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Abstract

Missing data is an important issue in almost all fields of quantitative re-
search. A nonparametric procedure that has been shown to be useful is the
nearest neighbor imputation method. We suggest a weighted nearest neighbor
imputation method based on Lq-distances. The weighted method is shown to
have smaller imputation error than available NN estimates. In addition we con-
sider weighted neighbor imputation methods that use selected distances. The
careful selection of distances that carry information on the missing values yields
an imputation tool that outperforms competing nearest neighbor methods dis-
tinctly. Simulation studies show that the suggested weighted imputation with
selection of distances provides the smallest imputation error, in particular when
the number of predictors is large. In addition, the selected procedure is applied
to real data from different fields.

Keywords: kernel function, weighted nearest neighbors, cross-validation,
weighted imputation, MCAR,

1 Introduction
Missing data have always been a challenging topic for researchers. Ignoring all
the missing cases is not a good strategy to deal with missing values. In the lit-
erature many techniques have been suggested since the 1980s to impute missing
data, see, for example, Little and Rubin (1987), Schafer (2010). Broadly speak-
ing, the methods for filling the incomplete data matrix can be divided into two
main categories; single imputation and multiple imputation (Little and Rubin
(1987)). A well known and computationally simple method for imputation of
missing data is mean substitution. A disadvantage of the method is that the cor-
relation structure among the predictors is ignored. An alternative is the nearest
neighbors approach, which uses the observations in the neighborhood to impute
missing values. Nearest neighbors as a nonparametric concept in discrimination
dates back to Fix and Hodges (1951). The approach has been successfully used
to impute data in gene expression (Troyanskaya et al. (2001), Atkeson et al.
(1997), Hastie et al. (1999)), machine learning (Batista and Monard (2002)),
medicine (Waljee et al. (2013)), forestry (Eskelson et al. (2009), Hudak et al.
(2008)), and compositional data (Hron et al. (2010)) etc.
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An important aspect in missing data imputation is the pattern of missing
values because the selection of an imputation procedure is determined by this
pattern. Little and Rubin (1987) defined three categories of missing data; miss-
ing completely at random (MCAR), missing at random (MAR), and not missing
at random (NMAR). Missing completely at random (MCAR) refers to the data
in which the probability of a particular missing values does not depend on the
variable itself or any other variable in the data set (Little and Rubin (1987),
Allison (2001)). Most imputation methods assume the data to be at least MAR,
if not MCAR, and so does the nearest neighbor method.

Hastie et al. (1999) proposed to use weights based on the Euclidean dis-
tance for the selection of the nearest neighbors. A comparison of k nearest
neighbor imputation (KNNimpute) with mean imputation and singular value
decomposition (SVD) techniques for gene expression data was given by Troy-
anskaya et al. (2001). The results of their simulation studies showed that the
method performs well when compared to mean imputation and singular value
decomposition (SVD) approaches, see also Troyanskaya et al. (2003). In a com-
parative study of single imputation methods, Malarvizhi and Thanamani (2012)
found that median or standard deviation substitution perform better than mean
substitution. Therefore replacement of a missing value with simple average is
not an efficient method. A further comparison of KNNimpute with mean, OLS
and PLS imputation methods for imputation in microarray data was given by
Nguyen et al. (2004). The findings of the study showed that KNNimpute per-
forms well.

Several alternative procedures have been proposed that rely on the basic
concept to impute values by building averages over qualifying neighbors, see, for
example Ouyang et al. (2004), Kim et al. (2004), Sehgal et al. (2005), Scheel
et al. (2005). Liew et al. (2011) and Moorthy et al. (2014) reviewed the available
methods and algorithms for the imputation of missing values with a focus on
gene expression data. Johansson and Hakkinen (2006) proposed WeNNI, which
utilizes continuous weights in the nearest neighbors imputation procedure. Bø
et al. (2004) and Wasito and Mirkin (2005) proposed a nearest neighbors pro-
cedure with a modification based on the least square principle. Other variants
include local least squares (LLSimpute) by Kim et al. (2005), sequential local
least square (SLLSimpute) by Zhang et al. (2008) and iterative local least square
(ILLSimpute) by Cai et al. (2006).

A drawback of NN methods is that their performance depends on k. For
example, KNNimpute typically performs well when k is between 5 to 10, but
the performance deteriorates for larger k (Yoon et al. (2007)). We propose a
localized approach to missing data imputation that uses a weighted average
of nearest neighbors using Lq distances. For the high-dimensional case, we
propose a new distance that explicitly uses the correlation among variables. The
proposed method automatically selects the relevant variables that contribute to
the distance and thus does not depend on k.

The paper is organized as follows: in Section 2 the Lq distance is used to
define a weighted imputation estimate. In a simulation study the weighted
approach is compared to the unweighted approach. In Section 3, the weighted
imputation with selection of predictors is introduced and compared to alternative
imputation techniques. In Section 4 several applications to real data sets are
given.
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2 Weighted Neighbors
When using nearest neighbors to impute data several choices have to be made.
In particular one has to define what nearest neighbors are, that means, how they
are computed and which distance measures are used. Then one has to choose
how these nearest neighbors are used to obtain an imputed value. These choices
to be made are considered in the following sections.

