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Abstract

A new lack-of-fit test for quantile regression models, that is suitable even with high-
dimensional covariates, is proposed. The test is based on the cumulative sum of residuals
with respect to unidimensional linear projections of the covariates. To approximate the
critical values of the test, a wild bootstrap mechanism convenient for quantile regression
is used. An extensive simulation study was undertaken that shows the good performance
of the new test, particularly when the dimension of the covariate is high. The test can
also be applied and performs well under heteroscedastic regression models. The test is
illustrated with real data about the economic growth of 161 countries.

Keywords: quantile regression, lack-of-fit testing, high-dimensional covariates.

1. Introduction

Let us consider a regression setting where a quantile of the response variable of inter-
est, Y, is expressed as a function of a vector of explanatory variables, X. The resulting
regression model can then be denoted by

Y=9g(X)+e¢

where g represents the quantile regression function; and the error, ¢, has a conditional
T-quantile equal to zero, P(e < 0|X = z) = 7 for almost all z.

Quantile regression models have been receiving increased attention in the literature,
due to their flexibility for general error distributions and because they provide a more
detailed description of the conditional distribution of the response, compared to classical
mean regression. Koenker and Bassett (1978) can be considered as the seminal work on
the estimation of linear quantile regression models. The main concept is to exploit that
the 7-quantile, g, of a variable minimizes the expectation,

E (pT(Y - g)) )
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where p,(r) = mrl(r > 0) 4+ (7 — 1)rI(r < 0), and I(-) denotes the indicator function of
an event. Estimation of quantile models is obtained by minimizing the sum of penalized
residuals, similarly to the sum of squares in the case of mean regression. That is, given
a sample of independent observations, (X1,Y}),...,(X,,Y,), the coefficients of a linear
model, g(z) = 2’0 (2’ denotes the transpose of z), are estimated as the minimizers of

=1

The same criterion can be applied to estimate general parametric models, where the
regression function is of the type g(-,0) and 6 is a parameter to be estimated, and even
to nonparametric estimation of the quantile regression function. See Koenker (2005) for
a complete review on quantile regression methods.

We focus on the problem of testing a parametric model of quantile regression. That
is, a test of the null hypothesis

Hy:9ge Myg={g(-,0) : 0 € ©C R}

versus a nonparametric alternative.
This problem was addressed by He and Zhu (2003), who based their test on the process

n~? znziﬁ <YE - 9(Xi, 5)) 9(X,0)1(X; < t)
=1

where 1(r) = 7I(r > 0) + (7 — 1)I(r < 0) is the derivative of p., g(z,0) = & g(z,0),
and @ is an estimator of #. This is an extension to the quantile regression setting of the
cumsum process considered by Stute (1997) in the mean regression setting. Zheng (1998)
proposed a U-statistic of the quantities (Y; — ¢g(X;,0)) with smoothing kernel weights,
thereby extending the test of Zheng (1996) to quantile models. Other specification tests
for quantile regression models can be found in Horowitz and Spokoiny (2002), Whang
(2006), Otsu (2008), Escanciano and Velasco (2010), and Escanciano and Goh (2014),
among others. Measures of model adequacy in quantile regression, in the spirit of the
coefficient of determination for linear mean regression, were proposed by Koenker and
Machado (1999) and extended to possibly misspecified models by Noh et al. (2013).

It is well-known that a high (or even moderate) dimension of the covariate can affect
the performance of the specification tests. This problem has been addressed by several
authors in the mean regression setting, where modified tests have been proposed with
better properties for multiple covariates. In particular, Escanciano (2006) applied a cum-
sum test to one-dimensional projections of the covariates, Lavergne and Patilea (2008)
considered similar one-dimensional projections for a Zheng type test, and Stute et al.
(2008) based their test on the residual empirical process marked by proper functions of
the regressors.

Little can be found in the literature for lack-of-fit testing adapted to multidimensional
covariates in the framework of quantile regression. Wilcox (2008) used a He and Zhu type
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test and defined some ranks over the covariate. This proposal has the virtue of simplicity
but does not provide an omnibus test, i.e., it is not consistent for all alternatives.

We propose and study a lack-of-fit test for parametric models of quantile regression,
with good properties for multidimensional covariates and consistent for all alternatives. In
Section 2 we present the new He and Zhu type test calculated on one-dimensional projec-
tions of the covariates. A bootstrap method is also proposed to approximate the critical
values of the test. Section 3 contains a simulation study where the performance of the test
is studied under homo- and heteroscedastic models, with different error distributions and
with increasing dimension of the covariate. We compare the proposed test with a He and
Zhu test. In Section 4 the test is applied to real data, and we provide some concluding
remarks and extensions in Section 5.

