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Abstract

The receiver operating characteristic curve is widely applied in measuring the per-
formance of diagnostic tests. Many direct and indirect approaches have been proposed
for modelling the ROC curve, and because of its tractability, the Gaussian distribution
has typically been used to model both populations. We propose using a Gaussian mix-
ture model, leading to a more flexible approach that better accounts for atypical data.
Monte Carlo simulation is used to circumvent the issue of absence of a closed-form.
We show that our method performs favourably when compared to the crude binor-
mal curve and to the semi-parametric frequentist binormal ROC using the famous
LABROC procedure.

Keywords: Binormal curve; EM algorithm; Gaussian mixture; LABROC; mixture
models; Monte Carlo; ROC curve.

1 Introduction

The receiver operating characteristic (ROC) curve has gained tremendous popularity since
its use in the signal detection theory during World War II. This phenomenon can be justified
by the necessity to evaluate the performance of a diagnostic test, as noted by Lusted (1971).
Despite being a useful tool to evaluate the efficiency of a diagnostic test, the ROC curve
also presents a practical way to select an optimal threshold and to compare different tests.
However, the empirical ROC curve is not desirable for the simple reason that it violates
certain theoretical properties. Many authors have proposed different ways to model the
ROC curve to circumvent this issue. Approaches to modelling the ROC curve within the
literature can be divided into two categories: direct and indirect.

The direct approach, which is less appealing, does not depend on any distributional hy-
potheses. The idea is to construct the ROC curve directly from the population scores, often
in medical setting, are divided into two groups: diseased and non-diseased, without any
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assumptions (Lloyd, 1998; Zhou and Harezlak, 2002). As mentioned previously, the empir-
ical ROC curve violates certain theoretical properties; e.g., it is not necessarily monotonic
increasing. To overcome this obstacle, some authors proposed non-parametric estimation of
the density function of each population using kernel smoothing methods (Hall and Hyndman,
2003; Lloyd, 1998; Lopez-de Ullibarri et al., 2008; Qiu and Le, 2001; Zou et al., 1997). Hence,
the problem is reduced to selection of an optimal bandwidth (Lloyd, 1998; Peng and Zhou,
2004; Zhou and Harezlak, 2002). Lloyd (1998) suggested using the bootstrap to minimize
any distortion when smoothing the ROC curve.

The indirect approach assumes that each population follows a certain distribution and
implicitly derives a functional form for the ROC curve. To construct a curve, parametric
and semi-parametric methods have been proposed. One of the parametric methods assumes
that diseased and non-diseased populations follow a family of distributions such as: the
Gaussian, which is the obvious and simple choice; the gamma (Dorfman et al., 1997); and
others (Zweig and Campbell, 1993). For the Gaussian assumption, Goddard and Hinberg
(1990) pointed out it is not always an adequate choice in some scenarios like prostate cancer.
The authors emphasized that an inconsiderate and careless application of the method is
not recommended, because it depends strongly on distributional assumptions. Furthermore,
Zhou et al. (2002) stressed the need to carefully verify the consistency of data with the
assumptions. An alternative to the previous method is to specify a functional form of
the ROC curve instead of assuming a distribution. For instance, both populations can be
assumed to follow a logistic distribution with the same variance (Swets, 1986). England
(1988) suggested an exponential model with two parameters. Both parametric methods are
very similar because the distribution of the test scores entirely determines the shape of the
ROC curve. The main advantages of a parametric method are simplicity, the smoothness of
the curve, and an ability to work with a small number of parameters.

The semi-parametric method is more attractive in terms of flexibility due to the presence
of non-parametric and parametric components. The binormal model (Green and Swets, 1966)
is a good example; it assumes that both populations follow a Gaussian distribution after
some monotone increasing transformation (Hanley, 1996). Hence, the problem is reduced
to estimating the parameters, i.e., the slope and intercept. A range of solutions has been
proposed using different techniques such as generalized least squares (Hsieh and Turnbull,
1996), maximum likelihood, pseudo-likelihood (Cai and Moskowitz, 2004; Zhou and Lin,
2008; Zou and Hall, 2000), and others. For example, to obtain a smooth binormal ROC curve,
Metz et al. (1998) developed an algorithm, called LABROC, which groups continuous data
into a finite number of ordered categories and then uses the maximum likelihood algorithm
from Dorfman and Alf (1968) for ordinal data. A variation of this method was suggested
by Li et al. (1999), where they model the scores of a diagnostic test for non-diseased and
diseased patients non-parametrically and parametrically, respectively. On the other hand,
no functional relationship is assumed between these two distributions. Instead of directly
modelling the distributions of the diagnostic scores of the two populations when the true
status of the disease is known, another approach is to model the probability of knowing
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the disease status of the diagnostic scores using logistic regression (Qin and Zhang, 2003).
Evidently, like any estimation problem, the lack-of-fit can be an issue for the semi-parametric
method. In addition to this estimation problem, the construction of confidence bands, for a
given choice of both population distributions, is complicated.

