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a b s t r a c t

Probability density functions are frequently used to characterize the distributional proper-
ties of large-scale database systems. As functional compositions, densities primarily carry
relative information. As such, standard methods of functional data analysis (FDA) are not
appropriate for their statistical processing. The specific features of density functions are
accounted for in Bayes spaces, which result from the generalization to the infinite dimen-
sional setting of the Aitchison geometry for compositional data. The aim is to build up a
concise methodology for functional principal component analysis of densities. A simpli-
cial functional principal component analysis (SFPCA) is proposed, based on the geometry
of the Bayes space B2 of functional compositions. SFPCA is performed by exploiting the
centred log-ratio transform, an isometric isomorphism between B2 and L2 which enables
one to resort to standard FDA tools. The advantages of the proposed approach with respect
to existing techniques are demonstrated using simulated data and a real-world example of
population pyramids in Upper Austria.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, an increasing number of studies are based on complex data, such as curves, surfaces or images. As a direct
consequence, the importance of Functional Data Analysis (FDA, e.g., Ramsay and Silverman, 2002, and references therein)
has recently strongly increased. In recent years, a large body of literature has been developed in this field (e.g., Ramsay and
Silverman, 2005; Horváth and Kokoszka, 2012, and references therein), however, still little attention has been paid to the
problem of dealing with functional data that are probability density functions (Delicado, 2007, 2011; Nerini and Ghattas,
2007; Zhang andMüller, 2011;Menafoglio et al., 2014a,b). Even though itmight seem that density functions are just a special
case of functional data – with a constant-integral-constraint equal to one – standard FDAmethods appear to be inappropri-
ate for their treatment, as they do not consider the particular constrained nature of the data. This problem is well known in
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the finite dimensional setting, where specific techniques have beenworked out to deal with compositional data (e.g., Aitchi-
son, 1986; Pawlowsky-Glahn and Egozcue, 2001; Egozcue and Pawlowsky-Glahn, 2006; Egozcue, 2009; Pawlowsky-Glahn
and Buccianti, 2011, and references therein), i.e., multivariate data carrying only relative information, usually represented
in proportions or percentages. Those techniques are mainly based on a geometric perspective grounded on the Aitchison
geometry in the simplex, which properly incorporates the compositional nature of the data. In this context, probability den-
sity functions have recently been interpreted as functional compositional data, i.e., functional data carrying only relative
information. To handle this kind of data, the Aitchison geometry has been recently extended to the so called Bayes spaces:
a Hilbert space structure for σ -finite measures, including probability measures, has been worked out in Van den Boogaart
et al. (2014), based on the pioneering work of Egozcue et al. (2006) and the subsequent developments of Van den Boogaart
et al. (2010) and Egozcue et al. (2013). The name Bayes spaces comes from the primary purpose of the approach, which
is to assign a simple algebraic interpretation for the basic notions of mathematical statistics (e.g., the Bayes theorem as a
paradigm of information acquisition; Van den Boogaart et al., 2010). The idea of Bayes spaces was first exploited in Delicado
(2011) for the statistical analysis of density functions in the context of dimensionality reduction through multidimensional
scaling. Very recently, the Hilbert space structure of probability density functions with a compact support has been used by
Menafoglio et al. (2014a,b) to elaborate a kriging methodology for probability density functions.

The aim of this work is to take a step forward in the direction of functional principal component analysis in Bayes spaces,
moving from the work of Delicado (2011). In particular, we shall geometrically solve the problem of functional principal
component analysis (FPCA) in the Bayes Hilbert space of probability density functions. The sample space of compositional
data – i.e., the infinite dimensional simplex –motivates the name simplicial functional principal component analysis (SFPCA).
Furthermore, wewill propose the use of the centred log-ratio transform (clr, Van den Boogaart et al., 2014;Menafoglio et al.,
2014a) for its practical implementation. We remark that, unlike the non-linear transformations which are commonly used
for probability density functions (e.g., the logarithmic transformation), the centred log-ratio transformation is an isometric
isomorphismbetween the Bayes space of probability density functions and the space L2 of square-integrable realmeasurable
functions. Froman application viewpoint this is extremely important, as it allows to solve the problemof FPCAwith the usual
L2 geometry, while accounting for the specific features of Bayes spaces.

The remaining part of the paper is organized as follows. Section 2 introduces the Bayes space of probability density
functions as well as the clr-transformation which will be used for their processing. FPCA is recalled in Section 3 for L2 data.
The extension of FPCA to Bayes spaces is proposed in Section 4, and is further explored in Section 5 through a simulation
study. In Section 6, we apply the developedmethodology to a real case study dealingwith age distributions in Upper Austria.
Section 7 eventually concludes the work.

2. Density functions as elements of a Bayes space

The theory of Bayes spaces (Egozcue et al., 2006; Van den Boogaart et al., 2010, 2014; Egozcue et al., 2013) has been
introduced as a generalization to density functions of the Aitchison geometry. This is commonly used for compositional data,
i.e., multivariate observations carrying only relative information (e.g., Aitchison, 1986; Pawlowsky-Glahn and Buccianti,
2011, and references therein), which are usually collected in the form of constrained data summing up to a constant, usually
set to 1 or 100, in case of proportions or percentages, respectively. Any probability density function f can be considered as a
compositional vector with infinitely many parts (Egozcue et al., 2006): as such, it inherits the key features of compositions
(e.g., Egozcue, 2009).

We denote by µ an absolutely continuous measure with respect to the Lebesgue measure on (R, B(R)), with compact
support I ⊂ R and density f . To keep the notation simple, hereafter we refer to the properties of µ through the properties
of f , even though Van den Boogaart et al. (2010); Egozcue et al. (2013); Van den Boogaart et al. (2014) develop the theory
of Bayes spaces in a complete generality. We say that two density functions f , g are equivalent if they are proportional,
and we denote this by f =B g . As such, the integral constraint


I f (x) dx = 1 of a probability density function singles out

a representative within an equivalence class of functional compositions that provide the same set of information. Indeed,
any other representativef within the same class (and characterized by a constraint


I
f (x) dx = c for c > 0) carries the

same relative information on the contribution of any Borel subset of R to the measure of the support. In this setting – as
noted by Egozcue et al. (2013) – the probability of a given event has not a meaning per se, but should be compared with the
probability of the entire sample space, which is conventionally set to 1, but could be equivalently set to another positive
constant c. This property is known as scale invariance.

