentrated in a very thin band around

the edges of the horizon, rendering conditional simulation extremely inefficient.

6. Conclusion

Invasions frequently occur through a combination of long-distance jump dis-370

persal events and diffusive spread around invaded sites, resulting in likelihoods

that are often intractable. ABC methods provide an approximate inferential

framework when the likelihood of the data cannot be evaluated. This paper

develops a new efficient ABC sampler for a large class of models with infeasible

or fully intractable likelihoods containing variable-dimensional integrals over a375

set of latent variables.

24



This class of models is used in a variety of applications. Spatio-temporal

dynamic systems often combine stochastic generating mechanisms with complex

time-evolution models, so that evaluation of the likelihood requires integration

over a variable number of latent point sources (e.g., [32]). Kingman’s coalescent380

models [33] in genetics are another example where observed data is generated

via a process that depends on the number and location of latent branching

points defining a genealogical tree. Likelihoods of the genetic data are typically

unavailable and consist of an integral over the space of all branches (e.g., [34]).

Latent variable models with intractable likelihoods pose a challenge to exist-385

ing ABC-MCMC samplers defined on fixed-dimensional probability spaces. In

contrast, we were able to quickly obtain 250 000 MCMC samples per group of

roads under each of the conditional values of ν using the more efficient trans-

dimensional ABC algorithm proposed in this paper, even when requiring exact

matches between summaries (ε = 0).390

The main structural limitation of our methodology is that the resulting in-

ference is approximate, controlled by the degree of sufficiency of our selected

summary statistics and the chosen error tolerance. However, this limitation is

inherent in the problem of inferring parameters under intractable likelihoods.

All simulation-based methods suffer from the problem of dimensionality, pre-395

cluding exact likelihood-free inference. Compared to established ABC methods,

the sampling efficiency from our methodology allows strict error tolerances to

be imposed, thereby improving the approximation. The transdimensional ABC

approach proposed in this paper can be applied to problems where the likelihood

consists of intractable variable-dimension integrals.400
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Appendix A.

Appendix A.1. Transdimensional ABC algorithm515

Theorem Appendix A.1. The Markov chain generated via Algorithm 2 has

invariant distribution:

πABC (θ | Y ) ∝ π (θ)
∞∑

k=0

∫

Y

∫

Rnk

p (D | xk,θ) p (xk | k,θ) p (k | θ) dxk p (s(Y ) | D) dD.

(A.1)

Proof. Define the augmented spaces Mk = Θ × k × Rnk × Rmk × Y × Y, for

k ∈ K, and the variable-dimensional parameter spaceM = ∪k∈KMk. Our goal

is to construct a Markov chain with invariant distribution,

π(dz) = π(z)dz ∝ p (s(Y ) | Dk) p (Dk | xk,θ) p (xk | k,θ) p (k | θ) π(θ) π(uk)dλ, z ∈Mk, k ∈ K.

on the measurable space
(
M, σ(M)

)
, where σ(M) is the sigma algebra gener-

ated by subsets of M and λ is the Lebesgue measure on σ(M).

We use an argument similar to Green (1995) to define transitions on this

parameter space. First, we restrict attention to moves between any two model

spaces Mi and Mj . Consider elements v = (θi, i,xi,ui, Di) ∈ Mi and w =

(θj , j,xj ,uj , Dj) ∈ Mj , where xk ∈ Rnk , uk ∈ Rmk , k = i, j. The constraint

mi + ni = mj + nj ensures that the dimension of v and w match. Next, define

the following proposal distributions for a move from v to w and back:

Q (v,dw) = q(θj | θi) q(j | i) q(xj ,uj | xi,ui) p(Dj | xj) dλ,

Q (w,dv) = q(θi | θj) q(i | j) q(xi,ui | xj ,uj) p(Di | xi) dλ,

where λ is the Lebesque measure on B = σ(Mk), k = 1, 2. Now let α :M×M→
[0, 1] be an acceptance probability, and define δa to be the Dirac delta measure
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on B centered at a. Then, the corresponding transition kernels are:

P (v,dw) = α (v, w)Q (v,dw) + δv (dw)

∫

Mj

[1− α (v, w)]Q (v,dm) ,

P (w,dv) = α (w, v)Q (w,dv) + δw (dv)

∫

Mi

[1− α (w, v)]Q (w,dm) ,

on the measurable space (Mi ×Mj ,B × B), and (Mj ×Mi,B × B), respec-

tively. We assume that the Markov chain associated with this transition kernel

is aperiodic and irreducible (true if proposal distribution Q (v,dw) generates an

aperiodic and irreducible chain). The detailed balance condition,

π (dv)P (v,dw) = π (dw)P (w,dv) ,

is satisfied iff for A,B ∈ B,

π (dv)Q (v,dw)α (v, w) = π (dw)Q (w,dv)α (w, v) , v ∈ A, w ∈ B.