2. The proposed method

2.1. The test

The strategy to improve the performance of the test with multiple covariates consists
of applying a lack-of-fit test to one-dimensional projections of the covariates. This is
motivated by a fundamental result, that states that the null hypothesis, Hy : ¢ € My,
holds if and only if, for some 6y € © C R?, and for any 8 € R? with ||8]| = 1,

PIY —g(X,00) <0 | X] =7

almost surely. This is an immediate extension of Lemma 1 in Escanciano (2006) to the
quantile regression setting.
If the true parameter #y was known, the test could be based on the process

R.(B,u) = n_1/22¢ 9(Xi,60)) 9 (X5,00) I (BX; <u).

Otherwise, an estimator 0 is substituted, yielding the process useful for lack-of-fit
testing of the parametric model

RL(B,u) = n~/2 Zz/; (vi— g (x:.0)) g (X0.0) 1(BX: < ).
The test statistic is then defined as
T,, = largest eigenvalue of /Ril(ﬁ, w)[R} (B, u)]' F, 5(du)dB, (1)
i

where II = Sy x [—00,+0oc], S4 is the unit sphere on RY and F, s is the empirical
distribution of the projected covariates ' Xy, ..., 3’ X

The process R} is similar to that proposed by Escanciano (2006), with two differences:
the loss function is now the quantile loss function, and the gradient vector g(Xi,é\) is
introduced following the suggestion of He and Zhu (2003).
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The limit distribution of R, under the simple null hypothesis, Hy : g = g(z,6y) with
6y known, can be expressed as

R, % R,

where R, is a Gaussian process with mean zero and covariance given by
K(z1,25) = 7(1 = 1) E[§(X, 00)9' (X, 00) [ (31X < un)I (55X < )],

where x; = (f1,u1)" and zo = (B4, ug)’. This result can be obtained similarly to Escan-
ciano (2006), where the tightness comes from the fact that the family of functions in the
definition of R,, is a VC-class of functions.

Under the composite null hypothesis of a parametric model, Hy : g € My, and under
certain regularity conditions, the following representation can be obtained:

RN (B,u) = =n /2 Zw i) [I(B'X; <u)— S8, u)S’l} 9(Xi,6p) + 0,(1)

uniformly in (5, u), where ¢; = Y; — g(X;,6p), i = 1,...,n are the errors, f(0|X) denotes
the conditional density of the error at zero, and the matrices S and S(f,u) are defined
by

S = E[f(01X)g9(X,00)d' (X, 0)]
S(B,u) = E[f(0[X)g(X,00)9'(X,00)1(F'X < u)].

The proof and the subsequent consequences are a combination of arguments given in He
and Zhu (2003) and Escanciano (2006). The representation itself is different from that of
He and Zhu (2003), because we do not assume homoscedasticity. From this representation,
the limit distribution of the test statistic, 7;,, under the null hypothesis can be derived.

Under the alternative, the representation is similar to the previous case, but a new
term appears which will be crucial to prove the consistency of the test. Let us assume
that the data come from

Y; = g(Xy,00) + nPh(X;) + & ie{l,...,n},

where ¢1,...,¢, are independent errors with conditional 7—quantile equal to zero. The
errors are not assumed to be identically distributed. In particular, their density at zero
may depend on X. With this type of data drawn from the alternative hypothesis, the
process allows the following representation:

RL(B,u) = *WZM I(B'X; < u) — S(B,u)S™'] §(Xi,00)

E[f (OIX) (X)9'(X, 00)1(B'X < u)]
—S(KM) E[f(01X)A(X)g (X, b0)] + 0p(1)



uniformly in (5, u). The second and third summands of the right-hand side are constants
reflecting the deviation from the null hypothesis. If the data come from

Y; = g(X;,00) + cun” PR(X) + & ie{l,...,n},

where ¢, is a sequence of real numbers converging to infinity (at any rate), then the test
statistic, T}, will converge to infinity and the power of the test will converge to one. To
obtain this consistency, it is assumed that the sequence g(z,6,) + c,n~"/2h(z) does not
coincide with any element of the parametric model, My = {g(-,0) : 6 € © C R?}, and
that Var(f(0|X)h(X)g (X,0)) > 0 for any 6.

2.2.  Bootstrap approrimation

The approximation of critical values is a crucial issue in lack-of-fit testing. One possible
solution would be to use the limit distribution. However, this would require an estimate
of the limit variance which involves the estimation of complicated unknown quantities.
Furthermore, the convergence to the limit distribution could be slow. Another possibility
could be to use the representations as given above. Then, a bootstrap method based on
multipliers can be considered (see He and Zhu (2003)). The approximation by a multipliers
bootstrap is generally better than the limit distribution, but still requires estimating
many unknown quantities. He and Zhu (2003) assume homoscedasticity, so the conditional
density of the error at zero, f(0|X), does not have to be estimated. On the other hand,
Escanciano and Goh (2014) allow for heteroscedasticity and use a multipliers bootstrap,
which requires an estimate of the conditional density f(0|X) by a smoothing method.