A second important feature of functional compositions is the relative scale property: the relative increase of a probabil-
ity over a Borel set from 0.05 to 0.1 (2 multiple) differs from the increase 0.5–0.55 (1.1 multiple), although the absolute
differences are the same in both cases. This property reflects the relative nature of functional compositions, and further
motivates the use of the log-ratio approach – already extensively employed in compositional data analysis – to deal with
density functions.

In fact, both the scale invariance and the relative scale properties are completely ignored when considering probability
density functions just like unconstrained functional data. In particular, the usual notions of sum and product by a constant
appear inappropriate when applied to compositions, since the space of functional compositions endowed with those
operations is not a vector space (e.g., the point-wise sum of two compositions is not necessarily a composition). Instead,
the geometry of the Bayes Hilbert space of Van den Boogaart et al. (2014), which is described below, enables one to capture



K. Hron et al. / Computational Statistics and Data Analysis ( ) – 3

and properly incorporate these properties. In the following, we restrict our attention to density functions with compact
support, as in Delicado (2011). Both theoretical and practical reasons motivate this choice. Indeed, when the support is the
whole real line, the Lebesgue measure cannot be used as reference probability measure, leading to highly technical issues.
Moreover, inmost real datasets, finite values for the inferior and superior extremes of the support can be determinedwithout
a substantial loss of generality.

We call B2(I) the Bayes space of (equivalence classes of) positive functional compositions f on I with square-integrable
logarithm. In particular, we here consider continuous (hence bounded) functional compositions on the compact support I .
Hereafter, the representative of an equivalence class will be its element integrating to 1. Moreover, the symbol I will denote
an interval [a, b], but any subset of R with finite measure could be dealt with analogously. Given two absolutely integrable
density functions f , g ∈ B2(I) and a real number α ∈ R we indicate with f ⊕ g and α ⊙ f the perturbation and powering
operations, respectively, defined as (Egozcue et al., 2006; Van den Boogaart et al., 2014):

(f ⊕ g)(t) =
f (t)g(t)

I f (s)g(s) ds
, (α ⊙ f )(t) =

f (t)α
I f (s)

α ds
, t ∈ I.

The resulting functions are readily seen to be probability density functions. Egozcue et al. (2006) prove that B2(I) endowed
with the operations (⊕, ⊙) is a vector space. Note that the neutral elements of perturbation and powering are e(t) = 1/η,
with η = b− a (i.e., the uniform density), and 1, respectively. Moreover, the difference between two elements f , g ∈ B2(I),
denoted by f ⊖ g , is obtained as perturbation of f with the reciprocal of g , i.e., (f ⊖ g)(t) = (f ⊕ [(−1) ⊙ g])(t), t ∈ I .

The following example aims at illustrating the effect of the perturbation and powering operations in B2(I), as opposed
to standard operations of sum and product by a constant in L2(I). We consider the restriction to I = [−5, 5] of the Gaussian
densities f =B exp{−t2/2} and g =B exp{−(t−m)2/(2s2)}, withm = 1 and s2 = 2. Hereafter in this example – particularly
in Fig. 1 – we will always consider as representatives the elements which honour the unit integral constraint over the
compact support I = [−5, 5]. The left panel of Fig. 1 represents the perturbation of f by g (f ⊕ g), as well as the sum in L2 of
f and g (f + g). We first notice that the L2 sum of f and g does not result in a probability density function, and thus would
not be appropriate as an operation in B2(I). Instead, the perturbation of f by g results into a density function. The latter can
be explicitly obtained as the Gaussian density

f ⊕ g =B exp{−t2/2} · exp{−(t − m)2/(2s2)}
= exp{−(t − m1)

2/(2s21)} · exp{−m2/(2s2 + 2)} =B exp{−(t − m1)
2/(2s21)},

with m1 = 1/3 and s21 = 2/3. We note that the Gaussian family is closed with respect to the perturbation operation (Van
den Boogaart et al., 2010). This is not surprising if one recalls that the perturbation operation ⊕ can be interpreted as a
Bayesian updating of information – and ⊖ as a cancellation of information – (Egozcue et al., 2013), and that the Gaussian
family is conjugate with itself. Notice that f ⊕ g is more concentrated than f and shifted towards g: this is the consequence
of adding to f the information content in g (the opposite argument applies as well). The right panel of Fig. 1 displays the
result of the powering operation α ⊙ f in B2(I) as opposed to the multiplication α · f in L2(I), for the same f considered
before and the scalar α = 2. We first notice that α · f is not a density function, and, as an element of B2(I), it belongs
to the same equivalence class of f itself. In fact, the multiplication operation applied to elements in B2(I) simply changes
the representative within the equivalence class: as such, it is not a sensible operation in this setting. Instead, the powering
of f by α = 2 has the effect of increasing the concentration of f around its mean (i.e., it decreases the variance of f by a
factor 2). In the Bayesian framework, this is interpreted as the increase of information which is obtained by incrementing
the ‘‘evidence’’ in f by the ‘‘evidence’’ in f itself.

To endow B2(I) with a Hilbert space structure, Egozcue et al. (2006) define the inner product

⟨f , g⟩B =
1
2η


I


I
ln

f (t)
f (s)

ln
g(t)
g(s)

dt ds, f , g ∈ B2(I), (1)

with η = b − a, which induces the following norm,

∥f ∥B =


1
2η


I


I
ln2 f (t)

f (s)
dt ds

1/2

.

The space B2(I), endowed with the inner product (1), is proved to be a separable Hilbert space in Egozcue et al. (2006). As
such, it is isomorphic to the Hilbert space L2(I) of (equivalence classes of) square-integrable real functions on I . An isometric
isomorphism between B2(I) and L2(I) is defined by the centred log-ratio (clr) transformation (Van den Boogaart et al., 2014;
Menafoglio et al., 2014a), which is defined, for f ∈ B2(I), as

clr(f )(t) = fc(t) = ln f (t) −
1
η


I
ln f (s) ds. (2)

We remark that such an isometry allows to compute operations and inner products among the elements in B2(I) in terms
of their counterpart in L2(I) among the clr-transforms, i.e.

clr(f ⊕ g)(t) = fc(t) + gc(t), clr(α ⊙ f )(t) = α · fc(t), ⟨f , g⟩B = ⟨fc, gc⟩2 =


I
fc(t)gc(t) dt.
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Fig. 1. Example of perturbation and powering in B2(I), compared to the standard operations in L2(I). Left: Perturbation f ⊕ g (solid black line) of two
Gaussian densities f , g restricted to I = [−5, 5] (grey lines), and the sum f + g in the space L2(I) (dot-dashed line). Right: Powering of a Gaussian density
f restricted to I = [−5, 5] (grey line) by α = 2, α ⊙ f (solid black line), and the counterpart α · f in L2 (dot-dashed line).