2.1 Distances and Computation of Nearest Neighbors

Let n observations on p covariates be collected. The corresponding n × p data
matrix is given by X = (xis), where xis denotes the ith observation of the sth
variable. Let O = (ois) denote the corresponding n× p matrix of dummies with
entries

ois =

{
1 if xis was observed
0 for missing value.

Distances between two observations xi and xj , which are represented by rows
in the data matrix, can be computed by using the Lq-metric for the observed
data. Then one uses the distances

dq(xi,xj) = [
1

mij

p∑

s=1

|xis − xjs|qI(ois = 1)I(ojs = 1)]1/q, (1)

where mij =
∑p

s=1 I(ois = 1)I(ojs = 1) denotes the number of valid components
in the computation of distances. The indicator function I(a), which is used in
the definition, has the value 1, if a is true and 0 otherwise. Thus, computation
of distances does not use all the components of the vectors. It uses only those
components for which observations in both vectors are available. The actually
used components in the computation of neighbors is given by Cij = {s : I(ois =
1)I(ojs = 1) = 1}. The distances are used to define the nearest neighbors when
imputing a specific value. It should be noted that the number of components that
are used varies over the sample because Cij depends on the specific observation
for which imputations are to be made.

Similar concepts to define distances and therefore nearest neighbors were
used by Hastie et al. (1999), Troyanskaya et al. (2001), Myrtveit et al. (2001)
and Kim et al. (2005). They used the Euclidean distance, q = 2. Other alterna-
tives to compute distances in gene expression studies were by use of the Pearson
correlation (Dudoit et al. (2002), Bø et al. (2004)) and covariance estimate (Se-
hgal et al. (2005)).

2.2 Imputation Procedure

Imputation for Fixed Number of Neighbors

Let us consider imputation for xi in component s, that is, ois = 0. The imputa-
tion estimate for xi is based on the k nearest neighbors in the reduced data. One
determines the k nearest neighbors from the corresponding (ñ× p)-dimensional
reduced data set X̃ = (xij , ois = 1) obtaining

x(1), . . . ,x(k) with d(xi,x(1)) ≤ · · · ≤ d(xi,x(k)),

where xT(j) = (x(j)1, . . . , x(j)p) denotes the jth nearest neighbor. Then the im-
putation value for fixed k is
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x̂is =
1

k

k∑

j=1

x(j)s (2)

Thus the missing value in the sth component of observation vector xi is
replaced by the average of the corresponding values of the k nearest neighbors.
The accuracy of the method is mainly determined by the number of neighbors
that are used. Simple rules use a fixed number of neighbors that are chosen
by the experimenter. However, it is advantageous to consider the number of
neighbors as a tuning parameter that is chosen in a data-driven way, for example
by cross-validation (see next section).

Imputation by Weighting

A disadvantage of the imputation based on the k nearest neighbors is that the
value of the first nearest neighbor has the same importance as the kth nearest
neighbor. A more appropriate method uses weights that account for the distance
of the observations. We consider a weighted average of neighbors based on
distances that are determined by kernel functions. The weighted imputation
estimate considered here has the form

x̂is =
k∑

j=1

w(xi,x(j))x(j)s (3)

with weights

w(xi,xj) = K(d(xi,xj)/λ)/
k∑

l=1

K(d(xi,xj)/λ), (4)

where K(.) is a kernel function (for example tricube, Gaussian) and λ is a
tuning parameter. For small λ, the weights are decreasing very strongly with
the distance, whereas for λ → ∞, one uses equal weights for all neighbors. To
make λ the crucial tuning parameter one should use a large number of potential
neighbors. In the extreme case, if one uses k = ñ, the window-width λ is the
only tuning parameter.

Alternative weights were used by Troyanskaya et al. (2001). They used the
weighted average over the k nearest neighbors based on the Euclidean distance
with the weights determined by the inverse of the Euclidean distance.

2.3 Choice of Tuning Parameters by Cross-validation

An important issue in weighted nearest neighbors imputation techniques is the
selection of the tuning parameter λ. One option is to use the same method
that is in common use when selecting the optimal number of nearest neighbors
k, namely cross-validation, see, for example,Dudoit et al. (2002). Also some
R packages provide cross-validation as a tool to choose the optimal number of
nearest neighbors (Waljee et al. (2013)). The concept is to artificially delete
some values in the data matrix and compute the mean squared error (MSE) or
mean absolute error (MAE) for the artificially deleted data. Then one chooses
the value for which MSE or MAE takes the minimal value.

