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Abstract

There is a great need for robust techniques in data mining and machine learning contexts where many
standard techniques such as principal component analysis and linear discriminant analysis are inherently
susceptible to outliers. Furthermore, standard robust procedures assume that less than half the observation
rows of a data matrix are contaminated, which may not be a realistic assumption when the number of
observed features is large. This work looks at the problem of estimating covariance and precision matrices
under cellwise contamination. We consider using a robust pairwise covariance matrix as an input to various
regularisation routines, such as the graphical lasso, QUIC and CLIME. To ensure the input covariance
matrix is positive semidefinite, we use a method that transforms a symmetric matrix of pairwise covariances
to the nearest covariance matrix. The result is a potentially sparse precision matrix that is resilient to
moderate levels of cellwise contamination. Since this procedure is not based on subsampling it scales well
as the number of variables increases.

Keywords: Precision matrix, Covariance matrix, Robust estimation, Data mining
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1. Introduction

Often the aim of data mining and statistics is to extract information about the relationships between
the variables and identify any features or structure in the data. The covariance matrix, Σ = var(y), where
y ∼ F, the distribution of the true data generating process, and its inverse, the precision matrix Θ = Σ−1 are
fundamental components of many statistical procedures, such as principal component analysis (PCA) and
linear discriminant analysis. However, it is well known that the classical covariance matrix is inherently
non-robust to outliers and suffers from distortion in its eigenstructure in high dimensions (Johnstone, 2001).
This paper combines pairwise covariance matrix estimation with recent regularisation routines currently
used in bioinformatics and machine learning to produce an estimated precision matrix that is robust to
moderate levels of cellwise contamination.

The need for robust statistics in data mining and associated fields is well known, see Barnett and Lewis
(1994) for a general overview. In particular, it is desirable for learning algorithms to be stable with respect
to noisy features and unusual fluctuations in the inputs. For example Li (2004) considers robust incremental
PCA applied to multi-view face modelling and Mavroeidis and Marchiori (2014) consider the stability of
sparse PCA in the context of feature selection in microarray gene expression data. Other situations where
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robust techniques are important include speech recognition and neural networks, see Gales and van Dalen
(2007) and Bieroza et al. (2011), respectively.

In the statistics literature, robust estimation of covariance matrices has received much attention in the
past, notably the minimum volume ellipsoid and minimum covariance determinant (MCD) estimators, pro-
jection type estimators and M-estimators, see Hubert et al. (2008) for a survey. Furthermore, research into
covariance matrix estimation and its applications is ongoing, see for example Filzmoser et al. (2014) who
use the MCD estimator to construct robust Mahalanobis distances to identify local multivariate outliers;
Hubert et al. (2014) who study the shape bias of a range of existing robust covariance matrix estimators; or
Cator and Lopuhaä (2010, 2012) who consider asymptotic expansions and establish asymptotic normality
for general MCD estimators.

An alternative approach is to estimate the covariance matrix in a component-wise manner based on a
robust estimator of scale as outlined by Ma and Genton (2001). It is well known that the resulting sym-
metric matrix is not guaranteed to be positive definite (PD). Methods to ensure the resulting estimator is
PD have previously been explored by Rousseeuw and Molenberghs (1993) with notable updates in the ro-
bustness literature by Maronna and Zamar (2002) and quite separately in the finance literature by Higham
(2002). Alqallaf et al. (2002) also proposed a pairwise approach to covariance matrix estimation by means
of first Winsorising the data. The resulting Quadrant Covariance estimate does not necessarily require a
transformation to ensure the result is positive definite.

In practice, it is often the precision matrix, the inverse of the covariance matrix, that is primarily of
interest. This is the case, for example, in Gaussian graphical model selection. As such, this paper is
primarily concerned with robustly estimating the precision matrix. While there is an obvious link between
covariance matrices and precision matrices, it is not obvious that a good (robust) estimator for one results
in a good estimator for the other. We will employ robust pairwise covariance matrices as a starting point for
various regularisation techniques to facilitate the estimation of robust, potentially sparse, precision matrices.

Classical robust estimators assume that contamination occurs within a restricted subset of the observa-
tion vectors, however, in recent years there has been interest in developing robust estimators that perform
well under cellwise contamination. The cellwise contamination model was initially explored in a data min-
ing context by Alqallaf et al. (2002) and later defined comprehensively by Alqallaf et al. (2009). This form
of contamination is prevalent in large, automatically generated data sets, found in data mining and bioinfor-
matics, where there is often little quality control over the inputs. Cellwise contamination is common in the
context of missing data, however, it represents a philosophical divergence from the traditional approach to
robustness. Recent examples where the problem of cellwise contamination have arisen include, Farcomeni
(2014), Van Aelst et al. (2012) and Agostinelli et al. (2014).

We perform a detailed simulation study to assess the performance of a variety of precision matrix esti-
mators in the presence of cellwise contamination over a number of scenarios and levels of p while keeping
the sample size fixed. Our results are distilled from a comprehensive range of performance indices. We
outline these indices and consider their applicability to the various scenarios in the supplementary material
accompanying this article.

We show that the pairwise nature of the covariance estimates enables the resulting precision matrix to
have a higher level of robustness than when using standard robust covariance matrix estimation procedures
in the presence of cellwise contamination. This is a novel result and a significant first step towards dealing
with cellwise contamination in this context.

The remainder of this paper is structured as follows. Section 2 outlines the cellwise contamination
model and highlights why standard robust techniques fail in this setting. Sections 3 and 4 outline the theory
for existing pairwise covariance matrix estimation techniques and regularisation routines and we propose a
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new procedure which combines robust pairwise covariance matrix estimation with regularisation. Sections
5 and 6 present the results of an extensive simulation study and Section 7 summarises the important findings.

2. Cellwise contamination

Consider a data set X ∈ Rn×p consisting of n observations on p variables. Classically, even the most
robust procedures are designed such that they only work when at most half of the rows in X have contami-
nation present.

Alqallaf et al. (2009) formally outline the cellwise contamination model as an extension of the standard
Tukey-Huber contamination model which was first introduced in the univariate location-scale setup (Tukey,
1962; Huber, 1964). Consider the data generating process for the n rows in X, xi = (I − Bi)yi + Bizi,
where yi ∼ F, the distribution of well-behaved data, zi ∼ G, some outlier generating distribution and
Bi = diag(B1, . . . , Bp) is a diagonal matrix, where B1, . . . , Bp are Bernoulli random variables, B j ∼ B(1, ε j).
When y, B and z are independent we have a situation that is similar to the missing completely at random
model, where the missingness does not depend on the values of y, see, for example, Little and Rubin (2002).

The structure of Bi determines the contamination model. If B1, . . . , Bp are fully dependent, then Bi =

UiI, where Ui ∼ B(1, ε), and we recover the fully dependent contamination model, the standard model
on which classical robust procedures are based. In this setting, the probability that an observation is un-
contaminated, 1 − ε, is independent of the dimensionality. Furthermore, the proportion of contaminated
observations is preserved under affine equivariant transformations.

