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1. Introduction

The advances of science and technology come along with large amounts of data. Many
such contexts have complicated data structure, such as population of trees, data lying on
manifolds, etc. Traditional statistical concepts and methods, are developed in the framework
of (linear) Euclidean space without boundary constraints. Examples include mean and vari-
ance in introductory statistics, principal component analysis in multivariate statistics and
in even more recent functional data analysis (FDA, Ramsay and Silverman (2005)); Ferraty
and Vieu (2006))), These methods usually enjoy convenient properties such as linearity, since
data are in an Euclidean space. However, the emerging complicated data objects such as
trees, shapes and data that naturally lie in non-Euclidean space bring challenges to statisti-
cal analysis. One of the major challenges is that those objects may not lie in a linear space,
and/or the data objects are restricted by a set of (mathematical or geometric) constraints.
A new statistical framework, object-oriented data analysis (OODA), first named in Wang
and Marron (2007)), provides early systematic attempts at the analysis of complicated data
objects.

1.1. Nonnegative data and existing methods

In this paper, a special class of object-data will be investigated, nonnegative data objects.
Important examples include a number of types of spectral data (see e.g. Marron et al.| (2004]);
Li et al. (2005)), and some tree structured objects (see e.g. |Wang and Marron| (2007)); Shen
et al. (2013)). Our main goal is to study the major modes of variation within a sample of
nonnegative data objects. Principal Component Analysis (PCA) has been a central tool in
multivariate analysis and FDA to reveal major modes of variation. The projections of a
data set onto a set of orthogonal principal component (PC) directions, sequentially provides
a decomposition of data into a series of orthogonal components with decreasing energy
(i.e., decreasing eigenvalues). The sequence of subspaces spanned by these components are
naturally nested within each other, i.e., adding additional PC components learn additional
information than was available in the earlier components. However, PCA can be quite
inappropriate for nonnegative data objects, because that some of the projections sometimes
can easily leave the nonnegative orthant. Thus, these projections may not have physical
interpretation, or the interpretation may not be sensible under some contexts. Zhang et al.
(2007) explored the impact of different types of centering on PCA, or more precisely on
Singular Value Decomposition (SVD, a non-mean centered variation of PCA). Uncentered
SVD has also been used to find important modes of variations, e.g. Shen and Huang| (2005);
Zhang et al.| (2007). However, this origin centric method is even less robust against non-
negativity, because in general the first direction will point into the interior of the orthant, so
all orthogonal directions must point outside. An interesting matrix decomposition technique,
Nonnegative Matrix Factorization (NMF'), has been developed to overcome the problems of
PCA/SVD, see e.g. |Paatero and Tapper| (1994); Lee and Seung (1999). Although it gains
popularity in many machine learning applications, the NMF method suffers several severe
drawbacks:

1. For a given rank k approximation matrix, the NMF decomposition of this matrix may
not be unique (Donoho and Stodden| 2004).
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Figure 1: The SVD, PCA, NMF and NNCA for a toy data set. The rank 1 subspaces (or affine
space for PCA) are shown as the purple dashed lines, and the rank 2 subspaces are shown as the
yellow planes. A unit box is plotted for better illustration. The green dots are the original data
points (same in all cases), the blue diamonds are their rank 2 approrimations (several outside the
orthant for PCA and SVD, as highlighted by the blue arrows), and the purple stars are their rank
1 approzimations (some still outside for PCA as highlighted by the purple arrows). It shows that
both PCA and SVD have approximations outside of the nonnegative cone. The bottom row is just
a rotation of the middle row, which highlights the non-nested behavior of NMF. The subspaces of
NMF at different ranks clearly are not nested within each other (as highlighted by the black arrow).
The NNCA approach overcomes all these challenges.



2. For a given rank k, the NMF approximation matrix may not be unique, as illustrated
in Section [5.1l

3. The space spanned by the NMF approximation at rank £ may not be nested in the
space spaned by NMF aproximations at rank j, if £ < j as shown in the following toy
example.