In our approach we generate completely at random (MCAR) m∗ artificially
missing values from the available data {xis : ois = 1}. Let X∗ denote the n× p
data matrix containing the originally missing values ({xis : ois = 0}) and the
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artificially missing values ({x∗is : o∗is = 0}). Then the mean absolute error (MAE)
for these observations is defined by

MAE(X∗) =
1

m∗
∑

xis:o∗is=0

|x∗is − x∗is(imputed)|. (5)

This procedure is repeated R times yielding the averaged value

MAECV =
1

R

R∑

r=1

MAE(X∗r),

where X∗r denotes the matrix with both types of missing values in the rth
replication. In the same way the cross-validated mean square error (MSE) is
computed by using

MSE(X∗) =
1

m∗
∑

xis:o∗is=0

(x∗is − x∗is(imputed))2 (6)

yielding MSECV.
The cross-validation is done in the following way:

1. For a specific value of λ;
a. Artificially delete m∗ value/s in the data matrix.
b. Impute these missing values and calculate MSE or MAE.
c. Repeat a and b, R times for example, R = 100 depending upon data,
to find MSECV or MAECV.

2. Repeat steps a-c for all values of λ, and choose the one with minimum
MSECV or MAECV as optimal λ.

It is unclear how many values should be deleted artificially for the purpose
of cross-validation. We used several values ranging from the deletion of only one
observation to 10% of the data matrix. In our simulations the resulting values
of λ were very similar. Therefore we proceed with the deletion of 10% of the
data matrix.

2.4 Performance Measures

If the tuning parameter has been chosen the performance of the different impu-
tation methods is compared on the basis of the mean squared error (MSE) and
the mean absolute error (MAE) computed from the original and imputed val-
ues in the same way as in cross-validation (Troyanskaya et al. (2001), Junninen
et al. (2004), Hudak et al. (2008)). In simulation studies evaluation is easy. If
{xis : ois = 0} are the missing values in the data matrix X, one computes the
corresponding imputed values using the λ selected by cross-validation in Section
2.3. The performance is by measured by computing MAE or MSE by using the
missing observations and the imputed values.

When using real data the original values are not known. Then, performance
is evaluated by considering observations with {xis : ois = 1} as missing and com-
puting the corresponding imputed value to obtain MAE or MSE. The number
of values that are considered as missing in the evaluation of the performance
depends upon the data.
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2.5 Evaluation of Weighted Neighbors

The correlation structure of the data plays an important role in the selection
of the imputation method, see, for example Feten et al. (2005). Therefore, in
this section we investigate the dependence of the method on the correlation be-
tween variables and compare the un-weighted version with the weighted nearest
neighbor version of imputation in a simulation study.

Imputation Using Fixed Number of Nearest Neighbors

In the simulated data, variables are drawn from a p-dimensional multivariate nor-
mal distribution with mean 0 and the correlation among the covariates (among
the columns of design matrix) is ρ. Five values of ρ = 0.1, 0.3, 0.5, 0.7, and 0.9
were used. For each value of ρ, S = 50 samples, each of size n = 50, were
drawn for p = 10 covariates from N(0,ΣΣΣ), where ΣΣΣ is a correlation matrix with
pairwise correlations ρ among the covariates. The unweighted nearest neighbor
is used to impute (i) 5%, and (ii) 25% missing values (MCAR) in each simu-
lation setting. The number of nearest neighbors k ∈ {1, . . . , 40}, were used to
estimate the missing values. The performance of imputation in terms of mean
squared error (MSE) and mean absolute error (MAE) is shown in Fig. 1 for
different values of k and for selected values of ρ (0.3, 0.5, 0.9). Figure 1 shows
that for low correlation, for example, ρ = 0.3, the MSE/MAE is high for small
values of k and reduces with increasing value of k but remains almost stable for
k ≥ 10. If one excludes small values of k, the performance does not strongly
depend on the chosen number of the next neighbors. The picture changes if the
correlation among the variables is stronger. Then there is a distinct minimum
and the performance deteriorates if k increases. It is, in particular, noteworthy
that the performance is much better when variables are correlated. For ρ = 0.3,
5% missing, the best obtained value is about 0.7 whereas for ρ = 0.9, 5% miss-
ing, the best value is below 0.2. Imputation works much better if variables are
correlated because only then information from the other variables is available.
Therefore, we will focus on correlated data in the following.

Weighted Imputation

In the next simulation the weighted nearest neighbor method, henceforth wNN ,
is compared to un-weighted imputation. Again S = 50 samples each of size
n = 50 were drawn for p = 15 covariates from N(0,ΣΣΣ). The values of pairwise
correlation used in ΣΣΣ are ρ = 0.5, 0.7, and 0.9. We considered 10% and 25% of
the total values as missing completely at random in each sample. The distance
(1) with q=1 (L1 distance) and q=2 (L2 or Euclidean distance) were used to
impute the missing data. The optimal value of tuning parameter λ for weights
(4) was chosen on the basis of MSE (Mean Squared Error) and MAE (Mean
Absolute Error) by cross-validation procedure. The mean squared error and
the mean absolute error showed similar behavior, so the results of MSE only
are presented. Weights were calculated by using a Gaussian kernel because
simulations had shown that the performance for the Gaussian kernel was slightly
better than for alternative kernels like the triangular kernel.