However, we notice that, by construction, one has the constraint
I
clr(f )(t)dt =


I
ln f (t) dt −


I

1
η


I
ln f (s) ds dt = 0.

This additional condition needs to be taken into account for computation and analysis on clr-transformed density functions,
as we shall show in Section 4.

3. Principal component analysis for functional data

Principal component analysis (PCA) is a widely usedmultivariate statistical technique aiming to capture themainmodes
of variability of the data by means of a small number of linear combinations of the original variables. In the functional
context, the same aim is reached by Functional Principal Component Analysis (FPCA). Here, we briefly recall FPCA, referring
the reader, e.g., to Ramsay and Silverman (2002, Chapter 8), Horváth and Kokoszka (2012, Chapter 3) and Shang (2014), for
further details on this topic.

Let us consider a functional randomsampleX1, . . . , XN in L2(I), and indicatewith ⟨x, y⟩2 =

I x(t)y(t)dt the inner product

between two elements x, y in L2(I) andwith ∥x∥2 = (

I |x(t)|

2dt)1/2 the induced norm. For ease of notation andwithout loss
of generality, we assume the samples to be centred. FPCA firstly looks for the main mode of variability, i.e., for the element
ξ1 in L2(I) – called first functional principal component (FPC) – maximizing over ξ ∈ L2(I)

1
N

N
i=1

⟨Xi, ξ⟩
2
2 subject to ∥ξ∥2 = 1. (3)

The remaining FPCs, {ξj}j≥2, capture the remaining modes of variability subject to be mutually orthogonal, and are thus
obtained by solving problem (3) with the additional orthogonality constraint ⟨ξk, ξ⟩2 = 0, k < j.

Analogously to themultivariate case, the FPCs {ξj}j≥1 coincide with the eigenfunctions of the sample covariance operator
V : L2(I) → L2(I) (e.g., Horváth and Kokoszka, 2012, p. 26), acting on x ∈ L2(I) as

Vx =
1
N

N
i=1

⟨Xi, x⟩2Xi,

or, equivalently, as

Vx =


I
v(·, t)x(t)dt,

the kernel v : I × I → R being the sample covariance function

v(s, t) =
1
N

N
i=1

xi(s)xi(t), s, t ∈ I.

Therefore, the jth FPC ξj and the associated scores Ψij = ⟨Xi, ξj⟩2, i = 1, . . . ,N , are obtained by solving the eigenvalue
equation

Vξj = ρjξj, (4)
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where ρj denotes the jth eigenvalue, with ρ1 ≥ ρ2 ≥ · · ·. As in multivariate PCA, for each j, the term ρj/


j ρj is associated
with the proportion of total variability explained by the FPC ξj.

Several computational methods can be utilized to solve Eq. (4) (e.g., Ramsay and Silverman, 2005; Jones and Rice, 1992;
Kneip and Utikal, 2001, and references therein). Ramsay and Silverman (2005, Chapter 8.4) suggest to express each datum
Xi, i = 1, . . . ,N , as a linear combination of K known basis functions φ1, . . . , φK and to solve the eigenproblem (4) through
an appropriate matrix coefficient. Indeed, suppose that each datum Xi, i = 1, . . . ,N , admits the basis expansion

Xi(·) =

K
k=1

cikφk(·), (5)

or, in matrix notation, X(·) = Cφ(·), with C = (cik) ∈ RN,K , X(·) = (Xi(·)), and φ(·) = (φi(·)). Then the variance–covariance
function takes the form v(s, t) = N−1φ(s)′C′Cφ(t), s, t ∈ I . Suppose further that the eigenfunction ξj, j ≥ 1, admits
the expansion ξj(·) =

K
k=1 bjkφk(·), or in matrix notation ξj(·) = φ(·)′bj. This yields Vξj(·) = φ(·)′N−1C′CMbj, where

Mkl = ⟨φk, φl⟩2. Therefore the eigenvalue equation (4) reduces to

N−1C′CMbj = ρibj, (6)

and bj is obtained as solution of the linear system (6). Note that in case of basis orthonormality M = I the FPCA problem
reduces to standardmultivariate PCA of the coefficientmatrix C. Otherwise, Ramsay and Silverman (2005, Chapter 8.4) show
that problem (6) is equivalent to the eigenproblem

1
N
M1/2C′CM1/2uj = ρiuj

with uj = M1/2bj, i.e., FPCA reduces to a multivariate PCA of the transformed coefficient matrix CM1/2 followed by the
transformation b = M−1/2u.

4. Simplicial functional principal component analysis

As functional compositions, probability density functions are featured by specific properties, such as the scale invariance
and relative scale properties. The latter would be neglected if one applied the functional principal component analysis
described in Section 3 to density functions. Aim of this section is to derive a simplicial version of FPCA, named SFPCA, by
following the same scheme that led to the formulation of FPCs in Section 3, but in agreement with the Bayes Hilbert space
geometry introduced in Section 2.

LetX1, . . . ,XN be a sample in B2(I), and denote by X1, . . . , XN the corresponding centred sample, i.e., for i = 1, . . . ,N ,
Xi = Xi ⊖ X , where X stands for the sample mean X =

1
N ⊙

N
i=1

Xi. We consider the problem of finding the simplicial
functional principal components (SFPCs) in B2(I), i.e., the elements {ζj}j≥1, ζj ∈ B2(I), maximizing the following objective
function over ζ ∈ B2(I):

1
N

N
i=1

⟨Xi, ζ ⟩
2
B subject to ∥ζ∥B = 1; ⟨ζ , ζk⟩B = 0, k < j, (7)

where the orthogonality condition ⟨ζ , ζk⟩B = 0, for k < j, holds only for j ≥ 2.
B2(I) being a separable Hilbert space, problem (7) is well posed (Horváth and Kokoszka, 2012, Theorem 3.2, p. 38). Thus,

the solution of problem (7) exists and is unique. Indeed, analogously to the L2(I) case previously discussed, the jth SFPC
solves the eigenvalue equation

Vζj = λj ⊙ ζj, (8)

(λj, ζj) being the jth eigenpairs of the sample covariance operator V : B2(I) → B2(I), acting on x ∈ B2(I) as

Vx =
1
N

⊙

N
i=1

⟨Xi, x⟩B ⊙ Xi.