We propose a bootstrap approximation based on drawing new bootstrap samples,
(X1, Y1), ..., (X5, Y)), where

-~

Y =g(X;,0)+¢; 1=1,...,n.

§ is the parameter estimate obtained from the original sample, and e = w;|r;|, where
r, =Y, — g(Xi,é’\) are the residuals from the original sample. The multipliers, w;, are
independently generated from a common distribution with 7-quantile equal to zero. Fo-
llowing the proposal by Feng et al. (2011), the absolute values of the residuals are used
to construct the bootstrap errors, which is a convenient modification of wild bootstrap
for quantile regression. Regarding the multipliers distribution, we adopt the two-point
distribution with probabilities (1 — 7) and 7 at 2(1 — 7) and —27, respectively, that was
proposed by Feng et al. (2011) to satisfy their Conditions 3, 4 and 5. Note that other
common multipliers distributions for mean regression, generally with the only condition
that the variance is one and occasionally with the condition that the third moment is one
(see Mammen (1993) for a two-point multipliers distribution in the mean regression), do
not satisfy Conditions 4 and 5 required by Feng et al. (2011) to establish consistency of
the bootstrap for quantile regression.

The advantage of the proposed bootstrap approximation for the lack-of-fit test, in
comparison to existing methods such as those proposed by He and Zhu (2003) and Escan-
ciano and Goh (2014), is that it allows consideration of heteroscedastic regression models
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of any type without needing to estimate complicated quantities in the representations, and
in particular without estimating the conditional density f(0|X) by smoothing methods.

Once the bootstrap sample is generated, the test statistic is computed in the same
way as for the original sample, obtaining 77¥. If a number, B, of bootstrap samples are
generated, then T)7,, ..., T p represents the B bootstrap values of the test statistic. The
p-value of the test may be approximated by the proportion of bootstrap values not smaller
than the original test statistic, i.c., (1/B) Y., I(T) < Ty

The validity of this bootstrap mechanism comes from the representation of the process
R! under the null hypothesis, in terms of the true errors plus the parameters estimation,

Ry(B,u) =n~"2> " 4h(e:)d(Xi, 00)1(B'X; < u) — S(B,u)v/n (9 9) +0,(1)

i=1

uniformly in (3,u). A similar representation can be derived for the bootstrap process
conditionally on the original sample, where the convergence of the bootstrap version of
the estimation error, \/n(6* — ), was established in Theorem 1 of Feng et al. (2011).

2.3.  Computational aspects

Tests that face the curse of dimension usually require additional algorithms over other
more common model checks. In particular, Escanciano (2006) and Stute et al. (2008)
are based on Stute (1997)’s test and require additional computations over this original
method. Similarly, Lavergne and Patilea (2008) is a test for high-dimensional covariates
that is based on Zheng (1996)’s test, and requires an optimization algorithm over a set
of Zheng-type statistics. The proposed method here is an adaptation of He and Zhu
(2003)’s test to high-dimensional covariates with a procedure similar to that given by
Escanciano (2006). One important virtue of this procedure is the ease of computation
and that the amount of computations does not grow dramatically with the dimension of
the covariate. To illustrate this, recall that our test statistic, T, was defined in (1) as the
largest eigenvalue of a Cramer-von-Mises norm of the process R}. Following Escanciano
(2006), one can show that T,, can be expressed as

T, = largest eigenvalue of n~ Z Zdj i) (r;)g(Xs, 9) (X, é\)Aij.,

=1 j=1

where A;;, is given by
/21

Ajje = ZAW ,
F( +1>

where Agjo-z is the complementary angle between the vectors (X; — X,) and (X; — X,)
measured in radians, I' is the gamma function, and d is the dimension of the covariate, X.
Thus, the total number of computations required to obtain the test statistic depends on the

dimension, d, only at a linear rate, which is the same rate required by He and Zhu (2003)’s
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t=0 t=2 t=06 t=10 t=20 t=30 t=40 t=50
Proposed test 276 284 285 291 291 310 320 3R
HZ test 271 251 281 256 292 283 28 2T

Table 1: Computational times (seconds per sample) associated with our proposed lack-of fit test (Proposed
test) and with the test proposed by He and Zhu (2003) (HZ test) as a function of the dimension ¢ + 2 of
the covariate.

test, and much less than the optimization in d dimensions required by other methods in
the literature. Note also that the matrix A;j,, which is the most expensive in computation
time, does not need to be computed for each bootstrap sample. All these computational
properties are particularly useful in the case of high-dimensional or functional covariates,
see Garcia-Portugués et al. (2013) for an illustration in the mean regression functional
context.

Table 1 shows the mean of the times required by 1000 original samples with B = 500
bootstrap replications, in units of seconds per original sample. The data are drawn from
Model 8, whose details are given in the next section, and the sample size is n = 100.
The dimension of the covariate is d = t + 2. As expected, the new test requires more
computations than He and Zhu (2003)’s test, but the differences are quite small, and the
amount of computations does not dramatically grow with the dimension, even for very
large dimensions. The gain of power from the new test, shown in the next section, justifies
the small increase in the computation time.