Fig. 2 shows the MSEs for the nearest neighbor imputation method with
fixed values of k = 5, 10, 20, 40, for k chosen by cross-validation, and for the
weighted approach with k = 20, 40 as the maximal neighbors. The boxplots of
MSE with L1 distance are shown in the upper panel of Fig. 2, and L2 distance
in the lower panel. It is seen that wNN imputation works well when the data
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Figure 1: Illustration of simulation study: Mean Squared Error (MSE) and Mean

Absolute error (MAE) for unweighted nearest neighbors using L2 metric for fixed

values of k (number of nearest neighbors), with 5% missing data (Upper panel) and

25% missing data (lower panel). Circles represent MSE and solid circles represent

MAE.

are highly correlated. The MSE for ρ = 0.5, 10% missing, is larger than 0.6,
whereas for ρ = 0.9, 10% missing, it is below 0.2 (Fig. 2(a)). Similar results
are found for the L2 distance (Fig. 2(b)). Overall, L1 and L2 distances produce
nearly the same mean square errors in all the data settings.

In addition to the dependence on the correlation structure one objective of
the simulation study is to investigate if cross-validation is able to find a proper
value for k, the number of nearest neighbors to be used. The boxplots show that,
although some specific values of k yield better performance, the procedure that
selects k by cross-validation (denoted by optimal k) does fairly well. The other
point of interest is how the proposed weighted imputation performs. It is seen
that weighted imputation (wNN) always performs better than imputation for
fixed value of k, when the window width and the number of nearest neighbors,
respectively, are chosen by cross-validation. The detailed results are shown in
Table 1, where for each scenario the method that performed best is shown in
boldface. It is seen that there is not much difference when allowing for 20
or 40 nearest neighbors in the weighting procedure. Nevertheless, for 40 the
performance tends to be slightly better. In summary, weighted imputation turns
out to be an attractive alternative that is computationally not more intensive
than imputation with fixed k.
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Figure 2: Boxplots of Mean Squared Error for NN Imputation using L1 distance

(a) and L2 distance (b). Imputation is done by using unweighted/fixed values of k

= 5, 10, 20, 40 nearest neighbors (white boxes), for optimal value of k selected by

cross-validation (light grey boxes), and weighted approach (wNN) with maximum k

= 20, 40 using Gaussian kernel. Solid circles within boxes show the mean values.
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Table 1: MSE for NN imputation with weighted and unweighted approach using

L1and L2distances
L1 distance

Fixed /unweighted wNN

ρ missing (%) k = 5 k = 10 k = 20 k = 40 optimal k k = 20 k = 40

0.5 10 0.6729 0.6419 0.6761 0.8920 0.6907 0.6286 0.6242
25 0.7203 0.6796 0.7223 0.8861 0.7127 0.6618 0.6609

0.7 10 0.4093 0.4021 0.4642 0.7790 0.4213 0.3700 0.3675
25 0.4537 0.4578 0.5674 0.8323 0.4728 0.4199 0.4258

0.9 10 0.1689 0.1999 0.3181 0.8259 0.1803 0.1424 0.1418
25 0.1817 0.2261 0.3822 0.7459 0.1893 0.1528 0.1527

L2 distance

Fixed /unweighted wNN

k = 5 k = 10 k = 20 k = 40 optimal k k = 20 k = 40

0.5 10 0.6768 0.6459 0.6772 0.8942 0.6781 0.6298 0.6200
25 0.7157 0.6799 0.7234 0.8871 0.7013 0.663 0.6616

0.7 10 0.4126 0.4032 0.4655 0.7792 0.4197 0.3741 0.3694
25 0.4541 0.4606 0.5674 0.8326 0.4743 0.4240 0.4239

0.9 10 0.1685 0.2002 0.3181 0.8259 0.1779 0.1426 0.1434
25 0.1827 0.2263 0.3823 0.7459 0.1908 0.1536 0.1527

3 Weighted Neighbors Including Selection of Predictors

3.1 Selection of Dimensions

Traditionally the distances are computed from all the available components of
the observations. However, as will be shown, in high-dimensional settings im-
putation suffers from the curse of dimensionality. Therefore, we propose to
compute distances from selected dimensions only. Since imputation is successful
in particular when the predictors are highly correlated the selection of the di-
mensions will be linked to the correlation between predictors. In the following an
extended version of the weighted nearest neighbor imputation method is given
that uses only the correlated predictors for the computation of the distances.

Let us consider imputation for xi in component s (ois = 0). When computing
distances from the reduced data set {xj , ojs = 1}, we use an additional weight in
the distances. More concrete, for Lq- distance one computes component-specific
distances by

dq,C(xi,xj) = { 1

mij

p∑

l=1

|xil − xjl|I(ois = 1)I(ojs = 1)C(rsl)}1/q, (7)

where rsl is the empirical correlation between covariates s, l and C(.) is a convex
function defined on the interval [−1, 1] that transforms the correlations into
weights. The transformation is constructed such that covariates that are strongly
correlated with component s strongly contribute to the computation of distances,
while components that are not correlated do not contribute to the distance.