1.2. Drawbacks of PCA/SVD and NMEF illustrated by a toy example

A toy example is used to illustrate the drawbacks of PCA, SVD and NMF for the analysis
of nonnegative data objects. Each panel of Figure [1| shows the same 6 observations (green
dots) in the three dimensional nonnegative octant. This is one realization from a simulation
setting that will be discussed in Section [5.1] The blue diamonds are the rank 2 approxi-
mations for each method, and the purple stars correspond to the rank 1 approximations.
The projections from the original data to the rank 2 approximations are visualized by green
dashed lines. The rank 2 approximating cones are shown as yellow planes (represented as
quadrilaterals defined by their intersection with the graphical bounding box), and the rank
1 approximating cones are shown as purple lines (again intersected with the bounding box).
The component-wise mean is highlighted as the red square in the plots. The SVD rank 2
and 1 approximating cones are the intersections of subspaces, a plane and a line through
the origin, with the octant (top left panel). The PCA rank 2 and 1 approximating sets are
not actually cones, but instead are intersections of a plane and line not through the origin
with the octant (top right panel). The NMF approximating cones are again intersections of
a plane and line thorough the origin with the octant (middle and bottom left panels). Both
the SVD and PCA examples have three (ranking 2 approximating) points, highlighted with
blue arrows that project to the approximating plane outside of the octant. The rank 1 PCA
projections similarly have 3 points outside of the octant (highlighted with the purple arrows).
All of the NMF projections lie within the octant, because NMF uses a sensible notion of
projection of data to the approximating set, as shown in the middle and bottom left panels.
The plots in the bottom row show only a rotated viewpoint, which is chosen to highlight the
nesting aspects, while the viewpoint in the middle row provided direct contrast with SVD
and PCA. However this improved approximation of NMF comes at the price that the NMF
rank 1 approximating cone is not nested in the rank 2 cone. The bottom left panel shows the
intersection of the purple line (NMF rank 1 approximations) with one face of the unit box as
a black dot (highlighted by the black arrow). This clearly reveals that the upper end of the
purple line lies outside of the yellow quadrilateral. In this 3 dimensional example the angle
between the plane and the line is 4.96 degrees. We conjecture that in higher dimensions this
angle can be far bigger. The method proposed in this paper, the nested nonnegative cone
analysis method, simultaneously yields non-negative and nested approximations, as shown
in the middle and bottom right panels in Figure [I}

1.3. From PCA/NMF to Nested Nonnegative Cone Analysis

The goal of overcoming these problems of NMF by finding a suitably nested analog of
PCA (Jung et al., [2010), motivates us to propose a novel Nested Nonnegative Cone Analysis
(NNCA) approach to reveal underlying modes of variations within the data. The actual
implementation uses the Backwards PCA idea of Damon and Marron (2013). PCA can



be viewed as providing a sequence of nested affine spaces (indexed by rank of the approx-
imation), where the projections of the data into these subspaces have the largest modes of
variations for that rank. These nested subspaces usually are not suitable for the analysis
of nonnegative data, because the orthogonality can cause the projections to easily leave
the first orthant. However, this nested structure motivated us to identify a sequence of
nested cones, where the projections of the data have the largest modes of variations for
that rank. Note that this series of cones will generally be different from the usual PCA
or SVD perpendicular sequences. The projections themselves will also form a sequence of
approximations to the data of interest. Let X;, Xo, ---, X, € Ri be n d-dimensional
observations that lie in the first orthant (R; = {z : # > 0}), i.e., the nonnegative cone.
Let K = min(n,d). It is straightforward to know that these n observations lie in a K-
dimensional cone, which is also a sub-cone within the nonnegative cone. Define the data
matrix X = (Xj,--+,X,). The NNCA approach is to identify a sequence of approximation
matrices of X, {Ax} (k=1,---,K) indexed by rank, in the sense of minimizing the Frobe-
nius norm of the residuals: min | X — A||%, where || - || is the Frobenius norm. Thus, an
ideal sequence {A}} will satisfy

1. (Approximation optimality) Ay is the best rank %k approximation to X, and also
columns of Ay, are in R%, i.e., the {A,} are all nonnegative matrices.

2. (Nested Structure) For any 1 < i < j < K, the space spanned by the columns of A;,
is a subspace of the column space of A;.

The remaining part of this paper is organized as follows: Section [2| will introduce the
NNCA method. The algorithms are discussed in Section [3} Some properties of the NNCA
method will be discussed in Section [l Section [f] provides more examples. Summary and
further discussion will be in Section [6l

2. Nested nonnegative cone analysis

In this section, we will introduce the nested nonnegative cone analysis approach. Let
X be the data matrix to be analyzed. The dimension of the matrix is d x n, where all
elements in it are nonnegative. In this paper, the inequality X > 0 is used to denote that
X is a nonnegative matrix, as is common in the field of optimization. Furthermore, let
ro = rank(X). Usually 79 = min(d,n). We will first review the notation and mathematics
behind PCA/SVD and NMF in Section 2.1} and then introduce the NNCA method in Section
2.2