3. Simulation study

We study the performance of our proposed method under the null and the alternative
hypotheses using a Monte Carlo simulation. In all experiments, the number of simula-
ted original samples was 1000, the number of bootstrap replications B = 500, and the
multipliers for the bootstrap approximation followed the two-point distribution given in
Section 2.2.

We first focus on the behavior under the null hypothesis, to check the adjustment of
the significance level. We simulate values for the following quantile regression models with
T =0.5:

Model 1: YV =1+ X; + X5+ ¢,

Model 2: Y:1+X1+X2+X3+X4+X5+5,
Model 3: Y = 1+X1+X2—|—f(X1>€,

where X; € Uniform(0,1) for ¢ = {1,---,5}, and they are mutually independent; and
f(z) =2+0.5 and € € N(0,1) is the unknown error, which is drawn independently of the
covariates. In Models 1 and 3 the null hypothesis is the linear model in X; and X, versus
an alternative that includes any dependence of Y on X; and X5. In Model 2 the null
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Model 1 Model 2 Model 3
a=010 =005 a=001 «=010 a=000 a=001 a=010 «a=005 a=001
n=25 0.096 0.049 0.002 0.119 0.066 0.017 0.107 0.061 0.014
n=>5( 0.112 0.047 0.008 0.112 0.053 0.014 0.099 0.045 0.005
n=100  0.102 0.058 0.016 0.094 0.047 0.011 0.107 0.049 0.010
n=150  0.089 0.048 0.007 0.104 0.056 0.014 0.096 0.055 0.015
n=200  0.100 0.048 0.010 0.106 0.049 0.010 0.100 0.054 0.015

Table 2: Proportions of rejections associated with our proposed lack-of-fit test for Models 1, 2 and 3.

hypothesis is the linear model in the five explanatory variables versus any dependence on
them. Model 1 represents a common homoscedastic model with small dimension of the
covariate. Model 2 is intended to show the possible effect of a larger dimension on the
level. Model 3 is useful to show the possible effect of heteroscedasticity on the level.

Table 2 shows the proportions of rejections associated with different sample sizes,
n, and for different nominal significance levels, a. The proposed test works well in a
homoscedastic context (Models 1 and 2) as well as in a heteroscedastic context (Model
3) even for small sample sizes. Comparing Models 1 and 2, the increase of the dimension
of the explanatory variables does not have a negative impact on the adjustment of the
significance level of the test. These are important, because our bootstrap mechanism was
designed to work under heteroscedastic models and the aim of the test itself was to be
applied for larger dimensions of the covariate.

Table 3 provides the same proportions of rejections for different error distributions
and quantiles, restricted to Model 1 and nominal level « = 0.05. The error distribu-
tions are centered standard normal, centered log-normal, and centered exponential with
expectation one. That is, ¢ = Z — z,, where Z follows a standard normal, log-normal,
and exponential with expectation one, respectively, and z, is the 7-quantile of the Z-
distribution. The nominal level is respected under the null hypothesis for all the error
distributions considered and orders of the quantile.

We now study the performance of the new test under the alternative. To this end,
the new test will be compared with that of He and Zhu (2003). Before doing so, we must
remember that He and Zhu (2003) suggested a bootstrap calibration of their test based on
an asymptotic representation of the empirical process in a homoscedastic scene. We will
verify if this manner of calibrating the test allows a good fit to the significance level for
heteroscedastic models. We simulate values of the following regression model with 7 = 0.5
under the null hypothesis of linearity:

Model 4: Y =1 + X1 + f(Xl)cE,

where X; € Uniform(0,1), f(z) =2+ 0.5, ¢ € N(0,1), and X; and ¢ are independent.



7=010 7=025 7=050 7=075 7=090
¢ € Centered Standard Normal — n=50  0.048 0.061 0.047 0.063 0.043
n=150  0.052 0.053 0.048 0.057 0.051
¢ € Centered Log-Normal n=>5  0.057 0.053 0.042 0.055 0.057
n=150  0.041 0.053 0.052 0.051 0.057
¢ € Centered Exponential n=50 0038 0.054 0.048 0.057 0.053
n=150  0.060 0.056 0.059 0.049 0.046

Table 3: Proportions of rejections associated with our lack-of-fit test for Model 1, for different error
distributions and different quantiles, with nominal level o = 0.05.

Wild hootstrap Bootstrap proposed
of Section 2.2 in He and Zhu (2003)
a=010 a=005 a=001 «=010 a=005 a=001

n=2 0103 0.057 0.014 0.441 0.305 0.142
n=>50 0116 0.064 0.015 0.263 0.164 0.067
n=100  0.004 0.051 0.013 0.167 0.092 0.033
n=150  0.104 0.051 0.010 0.155 0.085 0.025
n=200  0.103 0.051 0.014 0.136 0.080 0.026

Table 4: Proportions of rejections associated with the test proposed by He and Zhu (2003) for the
heteroscedastic Model 4 with two types of bootstrap approximations.