In order to proceed with (7) in practice, we apply the isometric isomorphism between B2(I) and L2(I) defined by the
clr-transform (2) that allows to rewrite problem (7) as a maximization of the term

1
N

N
i=1

⟨clr(Xi), clr(ζ )⟩22 subject to ∥clr(ζ )∥2 = 1; ⟨clr(ζ ), clr(ζk)⟩2 = 0, k < j

over ζ ∈ B2(I). On this basis, for j ≥ 1 the maximization problem (7) can be equivalently restated as finding ν ∈ L2 which
maximizes

1
N

N
i=1

⟨clr(Xi), ν⟩
2
2 subject to ∥ν∥2 = 1; ⟨ν, νk⟩2 = 0, k < j;


I
ν = 0, (9)
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where the orthogonality constraint is meaningful only for j ≥ 2 and the zero-integral constraint incorporates the
corresponding clr-transform property.

We now show that (9) is solved by the eigenfunctions {ξj}j≥1 of the sample covariance operator Vclr : L2(I) → L2(I) of
the transformed sample clr(X1), . . . , clr(XN), acting on x ∈ L2(I) as

Vclrx =
1
N

N
i=1

⟨clr(Xi), x⟩2 clr(Xi).

We first notice that the eigenfunctions {ξj}j≥1 would have solved problem (9), if it had been stated without the zero-integral
condition


I ν = 0, since in that case (9) would have been equivalent to (3) (with the orthogonality constraints for j ≥ 2).

Therefore, to prove that ν = ξj maximizes (9) it suffices to show that ξj fulfils also the constraint

I ξj = 0, for all j ≥ 1. To

this end, we note that the zero-integral property of the clr-transformed sample clr(X1), . . . , clr(XN) implies that Vclr admits
a zero eigenvalue with associated eigenfunction ξ0 ≡ 1/

√
b − a:

Vclr ξ0 =
1
N

N
i=1

1
√
b − a


I
clr(Xi)


clr(Xi) ≡ 0.

Since the eigenfunctions {ξj} corresponding to the remaining non-null eigenvalues {ρj} are to be orthogonal to the eigen-
function ξ0, the ξj’s need to satisfy the zero-integral condition


I ξj = 0, as ⟨ξj, ξ0⟩2 = 1/

√
b − a


I ξj. Another way to see

this is to notice that (a) the image of the sample covariance operator Vclr is the span of the clr-transformed observations,
(and the constant function ξ0 ≡

1
√
b−a

belongs to its kernel), and (b) the eigenfunctions corresponding to the non-null eigen-
values form a basis of the image of Vclr. As such, each eigenfunction ξj can be written as a unique linear combination of the
functions clr(X1), . . . , clr(Xn). Therefore, the zero-integral condition is fulfilled since it holds, by construction, for each of
the functions clr(Xi), i = 1, . . . ,N . Thus, problem (7) can be restated in terms of clr-transforms as (9) and the SFPCs can be
obtained by transforming the eigenfunctions {ξj}j≥1 associated to the non-null eigenvalues {ρj}j≥1 of Vclr through the inverse
of the function clr, namely ζj = clr−1(ξj) =B exp(ξj), with j ≥ 1. Note that, as in classical PCA, the eigenfunctions ξj are de-
termined up to sign changes. Accordingly, the SFPCs are determined up to a powering by ±1 (i.e., if ζj solves problem (7),
−1 ⊙ ζj is a solution as well).

To compute the eigenfunctions ξj we resort to a method based on a B-spline basis expansion. Following Machalová et al.
(2015), we consider for clr(X1), . . . , clr(XN) and ξj, j ≥ 1, a B-spline basis fulfilling the zero-integral constraint,

clr(Xi)(·) =

K
k=1

cikφk(·), ξj(·) =

K
k=1

bjkφk(·). (10)

To compute the B-splines coefficients the usual parametrization of smoothing splines applies, and the additional constraint
is incorporated in the estimation algorithm as described in Machalová et al. (2015). We refer to the Appendix for further
details. Hence, with the same arguments used in Section 3, bj = (bjk) is obtained as solution of the eigenproblem

N−1C′CMbj = ρibj,

with analogue orthogonality arguments as those previously introduced, the zero integral constraint is inherently kept in the
PCA algorithm, and thus does not need to be explicitly imposed.

Alternative computational approaches could be employed as well to perform SFPCA. For instance, one may employ an
expansion based on a (truncated) polynomial basis, such as Lagrange, Legendre or Hermite bases. In these settings, the zero-
integral constraint should be still accounted for, e.g., by leaving the constant function of the polynomial basis out of the
fitting procedure (e.g., Van den Boogaart et al., 2014). Other approaches to data preprocessing in Bayes spaces have been
proposed in the literature, e.g., based on Bernstein polynomials (e.g., Menafoglio et al., 2014a) or kernel density estimation
(e.g., Delicado, 2011). However, the latter preprocessing procedures do not allow to express eigenproblem (8) in terms of a
multivariate eigenproblem, and would thus require to find the eigen-decomposition of Vclr numerically.

Finally, note that an equivalence exists between metric multidimensional scaling and principal component analysis,
if these are based on the same distance (Johnson and Wichern, 2002, Chapter 12.6). On this basis, one could perform
dimensionality reduction by employing MDS based on the Aitchison distance (Delicado, 2011), and then working with the
coordinates of a reduced space—which play the same role as the scores in SFPCA. The viewpoint ofMDS is however different,
as it looks for a low dimensional representation of the data preserving the distance among the original observations. In this
sense, the focus of MDS is on the distance between observations, as opposed to SFPCA whose focus is on the observations
themselves. In fact, the availability of a comprehensive framework for SFPCA allows to employ a rich set of techniques to
explore its results. For instance, for the purpose of dimensionality reduction, the choice of the number of SFPCs to be retained
can follow the same strategies as those used in FPCA: one may fix a threshold in the amount of variability explained by
the retained SFPCs, or look for an elbow in the scree plot. Even the interpretation of the results of SFPCA may follow the
main lines used in the L2(I) case, since the SFPCs represent the main modes of variability of the observations around the
global mean function, but in the space B2(I) endowed with its own geometry. Useful tools to visualize and interpret the
results of SFPCs are then the scores plan graph and the representation of the mean function perturbed by the jth SFPC ξj
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(a) Density functions. (b) Clr-transforms.