2.1. PCA/SVD and NMF

The SVD of X is defined as
X =USV7, (1)

where U is a d X ry matrix, S is an rq X ry diagonal matrix, and V is an n X ry matrix.
In addition, UTU = VTV = [, and the diagonal elements in S form a non-increasing
sequence: s; > S > --- > s,. Let u; be the ith column in U, v; be the jth column in V,



and A, = Zf 1siuivT where k < rg. It can be shown that A, provides the best rank &

= 7

approximation to X (Eckart and Young, |1936), in the sense that

A, = argmin ||X - Al
{A:rank(A)=k}
In this paper, each rank 1 matrix s;u;v] is called an SVD component.
The PCA of X is defined as the eigen-decomposition of the covariance matrix of X. Let

m = %Xlnxl be the sample mean vector of X, i.e., this is the mean of the columns in X.
The sample covariance matrix can be calculated as

1
n—1

(X — M.)(X — M,)",

where M, = m1,, is called the column mean matrix. It can be shown that the eigenvectors
of the sample covariance matrix can be calculated as the singular value decomposition of
X — M.,. Let

X -M,=US. VS (2)

Here the columns in U, can be shown to be the principal component directions, and V.S,
are the principal component loadings. Let Af = ZIZZI ssusvy, where uf, vf is the tth column

in U, V. respectively, and s{ is the ith largest singular value in S.. Then

A¢ = argmin [[(X —M,) — A3
{A:rank(A)=k}
As discussed above, the SVD/PCA provides the best rank k approximation to X/(X —

M.) respectively. In addition, SVD/PCA can be used sequentially identify a series of ap-
proximation matrices at different ranks (k), in either a forwards or a backwards fashion. The

forward fashion means that we start from k£ = 1, and then increase the rank to 2, -- -, until
k = ro. In the backward approach we can start from k& = ry, and then decrease the rank to
ro — 1, --+, down to 1. It can be shown that for Euclidean data, the forward SVD/PCA is

equivalent to the backward SVD/PCA method, using standard analysis of variance decom-
positions of sums of squares. However, for non-Euclidean data, these two approaches may
not be the same, as illustrated in Jung et al. (2010). In the following sections, we simplify
the above triplet-factorization in equations and . Take the equation as an example,
the SVD is recast as
X =U"(V")",

where U* is the same as the U in equation , and V* = VS. Note that essentially, we
assume that the columns in U* have unit L, norms. For easy presentation, we will skip the
asterisk from now on.

From the above definitions, columns in all these U matrices are orthogonal to each other,
and thus the corresponding low rank approximation (when &£ > 2) can take on negative val-
ues, even though X is nonnegative. This led to the invention of NMF, see early developments
of NMF in [Paatero and Tapper| (1994)) and [Lee and Seung| (1999)). See [Berry et al.| (2007)
for a review of different NMF algorithms. One type of NMF of X is defined as follows:

(W, H) = argmin |[X — WH|[%, (3)
W>0,H>0
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Table 1: Pros and Cons of PCA/SVD and NMF methods

\ Pros \ Cons

SVD | 1) globally best rank k& approximation tends to leave nonnegative cone
2) forward and backward SVD are the same

)
3) different ranks are nested within each other
PCA | 1) globally best rank k& approximation tends to leave nonnegative cone

after removing the mean

2) forward and backward PCA are the same
3) different ranks are nested within each other
4) when applicable, good interpretation
(largest variability)

NMF | 1) locally optimal approximation 1) factorization may not be unique
2) always within nonnegative cone 2) approximation matrix may not
be unique

3) no forward NMF
4) different ranks not be nested

where W is a d x k matrix, H is a n x k matrix, and k£ < ry. In addition, the columns of
W and H are linearly independent, and columns of W have unit Ly norms. However, the
NMF suffers several major drawbacks listed below:

1. The factorization pair (W, H) is not unique;
2. The approximation matrix WHTY is not unique;
3. The space spanned by the columns in W at rank 7, may not be a subspace of the space

spanned by the columns of W at rank j (i < j), i.e., the approximation subspaces are
not nested within each other.

All of these drawbacks of earlier methods are summarized in Table[I} and further illustrated
in Section [5. This provides motivation for the development on NNCA.

2.2. Nested Nonnegative Cone Analysis

Here we propose the novel Nested Nonnegative Cone Analysis (NNCA) approach. A
forward approach to NNCA is especially challenging, because it has to ensure that the
residuals, at each level of approximation, are nonnegative. A direct formulation of the
needed optimization would result in an extremely complicated problem. Damon and Marron
(2013)) noted similar phenomena in a variety of other learning contexts, and recommend a
general backwards approach, called Backwards PCA, based on the idea of a ”series of nested
constraints”. Thus, we apply instead a backward approach. We will first define the rank
ro — 1 approximation, and then sequentially define rank k approximation as k decreases.