In contrast, if B1, . . . , Bp are mutually independent we have the fully independent contamination model,
where each element of xi is drawn from F or G independently of the other p − 1 elements in xi. That
is, contaminating observations occur independently at the univariate level. In this setting, it may be be
unreasonable to assume that less than half the rows have contamination. Furthermore, if p is large and there
is only one outlier in an observation vector, then down-weighting the entire observation may be wasteful.

If the data matrix is randomly contaminated in this elementwise manner, as the number of variables
increases, the chance that more than half the rows are contaminated increases exponentially. Formally, let
ε be the probability that any particular element in a data matrix is contaminated. Assuming the contam-
ination is randomly scattered throughout the data matrix, the probability that any particular row has no
contamination is (1 − ε)p, which quickly decays towards zero even for small values of ε. For example, if
p = 30 and ε = 0.1, then the probability that any particular row remains uncontaminated is only 4%. This
is demonstrated graphically in Figure 1. The plot on the left shows a 100 × 30 data matrix where 10% of
the cells have been contaminated, the white cells. While virtually all the rows of the data matrix have at
least one contaminated element, the majority of cells remain uncontaminated in the sense that they are still
real measurements from the underlying data generating process. Even if ε = 0.03, the probability that any
particular row is uncontaminated is 40%, however with a sample size of 100, this translates to a 98% chance
that at least half the rows are contaminated, in which case standard robust methods fail.

It is important to note that the fully independent contamination model lacks affine equivariance, in
the sense that linear combinations of columns of a contaminated data set result in “outlier propagation”
(Alqallaf et al., 2009). As such, affine equivariance is not an achievable outcome for any estimator in this
setting.

Existing research into the problem of cellwise contamination has focussed on coordinatewise proce-
dures, that only operate on one column at a time. Croux et al. (2003) consider an approach based on
“alternating regressions” using weighted L1 regression, Maronna and Yohai (2008) use a coordinatewise
procedure for principal component analysis. Liu et al. (2003) have an application involving the singular
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Figure 1: On the left, a heat map of a data matrix with 30 variables and 100 observations. 10% of the cells have been contaminated
and are shown as white cells, while the uncontaminated cells are in various shades of grey. On the right, the probability that any
particular row (observations) in the data matrix will be contaminated, 1− (1− ε)p, over a range of ε, the proportion of cells affected
by cellwise contamination.

value decomposition of microarray data and De la Torre and Black (2001) consider cellwise contamination
in the context of computer vision.

We show that a pairwise approach is able to cope with much higher levels of cellwise contamination
than existing classical robust estimators. In the simulations in Section 5 we do not use the fully independent
contamination model, rather, we impose restrictions on the amount of contamination in each variable. As
such the contamination is no longer strictly independent, however, the advantage is that we are able to assess
the impact over various known levels of contamination in each variable.

3. Pairwise covariance matrix estimation

A pairwise approach to estimating covariance matrices in the presence of cellwise contamination has
previously been explored by Alqallaf et al. (2002) where the classical correlation coefficient was applied to
a Winsorised data set. Instead of transforming the underlying data, our approach is to take the p(p − 1)/2
pairs of variables and robustly estimate the covariance between each pair. The primary advantage of this
approach is robustness to cellwise contamination in the data set. The main disadvantage is that the resulting
symmetric matrix is not guaranteed to be positive semidefinite or affine equivariant. However, as noted
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earlier, in the cellwise contamination model, affine equivariance is unachievable as there is the potential for
all rows to have a contaminated cell, hence linear combinations of the rows propagate the contamination.

A simple method for turning scale estimators into covariance estimators was introduced by Gnanade-
sikan and Kettenring (1972) and brought to prominence in the context of robust estimation by Ma and
Genton (2001). The idea is based on the identity,

cov(X,Y) =
1

4αβ
[
var(αX + βY) − var(αX − βY)

]
, (1)

where X and Y are random variables. In general, X and Y may have different scales, hence it is standard to
let α = 1/

√
var(X) and β = 1/

√
var(Y). A robust covariance estimator is found by replacing the variance

in (1) with (squared) robust scale estimators. We will focus on the estimators Qn (Rousseeuw and Croux,
1993), the τ-scale as described in Maronna and Zamar (2002) and an estimator that is somewhat less robust
but highly efficient, Pn, the interquartile range of the pairwise means, and its adaptively trimmed variant P̃n

with adaptive trimming parameter d = 3 (Tarr et al., 2012). We also consider the interquartile range (IQR)
and the median absolute deviation from the median (MAD). A recent discussion on the efficiency of various
robust scale estimators can be found in Tarr et al. (2012).

Using identity (1), a symmetric matrix full of pairwise covariances can easily be constructed, however,
there is no guarantee that the result will be positive semidefinite. The two methods outlined below overcome
this limitation by appropriately adjusting the eigenvalues of the symmetric matrix to ensure that they are all
positive, and hence ensuring a positive definite result.

3.1. Orthogonalised Gnanadesikan Kettenring procedure

To overcome the possible lack of positive semidefiniteness in a matrix of pairwise covariances, Maronna
and Zamar (2002) propose a modification based on the observation that the eigenvalues of a covariance
matrix are the variances along the directions given by the respective eigenvectors. Essentially a principal
components decomposition is performed and the covariance matrix is reconstructed using robust variance
estimates of the principal component vectors in place of the original eigenvalues. This procedure is known
as the Orthogonalised Gnanadesikan Kettenring (OGK) estimator. Note that even if the original covariance
matrix was already positive definite, applying the OGK procedure will not necessarily return the same
matrix.

Maronna and Zamar (2002) and Maronna et al. (2006, p. 207) suggest that the OGK estimator can be
improved by iterating the procedure and then using this estimate to find robust Mahalanobis distances for
each observation vector. These are then used to screen for outliers before applying the classical covariance
estimator to the cleaned data, resulting in a procedure known as the reweighted OGK. This is done in
an effort to increase efficiency and to make the result “more equivariant”. In terms of the impact of not
being affine equivariant, Maronna and Zamar (2002) note that “although the worst case may differ from the
original data, for most transformations the results are very similar” and “the lack of equivariance is not a
serious concern in our estimates”.

Regardless, neither the OGK method nor the reweighted OGK method is able to cope with cellwise
contamination. The issue of outlier propagation means that the number of contaminated principal compo-
nents could easily be greater than 50% even for small levels of cellwise contamination. Hence, the robust
variance estimates that are used in place of the eigenvalues will no longer be valid estimates – they will be
in breakdown. Furthermore, the reweighting step will often needlessly exclude many observation vectors
where there is only one contaminated cell.
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3.2. Nearest positive definite matrix procedure
Higham (2002) considers the problem of computing the nearest positive definite (NPD) matrix to a given

symmetric matrix. The motivation stems from finance, where sample covariance matrices are constructed
from vectors of stock returns, however, the problem arises when not all stocks are observed every day. In
this setting, classical covariances may be computed on a pairwise basis using data drawn only from days
where both stocks have data available. The resulting covariance matrix is not guaranteed to be PD because
it has been built from inconsistent data sets. Motivated by the same problem, Løland et al. (2013) propose
both a pseudo-likelihood and a Bayesian approach to find PD estimates of pairwise correlation matrices.
However, their approach relies on expert knowledge to formulate priors for the pairwise covariances.