Next, define a diffeomorphic transformation, φij : Rni ×Rmi → Rnj ×Rmj .

Using Lebesgue measure λ on (Mi ×Mj ,B × B) define the new measure,

µ (A×B) ≡ λ
[
{v ∈ A ∩Mi , (θ, j, φij(xi,ui), D) ∈ B ∩Mj}

∪ {v ∈ A ∩Mj , (θ, i, φji(xj ,uj), D) ∈ B ∩Mi}
]

= λ
[
{v ∈ A ∩Mi , (θ, j, φij(xi,ui), D) ∈ B ∩Mj}

+ {v ∈ A ∩Mj , (θ, i, φji(xj ,uj), D) ∈ B ∩Mi}
]

= λ
[
{w ∈ B ∩Mj , (θ, i, φji(xj ,uj), D) ∈ A ∩Mi}

]

+ λ
[
{w ∈ B ∩Mi , (θ, j, φij(xi,ui), D) ∈ A ∩Mj}

]

= µ (B ×A)

which is symmetric on (Mj ×Mi,B × B). Then π (dv)Q (v,dw) and π (dw)Q (w,dv)

31



have densities with respect to µ. These are given by,

f(v, w) = π (dv) p(Dj | xj)q(θj | θi)q(j | i)gij(uj | ui)|Jij |,

f(w, v) = π (dw) p(Di | xi)q(θi | θj)q(i | j)gji(ui | uj),

respectively. Then reversibility across all moves is guaranteed [23, 35] if α(v, w) =

min{1, f(v, w)/f(w, v)} for all i, j ∈ K, and so detailed balance is satisfied under

α (v, w) = min

{
1,
p (s(Y ) | Dj)

p (s(Y ) | Di)

p(xj | j)p(j | θj)π(θj)

p(xi | i)p(i | θi)π(θi)

q(θj | θi)q(j | i)gij(uj | ui)
q(θi | θj)q(i | j)gji(ui | uj)|Jij |

}
,

for all move types. As Algorithm 2 does not return the values of the auxiliary

vectors, uk, the resulting marginal invariant distribution is (A.1).
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1. Projected spread

Figure 1 shows predicted areal extent of earthworm presence for 2006 (the

year of data collection) and after a further 50 years, under the average intro-

duction and spread rate obtained over all groups in our analysis for an enlarged

area within the Al-Pac FMA simulation region.
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Figure 1: Enlarged area within the Al-Pac FMA simulation region (left). Pre-
dicted areal extent of earthworms for 2006 (right, above) and 2056 (right, below)
are indicated in black under an introduction rate of 4.0×10−5 introductions per
meter of road per year and a spread rate of 14.0932 m/yr.
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2. Likelihood calculations

Exact inference on introduction and spread requires a closed-form represen-

tation of p (Yrg | xrg, ν, Trg) in order to compute the data likelihood,

p (Yrg | λg, ν, Trg) = (1)

∞∑

krg=0

∫

H(ν,Trg)

p (Yrg | xrg, ν, Trg) p (xrg | krg, ν, Trg) p (krg | λg, ν) dxrg,

For our simple model of earthworm introduction and spread, this likelihood can

indeed be obtained analytically via a lengthly geometric and combinatorial com-

putation. Our motivating example serves to highlight the difficulty of obtaining

an analogous closed form for more complex models, e.g. in the case of nonlinear

time-dependent spread, or the presence of obstacles space and over time.

Figure 2 shows a partition of the space-time horizon Hgr, obtained by iden-

tifying and grouping possible introduction locations by their effect on the data.

The shapes of the partitions depend on the model, the spread rate ν, and the

road age Trg. Note that a more complicated spread mechanism or horizon to-

pography will necessarily change the shape of these regions and their effect on

the data, making the combinatorial argument presented below invalid for the

general case.

Each case considered below corresponds to a possible combination of in-

troductions that could have led to the observed data under our deterministic

spread model. For example, we can generate the data Yrg = (0, 1, 1, 1, 1, 1) with

at least one introduction occurring in each of regions U and R2 with any number

of remaining introductions in D1, D2, D3, P1, P2, P3, P4, S1, S2. Alternatively we

can generate the same data with at least one introduction occurring in each of

R2, P1, P2, P3, P4. In other words, we can generate the data by any one of a

large number of mutually exclusive ways.