The rank rg — 1 NNCA approximation matrix is defined as follows:

Definition 1. A rank ro — 1 NNCA approximation is defined as a solution of

mAin |X — Al|%, subject to rank(A) =y — 1, and A > 0. (4)



As in Section 2.1, A > 0 means that all elements in A are nonnegative. To highlight the
rank ro — 1 approximation, a solution to equation is denoted as A, _1). Let sy > --- > s,
be the decreasing sequence of singular values of X. If s,,_1 > s,,, we conjecture that this
solution will be unique.

If we know a rank k£ + 1 approximation matrix Ay, to X, a rank & approximation Ay
to X is then defined as follows:

Definition 2. Let Ayyq be a rank k+1 (k=1,--- ,rg —2) NNCA approzimation to X, a
rank k approrimation, Ay, is the solution of

rnAin |Asi1 — A%, subject to rank(A) =k, and A > 0. (5)

Thus, A,,—1, A,,—2, ---, A; is a sequence of approximation matrices of X, indexed by
rank. This sequence {A;} (1 = rg — 1,79 — 2,---,1) is called the NNCA approzimating
sequence. If s, > sp11, where s are defined earlier, we also conjecture that Ay is unique.

Note that if the nonnegativity constraints are not imposed, the above NNCA approxi-
mation sequence corresponds to a backward SVD sequence. In addition, if all different A,
in Definition 2 are replaced by X, then this sequence of NNCA is then equivalent to an
NMF sequence using the least square loss function. However, as discussed earlier, the NMF
sequence is generally not nested. Our definition imposes a very natural nested structure.

3. The NNCA algorithm

The core part of the NNCA approach is the equations and (5)). Even though these
two problems seem to have simple mathematical forms, the searching of the optimal A in
each equation is still quite challenging. One of the reasons is that projections onto a cone
are not all standard Euclidean projections onto a subspace. Note that the two optimization
problems share a common optimization structure that can be written as follows: let B > 0
have rank k + 1, our target is to find the solution of

mp'in |B — A, subject to rank(A) =k, and A > 0. (6)

Note that the feasible set defined by the constraint rank(A) = k is not a closed set. And
thus, we reformulate the problem to be

mAin |B — A%, subject to rank(A) < k, and A > 0. (7)

The optimal solution of often turns out to be of rank k. In those cases, is equivalent
to @ in the sense that they have the same optimal solutions. In any case, @ and always
have the same optimal value, because any matrix of rank less than k& can be changed into a
slightly different matrix of rank k. The constraint rank(A) < k corresponds to a closed set,
and is easier to handle analytically.

A major challenge in @ is the combination of A > 0 and rank(A) < k. Because of
the rank constraint, the above problem is a nonconvex optimization problem. In general,
nonconvex optimization problems are very hard to solve, see, e.g., Murty and Kabadi (1987));
Vandenberghe and Boyd (1996)); Ben-Tal and Nemirovski| (2001)); Boyd and Vandenberghe
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(2004))). In this subsection, we provide an approximating algorithm which is based on SVD.
Note that the rank(A) < k constraint can be reformulated to A = UVT, where Uisa dx k
matrix, and V is n X k£ matrix. Thus, the above problem can also be written as

min |B — UV7T||%, subject to UVT > 0.
(U,V)

Note that for identifiability, we may want to assume columns in U all have unit Ly norms.
It is straightforward to see that this is not a convex problem over the pair (U, V). However,
conditional on U (or V), this problem can be viewed as convex optimization problems over
V (or U) respectively.

Note that the above reformulation is similar to both the SVD and NMF formulations.
The SVD approach does not have the constraint A > 0 (i.e., UV? > 0), while the NMF
uses a stronger constraint that both U and V are nonnegative. Due to the non-uniqueness
of many NMF algorithms, we will develop our NNCA based on the SVD approximation, as
shown in the next subsection.

3.1. SVD-based NNCA

A central algorithm in the nested nonnegative cone analysis approach is to identify the
best rank k nonnegative approximation matrix A, for the rank £ + 1 matrix B. Recall that
the matrix B has the dimension d x n. In this subsection, we will introduce an SVD-based
algorithm.