(c) Covariance function in L2 . (d) Covariance function in B2 .

Fig. 2. Gaussian densities on I = [−5, 5] with µ = 0 and σi = exp(−1 + (i − 1)/10) for i = 1, . . . , 21.

powered by an appropriate constant. In the framework of Bayes spaces, the latter is interpreted as the distribution obtained
when updating/cancelling the information carried by the mean density with the evidence within the jth mode of variability
(possibly increased by a proper factor to amplify its effect). In the following we will make an extensive use of this kind of
representation, which in fact corresponds to the graphs of the mean ± the FPCs multiplied by a constant, advocated by
Ramsay and Silverman (2005, Chapter 8.3) in the L2(I) case.

5. Simulation study

In this section, we explore the main features of the Bayes Hilbert space geometry and the subsequent SFPCA through a
simulation study based on density functions within the exponential family. Emphasis will be given to the effect of utilizing
a compositional approach to the analysis of densities, with particular regard to the impact of the relative scale and scale
invariance properties.

5.1. The effect of clr-transformation

We here examine the effect of processing density functions using clr-transformation (2) in case of two common
distribution families, censored according to fixed compact support I . Similarly as the artificial data considered by Delicado
(2011) and the densities introduced in Section 2, we first use a set of Gaussian densities, with mean µ = 0 and standard
deviation σi = exp(−1 + (i − 1)/10) for i = 1, . . . , 21 (Fig. 2(a)) on the interval I = [−5, 5], i.e.,

f (t; σi) =B exp

−

t2

2σ 2
i


, t ∈ I. (11)

Recall that, for each i = 1, . . . , 21, the kernel in (11) uniquely determines the B2(I)-equivalence class to which f (t; σi)
belongs, without need of specifying the normalizing constant (i.e., scale invariance). This reflects on clr-transformation (2),
which is invariant to the normalizing constant. The clr-transforms of densities (11) are obtained as

fc(t; σi) = −
t2

2σ 2
i

+
25
6σ 2

i
, t ∈ I. (12)

These are displayed, on grey scale, in Fig. 2(b). Due to the zero-integral constraint, all the clr-transforms fc(t; σi), i =

1, . . . , 21 have to cross the x-axis. In the present case, all the fc(t; σi) equal zero at t = ±
√
25/3, as obtained by solving, for

i = 1, . . . , 21, fc(t; σi) = 0 and using (12). Hence, at t = ±
√
25/3 the variability of the densities, in the Aitchison sense, is

zero. This is also reflected by the covariance function in B2(I), which is reported in Fig. 2(d). Note that the existence of the
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(a) Density functions. (b) Clr-transforms.

(c) Covariance function in L2(I). (d) Covariance function in B2(I). (e) A zoom into the top-left corner of the
covariance function in B2(I).

Fig. 3. Gamma densities on I = [e−7, e3] with scale parameter θ = 2, and shape parameters κ = 2 + (i − 1)/4 for i = 1, . . . , 19.

points of zero B2(I)-variability depends on the functional form of the considered densities and may not appear in general.
For instance, points of zero B2(I)-variability would not be obtained in case of Gaussian densities affected by variability in
both the mean and the standard deviation.

The fact that B2(I) honours the relative scale property of densities is apparent when observing Fig. 2(a) and (b). Indeed,
when looking at the densities in the original space, major differences seem to be exhibited among the concave parts of the
curves. Instead, on a relative scale, the variability of the densities is more significant within the tails of the distribution.
The latter are key to characterize the densities, though having nearly zero absolute contributions. This is well reflected by
the clr-transforms in Fig. 2(b), which exhibit high variability near the boundary of the support (Fig. 2(d)). In this regard, we
remark that the clr-transforms are elements of L2(I), as a result of an isometric transformation from the Bayes space B2(I)
to L2(I). Hence, their variability can be evaluated in the clr-space (Fig. 2(b)) via the usual L2 optics (e.g., a high variability is
present near the boundaries of the domain).

To see the effect of clr-transformation on right-skewed densities, we employ a set of gamma densities with scale
parameter θ = 2 and shape parameter κi = 2 + (i − 1)/4 for i = 0, . . . , 19 and I = [e−7, e3], i.e.

f (t; κi) =B tκi−1 exp

−

t
2


, t ∈ I.

These are displayed, together with their clr-transforms, in Fig. 3(a)–(b). As before, the relative scale property drives the
variability when this is measured in the sense of B2(I) (Fig. 3(d)–(e)). Indeed, the contribution to the variability provided
by the portion of the support associated to small probabilities (i.e., the left tails) is more pronounced than that associated
with the peaks of the densities. This is also apparent when comparing the covariance functions estimated in L2(I) and in
B2(I) (Fig. 3(c) and (d)–(e), respectively). Accordingly, one can expect that the effect of the relative scale property will be
highly influential to SFPCA, whose aim is precisely to capture the relative variability as primary source of information in
density functions. In particular, unlike FPCA, the first principal direction of variability in B2(I) is likely to be ‘‘attracted’’
by the variability within the regions where densities assume small values, because these regions have a substantial impact
when evaluating log-ratios between contributions of subdomains (i.e., the basis upon which the Bayes Hilbert geometry is
built). To appreciate these differences, in the next subsection, we shall study the effect of analysing a dataset of densities
though a relative scale (as in B2(I)), as opposed to the absolute scale employed when considering the L2 geometry.