The following subsections are grouped by equal posterior probability. Denote

by I the set {1, . . . , k}. Let the notation x
(j)
k ∈ S, j ∈ {1, . . . , k} describes

the case when the jth introduction occurs within the spatio-temporal region

3



{0,1} {0,1} {0,1} {0,1} {0,1} {0,1} (0,T
max

) (50.25+2T
max

c,T
max

) 

(0,0) (50.25+2T
max

c,0) 

R1 

S1 S2 

U 

Q1

  R 

P1

  R 

M1

  R 

N1

  R 

O1

  R 

W 

O2

  R 

N2

  R 

M2

  R 

Q2

  R 

R2 

P2

  R 

P3

  R 

P4

  R 

D1

  R 

D2

  R 

D3

  R 

Figure 2: Spatio-temporal horizon partitioned by grouping possible introduction
locations by their effect on the simulated data.

S ⊂ Hgr.

2.1. 000000

p (000000 | xk, ν, T ) = I{k = 0}

2.2. 100000,000001

p (100000 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ R1}

p (000001 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ R2}

2.3. 010000,001000,000100,000010

p (010000 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ P1}

p (001000 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ P2}

p (000100 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ P3}
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p (000010 | xk, ν, T ) = I{k > 0; ∀i ∈ I, x(i) ∈ P4}

2.4. 010100,010010,001010

p (010100 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3;

∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P3}

p (010010 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P4}

p (001010 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ P2 ∪ P4}

2.5. 100001

p (100001 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ R1 ∪R2}

2.6. 101001,100101

p (101001 | xk, ν, T )

= I{k > 2;∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ R2, x

(j3) ∈ P3;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ R1 ∪R2 ∪ P3}

p (100101 | xk, ν, T )

= I{k > 2;∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ R2, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ R1 ∪R2 ∪ P4}
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2.7. 101000,100100,100010,000101,0001001,010001

p (101000 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ P2;

∀i 6= j1, j2 ∈ I, x(i) ∈ R1 ∪ P2}

p (100100 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ P3;

∀i 6= j1, j2 ∈ I, x(i) ∈ R1 ∪ P3}

p (100010 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ R1 ∪ P4}

p (010001 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R2, x
(j2) ∈ P1;

∀i 6= j1, j2 ∈ I, x(i) ∈ R2 ∪ P1}

p (001001 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R2, x
(j2) ∈ P2;

∀i 6= j1, j2 ∈ I, x(i) ∈ R2 ∪ P2}

p (000101 | xk, ν, T ) = I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R2, x
(j2) ∈ P3;

∀i 6= j1, j2 ∈ I, x(i) ∈ R2 ∪ P3}

2.8. 101010,010101

p (101010 | xk, ν, T )

= I{k > 2;∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ P3, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ R1 ∪ P3 ∪ P4}

p (010101 | xk, ν, T )

= I{k > 2;∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪R2}
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2.9. 110000,000011

p (110000 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ Q1; ∀i 6= j1 ∈ I, x(i) ∈ P1 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P1, x
(j2) ∈ R1; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪R1}

p (000011 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ Q2; ∀i 6= j1 ∈ I, x(i) ∈ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P4, x
(j2) ∈ R2; ∀i 6= j1, j2 ∈ I, x(i) ∈ P4 ∪R2}

2.10. 110001,100011

p (110001 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ R2; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ R1, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪R1 ∪R2}

p (100011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ R1; ∀i 6= j1, j2 ∈ I, x(i) ∈ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P4, x
(j2) ∈ R1, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P4 ∪R1 ∪R2}

2.11. 110010,110100,010011,001011

p (110010 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ P4; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ R1, x

(j3) ∈ P4; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P4 ∪R1}

p (010011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ P1; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P4, x
(j2) ∈ R1, x

(j3) ∈ P1; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P4 ∪R2}
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p (010011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ P1; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P4, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P4 ∪R2}

p (001011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ P2; ∀i 6= j1, j2 ∈ I, x(i) ∈ P2 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P4, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P2 ∪ P4 ∪R2}

2.12. 011000,001100,000110

p (011000 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ D1; ∀i 6= j1 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2; ∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P2}

p (001100 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ D2; ∀i 6= j1 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3; ∀i 6= j1, j2 ∈ I, x(i) ∈ P2 ∪ P3}

p (000110 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ D3; ∀i 6= j1 ∈ I, x(i) ∈ D3 ∪ P3 ∪ P4}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4; ∀i 6= j1, j2 ∈ I, x(i) ∈ P3 ∪ P4}