The proportions of rejections associated with the test proposed by He and Zhu (2003)
are shown in Table 4 for different sample sizes and nominal significance levels. The boots-
trap method proposed by He and Zhu (2003) does not work well in a heteroscedastic
context. This is due to their representation being only valid under homoscedasticity. Ho-
wever, the proposed bootstrap (Section 2.2) works well for their test also under heteros-
cedasticity. Therefore, with the aim to make a fair comparison between our proposal and
He and Zhu (2003)’s test, subsequently we use a wild bootstrap as given in Section 2.2 to
calibrate both lack-of-fit tests.

Once the adjustment of the level of both lack-of-fit tests has been studied, we analyze
their performance under the alternative hypothesis. Consider the following regression
model associated with quantiles of different orders, 7:

1
Model 5: Y =1 + g (Xl - XQ) —|—€T,
where X, Xy € N(0,1) and they are independent, and ¢ = Z — z,, where z, is the 7-
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quantile of the variable Z. Z is drawn independently of X; and X,. Three possibilities
are considered for the distribution of Z: standard normal, uniform on the interval (-1, 1),
and chi-squared with four degrees of freedom.

Table 5 shows the proportions of rejections for several quantiles and the three error
distributions, when the tests are applied to check the no-effect model, i.e., to check the
null hypothesis that the quantile regression function is a constant not depending on the
covariates. The sample size is fixed to n = 100. We consider a relatively simple hypot-
hesis and a simple deviation under the alternative, to facilitate the comparison between
quantiles of different orders, and to evaluate the effect of the error distribution.

The proposed test is more powerful than He and Zhu (2003)’s test for any of the
quantiles and for the three error distributions. The power of the proposed test is symmetric
with respect to the order of the quantile around 0.5 for the symmetric error distributions,
which are the standard normal and the uniform in Table 5. For the standard normal
error distribution, the proposed test is more powerful for the central quantiles (around
0.5), which can be explained by the higher density at these quantiles. For the uniform
error distribution, the density is constant with respect to the quantile, while the factor
7(1 — 7) appearing in the asymptotic distribution of the proposed test makes the test
more powerful for the external quantiles (with orders close to 0 or 1). For the chi-squared
error distribution, the proposed test is more powerful for the quantiles with smaller order,
since the error distribution is asymmetric with higher density at these quantiles.

We now consider a linear model under the null hypothesis and a quadratic deviation
under the alternative. The deviation is multiplied by a value ¢ > 0, to evaluate the effect
of the deviation on the power of the test.

Model 6: Y =14 X1+ Xo + ¢ (X7 + X5 + X1Xo) +&,

where X; € Uniform(0,1), Xo € N(0,1); and ¢, is a log-normal distribution centered to
the quantile 7, i.e., &, = ¢Z — e*", where Z € N(0,1) and 2, are the 7-quantile of the
variable Z; and X, X5 and ¢, are drawn independently.

Figure 1 shows the powers of the proposed test and He and Zhu (2003)’s test as
functions of the value of ¢, and with five orders of the quantile: 0.1, 0.25, 0.5, 0.75, and
0.9. The nominal level is a = 0.05 and the sample size is fixed to n = 150. As expected,
the power increases with c¢. The new test is more powerful than He and Zhu (2003)’s test
for any value of ¢ and for any of the considered quantiles. Both tests are more powerful
for central quantiles (orders close to 0.5). Symmetry around 0.5 is not strictly satisfied,
since the error distribution is not symmetric around the median, and the deviation from
the null hypothesis is more complex than that given in Model 5.

We consider different deviations from the linear null hypothesis and error distributions,
as Model 7.

Model 7: Y =1+ X; + Xo + h(X) + ¢,

where X; € Uniform(0,1), Xy € N(0,1); and € = Z — z,, with z, being the T-quantile of
the variable Z; and X;, X», and Z are drawn independently. For the deviation h(X), a

10



Proposed test HZ test
a=010 a=005 o=001 a=010 a=005 a=0.01
Z€eN(0,1) 7=010 0346 0.229 0.092 0.183 0.094 0.023
7=02 0498 0.362 0.180 0.210 0.121 0.030
7=050 057 0.444 0.231 0.208 0.110 0.032
7=070 0487 0.377 0.200 0.191 0.096 0.016
7=090 0357 0.245 0.102 0.128 0.052 0.007
Z € Uniform(-1,1)  7=0.10  0.930 0.885 0.707 0.524 0.335 0.112
7=02 0866 0.789 0.593 0.397 0.242 0.066
7=050 0809 0.691 0475 0.325 0.186 0.056
=07 0877 0.795 0.587 0.381 0.229 0.054
7=090 0945 0.872 0.693 0.382 0.193 0.027
7€y =010 0315 0.207 0.076 0.144 0.078 0.018
7=025 0245 0.144 0.045 0.124 0.056 0.015
7=050 0208 0.124 0.041 0.112 0.058 0.012
=075 0141 0.070 0.022 0.115 0.058 0.017
=090  0.137 0.077 0.028 0.120 0.064 0.015