The target of our algorithm is identification of low rank or low dimensional approxima-
tions of the original data. Note that without non negativity constraints, SVD can be used
to identify the best rank k approximation A, for B. If A, is a nonnegative matrix, then
A, is the A matrix we plan to find. Otherwise, let (U, V) be the corresponding SVD de-
composition. It can be shown that the span of Uj is the best k-dimensional approximating
subspace, which has the largest variability (sum of squares) among all projections of B to
such k-dimensional subspaces (see Proposition . The V are the corresponding coefficients
of these projections. Note that, under this context, these projections are out of the nonneg-
ative cone. We will then identify the convex set C; = span(Ujy) N ]Ri, and project B onto
Cs. The projections of B onto C, form the resulting A. This SVD-based NNCA algorithm is
summarized in Algorithm I} Note that the (A1) step can be viewed as a modified version of
a nonnegative least squares problem (Lawson and Hanson| 1974)), so standard optimization
routines can be applied to solve it.

4. Mathematical Properties of the NNCA method

From the above definition, it is straightforward to see that the span(Ay) C span(Ayi1)
for all k. So the SVD-based NNCA approach naturally generates a nested structure. In this
section, we further show some properties of the proposed NNCA algorithms.

In this section, let d(z,y) be the distance between two vectors x and y, for example
the Euclidean distance d(z,y) = (27y)Y/2. Further let S be a subspace, recall that the
distance of x to § is defined as the smallest distance between x and any vector in S, i.e.,
d(xz,S8) = min{d(z,y) : y € S}. Recall that X is the d x n matrix formed by n vectors, 1,



Algorithm 1 SVD-NNCA
Core algorithm of the SVD-based Nested Nonnegative Cone Analysis method: identify an
rank k£ nonnegative approximation matrix A to a rank k + 1 nonnegative matrix B.
. Identify the best rank k approximation matrix A, = U,VT by a standard SVD of B.
if A, is nonnegative then
A + A, and stop.
else
Minimize |B — U,V7||% over V, subject to U,V > 0. (A1)
Let V be the above minimizer of (Al-1), A «+ U,V.
end if

—_

-+, & (the columns of X). The square distance of X to S in this section is defined to be
the sum of squared distances of the z; to S, i.e., *(X,S) = >, d*(z;,S).
The following proposition shows that the subspace spanned by U,, the rank £ SVD of
B (here rank(B) = k + 1), provides the best rank k£ approximation to B, when there is no
nonnegativity constraint. Let s; > s9 > -+ > s > sp11 be the k 4 1 singular values of B.

Proposition 1. In the SVD-NNCA algorithm, if sy > sp1, span(Uy) provides the best rank
k subspace approximating the columns of B, i.e., the span(Uy) is minimizer of the square
distance to B over all rank k subspaces.

The proofs for Proposition 1 and Proposition 2 are provided in the appendix for better
presentation.

The following proposition shows that this nonnegative approximation is unique, under a
condition that is similar to the uniqueness of SVD.

Proposition 2. If sy > spy1, the nonnegative rank k approzimation A in (A1) is unique.

Note that if s > s;11, then USVST is unique, i.e., the k+1 SVD component (5k+1uk+1UkT+1)
is identifiable. This leads to the uniqueness of Aj. This condition is mild, because it only
requires that the kth component and (k + 1)th component are distinguished from each
other. This proposition states that the one-way SVD-NNCA method is also unique under
this mild condition. Note that it is about uniqueness of the approximating spaces. The
k-th individual component is similarly unique when s;_; > s > sgi1. The case of non-
distinguishable components can be theoretically analyzed by working with subspaces, but
that is beyond the scope of the present paper.

It is worth mentioning that the optimization problems considered in NMF (equation ({3))
in Section 2.1), the stated goal of NNCA definition (equation ([6) in Section 3) and the SVD-
based NNCA algorithm (A1) are closely related. Let us focus on a rank k£ 4 1 input matrix
B. A common goal of all three is the identification of a rank k nonnegative approximating
matrix A to B, which is defined in the equation @ If the solution A of equation @
can be factorized as two nonnegative matrices (although such factorization may not gen-
erally exist, see e.g. Berman and Plemmons (1973)); [Thomas (1974))), the NMF algorithm
(with sufficiently many random restarts) can be used to identify such A. Meanwhile, if we
apply SVD algorithm to B, and the resulting SVD rank k£ approximation matrix is non-
negative, our SVD-based NNCA algorithm then will provide the global optimal solution to
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the problem in equation @ In general, the resulting matrix A from the SVD-based NNCA
method is an approximating solution of the following problem, in which the squared distance
d*(B,span(A)) is a penalty term with a large penalty parameter A > 0:

min ||[B — A||% + Ad*(B — span(A)), subject to rank(A) < k, and A > 0.