2.13. 101100,100110,001101,011001

p (101100 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ R1; ∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ R1; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P2 ∪ P3 ∪R1}

p (100110 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ R1; ∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪ P3 ∪ P4 ∪R1}
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+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4, x

(j3) ∈ R1; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P3 ∪ P4 ∪R1}

p (001101 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ R2; ∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P2 ∪ P3 ∪R2}

p (011001 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ R2; ∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ R2; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪R2}

2.14. 011010,010110

p (011010 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4; ∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P4; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4}

p (010110 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1; ∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P1, x

(j3) ∈ P4; ∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4}

2.15. 011011,110110

p (011011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪Q2 ∪R2}
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+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P4, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪R2}

p (110110 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P3 ∪ P4 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x(j2) ∈ P3, x
(j3) ∈ P4, x

(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4 ∪R1}

2.16. 110101,101011

p (110101 | xk, ν, T )

= I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ Q1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪Q1 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P3 ∪R1 ∪R2}

p (101011 | xk, ν, T )

= I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j1) ∈ Q2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P2 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P4, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P2 ∪ P4 ∪R1 ∪R2}

10



2.17. 101101

p (101101 | xk, ν, T )

= I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ R1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪R1 ∪R3}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P2 ∪ P3 ∪R1 ∪R2}

2.18. 011100,001110

p (011100 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ S1;

∀i 6= j1 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪ P1 ∪ P2 ∪ P3}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3}

p (001110 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ S2;

∀i 6= j1 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3;
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∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P3 ∪ P3 ∪ P4}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P2 ∪ P3 ∪ P4}

2.19. 011101,101110

p (011101 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ S1, x
(j2) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P1 ∪ P2 ∪ P3 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3 ∪R2}

p (101110 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ S2, x
(j2) ∈ R1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3, x

(j3) ∈ R1;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P3 ∪ P3 ∪ P4 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P2 ∪ P3 ∪ P4 ∪R1}

2.20. 111000,000111

p (111000 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈M1;

∀i 6= j1 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P2, x
(j2) ∈ Q1;

∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P2 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ R1;

∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P2 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪R1}

p (000111 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈M2;

∀i 6= j1 ∈ I, x(i) ∈ D3 ∪M2 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q2;
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∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P3, x
(j2) ∈ Q2;

∀i 6= j1, j2 ∈ I, x(i) ∈ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ P3 ∪ P4 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P3 ∪ P4 ∪R2}

2.21. 111010,010111

p (111010 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P4, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P4, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪R1}

p (010111 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ P1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪M2 ∪ P1 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P3 ∪ P4 ∪Q2 ∪R2}
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+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P3 ∪ P4 ∪R2}

2.22. 111001,100111

p (111001 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ Q1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ R1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪R1 ∪R2}

p (100111 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ R1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪M2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ Q2, x

(j3) ∈ R1;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ R1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P3 ∪ P4 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P3 ∪ P4 ∪R1 ∪R2}

2.23. 111011,110111

p (111011 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ Q2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ P4, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ Q1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ Q1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P4, x

(j3) ∈ Q1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P4 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ Q2, x
(j4) ∈ R1;
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∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2,

x(j3) ∈ P4, x
(j4) ∈ R1, x

(j5) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P4 ∪R1 ∪R2}

p (110111 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ Q1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪M2 ∪ P1 ∪ P3 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ P1, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ {D3 ∪M2 ∪ P1 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ {D3 ∪ P1 ∪ P3 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ Q2, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ {D3 ∪ P1 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P3, x
(j2) ∈ Q1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ {P1 ∪ P3 ∪ P4 ∪Q1 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3, x

(j3) ∈ Q2, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ {P1 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ {D3 ∪ P1 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ {D3 ∪ P1 ∪ P3 ∪ P4 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P3, x
(j2) ∈ P4, x

(j3) ∈ Q1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ {P1 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪R2}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P3,

x(j3) ∈ P4, x
(j4) ∈ R1, x

(j5) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ {P1 ∪ P3 ∪ P4 ∪R1 ∪R2}
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2.24. 011110

p (011110 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ U ;

∀i 6= j1 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S1 ∪ S2 ∪ U}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ S1, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S1 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P4, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ P1, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x(j2) ∈ D3;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3, x

(j3) ∈ P1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ P2;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3, x
(j4) ∈ P4;

∀i 6= j1, j3, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3 ∪ P4}

2.25. 111100,001111

p (111100 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ k1;