One convex function C(.) that can be used is defined by

C(r) =

{
|r|
1−c − c

1−c if |r| > c

0 if |r| ≤ c. (8)
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It is linear in the absolute value of the correlation. If |rsj | ≤ c, the component
s does not contribute to the distance. Weights increase linearly with increasing
correlation and have weight 1 if |r| = 1. The threshold parameter c can be
chosen as fixed, for example, c = 0 or be considered as an additional tuning
parameter. A smoother function, which will also be used, is the power function

C(r) = |r|m, (9)

with m as additional tuning parameter. One problem is that rsl cannot be
computed since missing values are present in the data. Therefore we use a
simple first step imputation by use of un-weighted five nearest neighbors and
compute the correlations from the observed and imputed data. Then the actual
imputation is carried out by using the correlations computed in the first step.

The weighted Lq distances with selection of dimensions includes the calcula-
tion of an additional tuning parameter. In addition to the tuning parameters for
the kernels, λ, one has to find an appropriate value c for the convex function (8)
or an integer m for the convex function (9). The parameters are chosen in the
same way as λ in Section 2.3, namely by cross-validation. For the simultaneous
selection of the tuning parameters (λ, c) or (λ, m) cross-validation is computed
on on a two-dimensional grid of values. We will refer to this method as wNNS-
elect. We will characterize the linear function by c, and the power function by
the parameter m.

3.2 Evaluation of the Selected Weighted Neighbors

The simulation study in Section 2.5 showed that for highly correlated predictors
weighted nearest neighbors (wNN) perform better than unweighted distances.
Moreover, the results showed that L1 and L2 distances have very similar perfor-
mance. In this section, the performance of the weighted approach with selection
of predictors is investigated. We consider, in particular, two structures of the
correlation matrix, blockwise correlation and autoregressive (AR) type correla-
tion.

Blockwise Correlation Structure

Let the data matrix X(n×p), be partitioned into X = [X(1),X(2),X(3)] such that

each element of X(q) = [x1, · · · ,xpq ], q = 1, 2, 3, is a n× 1 random vector. The
partitioned correlation matrix has the form

Σ =




Σ11
... Σ12

... Σ13

· · · · · · · · · · · · · · ·
Σ21

... Σ22
... Σ23

· · · · · · · · · · · · · · ·
Σ31

... Σ32
... Σ33




,

where Σii, is the matrix containing pairwise correlations ρ of the elements of
X(q), q = 1, 2, 3, that is, all components have (within) correlation (ρw). The
matrix Σij , contains the pairwise (between) correlations (ρb) between all the
elements of X(q) and X(r), for i, j = 1, 2, 3 ∀ i 6= j.

10



AR-Type Correlation Structure

The second correlation structure we consider is the exponential or autoregressive
type correlation structure. An autoregressive of order 1 correlation matrix is
defined by

Σ = (ρ|i−j|),

where i, j = 1, . . . , p and ρ is the pairwise correlation between predictors and p
is the number of predictors or variables in the data matrix.

Comparison of Fixed and Selected Values of Tuning Parameters

In the weighted imputation method considered in Section 2 (wNN), one tuning
parameter λ for the kernel weights had to be chosen. The method with selection
of predictors (7) involves one additional tuning parameter, c or m. In the fol-
lowing we first investigate if the data driven selection of the tuning parameters
(λ, c) or (λ, m) by cross-validation works.

We generated S = 50 samples of size n = 50 for p = 30 predictors drawn
from a multivariate normal distribution with N(0,ΣΣΣ). The correlation matrix
ΣΣΣ had either blockwise or autoregressive type structure. The data settings used
for the simulations were

Setting Structure Correlation missing

1 Blockwise ρw=0.7, ρb=0.1 10%
2 25%
3 ρw=0.9, ρb=0.1 10%
4 25%
5 Autoregressive ρ = 0.9 10%
6 25%

In the first type of ΣΣΣ, the predictors were chosen in three blocks of 10 pre-
dictors each, that is, the p×1 random vector X = [X(1),X(2),X(3)], is such that
X(1) = [X1, . . . , X10], X(2) = [X11, . . . , X20], and X(3) = [X21, . . . , X30], where
each element of X(q), (q= 1, 2, 3) is a random variable. The variables within
each block were strongly correlated with ρw = 0.70, 0.90, but nearly uncorrelated
with the variables in the other blocks with ρb = 0.10, for i, j = 1, 2, 3 ∀ i 6= j.
The second structure of ΣΣΣ considered is the autoregressive type of order 1 with
ρ = 0.9. In each sample, 10% and 25% of the total values were replaced by
missing values completely at random (MCAR).