5. Simulations

In this section, we use some simulations to further illustrate the usefulness of NNCA
methods over PCA/SVD and NMF methods. For better illustration, the toy examples in
this section are in the 3-dimensional nonnegative cone. In Section[5.1] we will simulate one re-
alization of data with sample size n = 6, i.e. a 3x6 matrix, and will compare the performance
of these four methods. In Section[5.2] we will repeat the same simulation as in Section [5.1] 100
times, and report summarized performance comparisons. All the elements in these matrices
are independently simulated from U[0, 1], except its (3, 1), (3,2), (3, 3), (1,4), (1,5), (1,6) and
(2,6) entries are zero. In Section [5.3] we will further illustrate the non-nested issues of the
NMF method by another simulation.

5.1. One simulation realization

In this subsection, we compare different methods (SVD, PCA, NMF and NNCA) by a
specific simulation realization. The data set we simulated is (rounded to two decimal points)

0.09 0.90 0.62 0 0 0
X =108 002 047 020 0.75 0
0 0 0 045 0.70 0.80

)

with its Frobenius norm as 2.02. This data set is a 3 X 6 matrix, where d = 3 and n = 6.
There are 7 zero cells in the matrix, showing a medium sparse structure. The mean of these
6 observations (columns) is (0.27,0.38,0.33). We use PCA, SVD, NMF and the new NNCA
approaches to estimate rank 1 and rank 2 approximation matrices. These approximation
matrices by different dimension reduction methods are provided in Table 2] Note that for
the PCA method, the rank 1 matrix is the mean plus the first PC projections, and the rank 2
matrix is the mean plus the first two PC projections. For the SVD and NNCA methods, the
rank k matrices (k = 1, 2) are the cumulative approximation matrices. We observed that the
NMF method usually does not provide a unique approximation matrix for any specific rank.
Thus, we repeat the NMF calculation 100 times, and summarize the best approximation
matrices in terms of smallest Frobenius norm of the corresponding residual.

From Table [2 we can observe that, both rank 1 and rank 2 approximation matrices
from the PCA method contain 3 negative observations, highlighted using a bold font in
the table. The rank 2 approximation matrix of the SVD method also contains 3 negative
values. Note that no cell in these approximating matrices (of PCA and SVD) is zero,
i.e., the approximating matrices are not sparse, which is different from the original input
matrix. Because NMF may generate different approximations (at the same rank) when it
is re-applied to the same data set, we report the best approximating matrix of these 100
approximation matrices (last row in Table , which has the smallest Frobenius norm among
all the residual matrices. It shows that these approximation matrices are nonnegative. The
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Table 2: The cumulative approximation matrices (rounded to two decimal points) indexed by ranks for
different methods. It shows that the PCA method easily leaves the nonnegative cone, and in fact 50% of the
projections can leave the octant.. The SVD method has the approximating matrix at rank 1 within the cone
(Perron-Frobenius theorem), but three of the rank 2 approximation points leave the cone. The observations
leaving the cone are highlighted using a bold font. NNCA solves the above non-negativity issues, and also has
sparse results for the cumulative of the first two components. The NMF method has non-sparse nonnegative

average approximating matrices for both ranks.

Method \ Rank index \

Approximation matrix

0.28
PCA 1 0.38

0.82
0.28

0.32 —-0.15

0.61 0.08
0.32 0.42
0.03 0.49

—-0.10
0.45
0.68

—-0.07
0.45
0.62

0.18

0.87

2 0.90 —0.00
0.09 —0.03

0.59 0.10
0.45 0.27
—0.03 0.56

—-0.14 0.01
0.66 0.01
0.56 0.81

SVD 1

0.21 0.09 0.17 0.13 0.30 0.14
0.51 0.22 042 0.31 0.74 0.35
0.38 0.17 0.31 0.23 0.55 0.26

0.33
2 0.53

0.70
0.28

0.62
0.47

0.30 —0.25 0.01

—-0.07 0.03
0.30 0.71
0.37 0.73

—-0.23
0.31
0.51

0.27
NNCA 1 0.53
0.35

0.22
0.43
0.29

0.24
0.46
0.31

0.16
0.32
0.21

0.36
0.71
0.47

0.20
0.40
0.27

0.33
2 0.53
0.30

0.59
0.44
0

0.62
0.47
0.01

0
0.32
0.34

0.03
0.71
0.73

0
0.40
0.43

0.21
NME* 1 0.51
0.38

0.09
0.22
0.17

0.17
0.42
0.32

0.13
0.31
0.23

0.3
0.73
0.55

0.14
0.35
0.26

0.19
2 0.44
0.4

0.88
0.21
0

0.66
0.31
0.16

0
0.33
0.33

0.01
0.72
0.73

0
0.41
0.42

NMF* stands for the best approximating matrix (the one whose residual matrix has the smallest Frobenius

norm) over the 100 different repeated runs.
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rank 2 approximating matrices is sparse. However, the subspaces that these two matrices lie
in are not nested. The principal angle (see a definition in Section 5) between them is 4.96
degree, showing an important drawback of current NMF algorithms. The NNCA method has
both approximation matrices within the nonnegative cone, and their corresponding subspaces
are nested. In addition, the rank 2 NNCA approximation matrix shows sparse structure in
it as well. All these approximations are used in the visualization of Figure [I] in Section [1}