∀i 6= j1 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈M1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ P3;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ Q1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ R1;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P1 ∪ P2 ∪ P3 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3 ∪R1}

p (001111 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ k2;

∀i 6= j1 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ k2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈M2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ P2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D2, x
(j2) ∈ Q2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R2, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4 ∪R2}

20



+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪ P4 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ P2 ∪ P3 ∪ P4 ∪R2}

2.26. 111101,101111

p (111101 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k1, x(j1) ∈ R2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ R2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈M1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ P3, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ R2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ Q1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ Q1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪Q1 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ R2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪R2 ∪ S1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪R2}
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+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D2 ∪ P1 ∪ P2 ∪ P3 ∪R1 ∪R2}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3, x
(j4) ∈ R1, x

(j5) ∈ R2;

∀i 6= j1, j2, j3, j4, j5 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3 ∪R1 ∪R2}

p (101111 | xk, ν, T )

= I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k2, x(j2) ∈ R1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ k2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ R1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈M2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ P2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪M2 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ R1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ Q2, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ Q2, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4 ∪Q2 ∪R1 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ R2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪R2 ∪ S2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D2 ∪D3 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ R1, x
(j4) ∈ R2;
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∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4, x

(j3) ∈ R1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D2 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪R2}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P2, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ R1, x

(j5) ∈ R2;

∀i 6= j1, j2, j3, j4, j5 ∈ I, x(i) ∈ P2 ∪ P3 ∪ P4 ∪R1 ∪R2}

2.27. 111110,011111

p (111110 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ O1;

∀i 6= j1 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ k1 ∪O1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2 ∪ U}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k1, x(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2 ∪ U}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k1, x(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k1, x(j2) ∈ D3;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k1, x(j2) ∈ P4;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ k1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2 ∪ U}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ S1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈M1, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ P4, x

(j3) ∈ S1;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M1, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D3, x
(j2) ∈M1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈M1, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M1, x
(j2) ∈ P3, x

(j3) ∈ P4;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪M1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2 ∪ U}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ S1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ Q1, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P4, x
(j2) ∈ Q1, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q1, x
(j2) ∈ S2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1 ∪ S2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ D3, x
(j4) ∈ Q1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D3, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D3, x

(j3) ∈ Q1;
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∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ Q1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ Q1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪Q1 ∪R1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R1, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S1 ∪ S2 ∪ U}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ S1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S1 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ R1, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P4, x
(j2) ∈ R1, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R1, x
(j2) ∈ P1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D3, x

(j3) ∈ R1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ D2, x

(j3) ∈ P4, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪D2 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ P4, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ P4, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D2 ∪D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P1, x

(j3) ∈ P2, x
(j4) ∈ R1;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P1, x
(j2) ∈ P2, x

(j3) ∈ P3, x
(j4) ∈ P4, x

(j5) ∈ R1;
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∀i 6= j1, j2, j3, j4, j5 ∈ I, x(i) ∈ P1 ∪ P2 ∪ P3 ∪ P4 ∪R1}

p (011111 | xk, ν, T )

= I{k > 0; ∃ j1 ∈ I : x(j1) ∈ O2;

∀i 6= j1 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ k2 ∪O2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1 ∪ U}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k2, x(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ k2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1 ∪ U}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k2, x(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ k2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k2, x(j2) ∈ D1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ k2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ k2, x(j2) ∈ P1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪M2 ∪ k2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1 ∪ U}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ S2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈M2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ P1, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈M2, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S1}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ D1, x
(j2) ∈M2;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈M2, x

(j3) ∈ P1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}
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+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈M2, x
(j2) ∈ P2, x

(j3) ∈ P1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪M2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1 ∪ U}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ S2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ Q2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ Q2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ Q2, x
(j2) ∈ S1;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2 ∪ S1}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ D2, x

(j3) ∈ D1, x
(j4) ∈ Q2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ D1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ D1, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ P1, x
(j4) ∈ Q2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P3, x

(j3) ∈ Q2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪Q2 ∪R2}

+ I{k > 1; ∃ j1, j2 ∈ I : x(j1) ∈ R2, x
(j2) ∈ U ;

∀i 6= j1, j2 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2 ∪ S2 ∪ S1 ∪ U}
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+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R2, x
(j2) ∈ S2, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2 ∪ S2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D1, x
(j2) ∈ R2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ P1, x
(j2) ∈ R2, x

(j3) ∈ S2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2 ∪ S2}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ R2, x
(j2) ∈ P4, x

(j3) ∈ S1;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2 ∪ S1}

+ I{k > 2; ∃ j1, j2, j3 ∈ I : x(j1) ∈ D3, x
(j2) ∈ D1, x

(j3) ∈ R2;