In the simulation study, we used both convex functions (8) and (9) at fixed
levels and selected by cross-validation. For tuning parameter c in the linear
function (8) we considered c ∈ {0.2, 0.3, 0.4, 0.5}. Therefore, all the predictors
whose correlation with the sth predictors was less than or equal to specified
c, were discarded during the computation of distance. For the power function
(9), we used three values of the tuning parameter, m ∈ {2, 4, 6}. The number of
nearest neighbors k was set to the maximum available neighbors. The large value
of k was chosen as the imputation procedure automatically chooses only relevant
neighbors for the calculation of the distance. For weighted NN imputation with
selection of predictors (wNNSelect), cross-validation was used to compute MSE
for the selection of optimal pair of the tuning parameters. For the weighted NN

11
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Figure 3: Comparison of weighted imputation (white boxes), weighted with selection

of predictors at fixed c = 0.2, 0.3, 0.4, 0.5; m = 2, 4, 6 (light grey boxes) and with val-

ues of tuning parameters chosen by cross-validation (wNNSelectc and wNNSelectm,

dark grey boxes) based on L2 distance in Autoregressive (left) and blockwise (right)

correlation structure. Solid circles within boxes show the mean values.

imputation without selection of predictors (wNN) the optimal λ was also chosen
on the basis of minimum MSE.

A visual comparison of weighted (wNN) and weighted with selection of pre-
dictors approaches for fixed and the selected values of tuning parameter of convex
functions c and m is given in Figure 3. Obviously, the method with selection
of predictors (wNNSelect) performs much better than simple weighted NN im-
putation without selection of distances (wNN). Again the results from L1 and
L2 distances do not differ significantly. It is also seen that choice of tuning pa-
rameters c and m works well. For both type of correlation matrices it provides
smaller MSE than for fixed c and m. Similar results were obtained for other
simulation settings not shown here. Therefore we will proceed with the selected
tuning parameter by double grid cross-validation.

Dependence on the Number of Predictors

Figure 3 already showed that the selection of sub spaces may yield better results.
In the following we want to investigate how strong imputation based on distances
computed from the whole set of predictors suffers when the number of predictors
increases. Based on the results of the simulation study in the previous sub-
section we use cross-validation to select tuning parameters on a double grid (λ,
c) and (λ,m).

We use S=50 sample of size n = 50 with number of predic-
tors p ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and n = 100 with p ∈
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150} from N(0,ΣΣΣ), where ΣΣΣ is the
AR(1) correlation matrix with ρ = 0.9.

For comparison we use established nearest neighborhood methods that are
available in the R environment (R Core Team (2013)). The package impute

from Bioconductor uses nearest neighbors to impute the missing expression val-
ues of continuous variables (Hastie et al. (2013)). The function kNN in R package
VIM (Templ et al. (2013)) deals with data consisting of continuous, count, binary
and categorical variables. By default, it uses Gower distance (Gower (1971)) for
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the computation of distances, but other metrics can also be used. Waljee et al.
(2013) also used this package in their studies on clinical data. Another package
imputation (Wong (2013)) is available that imputes the missing data using the
algorithm provided by Troyanskaya et al. (2001). But the package sometimes
does not yield estimates of all the missing data and such values are replaced by
zeros by default.

Therefore, we chose the impute function from Bioconductor (Hastie et al.)
and the kNN function from package VIM (Templ et al. (2013)) as benchmarks
(shown as BIO and VIM respectively in Figure 5). Both methods use a prede-
fined or fixed number of nearest neighbors (k). To obtain comparable results we
selected the number of nearest neighbors (k) by using the same cross-validation
algorithm as discussed in Section 2.3. For weighted imputation without selec-
tion of variables, the tuning parameter λ was chosen using cross-validation with
m∗ corresponding to 10% and R = 10. The values of the tuning parameters
(λ, c) and (λ,m) were chosen via cross-validation on a double grid with m∗
corresponding to 10% and R = 10 for weighted imputation including selection
of predictors.
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Figure 4: Comparison of average MSEs at different number of predictors, n=50

(upper panel) and n = 100 (lower panel) using AR(1) correlation matrix with ρ = 0.9

Fig. 4(left panel) shows the average MSEs for the imputation methods under
consideration. It is seen that all imputation methods that use all the predictors
show poor performance for increasing numbers of predictors. Although more
information is available because more predictors are observed the performance
deteriorates. In contrast, the methods that allow for selection of predictors can
use the additional information. They perform better if the number of predictors
increases. It also should be noted that with increasing number of predictors,
the proposed weighting function (without selection) performs even better. Fig.
4(right panel) shows the performance of these methods in a separate panel. It
is seen that, in particular, the convex function (9) yields good results in terms
of mean squared errors even when the number of predictors is large.
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Comparison of Weighted Imputation and Benchmarks

In the following we investigate more systematically the performance of the new
methods (wNN and wNNSelect) and benchmark methods.