The NPD procedure is similar to the OGK procedure in that it performs a spectral decomposition and
then updates the eigenvalues to ensure that the result is PD. However, it does not rely on linear transfor-
mations of the original dataset and hence is not affected by the “outlier propagation” issue associated with
cellwise contamination. Formally, for an arbitrary symmetric p× p matrix A, the aim is to find the distance

γ(A) = min{||A −W||F : W is a symmetric PD matrix}, (2)

and the resulting matrix that achieves this minimum distance. Higham (2002) uses the Frobenius norm,
||B||F =

√
tr(B′B), as it is “the easiest norm to work with for this problem and also being the natural choice

from the statistical point of view”.
While Higham (2002) considers a variety of weighting mechanisms, in the simplest case without spec-

ifying any weights, the procedure is quite straightforward. The final estimate is Ŵ = EΛ̂E′, where EΛE′
is the spectral decomposition of A, with Λ = diag(λ1, . . . , λp) and Λ̂ = diag(max{λi, δ}), where δ is a small
positive constant. In contrast to the OGK procedure, if the initial symmetric matrix is already PD, then the
NPD method simply returns the original pairwise covariance matrix.

In the presence of cellwise contamination the NPD method outperforms the OGK method. However, the
NPD method often results in estimated matrices with a number of extremely small eigenvalues which give
poorly conditioned estimates, i.e. the condition number of these estimators is very high as is the entropy
loss, which involves the log of the eigenvalues. In general, it is not recommended to use either the OGK nor
the NPD in isolation when there is cellwise contamination present. Even in the presence of standard row-
wise contamination, the NPD method is not recommended due to its propensity to return poorly conditioned
estimates.

4. Precision matrix estimation

Many statistical procedures are primarily concerned with the precision matrix, the inverse of a co-
variance matrix, rather than the covariance matrix itself. For example, finding Mahalanobis distances and
performing linear discriminant analysis both require an estimate of Θ = Σ−1. Finding good precision ma-
trix estimates has been a focus of many investigators over a long period of time, the first major contribution
being Dempster (1972).

The following routines take as an input an estimated covariance matrix and output a regularised pre-
cision matrix. In Section 5 we demonstrate the advantages of using a robust pairwise covariance matrix
estimate as the input to these regularisation routines.

4.1. GLASSO
A natural way to estimate Θ is by maximising the log-likelihood of the data. With Gaussian observa-

tions, the log-likelihood takes the form,
log |Θ| − tr(SΘ), (3)
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where S is an estimate of the covariance matrix of the data. Maximising (3) with respect to Θ leads to the
MLE, S−1. In general, S−1 will not be sparse, in the sense that it will contain no elements exactly equal to
zero. Furthermore in p > n situations S will be singular so the MLE cannot be computed. Yuan and Lin
(2007) consider minimising the penalised negative log-likelihood,

tr(SΘ) − log |Θ| + λ
∑

i, j |θi j|, (4)

over the set of PD matrices where λ is a tuning parameter to control the amount of shrinkage. Friedman et al.
(2008) refer to this estimator as the graphical lasso (GLASSO) and note that it has two major advantages
over (3): the solution is PD for all λ > 0 even if S is singular, and for large values of λ the resulting estimate,
Θ̂, will be sparse.

4.2. QUIC

The QUIC method solves the same minimisation problem as the GLASSO. The improvement in speed
comes from noticing that the Gaussian log-likelihood component of (4) is twice differentiable and strictly
convex which lends itself to a quadratic approximation and hence faster convergence (Hsieh et al., 2011).
On the other hand, the penalty term is convex but not differentiable and so is treated separately.

The QUIC routine, as implemented in the R package QUIC, explicitly includes a step that ensures pos-
itive definiteness of the precision matrix for each iteration. Work has recently been undertaken to scale the
QUIC estimator to scenarios with a million variables, see Hsieh et al. (2013) for details.

4.3. CLIME

An alternative to maximising the penalised log-likelihood is to use the constrained `1 minimisation
approach to sparse precision matrix estimation (CLIME), implemented in the R package clime (Cai et al.,
2011, 2012). The CLIME routine uses linear programming to solve the following (convex) optimisation
problem,

Θ? = min |Θ|1 subject to: |SΘ − I|∞ ≤ λ,

where S is the sample covariance matrix and |A|1 =
∑

i, j |ai j| is the elementwise `1 norm of a matrix, A,
and |A|∞ = maxi, j |ai j| is the elementwise infinity norm. No symmetry requirements are placed on Θ? so a
symmetrising step is applied to obtain the final solution, Θ̂,

θ̂i j = θ̂ ji = θ?i j I{|θ
?
i j| ≤ |θ

?
ji|} + θ?ji I{|θ

?
i j| > |θ

?
ji|}.

Theorem 1 of Cai et al. (2011) shows that the resulting Θ̂ is PD with high probability.
Our simulations show that there is little difference between using CLIME and QUIC – the key point is

that both appear to perform well in the presence of cellwise contamination when the input matrix is based
on pairwise robust covariance estimates and it has been made PD using the NPD routine.

5. Simulation study for p < n

This section presents the results of an extensive simulation study to assess how well various robust
covariance estimation techniques perform when used as an input to the regularisation routines outlined
previously.

The proposed estimator begins by finding the covariances between all p(p − 1)/2 pairs of variables.
For the scale estimator underlying the robust covariance estimator, we consider Qn, the τ-scale, the MAD
and the IQR. We also consider the Pn estimator and two adaptively trimmed variants P̃n, with trimming
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Figure 2: Heat maps of the three kinds of precision matrices used to generate the data when p = 30.

parameters d = 3 and d = 5, see Tarr et al. (2012) for further details about these estimators. The pairwise
covariances are arranged in a symmetric, though not necessarily PD, matrix. The symmetric matrix is
transformed to a PD matrix using either the OGK method or the NPD method before being input into the
GLASSO, QUIC or CLIME regularisation routines. For comparison purposes we also include the classical
covariance estimator and the MCD as initial covariance matrix estimates.

5.1. Design

The simulated data follows a multivariate Gaussian distribution with n = 100 observations, N(0,Θ−1).
The precision matrices we select as the basis for the data generating process represent a broad range of
scenarios that occur in practice and are similar to those used in Cai et al. (2011) and Hsieh et al. (2011). In
particular, we consider three types of precision matrices, Θ, as shown in Figure 2 and outlined below.

1. Banded precision matrices, with elements θi j = 0.6|i− j|, such that the values of the entries decay the
further they are from the main diagonal.