∀i 6= j1, j2, j3 ∈ I, x(i) ∈ D3 ∪D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ D2, x

(j3) ∈ P1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪D2 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D3, x
(j2) ∈ P2, x

(j3) ∈ P1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D3 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D2, x
(j2) ∈ P4, x

(j3) ∈ P1, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D2 ∪D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

+ I{k > 3; ∃ j1, j2, j3, j4 ∈ I : x(j1) ∈ D1, x
(j2) ∈ P4, x

(j3) ∈ P3, x
(j4) ∈ R2;

∀i 6= j1, j2, j3, j4 ∈ I, x(i) ∈ D1 ∪ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

+ I{k > 4; ∃ j1, j2, j3, j4, j5 ∈ I : x(j1) ∈ P4, x
(j2) ∈ P3, x

(j3) ∈ P2, x
(j4) ∈ P1, x

(j5) ∈ R2;

∀i 6= j1, j2, j3, j4, j5 ∈ I, x(i) ∈ P4 ∪ P3 ∪ P2 ∪ P1 ∪R2}

2.28. 111111

All the combinations of introductions that have not been considered above

will generate the data (111111).

This example illustrates the difficulty in obtaining a closed-form expression of

the likelihood even for our simple introduction and spread model. It is important

to note that the above strategy for computing the likelihood is a special case

28



and may not be applicable under different model assumptions.

3. Data

The following table contains measurements of presence of worms or cocoons,

Y
(i)
gr , for quadrat 1 ≤ i ≤ 6 along road 1 ≤ r ≤ ng in group 1 ≤ g ≤ 8, and

associated road age Tgr. This data is described in the main body of the paper.

group (g) transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

1 1 1 19 0
1 1 2 19 0
1 1 3 19 0
1 1 4 19 0
1 1 5 19 0
1 1 6 19 0
1 2 1 26 0
1 2 2 26 0
1 2 3 26 0
1 2 4 26 0
1 2 5 26 0
1 2 6 26 0
1 3 1 22 0
1 3 2 22 0
1 3 3 22 0
1 3 4 22 0
1 3 5 22 0
1 3 6 22 0
1 4 1 21 0
1 4 2 21 0
1 4 3 21 0
1 4 4 21 0
1 4 5 21 0
1 4 6 21 0
1 5 1 13 0
1 5 2 13 0
1 5 3 13 0
1 5 4 13 0
1 5 5 13 0
1 5 6 13 0
1 6 1 32 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

1 6 2 32 0
1 6 3 32 0
1 6 4 32 0
1 6 5 32 0
1 6 6 32 0
1 7 1 28 1
1 7 2 28 1
1 7 3 28 1
1 7 4 28 1
1 7 5 28 1
1 7 6 28 1
1 8 1 19 0
1 8 2 19 0
1 8 3 19 0
1 8 4 19 0
1 8 5 19 0
1 8 6 19 0
1 9 1 13 0
1 9 2 13 0
1 9 3 13 0
1 9 4 13 0
1 9 5 13 0
1 9 6 13 0
1 10 1 47 1
1 10 2 47 1
1 10 3 47 1
1 10 4 47 1
1 10 5 47 1
1 10 6 47 1
1 11 1 26 1
1 11 2 26 1
1 11 3 26 0
1 11 4 26 0
1 11 5 26 1
1 11 6 26 0
2 1 1 22 0
2 1 2 22 0
2 1 3 22 0
2 1 4 22 0
2 1 5 22 0
2 1 6 22 0
2 2 1 14 0
2 2 2 14 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

2 2 3 14 0
2 2 4 14 0
2 2 5 14 0
2 2 6 14 0
2 3 1 29 0
2 3 2 29 0
2 3 3 29 0
2 3 4 29 0
2 3 5 29 0
2 3 6 29 0
2 4 1 46 0
2 4 2 46 0
2 4 3 46 0
2 4 4 46 0
2 4 5 46 0
2 4 6 46 0
2 5 1 7 0
2 5 2 7 0
2 5 3 7 0
2 5 4 7 0
2 5 5 7 0
2 5 6 7 0
2 6 1 24 1
2 6 2 24 1
2 6 3 24 1
2 6 4 24 1
2 6 5 24 1
2 6 6 24 1
3 1 1 17 1
3 1 2 17 1
3 1 3 17 1
3 1 4 17 1
3 1 5 17 1
3 1 6 17 1
3 2 1 29 1
3 2 2 29 0
3 2 3 29 0
3 2 4 29 0
3 2 5 29 0
3 2 6 29 0
3 3 1 20 0
3 3 2 20 0
3 3 3 20 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