We consider S = 50 samples of size n = 50, 100 from N(0,ΣΣΣ), where ΣΣΣ is
the correlation matrix of blockwise or autoregressive structure. The simulation
settings are as follows:

Setting Structure n p Correlation

1 Blockwise 50 30 ρb=0.9, ρw=0.1
2 100 45
3 Autoregressive 50 30 ρ=0.9
4 100 40

For blockwise correlation with n = 50 (setting 1), in ΣΣΣ, the predictors
were chosen in three blocks of 10 predictors each, that is, the p × 1 ran-
dom vector X = [X(1),X(2),X(3)], is such that X(1) = [X1, . . . , X10], X(2) =
[X11, . . . , X20], and X(3) = [X21, . . . , X30], where each element of X(q), (q=
1, 2, 3) is a random variable. The variables within each block were strongly
correlated with ρw = 0.90, but nearly uncorrelated with the variables in
the other blocks with ρb = 0.10, for i, j = 1, 2, 3 ∀ i 6= j. Similarly, for
n = 100 (setting 2), the predictors were chosen in three blocks of 15 predic-
tors each, that is, the p × 1 random vector X = [X(1),X(2),X(3)], is such that
X(1) = [X1, . . . , X15], X(2) = [X16, . . . , X30], and X(3) = [X31, . . . , X45], where
each element of X(q), (q= 1, 2, 3) is a random variable. In setting 3 and 4, the
autoregressive type ΣΣΣ is of order 1 with ρ = 0.9.

The percentage of missing values in each data setting was set to
1%, 5%, 10%, 20%, 25% and 30% of the total values in design matrix completely
at random (MCAR). The tuning parameters for the proposed weighting function
wNN and wNNSelect were chosen by cross-validation with m∗ = 10%. For
the benchmark methods, the number of nearest neighbors (k) was also chosen
by use of the same cross-validation algorithm.

Figure 5 compares the proposed weighted imputation methods with the ex-
isting methods under Setting 1 and 3 at 5%, 15%, and 25% missing data. For
the blockwise correlation structure (Fig. 5: upper panel for data setting 1),
the weighting functions using L2 metric with selection (shown as wNNSelectc
and wNNSelectm) and without selection of predictors (shown as wNNS) pro-
vides smaller MSE than the benchmarks (shown as BIO and VIM). The best
MSE is given by weighted selection of predictors (shown as wNNSelectc and
wNNSelectm). The convex functions (linear (8) and power (9)) used for the se-
lection of predictors provide nearly the same MSEs. For the autoregressive type
correlation structure, (Fig. 5: lower panel for data Setting 3), at 5% missing the
best MSE is obtained near 0.1, at 15% missing is near 0.2 and at 25% missing
MSE is near 0.3. Therefore, in autoregressive type correlation the average MSE
increases with an increase in the missing values. Similar results were obtained
for Settings 2 and 4 with remaining missing percentages, see Table 2. In each
data setting the value of smallest MSE is shown as boldfaced.

As seen from Table 2 for blockwise correlation with n = 50 (upper left panel),
at 1% missing data the smallest MSE was obtained by weighted selection of
predictors wNNSelectm, 0.1338. This value is much smaller than obtained by
existing NN imputation methods (0.2846 by BIO and 0.3385 by VIM). It is also
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Figure 5: Comparison of wNNSelect (dark grey boxes), wNN (light grey boxes)

imputation using L2 metric, and two benchmarks (white boxes); impute from Bio-

conductor (shown as BIO) & VIM (shown as VIM) using Blockwise (upper panel) and

Autoregressive (lower panel) correlation structure

obvious that the selection of dimension (wNNSelect) reduces the MSEs when
only the relevant information from selected predictors is used. Similar results are
obtained for n = 100 (Table 2: lower left panel). For the blockwise structure with
1% to 20% missing data there is not much difference concerning the alternative
convex function used in the weighting procedure. But when percentage of the
missing data is greater than 20% of the data matrix, the weighted function
(wNNDelectm) with the power function (9) shows the best MSEs irrespective
of the correlation structure.

In the case of autoregressive correlation with n = 50 (Table 2: upper
right panel), weighted selection of predictors with convex function (9), namely
wV V Selectm, using L2 metric provides smaller MSE (e.g., 0.1580 for 1% miss-
ing values and 0.3416 for 30% missing). Both of these values are much smaller
than obtained by wNN and benchmark imputation methods. Moreover, the
best MSE is obtained by weighted L2 with selection of predictors using convex
function (9), namely wNNSelectm. Similar results are found for n = 100 (Table
2: lower right panel).

A comparative view of the performance for different levels of missing per-
centages for blockwise (lower panel) and autoressive (upper panel) is shown in
Figure 6. To make them comparable all the plots are drawn on the same scale.
It is seen that the mean squared errors get larger with increasing percentage of
missing values. But the curve is more flatter when the data is from blockwise
correlation. Overall, the proposed weighting functions distinctly outperform the
available methods in all the data settings, in particular the wNNSelectc and
wNNSelectm methods showed superior performance.
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Figure 6: Comparison of wNNSelect at different percentages of missing data in

autoregressive (upper panel) and blockwise (lower panel) structure. The tuning pa-

rameters (λ, c) and (λ,m) selected by cross-validation.

4 Case Studies
In this section we use several real data sets to compare imputation methods.
We use two data sets from genetics and two data sets from non-genetic studies.
The complete data sets without any missing values were used so that we can
compare the results.