2. Sparse precision matrices, with randomly allocated non-zero entries, where Θ = B + δI with each off

diagonal entry in B generated independently, where P(bi j = 0.5) = 0.1 and P(bi j = 0) = 0.9 and δ
is chosen such that the condition number of the matrix equals p. The matrix is then standardised to
have diagonal components equal to one. This scenario will be referred to as scattered sparsity.

3. Dense precision matrices, where Θ has all off diagonal elements equal to 0.5 and diagonal elements
equal to 1.

The outliers were generated independently for each variable. In our simulations we allow the number
of contaminated observations within each variable to increase up to a maximum of 25 observations (out
of n = 100). In this way we have complete control over the total number of contaminated cells. The
distribution of the outliers is a t10 distribution scaled by either a factor of 10 for extreme outliers or

√
10

for moderate outliers. The moderate outliers are perhaps closer to what one might expect in a real data
set. However, the focus here is primarily on the extreme outliers where the overwhelming majority of the
unusual observations lie well outside the cloud of standard observations. The extreme nature of the outliers
serves to demark clearly estimators that have effectively broken down from those that are still capable of
giving ballpark correct results. In both cases, the outliers are symmetrically distributed.

Each of the regularisation routines require a tuning parameter. At each replication, the tuning parameter
was obtained by training on a separate (uncontaminated) randomly generated data set drawn from the true
data generating process. For the training data, a sequence of precision matrices was obtained and the value
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of the tuning parameter corresponding to the smallest entropy loss was then used for that replication. In
practice, there was a small amount of variability in the choice of tuning parameter within each scenario
and dimensionality. Furthermore, the QUIC and GLASSO routines almost always picked the same tuning
parameter and the CLIME routine was free to choose slightly smaller tuning parameters. For example, in
the scattered sparsity scenario with n = 100 and p = 60 the training set for CLIME resulted in a tuning
parameter of around 0.09 whereas for QUIC and GLASSO it was closer to 0.12. In practice the tuning
parameter may be chosen through cross validation, a BIC-type criterion such as in Yuan and Lin (2007), or
it can be adjusted in an ad-hoc way until a desired level of sparsity is achieved.

We performed an extensive investigation into the most appropriate way to compare estimated precision
matrices in the presence of cellwise contamination. We considered a number of matrix norms, the Frobenius
norm, one norm, infinity norm and spectral norm, as well as the log determinant, the condition number and
the entropy loss. The definition and behaviour of these performance indices under cellwise contamination
are outlined in the supplementary material. We found that the most appropriate measure was the entropy
loss defined as, LE(Θ, Θ̂) = tr(Θ−1Θ̂) − log det(Θ−1Θ̂) − p.

As in Lin and Perlman (1985), we report the results in terms of the percentage relative improvement in
average loss (PRIAL),

PRIAL(Θ̂) =
LE(Θ, Θ̂0) − LE(Θ, Θ̂)

LE(Θ, Θ̂0)
× 100,

over N = 100 replication of each design, where Θ̂0 is the estimated precision matrix after a regularisa-
tion technique has been applied to the classical sample covariance matrix for uncontaminated data. It is
important to note that this is an extremely harsh benchmark to set.

5.2. Results

5.2.1. No contamination
Any good robust method should give comparable results to the classical non-robust method it is re-

placing when presented with a clean dataset. Table 1 presents the PRIAL results for the no contamination
scenario. As the PRIAL results are relative to the base case for each routine, Table 1 cannot be used to
compare the performance of the CLIME routine to the QUIC routine.

In the uncontaminated case, the OGK method substantially outperforms the NPD method. Overall,
the methods appear to improve as the dimensionality increases, however, this is more a reflection of the
deteriorating absolute performance of the baseline classical covariance matrix estimate.

For p = 30, the pairwise methods outperform the MCD, however the MCD method uses bn + p + 1c/2
observations so when p = 90 the resulting estimator is the classical covariance estimate applied to 95 out
of a total n = 100 observations. Hence, it is not surprising that the PRIAL for the MCD method is so close
to zero. In fact, the MCD is not recommended for use when n < 2p (Rousseeuw et al., 2013).

The reweighted OGK (OGKw) methods essentially perform outlier detection and deletion before re-
turning a classical covariance estimate of the cleaned data set. The performance of these methods is broadly
similar over all the various initial scale estimates. Though not shown in Table 1, the MAD performs partic-
ularly poorly under both the OGK and the NPD corrections and would not be recommended for use.

As would be expected, given the solid Gaussian performance of Pn (see Tarr et al. (2012)), the methods
based on Pn outperform those based on the τ-scale and Qn. The relative deterioration in performance for
the robust methods compared to the classical method is comparable to that in the simple univariate scale
case. For example, the univariate scale estimator Pn has an asymptotic Gaussian relative efficiency of 86%.
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5.2.2. Cellwise contamination
There are a number of ways to compare and contrast the various estimators. We consider data with

n = 100 observations from three different data generating processes, across four dimensions, p = 15, 30,
60 or 90, contaminated with either moderate or extreme outliers, as explained in Section 5.1. We present
figures for the extreme case only but comment on both based on the results of N = 100 replications of each
design. We implement an array of initial covariance estimation techniques and process these through the
GLASSO, QUIC and CLIME regularisation routines. Finally, as outlined in the supplementary material
to this article, there are a number of performance indices that are considered. This section extracts and
synthesises the key results.

We first consider the effect of dimensionality on the performance of the various estimators. A typical
example is shown in Figure 3 where we plot the PRIAL results for the precision matrix resulting from the
CLIME procedure for various input covariance matrices across different amounts of extreme contamina-
tion in each variable. The original data was generated assuming a banded precision matrix, however the
trend holds true for scattered sparsity and dense precision matrices as well as for the QUIC and GLASSO
procedures.

For relatively low dimensions, such as in the bottom panel of Figure 3 where p = 15, there is clearly
an advantage to using the NPD method over the OGK method once there is more than a few percent of
observations in each variable being contaminated. To avoid clutter, only the OGK method with Pn has been
included in the plots, however, it is representative of the performance of the other scale estimators when
used in conjunction with the OGK method.

As the dimensionality increases, the OGK and the MCD methods deteriorate faster. When p = 90, as
outlined in the previous section, the MCD method behaves like the classical method. The OGK method
performs similarly poorly as outlier propagation can lead to more than half of the elements in each principle
component vector being contaminated. Hence, the eigenvalues in the spectral decomposition are replaced
with robust estimates of scale that may no longer be valid.