Table 5: Proportions of rejections associated with our proposed lack-of-fit test (Proposed test) and with
the test proposed by He and Zhu (2003) (HZ test) for Model 5.
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Figure 1: Proportion of rejections associated with our proposed lack-of-fit test (Proposed test) and the test
proposed by He and Zhu (2003) (HZ test) for Model 6 depending on the parameter ¢ and the T-quantile
of interest.
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quadratic function including interaction is considered, as well as a sinus, exponential, and
logarithm function of the linear transformation I(z) = 1 + x; + x2 (see Table 6). For the
distribution of Z, the log-normal, chi-squared with two degrees of freedom, exponential
with expectation one, and a mixture of normal distributions are considered. The mixture
is obtained as a standard normal with probability 0.75 and a normal distribution with
mean 5 and standard deviation 2 with probability 0.25.

The proposed test and He and Zhu (2003)’s test are applied to check the null hypothesis
of linearity on X; and X, with nominal level a = 0.05. Results for the proportions
of rejections are given in Table 6. For each deviation and each error distribution, the
proposed test is more powerful than He and Zhu (2003)’s.

Our main purpose in proposing a new lack-of-fit test was to overcome the curse of
dimensionality. Thus, the new test should show an acceptable power for increasing di-
mensionality of the covariate. To check this, we simulate values of the following median
regression model:

1
Model 8: Y:1+X1+X2+§(X12+X1X2+X22) +¢,

where our goal is to realize the following lack-of-fit test:

H02Y:90+91X1+02X2+5
Hy Y = g(X1, Xo, Xog1,..., Xoyg) +¢,

where X; € Uniform(0, 1) if ¢ is odd, and X; € N(0,1) if ¢ is even; the error is drawn
from the centered log-normal distribution, i.e., ¢ = ¢Z — 1 where Z € N(0,1); g is
any smooth (nonparametric) function of the covariates; and ¢ represents the number of
additional covariates in the alternative, and so is the additional dimension where the test
is looking for deviations from the null. It would be expected that increased value of ¢
implies decreased power of the test.

Table 7 shows the proportions of rejections associated with the new test and He and
Zhu (2003)’s test, for different values of the additional dimension, ¢. Both tests suffer a
loss of power due to the increase of the dimension, as expected. Nonetheless, the loss of
power is more pronounced for the test proposed by He and Zhu (2003). For example,
from dimension ¢ = 6 the proportion of rejections associated with their test is near to
the significance level, whereas our proposed test preserves noticeable power, even for very
high dimensions.

Note that, for very high dimensions, He and Zhu (2003)’s test statistic is almost
degenerate, because for any observation of the covariate, X;, the indicators I(X; < Xj;),
involved in the computation of their test process at X;, will be zero for most of the other
observations X, when the dimension of the covariates X; and Xj is large. Thus, the test
is unable to make a reasonable number of evaluations to check the model, and its power
is consequently destroyed, as observed in Table 7 for ¢ > 10. On the other hand, our
proposed method is able to make comparisons even for large dimensions of the covariate,
because the indicators are calculated with unidimensional projections of the covariate.
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7€Mty 7€ 7 € Exp(1) 7 € Mixture

Proposed ~ HZ  Proposed ~ HZ  Proposed ~ HZ  Proposed  HZ
h(z) = %(I% taitmm) n=50 7=02 0373 0162 0199 0007 0448 0184 0135 0083
7=05 0577 0364 0345 0208 0696 043 0287 0175
7=075 0309 0217 0200 0150 049 0365 0074  0.068
n=150 =02 099 0910 093 0705 1000 0962 0702  0.386
7=05 0.981 0899 0849 0619 0999 0976 0829 0617
7=07 07713 0579 0516 0361 0952 081 018 0112
hz)=5sim(0.67l(z)) n=5 7=025 0443 0409 0425 0414 0461 0429 0381  0.356
=05 0562 0321 0458 0270 0607 0353 0390  0.238
7=07 0124 0066 0106 0061 0157 0081 0103  0.053
n=150 =02 1000 0996 1000 099  1.000 0999 0998  0.98
7=05 1000 0997 1000 0998  1.000 L1000 1000 0957
7=07 085 0419 0811 0380 0982 0637 058 0228
hiz)=8exp(-0.51(z)) n=50 7=02 019 0113 014 0112 0169 0135 0133  0.109
=05 0411 0251 0254 0167 0483 0268 0225  0.161
7=07 024 0145 0164 0097 0382 02501 0102 0.089
n=150 =02 0917 0498 078 0378 0963 0577 0533 0281
=05 0980 0747 0797 0455 0998 0868 079 0458
7=07 0700 0450 0493 032 09 074 0216 0.137
h(z) =6 log|I(z)| n=50 =02 080 0627 076 0570 0874 0678 062 0483
=05 0396 0306 0290 0200 0561 0398 0227 0.183
7=075 009 0094 0098 008 012 0104 0068 0074
n=150 =025 1000 099 0999 0987 1000 1000 0997 0973
=05 0897 0757 0751 058 0971 087 0660 0471
7=07 0166 0171 0167 0166 0297 0196 0112 0138