4.1 Gene Expression Data

In particular, gene expression data often contain missing values. Some previous
studies on imputation of missing values in gene expression data are by Brock
et al. (2008), Wasito and Mirkin (2005), Troyanskaya et al. (2003), Nguyen
et al. (2004), Hastie et al. (1999), and Dudoit et al. (2002). We used subsets
of gene expression data on two different types of human tumor namely lym-
phomas and leukemia. These data sets can be downloaded from the website
http://www.gems-system.org/.

The data sets were preprocessed before using for imputation. A significance
analysis was carried out to identify differentially expressed genes using samr

package in R (R Core Team (2013)). The selected genes were standardized to
normal scores.
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DLBCL Data

The gene expression data on Lymphomas was collected from 77 patients on
6,817 genes. The response was Diffuse large B-cell lymphomas (DLBCL) with
n=58 patients or follicular lymphomas (FL) with n=19 patients. We used in
our analysis the first 100 significant genes (variables) and all 77 patients.

Leukemia Data

The second data we use is based on three types of leukemia; Acute myeloge-
nous leukemia (AML), acute lympboblastic leukemia (ALL) B-cell, and ALL
T-cell. The complete data consists of the gene expression on 5,328 variables of
72 patients. The data for all 72 patients for first 100 significant genes was used.

4.2 Non-Gene Expression Data

LSVT Voice Rehabilitation Data Set

The LVST (Lee Silverman Voice Treatment) Global, a company specialising
in voice rehabilitation assists the people with Parkinson’s disease (PD). The
data set was originally collected to determine the most parsimonious feature
subset which helps to predict the binary response. The data are composed of a
range of biomedical speech signal processing algorithms from 14 people who have
been diagnosed with Parkinson’s disease undergoing LSVT. The original study
used 310 algorithms (predictors) to characterize 126 speech signals (samples).
The response variable is binary, acceptable vs unacceptable phonation during
rehabilitation. More information on data can be found in Tsanas et al. (2013).
The data can be downloaded from the UCI Machine Learning Repository.

LIBRAS Movement Database

The data set contains 15 classes of 24 instances each, where each class references
to a hand movement type in LIBRAS. The hand movement is represented as a
bidimensional curve performed by the hand in a period of time. The curves were
obtained from videos of hand movements, with the Libras performance from 4
different people, during 2 sessions. Each video corresponds to only one hand
movement and has about 7 seconds. The total data consists of 360 instances of
90 numeric attributes. More information on data can be found in Dias et al.
(2009). The data set is available on the UCI Machine Learning Repository.

All the variables were standardized before processing. The NN imputation
techniques were applied to these four data sets by artificially setting 5% of the
observations as missing completely at random (MCAR). The missing values
were imputed by using weighted nearest neighbors with selection of variables
(wNNSelect) with the tuning parameters chosen by cross-validation. Also for
the benchmark methods, the number of nearest neighbors was selected by cross-
validation. The procedure was repeated 10 times for all methods. The resulting
averaged MSEs are shown in Table 3. The smallest MSE for each data set is
shown in boldface.

In all these case studies, the minimum value of average MSE was obtained
by one of the new imputation methods. For DLBCL data, the minimum,
0.5993, was obtained for the L1 metric with the convex function (9) shown
as wNNSelectm. The the impute function in Bioconductor package gave the
MSE of 0.72679, and the VIM procedure had the highest value of MSE, 0.7889.

18



Table 3: Average MSE results from real data sets

L1 metric L2 metric Benchmark

DATA wNNSelectc wNNSelectm wNNSelectc wNNSelectm BIO VIM

DLBCL 0.6424 0.5993 0.6504 0.6078 0.7267 0.7889
Leukemia 0.7620 0.7461 0.7620 0.7292 0.8709 0.8272
LVST 0.4401 0.4427 0.4142 0.4087 0.5821 0.5731
LIBRAS 0.0799 0.0752 0.0353 0.0350 0.2903 0.3964

Similar results are found for the leukemia data with 0.7279 as minimal average
MSE from wNNSelectm using L2 metric. For LVST and LIBRAS movement
data sets, the smallest MSE is obtained from wNNSelectm using L2 metric. It
is obvious from table 3 that the proposed imputation procedure yields better
results than the Bioconductor and the VIM packages in all the data sets.

5 Concluding Remarks
The main objective of this study was to introduce an improved nearest neighbor
procedure for the imputation of missing values. The simulation results show that
the proposed weighted imputation estimate performs better than the fixed or the
un-weighted approach. We also compared L1 and L2 metrics in the weighted
imputation of missing data and found L2 metric to be slightly better than L1

metric. The use of kernel functions for the computation of weights decreases
the imputation error. Simulation results (not presented here) suggest that the
Gaussian kernel provides smaller MSEs than other kernel functions.

To cope with the problem of high dimensional data, we proposed an im-
putation method with a weighted selection of predictors. The procedure uses
cross-validation for optimal selection of the tuning parameters. In particular, for
highly correlated data, the proposed NN imputation procedure shows promising
results, also in the case of a high proportion of missing data. The simulation
studies as well as real data sets confirm these results.
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