Remarkably, the NPD methods perform consistently well. Their performance, relative to the classical
method with no contamination improves as the number of variables increases. The Pn based method per-
forms well for low levels of contamination, however once the proportion of contaminated cells is greater

CLIME QUIC

p = 30 p = 60 p = 90 p = 30 p = 60 p = 90

OGK -17.1 -15.1 -12.7 -13.0 -9.5 -8.1
τ-scale OGKw -34.8 -29.3 -20.3 -26.9 -15.9 -15.6

NPD -31.5 -31.3 -27.6 -25.3 -16.7 -15.4

OGK -16.5 -13.3 -11.7 -13.6 -10.5 -9.3
Qn OGKw -34.7 -28.5 -12.3 -27.0 -15.6 -14.6

NPD -40.6 -36.9 -31.4 -32.5 -21.9 -20.3

OGK -13.6 -12.7 -10.9 -11.8 -9.6 -8.8
Pn OGKw -33.7 -27.1 -17.5 -26.2 -14.9 -14.5

NPD -19.9 -18.4 -18.2 -15.7 -11.4 -11.2

MCD -53.1 -19.5 -3.7 -56.2 -19.5 -3.7

Table 1: PRIAL results for the various estimators when there is no contamination present.
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Figure 3: PRIAL results for a selection of estimators applied to data generated with a banded precision matrix with extreme outliers
for p = 90 (top), p = 30 (middle) and p = 15 (bottom) using the CLIME regularisation procedure.
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than 10% it does not perform as well as the other pairwise methods due to its lower breakdown value.
It is interesting to note that the adaptively trimmed Pn with adaptive trimming parameter d = 3, P̃n,

follows a somewhat different trajectory to the rest of the NPD type estimators. It maintains a relatively
high level of performance even for quite high levels of contamination. This is due to the extreme nature
of the contamination making the adaptive trimming extremely effective in identifying and excluding the
errant observations. The advantage of P̃n is lost when the contaminating distribution has only moderately
sized outliers, in which case all the NPD pairwise methods perform comparably because P̃n does almost no
trimming.

To summarise, for p = 30, p = 60 and p = 90, using a pairwise method in conjunction with the
NPD procedure as an input into the CLIME regularisation routine, the increase in entropy loss can be
contained to less than double that of the classical method without contamination if the proportion of cellwise
contamination is less than 10%.

The same pattern holds true when using the QUIC or the GLASSO regularisation routines. To demon-
strate this consider Figure 4 where the PRIAL results are shown for CLIME, QUIC and the GLASSO under
the banded precision matrix scenario with extreme outliers and p = 60. As would be expected the QUIC and
GLASSO results are essentially identical, and largely consistent with the CLIME results in the top panel.

Consulting the raw entropy loss numbers reveals that the CLIME method gives slightly lower average
entropy loss measurements, particularly for very high levels of contamination. In practice it does not matter
what regularisation routine is used, the benefits of taking a pairwise approach to covariance estimation in
the presence of cellwise contamination will still hold.

The NPD pairwise approach is a major improvement over standard robust estimators. An example of
this is given in Figure 5 where we present the average PRIAL results for the QUIC estimator with p = 30
for the scenarios illustrated in Figure 2. Across all scenarios the same general pattern holds, the classical
method and the OGK and MCD methods fail quite rapidly whereas the NPD approach offers much greater
resilience to the cellwise contamination.

For the banded precision matrix scenario, top panel of Figure 5, the NPD based methods under the
various robust scale estimators give similar results with Pn having a slight advantage over the others for low
levels of contamination whereas Qn has an advantage for higher contamination proportions.

For the scattered precision matrix and the dense precision matrix scenarios, P̃n gives the best results.
The advantage of the adaptive trimming procedure is lost when the outliers are not so extreme, however, in
such scenarios the adaptive trimming approach performs no worse than the other NPD methods.

We previously established that matrix norms are not a good performance measure for precision matrices.
In terms of the other performance indicators, for all scenarios considered the log condition number remained
bounded, suggesting that all three regularisation routines return well conditioned precision matrix estimates
regardless of the level of contamination or the data generating process.

The NPD also performed well in terms of the log determinant performance index. As with the entropy
loss, there appears to be an advantage to using P̃n over the other scale estimators in each of the scenarios.
Unlike with the entropy loss, the advantage of the adaptive trimming procedure is still evident even when
the contamination is less extreme.

It is also constructive to see how Σ̂ = Θ̂−1, the inverse of the estimated regularised precision matrix,
compares with the true covariance matrix Σ. Figure 6 presents the average entropy loss and Frobenius norm
results for the resulting estimated covariance matrices after regularisation using the CLIME procedure. We
see similar trends to those outlined earlier. While using Pn alone does not perform well when the amount
of contamination in each variable is large, the adaptive trimming procedure gives excellent results. The
other pairwise methods also perform quite well. However, as we would expect, the classical method and
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Figure 4: PRIAL results for a selection of estimators applied to data generated with a banded precision matrix with extreme outliers
for p = 60 using CLIME (top), QUIC (middle) and GLASSO (bottom).
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Figure 5: PRIAL results for a selection of estimators applied to data generated with a banded precision matrix (top), scattered
precision matrix (middle) and dense precision matrix (bottom) with extreme outliers for p = 30 using the QUIC routine.
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standard robust techniques, MCD and OGK fail quite rapidly. In general, the patterns for the matrix norms
applied to Σ̂ are very similar to those of the entropy loss for Θ̂. That is, the robust covariance matrices that
are obtained at the end of the proposed procedure perform similarly well to the robust regularised precision
matrices.

There are also important differences between Σ̂ and the initial pairwise covariance matrix obtained after
applying the NPD procedure. While the matrix norms for the the initial pairwise matrices were comparable
to those for Σ̂, the entropy loss and log determinant results for the initial pairwise covariance matrices were
much worse due to small eigenvalues resulting from the NPD method. As such, we would not recommend
simply applying the NPD procedure to a pairwise covariance matrix without further regularisation.

5.3. Gaussian graphical discovery rates
Another way to analyse the performance of a precision matrix estimator is through the lens of a Gaus-

sian graphical model. When the data follow a multivariate Gaussian distribution, pairwise conditional
independence between variables X j and Xk holds if and only if θ jk = 0, therefore inferring linkages between
variables corresponds to identifying the nonzero elements of Θ = (θ jk), see Lauritzen (1996) for further
details. Hence, rather than focussing on overall measures of similarity between the estimated precision and
the true precision matrix, it can be informative to see how often the estimated precision matrix identifies the
correct non-zero elements from the true precision matrix.

Figure 7 shows visually how well the QUIC estimator performs in the presence of cellwise contamina-
tion. When there is no contamination, all methods appear to perform similarly well in terms of their ability
to correctly identify the true non-zero elements in the precision matrix. However, in the presence of 10%
extreme contamination, the classical covariance and the MCD approach both fail to identify any structure
as they tend to return overly dense precision matrices. On the other hand, the pairwise robust methods are,
on average, still able to identify the underlying structure.

In the machine learning literature, the Matthews correlation coefficient (MCC), also known as the φ
coefficient in the statistics literature, is often used to assess the ability of an estimator to identify the true
non-zero elements in a precision matrix (Matthews, 1975). It takes into account the number of true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN),

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Typical MCC results are given in Figure 8 for the QUIC procedure. When cellwise contamination
is introduced, the MCD, OGK and classical covariance approaches lose their ability to identify the true
structure in the precision matrix quite quickly. The pairwise methods are much more resilient. As the
number of contaminated observations in each variable increases, the ability of the pairwise methods to
identify the true structure decreases gradually. When there is no contamination and p = 60, the classical
method has an MCC of 0.39 compared with an MCC of 0.35 for the pairwise method based on Pn. When
there is 5% extreme contamination in each variable, the MCC for the Pn based method is still at 0.29, while
the classical approach is at 0.05. This pattern of results is virtually unchanged for the pairwise methods
when the contamination is less extreme.