5.2. Repeated Simulation Fxamples

We simulate 100 examples by using the same simulation settings as in subsection [5.1]
but with different random numbers for those non-zero entries. Summary measures for all
four methods will be provided in this subsection. Note that for NMF, because of the non-
uniqueness of the approximation matrix, we considered100 random restarts for each simu-
lated data set, and choose the best approximating matrix among these.

Table 3: The average number of projections per data set that leave the nonnegative cone, out of
n = 6. This highlights serious unsuitability of conventional methods in this situation.

Method Rank 1 Rank 2
PCA 2.7700 (0.9625) | 3.3200 (0.8025)
SVvD 0 (0) 3.4300 (0.7818)

For the PCA/SVD methods, we will report the number of projections that are outside
the nonnegative cone. Table |3 provides a summary of these. It shows that on average, 2.77
observations will be out of the cone for rank 1 PCA approximations, while 3.32 observations
will be out of the cone for rank 2 PCA approximations. This indicates that these approxi-
mations suffer severely in terms of interpretability. The rank 1 SVD approximation does not
have any observations out of the nonnegative cone, which is theoretically supported by the
Perron-Frobenius theorem (See e.g. Berman and Plemmons| (1979)). However, the rank 2
SVD approximation has on average 3.43 observations out of the nonnegative cone, i.e. suffers
from similar interpretation challenges.

Next we investigate the degree to which the NMF approximations are nested by studying
the principal angles between the subspaces generated by the best rank 1 and 2 approximating
matrices. The principal angle between subspaces (Golub and Van Loan 1996|) are defined
as the following. Specifically, let A = span(Ay,---, Ax) denote the linear subspace spanned
by the columns of A, and B = span(By,- -, By) denote the linear subspace spanned by
the columns of B respectively. The principal angle between A and B can be computed as
cos~!(p) x 180/7, where p is the minimum eigenvalue of the matrix Q4 Qp where QA and
() are orthogonal basis matrices obtained by the QR decomposition of the matrices A and
B, respectively. The result is summarized in Table [d which shows that the minimal angle
between these subspaces is 0.05, i.e, the corresponding subspaces are never nested within
each other in any of our simulated realizations. The largest angle between them is around
the surprisingly large value of 17 degrees.

In addition to the above measure, we also investigate the sparsity of the NMF results.
The sparsity measure we used in this section is the number of projections that has zero in
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any of their entries. Note that usually the rank 1 NMF approximation is the same or close
to the rank 1 SVD approximation. Thus, in this section, only the sparsity of the rank 2
NMF approximation is reported. The NMF rank 2 approximating matrices on average have
2.91 projections that are sparse, showing NMF has a high chance to get sparse low rank
approximations. We also observed that for some realizations,, the approximating matrix
was not sparse at all.

Table 4: The summary of the NMF and NNCA results. For the NMF method, the principal angle
between rank 1 and 2 approximating matrices shows that the two corresponding subspaces are
never nested with each other. The sparsity measure shows that NMF rank 2 matrices are highly

likely to be sparse. The NNCA method can achieve more sparse approximations, compared to the
NMF method.

Method | Measure Min Max Mean Median

NMF Angle between ranks (in degree) | 0.05 16.64 3.80 3.55
Number of sparse projections 0 4 2.91 3

NNCA \ Number of sparse projections \ 2 5 3.43 3

The NNCA method will generate nested approximating matrices at different ranks. And
thus, the principal angle between them will always be zero. The sparsity of the rank 2
approximating matrices is also recorded for these 100 simulated realizations, which is sum-
marized in the last row of Table [d It shows that the NNCA method generated more sparse
projections than NMF. The smallest number of sparse projections is 2. The average number
of sparse projections is 3.43, which is larger than that of NMF. This suggests that NNCA
preserves the nice property of NMF: generating sparse approximation.