5.2. SFPCA for density functions in the exponential family

In this subsection we perform SFPCA of sets of densities and compare the results with those of FPCA. Furthermore, we
shall give an interpretation to the clr-transform in terms of the transformationwith general validity as advocated byDelicado
(2011) to perform the principal component analysis of compactly supported density functions.
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To this end, we focus on the SFPCA of two sets of density functions belonging to the extended exponential family. We
recall that a k-parametric extended exponential family on I , ExpB(I)(g, T , ϑ) (Van den Boogaart et al., 2010) is a collection of
densities

f (t, α) =B g(t) · exp


k

j=1

ϑj(α)Tj(t)


, t ∈ I,

whereα denotes the k-dimensional vector of parameters in a k-dimensional parameter space A, while g : I → R,ϑj : A → R
and Tj : I → R, j = 1, . . . , k, are Borel-measurable functions. Van den Boogaart et al. (2010) prove that an extended
exponential family on I is a finite dimensional affine subspace of the Bayes spaceB2(I). In this regard, we note that a density
in ExpB(I)(g, T , ϑ) can be expressed as a linear combination in B2(I):

f (t, α) =B g(t) ⊕

k
j=1


ϑj(α) ⊙ exp{Tj(t)}


, t ∈ I,

and the corresponding clr-transform is obtained as:

fc(t, α) = gc(t) +

k
j=1


ϑj(α) · clr(exp{Tj(t)})


, t ∈ I. (13)

In particular, if k is minimal for ExpB(I)(g, T , ϑ) (e.g., Witting, 1985), then ExpB(I)(g, T , ϑ) is called strictly k-parametric and
the dimension of the corresponding affine space is precisely k. We note that, by virtue of (13), for a strictly k-parametric
exponential family with k0 ≤ k uncertain parameters, the SFPCA estimates an orthonormal basis of the corresponding
k-dimensional affine space in B2(I), which is associated to k0 ≤ k non-zero eigenvalues.

For the purpose of the simulation study, we here consider the following sets of densities:

– Set 1: n = 21 densities with Gaussian kernel N(0, σi), with σi = exp(−1 + (i − 1)/10) for i = 1, . . . , 21, and domain
I = [−5, 5];

– Set 2: n = 100 densitieswith kernel GammaΓ (θi, κj), with θi = 1/9+(i−1)/9 and κj = 2+(j−1)/4 for i, j = 1, . . . , 10,
and domain I = [e−7, e3].

Note that a Gaussian densityN(0, σ 2) restricted on I belongs to a 1-parametric extended exponential family, withα = σ ,
ϑ1(α) = 1/σ 2, and Tj(t) = −t2. Instead, a GammadistributionΓ (θ, κ) on I belongs to a 2-parametric extended exponential
family with α = (θ, κ), ϑ1(α) = θ , ϑ2(α) = κ , T1(t) = −t , and T2(t) = ln(t), for t ∈ I . As such, we expect that a sensible
dimensionality reduction method will single out the dimension k = 1 and k = 2 of the densities in Set 1 and in Set 2.

We first focus on the SFPCA of Set 1, which is the same set of densities analysed in Section 5.1. A similar set of
densities is considered in Delicado (2011). This author applies the transformationΨN(f )(t) ≡

∂
∂t log(f (t)) – firstly proposed

by Ramsay and Silverman (2002) – to linearize the problem and consequently apply standard FPCA to the transformed
data. Nevertheless, Delicado (2011) remarks that the use of the transformation ΨN(f ) is only justified in the presence of
(nearly) Gaussian densities, with consequent strong limitations in its applicability. Accordingly, he proposes the use of
multidimensional scaling (MDS) as a general dimensionality reduction method for density functions, with particular regard
to the MDS based on the compositional distance.

Fig. 4 reports the results of SFPCA on Set 1. The first SFPC – displayed in Fig. 4(c) – captures the entire variability of
the dataset and is precisely interpreted in terms of mass concentration. Indeed, the positive scores along the first SFPC are
associated with the highest standard deviations of Set 1 and vice versa (Fig. 4(b); here the indices i = 1, . . . , 21 refer to
the standard deviation σi of the corresponding density). Such an interpretation can be easily derived from the plot of the
mean density perturbed by ⊕/⊖ the first SFPC weighted according to the corresponding standard deviation – i.e.,

√
λ1, λ1

appearing in (8) – that is depicted in Fig. 4(e). These results are in agreement with those of Delicado (2011), obtained via
the transformation ΨN(f ). Nevertheless, the SFPCA (a) allows to ease the interpretation of the results through the use of
standard graphical displays and (b) is based on a transformation with general validity, namely the clr-transform.

As noted, SFPCA correctly identifies the dimensionality of the affine space of B(I) corresponding to the considered
extended exponential family. This is empirically confirmed by the results on Set 1, and further corroborated by the SFPCA
on Set 2 (Fig. 5). In this case – which could not have been analysed via the transformation ΨN – only two non-zero SFPCs are
obtained, which together capture the entire variability of the dataset. As expected, both the SFPCs tend to be driven by the
left tail of the distribution (Fig. 5(c)–(d)), due to the relative scale property of densities, which is accounted for in the Bayes
space B2(I).

In fact, very different results would have been obtained via standard FPCA in L2(I), as shown in Fig. 6. Here, the
dimensionality reduction suggested by the scree-plot (Fig. 6(a)) does not respect the dimensionality of the problem, and
the non-linear relationship between the first two FPCs is apparent. Note that the first two FPCs seek to characterize areas
with high absolute value of the densities (i.e., their peaks, see Fig. 6(e)–(f) and (h)), and provide poorer approximations in
the regions associated with small probability. This is a typical effect of analysing densities on an absolute scale, and marks a
key difference between SFPCA and FPCA. Further, the approximation of the densities via the first two FPCs is inappropriate,
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(a) Explained variance. (b) Scores along SFPC1 and SFPC2 .

(c) SFPC1 (100% of variability). (d) SFPC2 (0% of variability).

(e) Mean ±
√

λ1 SFPC1 . (f) Mean ±
√

λ2 SFPC2 .

(g) clr(Mean) ±
√

λ1 clr(SFPC1). (h) clr(Mean) ±
√

λ2 clr(SFPC2).

(i) Original densities.

(j) Approximated densities (via SFPC1).

Fig. 4. SFPCA of Gaussian densities with µ = 0 and σi = exp(−1 + (i − 1)/10) for i = 1, . . . , 21. In panels (e) and (f): the solid black curve indicates
the mean function, the red curve indicates the mean ⊖ the SFPC, the blue curve indicates the mean ⊕ the SFPC. In panels (g) and (h): the solid black
curve indicates the clr-mean function, the red curve indicates the clr-mean minus the SFPC, the blue curve indicates the clr-mean plus the SFPC. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Explained variance. (b) Scores along SFPC1 and SFPC2 .

(c) SFPC1 (93.4% of variability). (d) SFPC2 (6.6% of variability).

(e) Mean ±
√

λ1 SFPC1 . (f) Mean ±
√

λ2 SFPC2 .

(g) clr(Mean) ±
√

λ1 clr(SFPC1). (h) clr(Mean) ±
√

λ2 clr(SFPC2).

(i) Original densities.