Table 6: Proportions of rejections associated with our proposed lack-of-fit test (Proposed) and to the test

proposed by He and Zhu (2003) (HZ) for Model 7.
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We conclude that the proposed method constitutes a necessary modification of He and
Zhu (2003) when the dimension of the covariate is large.

4. Application to real data

The proposed method is applied to real data from the evolution of the Gross Domestic
Product (GDP) in several countries. GDP is an economic indicator that reflects the mone-
tary value of the goods and final services produced by an economy in a certain period and
it is used as a measure of the material well-being of a society. Different median regression
models have been proposed to explain the annual growth rate of the Per Capita GDP in
terms of a number of explanatory variables, including the initial Per Capita GDP and
diverse economic and social indicators.

We focus on the model of Koenker and Machado (1999), based on the available in-
formation included in Barro and Lee (1994). A complete study of this economic model is
given by Barro and Sala-i-Martin (1995). The aim of Koenker and Machado (1999) was
to check the combined effect of the different explanatory variables on the response in a
quantile regression model. Here we test the specification of the quantile regression model
itself.

The dataset we use is available in the R package quantreg, barro (http://cran.at.
r-project.org/web/packages/quantreg/). This data set contains measurements asso-
ciated with 71 countries during the period 1965-1975 and 90 countries during the period
1975-1985, yielding a total sample size of n = 161 countries.

The explanatory variables used to explain the median of the annual growth of the Per
Capita GDP (the response variable, Y') can be split in two groups as given below. More
details about these variables and their role in the model for GDP can be found in Barro
and Sala-i-Martin (1995).

State variables: These variables reflect characteristics of the different countries that
cannot be directly decided by political or social agents. They are measures of the
steady-state position of the country, such as human capital, education or health.
Koenker and Machado (1999) consider the following variables in this group:

X := log(Initial Per Capita GDP)
X5 := Male Secondary Education
X3 := Female Secondary Education
X, := Female Higher Education
X5 := Male Higher Education

X := Life Expectancy

X7 := Human Capital

Control and environmental variables: These variables are direct consequences of de-

cisions made by government or private agents. The variables included in this group
are
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Proposed test HZ test
a=010 a=000 a=001 a=010 a=005 a=001
t=0 n=2 0232 0.154 0.057 0.225 0.135 0.035
n=>50 0675 0.564 0.361 0.487 0.357 0.163
n=100  0.961 0.918 0.776 0.822 0.725 0.460
n=150  0.993 0.983 0.943 0.949 0.903 0.751
n=200 0999 0.998 0.990 0.982 0.965 0.897
t=2 =2 0177 0.100 0.029 0.143 0.080 0.021
n=>50 0507 0.391 0.186 0.215 0.117 0.040
n=100  0.868 0.813 0.638 0.349 0.228 0.077
n=150 0978 0.957 0.869 0.506 0.355 0.163
n=200 0997 0.993 0.975 0.636 0.498 0.263
t=6 n=2 0133 0.055 0.010 0.054 0.018 0.004
n=>50 0345 0.244 0.097 0.098 0.051 0.010
n=100 0797 0.696 0.501 0.097 0.056 0.021
n=150  0.935 0.901 0.768 0.151 0.083 0.027
n=20 0992 0.978 0.929 0.177 0.089 0.029
t=10 n=2 0120 0.057 0.011 0.066 0.018 0.005
n=>50  0.267 0.161 0.056 0.043 0.028 0.004
n=100  0.659 0.562 .366 0.052 0.025 0.003
n=150 0.8 0.830 0.672 0.071 0.036 0.006
n=200  0.966 0.946 0.887 0.08 0.040 0.008
t=20 n=2 009 0.042 0.010 0.065 0.023 0.010
n=>50 0174 0.098 0.019 0.055 0.024 0.007
n=100 0520 0.398 0.235 0.054 0.028 0.005
n=15  0.800 0.707 0.525 0.000 0.004 0.003
n=20 0918 0.876 0.748 0.050 0.033 0.008
t=50 n=2 007 0.044 0.005 0.050 0.026 0.007
n=>50 0111 0.059 0.014 0.074 0.036 0.009
n=100 0237 0.149 0.041 0.068 0.034 0.007
n=150 0492 0.374 0.188 0.001 0.005 0.005
n=20  0.68 0.600 0.438 0.063 0.024 0.009

Table 7: Proportions of rejections associated with our proposed lack-of-fit test (Proposed test) and the
test proposed by He and Zhu (2003) (HZ test) for 11/[60(161 8.