3 3 4 20 0
3 3 5 20 0
3 3 6 20 0
3 4 1 40 1
3 4 2 40 1
3 4 3 40 1
3 4 4 40 1
3 4 5 40 1
3 4 6 40 1
3 5 1 30 0
3 5 2 30 0
3 5 3 30 0
3 5 4 30 0
3 5 5 30 0
3 5 6 30 0
3 6 1 37 1
3 6 2 37 1
3 6 3 37 1
3 6 4 37 1
3 6 5 37 1
3 6 6 37 1
3 7 1 52 1
3 7 2 52 1
3 7 3 52 1
3 7 4 52 1
3 7 5 52 1
3 7 6 52 1
3 8 1 29 0
3 8 2 29 0
3 8 3 29 0
3 8 4 29 0
3 8 5 29 0
3 8 6 29 0
4 2 1 25 0
4 2 2 25 0
4 2 3 25 0
4 2 4 25 0
4 2 5 25 0
4 2 6 25 0
4 3 1 12 0
4 3 2 12 0
4 3 3 12 0
4 3 4 12 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

4 3 5 12 0
4 3 6 12 0
4 4 1 49 0
4 4 2 49 0
4 4 3 49 0
4 4 4 49 0
4 4 5 49 0
4 4 6 49 0
4 1 1 23 0
4 1 2 23 0
4 1 3 23 0
4 1 4 23 0
4 1 5 23 0
4 1 6 23 0
4 5 1 32 0
4 5 2 32 0
4 5 3 32 0
4 5 4 32 0
4 5 5 32 0
4 5 6 32 0
4 6 1 12 0
4 6 2 12 0
4 6 3 12 0
4 6 4 12 0
4 6 5 12 0
4 6 6 12 0
4 7 1 6 0
4 7 2 6 0
4 7 3 6 0
4 7 4 6 0
4 7 5 6 0
4 7 6 6 0
4 8 1 49 1
4 8 2 49 1
4 8 3 49 1
4 8 4 49 0
4 8 5 49 0
4 8 6 49 0
4 9 1 32 0
4 9 2 32 0
4 9 3 32 0
4 9 4 32 0
4 9 5 32 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

4 9 6 32 0
5 1 1 47 1
5 1 2 47 1
5 1 3 47 1
5 1 4 47 1
5 1 5 47 1
5 1 6 47 1
5 2 1 23 0
5 2 2 23 0
5 2 3 23 0
5 2 4 23 0
5 2 5 23 0
5 2 6 23 0
5 3 1 32 1
5 3 2 32 1
5 3 3 32 1
5 3 4 32 1
5 3 5 32 1
5 3 6 32 1
5 4 1 19 1
5 4 2 19 1
5 4 3 19 1
5 4 4 19 1
5 4 5 19 1
5 4 6 19 1
5 5 1 48 0
5 5 2 48 0
5 5 3 48 0
5 5 4 48 0
5 5 5 48 0
5 5 6 48 0
5 6 1 24 1
5 6 2 24 1
5 6 3 24 1
5 6 4 24 1
5 6 5 24 1
5 6 6 24 1
5 7 1 48 0
5 7 2 48 0
5 7 3 48 0
5 7 4 48 0
5 7 5 48 0
5 7 6 48 0

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

5 8 1 18 0
5 8 2 18 0
5 8 3 18 0
5 8 4 18 0
5 8 5 18 0
5 8 6 18 0
5 9 1 13 1
5 9 2 13 1
5 9 3 13 1
5 9 4 13 1
5 9 5 13 1
5 9 6 13 1
5 10 1 28 0
5 10 2 28 0
5 10 3 28 0
5 10 4 28 0
5 10 5 28 0
5 10 6 28 0
6 1 1 44 1
6 1 2 44 1
6 1 3 44 1
6 1 4 44 1
6 1 5 44 1
6 1 6 44 1
6 2 1 6 0
6 2 2 6 0
6 2 3 6 1
6 2 4 6 1
6 2 5 6 0
6 2 6 6 1
6 3 1 38 1
6 3 2 38 1
6 3 3 38 1
6 3 4 38 1
6 3 5 38 1
6 3 6 38 1
6 4 1 46 0
6 4 2 46 1
6 4 3 46 1
6 4 4 46 1
6 4 5 46 1
6 4 6 46 1
6 5 1 23 1