Our motivation is to develop a method that can give an estimate of the ROC curve
with more flexibility and smoothness, produce reliable confidence bands, and ensure the
natural monotonicity property of the ROC curve. We propose a Gaussian mixture (GM)
distribution to model both non-diseased and diseased populations. This enables us to capture
more complex behaviour and distribution shapes than the traditional normality assumption.
By combining Monte Carlo simulation and the GM distribution, our method generates an
ensemble of replica ROC curves and computes summary measures, such as the area under
curve (AUC) and the partial AUC (pAUC), based on the ensemble.

The remainder of the paper is organized as follows. In Section 2, we provide some
background on ROC curves, followed by details of our proposed approach (Section 3). Results
from simulation studies are provided in Section 4 and real data analyses are discussed in
Section 5. In Section 6, some concluding remarks and possible extensions are discussed.

2 Background

The ROC curve is defined to be a plot of the true positive rate (TPR) against the false
positive rate (FPR), or sensitivity versus (1− specificity), for various threshold values. This
is generally a curve in the unit square anchored at (0, 0) and (1, 1), and above the line
joining those points. Let X ∼ F and Y ∼ G be two independent continuous variables or two
diagnostic variables coming from two populations, non-diseased and diseased, respectively.
By convention, a patient is considered diseased if the value of the score is greater than a
specified threshold. Note that we borrow the notation of Gu et al. (2008) in some of what
follows. For a given threshold value ct ∈ R,

FP(ct) =

∫ +∞

−∞
fX(x)I (x− ct) dx = P (X > ct), (1)

TP(ct) =

∫ +∞

−∞
gY (y)I (y − ct) dy = P (Y > ct), (2)

where

I(u) =

{
1, if u > 0,

0, if u ≤ 0.

Therefore, the ROC curve is obtained by

{(t, R(t))} = {(FP(ct),TP(ct))} , (3)

where t ∈ D ⊂ [0, 1].
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When t is given, ct = F̄−1(t) = F−1(1− t), where F−1(ζ) = inf{x : F (x) ≥ ζ}. If F̄−1(t)
exists, then the functional form of the ROC curve is given by

R(t) = TP (ct) = Ḡ(F̄−1(t)) = Ḡ(ct) = P (Y > ct) = P (Y > F̄−1(t)), (4)

where F̄ (u) = P (X > u) and Ḡ(u) = P (Y > u) are known as survival functions of X and
Y , respectively.

The AUC is an extensively used summary index to quantify the information given by an
ROC curve. The AUC, A, and its estimate Â are defined as

A =

∫ 1

0

R(t)dt and Â =

∫ 1

0

R̂(t)dt, (5)

respectively, where R̂(t) is an estimate of R(t).

3 Methodology

We refer to our approach, where a Gaussian mixture is used in conjunction with Monte Carlo
simulation, as the MG method. The purpose of using the MG method is to produce a valid
curve estimate and reliable confidence bands for any ROC curve. Using Gaussian mixtures
leads to a more flexible model that accounts for data that might be considered atypical.
Monte Carlo simulation is applied to circumvent the issue of the absence of a closed-form.
Its properties enable the computation of confidence bands with ease. Because each pair
(X, Y ) constructs one ROC curve, the idea of our MG method is to generate an ensemble
of replica ROC curves by simulating many pairs (X, Y ), where F and G are assumed to be
Gaussian mixture densities. Accordingly, we have

f(x | Θ) =
K∑
k=1

πkφ(x | µk,Σk), (6)

where

φ(x | µk,Σk) =
1√

(2π)p|Σk|
exp

{
−1

2
(x− µk)

′Σ−1k (x− µk)

}
(7)

is the kth Gaussian component density with mean µk and covariance matrix Σk, πk > 0 with∑K
k=1 πk = 1 are the mixing proportions, and Θ = (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) is

the collection of all model parameters. The density g(y | Ψ) is defined similarly, where Ψ is
the collection of all model parameters.