Xs := Education/GDP

Xy := Investment/GDP

Xjo := Public Consumption/GDP
X711 := Black Market Premium
X9 := Political Instability

X3 := Growth Rate Terms Trade

We apply the AIC criterion proposed by Hurvich and Tsai (1990) to variable selection
among the thirteen explanatory variables for the quantile regression model. We will consi-
der only those variables that show as relevant for the response. Based on this criterion, we
propose a model that includes the variables X; with ¢ € Z; = {1,2,6,7,9,10,11,12,13}.

We apply the proposed lack-of-fit test in four different testing problems:

13
Problem 1 0 0+; it e
HaIY:g(Xl,XQ,...7X13)+51
H()ZYIGO—FZX;@Z'—F&Q
Problem 2 i€l
Ha Y = g(X“Z S Il) + &9
Hy:Y =00+ X[0;+e3
Problem 3 i€
H,: Y =g(X1,Xo,...,X13) + €3
HO:Y:80+ZX£0i+€4
Problem 4 i€y
HaIY:g(Xl,XQ,...,X13)+€4

where Zo = {1,2,3,4,5,6,7} (state variables). Problem 1 is a lack-of-fit test of the linear
model versus a nonparametric alternative, including all the thirteen explanatory variables
under both the null and alternative hypotheses. Problem 2 is a lack-of-fit test of the linear
model versus a nonparametric alternative, including only the nine variables in the set Z;.
Problem 3 is the same test as Problem 2, but with an alternative in the thirteen original
variables. Problem 4 is a lack-of-fit test of a linear model that only includes the state
variables.

Table 8 contains the p-values obtained from the application of the proposed lack-of-fit
test to each of the testing problems. The number of bootstrap replications was B = 500.
We would accept the null hypothesis in Problems 1, 2 and 3. In Problem 3, the model
under the null is the simplest, while the model under the alternative is the most complex.
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Problem I  Problem 2  Problem 3  Problem 4
p-values 0.194 0.458 0.440 0.002

Table 8: p-values obtained by the proposed lack-of-fit test for Problems 1, 2, 3 and 4.

Despite this, the p-value is quite large, so we can conclude that the simple model with the
nine explanatory variables in the set Z; is correct, and there is no significant deviation
from this model arising from any (smooth) function of the thirteen possible explanatory
variables.

On the other hand, the null hypothesis is rejected for Problem 4. Thus, a model that
only includes the state variables is insufficient to explain the evolution of the GDP, that
is, some of the control or environmental variables are necessary.

In summary, our proposed test confirms the validity of the model proposed by Koenker
and Machado (1999). In addition, from the outcome for Problem 3, it would be sufficient
to consider a model with nine explanatory variables to explain the growth rate of the Per
Capita GDP.

5. Concluding remarks and extensions

We proposed a new lack-of-fit test for quantile regression models, together with a
bootstrap mechanism to approximate the critical values. The bootstrap approximation
does not need to estimate the conditional sparsity, and was shown to work well in homos-
cedastic and heteroscedastic error distributions and with high-dimensional covariates.

The proposed test is generally more powerful than its natural competitors, and parti-
cularly more powerful in the case of a high-dimensional covariate.

The proposed test was applied to a real data situation, where it was useful to validate
well-known models in the economic literature, that describe the evolution of the GDP in
terms of a number of explanatory variables.

The proposed method can be generalized to test models involving quantiles of different
orders. The most treated model in the literature is the multiple quantile linear model,
where it is assumed that the quantile regression function is linear for a subset of orders
TeT Clo,1],

g-(x) = 2'6(7),
with coefficients (7) depending on the order, 7, of the quantile. The coefficients 6(7) allow
consideration of a different effect of the covariates depending on the order of the quantile.
See Escanciano and Goh (2014) for a lack-of-fit test of multiple quantile linear models,
or Escanciano and Velasco (2010) for a test of multiple quantile models with time series.
Our proposed method can be generalized to test multiple quantile models in a general
framework of parametric (possibly nonlinear) quantile regression with heteroscedasticity
and without estimating unknown quantities. To this end, one would consider a process
depending on (3, u), as well as on 7. We restricted to the case of testing a single quantile to

18



focus on the performance of the test for high-dimensional covariates and other important
features of the testing problem. Extension to multiple quantile testing was left to future
research. Similarly, extensions of the proposed method to time series are possible using
the results in Escanciano and Velasco (2010). These possible extensions show that the
concept of projecting the covariate, given by Escanciano (2006) to overcome the curse
of dimensionality, combined with the bootstrap methodology introduced by Feng et al.
(2011), provide a promising strategy for checking quantile regression models.
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