6. Simulation study for p > n

Of particular interest in a data mining context is the case when the number of variables p, is larger than
the number of observations n. In order to perform simulations in a reasonable amount of time we refor-
mulated the simulation settings in Section 5 such that samples of size n = 50 were drawn with dimension
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Figure 6: Average entropy loss results for the precision matrices resulting from the CLIME procedure (top) and average entropy
loss and Frobenius norm results for the resulting covariance matrix estimates (middle and bottom) for p = 60 with scattered sparsity
and extreme outliers.
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Figure 7: Heat maps showing how often each element in the precision matrix is identified as being non-zero using the QUIC routine
over 100 replications. The top half have no contamination and the bottom half have 10% extreme contamination.
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Figure 8: Matthews correlation coefficient results for the QUIC procedure with extreme outliers, p = 30 (top), p = 60 (middle)
and p = 90 (bottom) in the scattered sparsity precision matrix scenario.
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p = 15, 30, 60 and 90. The same types of precision matrices were considered as in the previous section,
though we also looked at the case where the condition number of the sparse precision matrix was much
larger than the dimension. Given the similar performance of the various regularisation routines found in the
previous section, we restricted attention to the QUIC routine.

The results are similar to those found in the p < n setting. Figure 9 presents the MCC results for the
case when p = 60 and n = 50. We can draw a direct comparison between Figure 9 and the middle panel of
Figure 8 where p = 60 but n = 100. An important difference is that when p > n, the MCC values are lower
across all levels of contamination, indicating that it is more difficult to recover the support of a Gaussian
graphical model. For example, the classical approach had a MCC of 0.39 when n = 100, but only 0.29 when
n = 50. Figure 10 allow us to compare the relative performance of the pairwise techniques as the condition
number of the true precision matrix increases from 60 to 1000. The baseline value for the entropy loss is
8.8 for the classical approach when the condition number is 60, which increases slightly to 10.0 when the
condition number is 1000. We observe that the performance of the various pairwise estimators decreases
slightly as the condition number increases. For example when there is 8% contamination in each variable,
the adaptively trimmed Pn estimator, has a PRIAL of -46% when the condition number is 60 (top panel),
which decreases to -72% when the condition number is 1000 (bottom panel).
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Figure 9: Matthews correlation coefficients results for the QUIC procedure for a scattered precision matrix with p = 60, n = 50,
and extreme outliers.

Figure 11 demonstrates the impact of changing the extremity of the outliers when p = 90 and n = 50.
As described in Section 5, the outliers are generated from a multivariate t10 distribution with scale matrix
k Ip, for k = 10, 50 and 100. With moderate outliers, as shown in the top panel of Figure 11, all the robust
procedures perform comparably and the classical approach is not affected too badly. As the extremity of the
outliers increases, shown in the bottom two panels of Figure 11 the performance of the classical approach
deteriorates quickly. Between the middle and bottom panels, there is little difference in the performance of
the high-breakdown value robust estimators, indicating that they have stabilised and are likely to continue
giving the same result even if the existing outliers were moved further away. It is clear that the method based
on Pn, with its lower breakdown value, continues to be affected by the size of contamination when there is
a large proportion of contamination in each variable and we would expect its performance to continue to
deteriorate if the outlier generating distribution was even more extreme.

Note that P̃n, the adaptively trimmed Pn, remains the most stable as the extremity of the outliers in-
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Figure 10: Entropy loss PRIAL results for the QUIC procedure with a scattered precision matrix, p = 60, n = 50 and extreme
outliers. The condition number of the underlying precision matrix is 60 in the top panel and 1000 in the bottom panel.
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creases. In fact, when there is 10% cellwise contamination the PRIAL remains at -59% whether k = 50
or 100, which is down from -47% when k = 10. This can be attributed to the adaptive trimming correctly
identifying the vast majority of the contaminated bivariate observations when the outliers are so extreme.

7. Conclusion

A pairwise approach to covariance estimation has a natural resilience to the type of cellwise contamina-
tion seen in high dimensional scenarios where classical robust procedures, such as the MCD, M-estimators,
Quadrant Covariance and OGK, tend to fail.

We considered a broad range of scenarios: from dense precision matrices, as typically found in standard
analyses with n � p; to banded precision matrices that often occur in time series settings and may also
be representative of scenarios with block diagonal precision matrices; as well as scattered sparsity, where
the linkages between variables are not known beforehand and can show up anywhere within the precision
matrix, as is often found in settings where p > n.

After careful consideration of the various performance indices available in the multivariate setting, out-
lined in the supplementary material, our primary choice of performance measure was the entropy loss.
When appropriate, we showed that the entropy loss returned similar conclusions to other performance in-
dices, such as the Frobenius norm and log determinant.

We have shown that combining robust pairwise covariance estimation with the NPD method and reg-
ularisation techniques such as the CLIME, QUIC or GLASSO yield precision matrices that are robust to
cellwise contamination. The additional advantages of the regularisation techniques, such as the promotion
of sparsity also carry through. While it was expected, given that they are solving the same minimisation
problem, it is reassuring to find that the QUIC estimates are virtually indistinguishable from the standard
GLASSO approach in all scenarios considered here. Furthermore, it did not appear to matter which of the
three considered regularisation routines was applied, as all gave broadly similar results in the various sce-
narios considered. This is comforting given the current pace of research in this area, with new procedures
being suggested frequently.

We demonstrated that the proposed approach maintains its ability to identify the true precision matrix
structure, as measured by the Matthews correlation coefficient, under moderate levels of contamination.

We also investigated what happens when the resulting precision matrix is inverted to find the corre-
sponding covariance matrix estimate. Applying the same performance indices to the resulting covariance
matrices, we found they perform similarly well to the underlying precision matrix.

The simulation study allowed for quite high levels of arbitrary contamination in multivariate data sets.
As such, the pairwise techniques based on the standard Pn estimator unsurprisingly did not perform as well
as Qn and τ-scale estimators, however, the adaptively trimmed Pn, P̃n with trimming parameter d = 3
typically performed extremely well, due to its ability to detect and trim extreme outliers in bivariate space.
Finally, we showed that the performance of the proposed technique continues to perform well even when p
is moderately larger than n.
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Abstract

This supplementary material gives a summary of the performance indices used in the article “Robust esti-
mation of covariance and precision matrices under cellwise contamination” by Tarr et al. (2014).

1. Performance indices

We require a way to assess the performance of various covariance and precision matrix estimators under
cellwise contamination. There are a range of possible ways to measure how close an estimated matrix is to
the true value. In order to assess the performance of our proposed estimators, we first need to identify which
performance indices are appropriate. One class of performance indices considered are matrix norms which
measure the size of a matrix. The second class looks at how closely the estimated precision (or covariance)
matrix reflects the nature of the theoretical precision (or covariance) matrix, through either the determinant,
condition number or an overall entropy loss index. Let Σ denote the true covariance matrix and Θ = Σ−1

denote the true precision matrix. In this section we define the performance measures and consider their
appropriateness in the context of cellwise contamination.