5.3. Nonnested structure of NMF

Another drawback of NMF is that it is not nested. In this subsection, we investigate this
issue more deeply, using a set of simulations to investigate the angle between the rank 1 and
rank 2 NMF approximations. Note that for any nested method, such as PCA and NNCA,
this angle is 0, because the rank 1 approximation is contained in the rank 2 approximation.
We study a range of different sample sizes n, and dimensions d. Under each setting, we
simulate n d x 1 random vectors, where the elements are iid U]0,1]. For each vector, we
normalize it to have unit Ly norm, so that every data point lies on the unit sphere. Then we
apply the NMF algorithm to find a set of rank 1 and 2 approximations. The angle between
these approximations is recorded. We repeat this simulation 100 times for each combination
of n and d. The summary of such angles are reported in Table [5]

Table [5| shows two summaries of such angles: the average angle of the 100 repeated
calculations and the maximum of these 100 angles. An important point is that no angle
in any of these simulations is exact zero, i.e., the NMF rank 1 and 2 subspaces were never
nested in any of our simulated realization. In addition, we also observed that both the
average angles and the maximum angles tend to increase as the dimension increases.
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Table 5: Summary of the angles (in degrees) between the rank 1 and 2 NMF approximations. Each cell
provides the mean angle and the maximum angle of the 100 repeated simulations. This shows that when
the dimension increases, the angle between NMF rank 1 and 2 approximations tends to increase.

n d

10 100 1000 | 10000
Mean | 0.33369 | 1.7112 | 2.8483 | 4.4283
10 | Max 1.8274 | 2.4654 | 3.1778 | 4.6434
Mean | 0.11527 | 0.94675 | 3.3778 | 3.8638
100 | Max | 0.73783 | 2.168 | 4.0392 | 4.8859

6. Conclusion and Discussion

In this paper, we proposed a novel backwards PCA based NNCA approach. It natu-
rally generates a nested structure in the sequence of approximating cones, giving a major
improvement over conventional NMF. In addition, all the approximation matrices are in the
nonnegative cone, and thus have better interpretability over traditional PCA/SVD methods.

Note that the nonnegative approximation from rank k to £k —1 may not be optimal in the
sense of the smallest residual. The rank minimization problem is a challenging optimization
problem. Advances in optimization may lead to improvements of solving the problem in
. We are investigate other potentially better algorithms, and will report them in future
papers.

The interpretation of the NNCA sequence {Ay} is another important challenge for data
analysis. An interesting open problem is the adaption of visual devices such as scatter plots
of the projection scores, and loadings plots. Note that the nested structure between A,’s
provides a multi-resolution view of X, which will form the basis of exploratory methods built
on NNCA. We are working visualization tools in this direction as well.
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Appendix A. Proof of Proposition 1

Proof. Since B is of rank k + 1, it can be factorized by SVD as B = UpSpVEL. Let
S1 > 89 > +++ > 8, > Sky1 > 0 be the singular values in Sg. Let uf be the ith column of Ug,
and v’ be the ith column of V. From Theorem I in Eckart and Young (1936), we know
that Zle s;ul(v?)T provides the best rank k approximation. i.e.,

k
Z siul(v))T = argmin |B — A%
i—1 rank(A)=k

Define the rank k approximating submatrices U, = [ub,---  u?], i.e., the matrix whose

columns are uf, - ul. Let Vy = [s108, - s50?]. Next, we prove that span(U,) has the
smallest square distance from B, among all rank k subspaces. To this end, let by,--- b, be
columns of B, and let § be a rank k subspace. Let yq,--- ,y, be d-dimensional vectors in &
such that d(b;,S) = d(b;,y;). We have d*(B,S) = > " d*(bi,y;) = |B — A||7, where A is
the matrix whose columns are yq,--- ,y,. Since the rank of A is no more than k, we know
that |[B—A|% > |B—U,VT|% = d?(B, span(Uj,)). The fact that U,VT is the unique best
rank k approximation of B implies that span(Uy) is the unique rank k subspace that has
the smallest square distance from B. O

Appendix B. Proof of Proposition 2

Proof. Since s3, > sj11, the Theorem I in Eckart and Young| (1936)) implies that u} is uniquely
defined (up to a sign change). Without loss of generality, assume that all the first k& singular
values s; are different. Then u? are uniquely defined as well (up to the same sign change).
It remains to prove that V is uniquely defined.

The optimization problem is to minimize ||B — U,VT|% subject to U,VT > 0. Note
that |B — U,V||% is a quadratic function of V. Moreover, since Uy is of rank k, the matrix
UT'U, is positive definite, so [|B — U,V||% is a strictly convex function, see, e.g., Magnus
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and Neudecker (1988). The constraint —U,V? < 0 is a standard linear inequality constraint
on V, and V = 0,4 obviously satisfies this constraint. Thus, by convexity theory, this
optimization problem has a unique solution.

]
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