(j) Approximated densities (via SFPC1 and SFPC2).

Fig. 5. SFPCA of Gamma densities with θ = 1/9 + (i − 1)/9 and k = 2 + (j − 1)/4 for i, j = 1, . . . , 10. In panels (e) and (f): the solid black curve
indicates the mean function, the red curve indicates the mean ⊖ the SFPC, the blue curve indicates the mean ⊕ the SFPC. In panels (g) and (h): the solid
black curve indicates the clr-mean function, the red curve indicates the clr-mean minus the SFPC, the blue curve indicates the clr-mean plus the SFPC. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Explained variance. (b) Scores along FPC1 and FPC2 .

(c) FPC1 (62.1% of variability). (d) FPC2 (28.0% of variability).

(e) Mean ±
√

ρ1 FPC1 . (f) Mean ±
√

ρ2 FPC2 .

(g) Original densities.

(h) Approximated densities (via FPC1 and FPC2).

Fig. 6. FPCA of Gamma densities with θ = 1/9 + (i − 1)/9 and k = 2 + (j − 1)/4 for i, j = 1, . . . , 10. In panels (e) and (f): the solid black curve indicates
the mean function, the red curve indicates the mean minus the FPC, the blue curve indicates the mean plus the SFPC. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

as it exhibits negative values (Fig. 6(h)). Instead, not only the densities approximation via SFPCs is guaranteed to produce
proper density functions, but exactly reproduces the original densities when the number of retained components respects
the dimensionality of the problem (Fig. 5(g)).
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Fig. 7. Upper Austria and its districts.

We finally note that the presented simulation study focuses on the case of densities from the exponential family of
distributions. These densities are widely used in applications and have been thoroughly analysed from the perspective of
Bayes spaces (e.g., Van den Boogaart et al., 2010). Nevertheless, a more comprehensive picture of the effects of employing
the Bayes spacemethodology for analysing densities could be obtained through an extension of the present simulation study
to a larger family of densities. In this sense, the analysis of the real dataset presented in the next section can be considered
as an illustration of SFPCA in a more general setting.

6. Analysis of population age distributions in the Upper Austria regions

In this section we perform the SFPCA of a real dataset dealing with the population age distributions in Upper Austria.
Out of the nine states constituting Austria, this is the fourth-largest Austrian state in terms of land area and third-largest
by population. Upper Austria is formed by 15 political districts, displayed in Fig. 7. The dataset we consider collects the age
distributions of men and women living in N = 57 municipalities of Upper Austria. In the literature this kind of data is often
referred to as population pyramid; a similar dataset – but referring to different countries in the world for the year 2000 –
has been considered in Delicado (2011) in the context of dimensionality reduction with particular emphasis on graphical
displays. The aim of the current study is to characterize the available population age densities, and perform a dimensionality
reduction according to the geometry of the Bayes space B2(I) as opposed to the usual L2(I) geometry. In particular, we here
focus on the impact and the advantages of incorporating the basic properties of functional compositions when performing
the statistical analysis of any dataset of densities, not necessarily in the exponential family.

For the purpose of the present study, the possible spatial dependence among the observations will not be considered.
Instead, the geographical information will be considered for the interpretation of the scores. We refer to Menafoglio et al.
(2013, 2014a,b) for a geostatistical approach to account for the spatial dependence in the presence of Hilbert data, and
particularly functional compositions in B2(I).

The raw data have been smoothed by using the procedure proposed in Machalová et al. (2015), and recalled in the Ap-
pendix: the discrete clr-transformsof rawdensities (Egozcue andPawlowsky-Glahn, 2006) have beenprojected on aB-spline
basis with support I = [0, 100] and five equally spaced knots in the years (0, 25, 50, 75, 100), with constraints to fulfil the
zero-integral condition. We remark that the choice of the number and the position of the knots can follow the same strate-
gies that are used in FDA. Here, the number of knots has been set in order to obtain a good fit to the raw data and to avoid
undesired artefacts at the boundaries of the domain. Fig. 8(a) represents two instances of raw data, together with the corre-
sponding smoothed curves, in the original as well as in the clr-space; thewhole sample of smoothed densities is displayed in
Fig. 8(b), coloured according to gender information. As observed in the simulation study, the clr-transform seems to highlight
the variability near the right boundary of the support, which is associated with the smallest values in the density functions.

The smoothed data have been embedded into the space B2(I) of functional compositions, and the methodology devised
in Section 4 has been applied, resorting to the clr-transform (2) to make computations. Here, we illustrate the results of the
SFPCA applied separately to the male and female sub-datasets, summarized in Fig. 9. Fig. 9(c) and (d) reports the first two
SFPCs for males and females, clr-transformed to ease their interpretation. Fig. 9(c) evidences that for both groups, the first
clr-SFPC contrasts the right tail of the distribution (i.e., the incidence of the old population) against its left part. This is a clear
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(a) Example of smoothing raw data via B-splines.

(b) Smoothed data.

Fig. 8. Population age densities in Upper Austria and their clr-transforms.

consequence of the relative scale property of densities – captured by the clr-transformation – that highlights the variability
within the regions of small values of the densities. From a practical perspective, this is important and readily interpretable,
as the information content related to the oldest class of population is associated to the life expectancy, and thus to the living
conditions.

Fig. 9(e) and (g) displays, for females and males, the plot of the mean perturbed by the first SFPC powered by ± twice
the standard deviation along the corresponding direction (i.e., X ⊕ / ⊖ 2

√
λ1 ⊙ ζ1). Recall that this is interpreted as

updating/cancelling the information carried by the mean density by twice the evidence within the first mode of variability.
Having fixed the sign of the clr-eigenfunction as in Fig. 9(c), high scores along the first SFPCs associatewith a high incidence of
the old population on the overall number of inhabitants; conversely, low scores associatewith a high relative contribution of
the youth to the overall population (Fig. 9(b)). We note that, even though the clr-eigenfunctions of the two sub-populations
appear pretty similar, they cross the zero level for different ages, namely at about 75 years in the females group and 84 years
in themale group. Therefore, the ‘‘old’’ class identified by the first SFPC appears to start earlier in the female than in themale
subgroup.