1.1. Measures of performance

1.1.1. Matrix norms
The Frobenius norm is perhaps the most common matrix norm, it is an element-wise norm, the Eu-

clidean norm of A treated as if it were a vector of length p2, ||A||F =
√

tr(A′A). An alternative way
of constructing a matrix norm is to take a vector norm and use it to generate a matrix norm of the form
||A|| = sup||x||=1 ||Ax||, where || · || on the left is the induced (or operator) norm and || · || on the right is a vector
norm. Examples of induced norms are the Lp norms. For example, the one norm, ||A||1 = max j

∑n
i=1 |ai j|;

the infinity norm, ||A||∞ = maxi
∑n

j=1 |ai j|; and the spectral norm, ||A||2 = σmax(A), where σmax(A) is the
largest singular value of A. When A is nonsingular ||A−1||2 = 1/σmin(A) where σmin(A) is the smallest
singular value of A.

In our experiments, we apply the matrix norms to A = Θ0 − I where Θ0 = Θ−1Θ̂. While Θ and Θ̂ are
symmetric, it is not the case that the product of two symmetric matrices yields a symmetric matrix, hence
in general Θ0 , Θ

′
0, so in practice the one norm and the infinity norm may yield different results.
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For each norm, one may naı̈vely assume that the closer to zero the better, however, in Section 1.2 we
demonstrate that this is not always the case, particularly when estimating precision matrices in the presence
of outliers.

Aside from matrix norms, there are a few other commonly employed performance indices.

1.1.2. Entropy loss
The entropy loss, as suggested by Stein (1956) and featured in James and Stein (1961) and also Dey and

Srinivasan (1985), when applied to precision matrices is defined as,

LE(Θ, Θ̂) = tr(Θ−1Θ̂) − log det(Θ−1Θ̂) − p

=

p∑
i=1

(
λi − log λi

)
− p,

where λi, i = 1, . . . , p, are the eigenvalues of Θ0. Stein (1956) notes that this function is “somewhat
arbitrary” but it is convex in Θ̂ and assuming that Θ and Θ̂ are positive semidefinite, LE(Θ, Θ̂) ≥ 0 with
equality if and only if Θ = Θ̂.

However, the entropy loss is not as “arbitrary” as it may seem at first. Note that the Kullback-Leibler
divergence fromN1(µ,Σ1) toN2(µ,Σ2) is, DKL(N1,N2) = 1

2 LE(Σ1,Σ2). The close link between the entropy
loss and the Kullback-Leibler or Bregman divergence loss is shown in a Bayesian context by Gupta and
Srivastava (2010).

There is also a clear link between the entropy loss and the likelihood ratio test for H0 : Σ = Σ? with
unknown mean assuming the data come from a Gaussian distribution, −2(l1−l0) = nLE(Σ?,S), where l0 and
l1 are the log-likelihoods under the null and alternative hypotheses, see, for example Mardia et al. (1979, p.
126).

The entropy loss is used extensively as a basis for developing and assessing improved precision and
covariance matrix estimators, for example in Lin and Perlman (1985), Yang and Berger (1994) and more
recently, Won et al. (2013).

1.1.3. Log determinant
In the multivariate Gaussian setting, Wilks (1932) names the determinant of the covariance matrix,

det(Σ), the generalised variance. The generalised precision is similarly defined as the determinant of the
precision matrix, det(Θ). This idea can be used as the basis for a performance index. Consider the log of
the determinant of the standardised covariance or precision matrix, LD(Θ0) = log det(Θ0) =

∑p
i=1 log λi.

The determinant of an identity matrix is 1, so the optimal value of LD(Θ0) is 0. Positive (negative) log
determinant results indicate that the generalised variance or precision is being over (under) estimated. Note
that, LD(Θ0) = −LD(Σ0). Thus, methods that underestimate the generalised variance will overestimate the
generalised precision.

The log determinant is a very crude performance index which can be dominated by one eigenvalue that
is very close to zero. Furthermore, it is incorporated as part of the entropy loss so there is little need to focus
on it in the results of the simulation studies.

1.1.4. Log condition number
Formally, the condition number of a square matrix is the product of the norm of the matrix and the norm

of its inverse, κ(Θ0) = ||Θ−1
0 || · ||Θ0||, and hence depends on the kind of matrix-norm. It is common to use

the spectral norm, in which case the condition number is the ratio of the largest to the smallest non-zero
singular value of the matrix. The condition number associated with the systems of equations, Ax = b, gives
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Figure 1: A series of boxplots showing the distribution of the largest through to the smallest eigenvalues of an estimated covariance
matrix, S, over N = 100 samples from N(0, I) with n = 100 and p = 30, 60 and 90.

a bound on how inaccurate the solution may be. A system is said to be ill-conditioned if small changes in
the inputs, A and b, result in large changes in the solution, x.

Consider the performance index defined as the log of the condition number of Θ0,

Lκ(Θ0) = log κ(Θ0) = log(σmax(Θ0)) − log(σmin(Θ0)).

The condition number for an identity matrix is 1 and the condition number for a singular matrix is
infinity, so the 0 ≤ Lκ(Θ0) ≤ ∞.

Gentle (2007) notes that while the condition number of a matrix provides a useful indication of its
ability to solve linear equations accurately, it can be misleading at times when the rows (or columns) of the
matrix have very different scales. That is, the condition number can be changed by simply scaling the rows
or columns which does not actually make a linear system of equations any better or worse conditioned. This
is known as artificial ill-conditioning.

In the context of the sample covariance matrix, S, Ledoit and Wolf (2004) note that “when the ratio p/n
is less than one but not negligible, the sample covariance matrix is invertible but numerically ill-conditioned,
which means that inverting it amplifies estimation error dramatically.” Won et al. (2013) go further stating
that “the eigenstructure [of S] tends to be systematically distorted unless p/n is extremely small, resulting
in numerically ill-conditioned estimators for Σ.” Figure 1 demonstrates the systematic deterioration in the
eigenstructure as p/n→ 1. The eigenvalues of the true covariance matrix are all identically 1, however this
is not reflected in the eigenvalues of the estimated sample covariance matrices.

As with the log determinant, the log condition number is not a particularly discerning performance
index. To assess whether a robust estimator provides reasonable estimates, the most that it can contribute is
whether or not the log condition number remains bounded.