The major difference between our parameter estimation approach and that of Gu et al.
(2008) consists in the fact they use a Bayesian approach whereas we do not. They propose
the Dirichlet process prior and then perform a bootstrap to resample. Like Gu et al. (2008),
we can lay out each step of our MG method, which combines Gaussian mixture modelling
and Monte Carlo simulation.
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Step 1 (Parameter estimation for F and G): Let X and Y be the vectors of scores of
non-diseased and diseased populations, respectively. Suppose both X and Y follow Gaus-
sian mixture densities as in (6). Parameter estimation is carried out via an expectation-
maximization (EM) algorithm Dempster et al. (1977) and we thereby obtain ΘX and ΘY .

Step 2 (Generating the ensemble of random ROC curves): After obtaining the parameter
estimates, we generate (X̃, Ỹ ) where X̃ ∼ F (ΘX) and Ỹ ∼ G(ΘY ). With the simulated
ensemble, we compute {(t, R̃(t))} and Ã. This gives only one ROC curve, and after repeating
this step M times, via Monte Carlo simulation, we obtain

{(t, R̃1(t))}, . . . , {(t, R̃M(t))} and Ã1, . . . , ÃM .

Step 3 (Averaging the ensemble of random ROC curves): The MG estimate, denoted as
R̂MG(t), is obtained by averaging the random realizations of the ROC curves such that

R̂MG(t) = mean(R̃(t)),

where t ∈ D ⊂ [0, 1]. Similarly, we compute

ÂMG =

∫ 1

0

R̂MG(t)dt.

Remark 1 : The estimate R̂MG(t) is much smoother than the empirical estimate because it
is obtained by averaging over the ensemble of random realizations R̃(t).

Remark 2 : When plotting the curves, it is useful to add bands indicating the region where
95% of the curves R̃(t) lie. Therefore, to compute the confidence bands of the MG estimators
of the ROC curves, we use the M {(t, R̃(t))} in Step 2. By the fundamental theory of Monte
Carlo, which is based on the strong law of large numbers and the central limit theorem, we
compute the MG standard error of R̂(t). For a given t,

st =

√√√√ 1

M − 1

M∑
l=1

(R̃l(t)− R̂MG(t))2. (8)

Hence, the upper and lower bounds of the 100(1− α)% confidence interval can be written[
R̂MG
LB (t), R̂MG

UB (t)
]

=

[
R̂MG(t)− z1−α

st√
M
, R̂MG(t) + z1−α

st√
M

]
. (9)

4 Simulation Studies

In this section, we conduct several simulation studies to investigate the flexibility and the fit
of the proposed MG approach by comparing it with existing procedures, i.e., the binormal
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model and the semi-parametric frequentist binormal ROC using the LABROC4 software
(Metz, 1990). We assume that X ∼ N (µX ,ΣX) and Y ∼ N (µY ,ΣY ). The parameters are
chosen randomly. To evaluate the accuracy of MG method, we compute the AUC using the
trapezoidal rule and the Mann-Whitney U test.

To visualize the flexibility of the MG method, three cases of discrimination are examined:
strong, moderate, and poor. From Figure ??, we observe that the diseased population is a
bimodal distribution. This scenario is practically relevant because the diseased population
may contain a subpopulation of patients at different stages of a disease. Our goal is to
replicate the empirical curve but with more smoothness. When strong discrimination is
present (Figure 2), we can observe that the MG curve performs as well as the commonly
used LABROC method and significantly better than the crude binormal curve. Furthermore,
for the two other cases, we notice that the MG curve follows the empirical curve closely when
compared to the binormal and the LABROC approaches (Figures 3–6). The bands (dashed
lines) in these graphs indicate the region covering 95% of our simulated curves; recall that
the MG curve represents an averaging of these simulated curves. The crude binormal curve
is obtained directly from the following equation without any monotonic transformation:

R(t) = Φ(a+ bΦ−1(t)), (10)

where

a =
µD − µN
σD

and b =
σN
σD

.

It follows that the AUC of a binormal curve is given by

A = Φ

(
a√

1 + b2

)
. (11)

Figure 1: Histogram of the simulated multivariate Gaussian data with strong discrimination.
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Figure 2: ROC curve for the simulated multivariate Gaussian data with strong discrimination
(Figure ??).

Figure 3: Histogram of the simulated multivariate Gaussian data with moderate discrimi-
nation.
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Figure 4: ROC curve for the simulated multivariate Gaussian data with moderate discrimi-
nation (Figure 3).