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

6 5 2 23 0
6 5 3 23 1
6 5 4 23 1
6 5 5 23 1
6 5 6 23 1
6 8 1 45 1
6 8 2 45 1
6 8 3 45 1
6 8 4 45 1
6 8 5 45 1
6 8 6 45 1
6 6 1 50 1
6 6 2 50 1
6 6 3 50 1
6 6 4 50 1
6 6 5 50 1
6 6 6 50 1
6 7 1 15 1
6 7 2 15 1
6 7 3 15 1
6 7 4 15 1
6 7 5 15 1
6 7 6 15 1
7 1 1 15 1
7 1 2 15 1
7 1 3 15 1
7 1 4 15 0
7 1 5 15 1
7 1 6 15 1
7 2 1 31 1
7 2 2 31 1
7 2 3 31 1
7 2 4 31 1
7 2 5 31 1
7 2 6 31 1
7 3 1 44 1
7 3 2 44 1
7 3 3 44 1
7 3 4 44 1
7 3 5 44 1
7 3 6 44 1
7 4 1 26 1
7 4 2 26 1

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

7 4 3 26 0
7 4 4 26 1
7 4 5 26 0
7 4 6 26 1
7 5 1 10 0
7 5 2 10 0
7 5 3 10 0
7 5 4 10 0
7 5 5 10 0
7 5 6 10 0
7 6 1 10 1
7 6 2 10 1
7 6 3 10 1
7 6 4 10 1
7 6 5 10 1
7 6 6 10 1
7 7 1 47 0
7 7 2 47 1
7 7 3 47 1
7 7 4 47 1
7 7 5 47 1
7 7 6 47 1
7 8 1 56 1
7 8 2 56 1
7 8 3 56 1
7 8 4 56 1
7 8 5 56 1
7 8 6 56 1
7 9 1 20 1
7 9 2 20 1
7 9 3 20 1
7 9 4 20 1
7 9 5 20 1
7 9 6 20 1
7 10 1 44 1
7 10 2 44 1
7 10 3 44 1
7 10 4 44 1
7 10 5 44 1
7 10 6 44 1
8 1 1 48 1
8 1 2 48 1
8 1 3 48 1

Continued on next page
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

8 1 4 48 1
8 1 5 48 1
8 1 6 48 1
8 2 1 45 1
8 2 2 45 0
8 2 3 45 1
8 2 4 45 1
8 2 5 45 0
8 2 6 45 0
8 3 1 30 0
8 3 2 30 0
8 3 3 30 0
8 3 4 30 0
8 3 5 30 0
8 3 6 30 0
8 4 1 10 0
8 4 2 10 0
8 4 3 10 0
8 4 4 10 0
8 4 5 10 0
8 4 6 10 0
8 5 1 46 1
8 5 2 46 1
8 5 3 46 1
8 5 4 46 1
8 5 5 46 1
8 5 6 46 1
8 6 1 14 0
8 6 2 14 0
8 6 3 14 0
8 6 4 14 0
8 6 5 14 0
8 6 6 14 0
8 7 1 7 0
8 7 2 7 0
8 7 3 7 0
8 7 4 7 0
8 7 5 7 0
8 7 6 7 0
8 8 1 17 0
8 8 2 17 0
8 8 3 17 0
8 8 4 17 0
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

8 8 5 17 0
8 8 6 17 0
8 9 1 17 0
8 9 2 17 1
8 9 3 17 0
8 9 4 17 0
8 9 5 17 0
8 9 6 17 1
8 10 1 11 0
8 10 2 11 0
8 10 3 11 0
8 10 4 11 0
8 10 5 11 0
8 10 6 11 0
8 11 1 31 0
8 11 2 31 0
8 11 3 31 0
8 11 4 31 1
8 11 5 31 1
8 11 6 31 0
8 12 1 36 0
8 12 2 36 0
8 12 3 36 0
8 12 4 36 0
8 12 5 36 0
8 12 6 36 0
8 13 1 12 0
8 13 2 12 0
8 13 3 12 0
8 13 4 12 0
8 13 5 12 0
8 13 6 12 0
8 14 1 30 0
8 14 2 30 0
8 14 3 30 0
8 14 4 30 0
8 14 5 30 0
8 14 6 30 0
8 15 1 11 0
8 15 2 11 0
8 15 3 11 0
8 15 4 11 0
8 15 5 11 0
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Table 1 – continued from previous page

group g transect r plot i road age Tgr worm or cocoon presence Y
(i)
gr

8 15 6 11 0
8 16 1 19 0
8 16 2 19 0
8 16 3 19 0
8 16 4 19 0
8 16 5 19 0
8 16 6 19 0
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