1.1.5. Quadratic loss
Another index that is frequently used in the literature to assess the performance of covariance matrix

estimators is the quadratic loss. The exact specification varies from paper to paper, for example Ledoit and
Wolf (2004) define it as, ||Σ̂ − Σ||2F . An alternative specification of the quadratic loss, more in line with the
entropy loss, is used in Won et al. (2013), ||Σ̂Σ−1 − I||2F . It is obvious that the quadratic loss is intrinsically
linked to the Frobenius norm.
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1.2. Behaviour of performance indices

The performance indices outlined in this section are typically used to compare competing estimators
in uncontaminated data sets. Contaminated data will have potentially severe implications for structure and
size of the estimated precision and covariance matrices, and it is not clear how these indices will behave in
such settings. As such, we begin our investigation by exploring how these indices react to the presence of
gross outliers in a data set.

The model used to assess the behaviour of the various performance indices is typical of that used in the
simulation study, n = 100 observations drawn from the standard multivariate Gaussian distribution,N(0, I),
with p = 30.

1.2.1. Inflated variances
This section explores how the various performance indices react if we artificially inflate the variance of

the first variable, i.e. increase the value of s11 in the sample covariance matrix, S = (si j), based on a single
sample of uncontaminated data. In this simple case, where Σ = Θ = I, the matrix norms are applied to S− I
or S−1 − I and the entropy loss, log determinant and log condition number are simply applied to S or S−1.
Note that in this setting the one norm and the infinity norm will give identical results and so only the results
for the one norm are shown.

Figure 2 shows the behaviour of the various indices when applied to these adjusted covariance matrices
and Figure 3 presents the same for the resulting precision matrices, Θ̂ = S−1. The horizontal axis shows the
size of s11, the artificially inflated variance of the first variable in the sample covariance matrix.

In Figure 2, the majority of the performance indices behave similarly in the covariance case – there is
an overall positive trend as the variance of the first variable increases. The spectral norm and Frobenius
norm both increase uniformly with s11. The one norm, and correspondingly the infinity norm (not shown),
remains flat as the sum of the absolute value of the elements in another column (or row) remains larger than
the first column (row) up until the point where s11 ≈ 2, at which point the one norm (and infinity norm)
increase linearly with s11. For large s11, it is clear that all considered performance indices register that the
adjusted S matrix is no longer close to the true value, I.

In stark contrast, Figure 3 shows the indices when applied to the resulting precision matrix (after the
first entry in the covariance matrix has been artificially inflated). As expected, the condition number of the
resulting inverse is identical to that of the original covariance matrix and LD(S−1) = −LD(S), however the
other indices exhibit somewhat different behaviour. In particular the matrix norms tend to decrease, rather
than increase. This is explained by noting that as the first element in the covariance matrix is artificially
inflated, the first row and column of the precision matrix decay towards zero while the other elements are
more or less constant. This is demonstrated in Figure 4 where θ̂11 and θ̂21 both tend towards zero whereas the
other main diagonal and off diagonal elements remain quite stable as the level of contamination increases.

In Figure 3, the Frobenius norm, an elementwise norm, exhibits a minimum turning point before lev-
elling off. This is due to the first row and column of the precision matrix converging rapidly to zero, often
from relatively large starting points, whereas the convergence of the other elements is not as drastic and not
necessarily shrinking towards zero, hence the upward trend.

The entropy loss broadly exhibits similar behaviour in both Figures 2 and 3. The minimum turning
point in Figure 3 is somewhat similar to that of the Frobenius norm and is explained by noting that this is
due to the sum of the eigenvalues decaying quite quickly before levelling off as s11 increases, whereas the
sum of the logs of the eigenvalues decays much more slowly. Regardless, it is clear that the entropy loss
tends to reflect the impact of the inflated variance in both the covariance matrix and the resulting precision
matrix.
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Figure 2: The impact of artificially inflating the size of the top left element of the sample covariance matrix, s11, on each of the
performance indices when applied to the resulting covariance matrix.
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Figure 3: The impact of artificially inflating the size of the top left element of the sample covariance matrix, s11, on each of the
performance indices when applied to the resulting precision matrix.
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Figure 4: The change in few elements of Θ̂ = S−1 as s11 is artificially inflated. Main diagonal elements are in the top row and the
off diagonal elements are in the bottom row. Note that S = (si j) and Θ̂ = (θ̂i j).

1.2.2. Contamination in the data
Instead of directly manipulating the estimated covariance matrix, consider introducing contamination

into the original data set and observing what effect that has on the performance metrics applied to the
covariance and resulting precision matrix. For each level of contamination we take N = 1000 samples from
N(0, I). For each sample we estimate the classical sample covariance matrix, S, and take the inverse to
obtain Θ̂ = S−1.

Figures 5 and 6 show the behaviour of the various loss indices over N = 1000 replications. The horizon-
tal axis represents the number of contaminated observations within each of the p = 30 variables. Starting
with an uncontaminated multivariate Gaussian distribution, we then progressively add one contaminated
observation to each variable until there are 24 contaminated observations within each variable. The con-
tamination is performed by assigning to each randomly selected cell the value of 10.

In general, cellwise outlying contamination will destroy any existing dependence structure and inflate
the main diagonal of the covariance matrix, resulting in increases for the entropy loss and matrix norms
applied to the covariance as seen in Figure 5. The log determinant of the estimated covariance matrix trends
upwards, demonstrating the over estimated generalised variance with increasing levels of contamination.
Apart from a relatively minor spike when there is only one contaminated observation in each variable, the
condition number is not adversely affected by increasing levels of contamination, reflecting the stabilised
eigenvalues of the resulting covariance matrix. This demonstrates that in this setting, the condition number
is not an appropriate index against which to compare the performance of competing robust estimators.

The interpretation of the performance indices when they are applied to the resulting precision matrix is
more complicated. We see in Figure 6 that there is still structure present in the precision matrix, in the sense
that there is a main diagonal behaving distinctly from the off diagonal elements. However, all the elements
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Figure 5: The impact of randomly contaminating a certain number of cells in each variable of a 100×30 data matrix on the various
performance indices when applied to the resulting covariance matrix.
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Figure 6: The impact of randomly contaminating a certain number of cells in each variable of a 100×30 data matrix on the various
performance indices when applied to the resulting precision matrix.
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tend to shrink towards zero. Hence, for large amounts of contamination, Θ̂−I ≈ −I and so the matrix norms
tend to converge to || − I||.

As in the previous scenario, the Frobenius norm exhibits a minimal turning point before plateauing.
This is explained by noting that while the introduction of contamination has an immediate shrinkage effect
on the main diagonal of the precision matrix, including one or two influential observations in each variable
induces an artificially high level of correlation between some variables. Hence, it can take some time for
the off diagonal elements to stabilise. When more than a few outlying cells are present in each variable, the
artificial correlation structure wanes and hence the Frobenius norm applied to the resulting precision matrix
trends towards ||I||F =

√
p. Hence, in this contamination setting the matrix norms appear to be useful only

when applied to the covariance matrix, not the precision matrix.
As in the previous scenario, the entropy loss behaves consistently for both the covariance and precision

matrix. Similarly to Figure 3, it exhibits a slight drop when only one cell in each variable is contaminated
after which it increases as the proportion of contaminated cells grows. As such, the entropy loss is the
preferred performance index when looking across both covariance and precision matrix estimators.
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