Figure 5: Histogram of the simulated multivariate Gaussian data with poor discrimination.

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROC Curves − MV Normal Simulated Data

α / FPR

1−
β /

 T
PR

 

 

Empirical

Binormal

LABROC

MG

Figure 6: ROC curve for the simulated multivariate Gaussian data with poor discrimination
(Figure 5).

Another way to compare the MG method against the two binormal methods is to calculate
a summary measure such as the AUC (Table 1). We observe that our MG method obtained
an AUC close to the empirical AUC and performed relatively well compared to the binormal
and LABROC procedures. These simulation studies show that our approach is at least as
accurate as the two classical binormal methods and sometimes superior.

Table 1: AUC values for the simulated multivariate Gaussian data, with the model closest
to the empirical curve in bold font.

Level of ROC Model AUC
Discrimination Trapezoidal Mann-Whitney

Empirical 0.9760 0.9759
Strong Binormal 0.9787 0.9787*

LABROC 0.9750 0.8337
MG 0.9764 0.9757
Empirical 0.7599 0.7597

Moderate Binormal 0.7521 0.7521*
LABROC 0.7479 0.7163
MG 0.7593 0.7588
Empirical 0.6008 0.6006

Poor Binormal 0.5550 0.5950*
LABROC 0.6024 0.6053
MG 0.6013 0.6011

*Using the binormal crude AUC equation
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5 Real Data Analyses

Having observed favourable results on the simulation studies, we illustrate our newly pro-
posed method on publicly available case-control cancer data published by Wieand et al.
(1989). This data set has been used extensively in the literature to illustrate newly devel-
oped methods for ROC curves; accordingly, we selected it to compare our method to the
current state-of-the-art. This study examined two biomarkers: a cancer antigen (CA 125)
and a carbohydrate antigen (CA 19-9). The data consist of 90 selected cases representing
patients with pancreatic cancer as well as 51 controls without cancer but with pancreatitis.
We used the two biomarkers to illustrate the application of our methodology. From Figures 8
and 10, we observe that our MG method undoubtedly outperforms the crude binormal ap-
proach. The poor performance of the binormal curve can be explained by the unsuitability of
the normality assumption for these data (see Figures 7 and 9). Compared to the LABROC
procedure, our MG method performs relatively well in terms of replication and closeness
to the empirical curve. Without any monotonic transformation, the MG method outper-
forms the crude binormal ROC and performs as well as LABROC. As suspected, the AUC
of our approach is closer to the empirical than the binormal for both biomarkers (Table 2).
For CA 125, our MG method obtains a summary index closer to the empirical curve than
the LABROC. For biomarker CA 19-9, LABROC gives a better AUC using the trapezoidal
rule; however, when using the Wilcoxon-Mann-Whitney statistic, our MG method performs
better.

Table 2: AUC values for pancreatic cancer data using two biomarkers, with the model closest
to the empirical curve in bold font.

Biomarker ROC Model AUC
Trapezoidal Mann-Whitney

Empirical 0.7143 0.7056
Pancreas Binormal 0.5924 0.5924*
CA 125 LABROC 0.6946 0.6808

MG 0.7147 0.7143
Empirical 0.8651 0.8614

Pancreas Binormal 0.6774 0.6776*
CA 19-9 LABROC 0.8625 0.7793

MG 0.8569 0.8565
*Using the binormal crude AUC equation
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Figure 7: Histogram of the pancreatic cancer data using biomarker CA 125.
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Figure 8: ROC curve for the pancreatic cancer data using biomarker CA 125.
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Figure 9: Histogram of the pancreatic cancer data using biomarker CA 19-9.
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Figure 10: ROC curve for the pancreatic cancer data using biomarker CA 19-9.
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6 Concluding Remarks

In this paper, we have outlined a methodology to estimate the ROC curve with more flexibil-
ity and smoothness than provided by existing approaches. The proposed method utilizes the
Gaussian mixture in conjunction with Monte Carlo simulation, and we refer to our approach
as the MG method. The performance of the MG method was illustrated via several simu-
lation studies and real data on pancreatic cancer. We found that our MG curve performed
favourably when compared to the crude binormal curve in term of flexibility and fitting.
Even without any monotonic transformation, the MG produced similar, if not better, results
than the LABROC procedure. Furthermore, the MG method does not require any assump-
tions other than that the populations follow a Gaussian mixture. An interesting avenue for
future work is to extend this approach using a non-Gaussian mixture model instead of a
Gaussian mixture model.
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