The second SFPCs, displayed in Fig. 9(d), still characterize the variability of the right part of the distribution. Indeed, the
main contribution to both the second clr-SFPCs is provided by the contrast between the 69–95 years-old population (asso-
ciated with low scores in Fig. 9(b)) and the remaining part of the population (associated with high scores in Fig. 9(b)), with
particular emphasis to the left and right boundaries of the densities support. We note particularly that high scores along the
second SFPC – where the sign of the eigenfunction is set as in Fig. 9(d) – associate with heavy tails and vice versa. However,
we note that some uncertainty could affect the second estimated SFPC, due to the absence of data for ages lower than 2 years
or higher than 92 years as these values formed interval representatives in the aggregated dataset.

To compare the results obtained in B2(I) with those that would have been obtained in L2(I), we refer to Figs. 10 and 11.
Fig. 10 compares the covariance operators estimated for the two groups in B2(I) and L2(I). These are quite different, even
though in both cases the covariance structures of the female and male subgroups appear pretty similar. Fig. 10(a) confirms
that inB2(I) themajor contribution to the variability is provided by the right tails of the distributions. Instead, Fig. 10(b) ev-
idences that the L2 geometry, looking at the data on an absolute scale, ascribesmore variability to the left part of the support.
This directly reflects on the corresponding principal components, displayed in Fig. 11(c)–(d). Indeed, even though the first
FPC of female subpopulation (Fig. 11(c)) is interpreted similarly as the corresponding first SFPC, it attributes much higher
variability to the left part of the support. Instead, the male first FPC appears hard to interpret, and seems to characterize the
position of the mode of the density and the mass concentration around it. The second female FPC seems to resemble the
first male FPC; no straightforward interpretation is suggested by the graphical inspection of the second male FPC.

The metric used to measure the variability readily reflects on the dimensionality reduction. Indeed, the scree-plot rela-
tive to the FPCA (Fig. 11(a)) suggests the reduction to three or five FPCs, as opposed to its SFPCA counterpart (Fig. 9(a)) which
suggests a more parsimonious representation based on two SFPCs instead. Indeed, the first two SFPCs explain the 88.7% of
the variability for the female subpopulation, and 92.6% for the male one. The approximation of the densities obtained by
projecting the smoothed data on the space generated by the corresponding first two SFPCs is shown in Fig. 9(j) (colours cor-
respond to the gender information). The approximation obtained by retaining the same number K = 2 of FPCs – explaining
69.1% and 67.9% of the L2 variability for female and male subpopulations, respectively – is displayed in Fig. 11(j). We notice
that the densities approximated via SFPCA tend to precisely reproduce the pattern visible in the right part of the domain,
while they seem rather smoothed within the left part. Instead, the approximation via FPCA seems to better reproduce the
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(a) Explained variance. (b) Scores along SFPC1 and SFPC2 .

0

(c) SFPC1 (f : 77.75%; m: 82.51% of variability). (d) SFPC2 (f : 10.95%; m: 10.06% of variability).

(e) f : Mean ±2
√

λ1 SFPC1 . (f) f : Mean ±2
√

λ2 SFPC2 .

(g)m: Mean ±2
√

λ1 SFPC1 . (h)m: Mean ±2
√

λ2 SFPC2 .

(i) Original densities.

(j) Approximated densities (via SFPC1 and SFPC2).

Fig. 9. SFPCA of population age densities. In panels (e)–(h): the black curve indicates the mean function, the red curve indicates the mean ⊖ twice the
SFPC, the blue curve indicates the mean ⊕ twice the SFPC. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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(a) B2 sample covariance operators for female (left) and male (right) subpopulations.

(b) L2 sample covariance operators for female (left) and male (right) subpopulations.

Fig. 10. Sample covariance operators estimated in B2(I) and L2(I) from the smoothed data.

data variability. This is due to the problem of evaluating densities on a relative basis, when they are represented within
the space that one is used to evaluate on an absolute scale. Indeed, the dimensionality reduction operated via SFPCA seeks
to resemble the relative contributions of each sub-domain to the measure of the support (i.e., it reflects the relative scale
property of a functional composition). As such, care needs to be taken when evaluating the quality of the approximation by
graphical comparison of Fig. 9(i) and (j). For this reason, we recommend the joint use of the representation in the original
and in the clr-space, the latter being reported in Fig. 12. Here, the approximation obtained via SFPCA (Fig. 12(b)) appears
much more accurate than that of FPCA (Fig. 12(c)).

For spatial interpretation we focus on SFPCA scores. Fig. 9(b) shows the scores relative to the first two SFPCs, with the
signs fixed as in Fig. 9(c)–(d) and coloured according to the gender information. The geographical interpretation is based
on two representations of scores: (a) the score maps – in Fig. 13 – and (b) the LISA maps (Local Indicators of Spatial Asso-
ciation, Anselin, 1995) based on Local Morgan’s index—in Fig. 14. The Moran’s index yields evidence of a significant spatial
dependence at a given location when its observed value is much greater than that observed in case of a random allocation
of the score values to the neighbours of the location (see, e.g. Delicado and Broner, 2008). Accordingly, LISA maps display
with colours only the tracts with significant spatial dependence, which are distinguished in: (i) locations with high score
values surrounded by high score values (labelled as high–high, marked with red colour); (ii) areas with low score values
with neighbours presenting low score values as well (labelled as low–low, marked with blue colour); (iii)–(iv) high score
values surrounded by tracts with low values (labelled as high–low) or vice versa (labelled as low–high). The cases (i) and
(ii) correspond to significantly high values of Local Moran’s index; the cases (iii) and (iv) correspond to spatial outliers. The
latter case has not occurred in the case of age distributions in Upper Austria (Fig. 14).

The graphical inspection of Fig. 13 suggests that the scores may include a spatial information. Indeed, a number of ho-
mogeneous areas – with similar patterns for males and females – can be recognized in the map. For instance, the district of
Gmunden (see also Fig. 7) presents high scores for bothwomen andmen along the first component (i.e., high incidence of the
old population). In fact, this region is not particularly industrialized and peoplemoved to the areas of Linz (the capital of Up-
per Austria) and Steyr to live closer to their working place. This migration is well reported and analysed (see, e.g., Schöfecker
and Larndorfer, 2012; Government of Upper Austria, Department of Statistics, 2011). The LISA maps show the same charac-
teristics marking as high–high the district of Gmunden, the eastern part of Kirchdorf and – especially for men – the Ennstal
(i.e., the valley formed by the river ‘‘Enns’’, which is part of the district Steyr Land). Here, the emigration of people to other
parts of Upper Austria is high, with a decrease of population size of about 10% in many areas of the district of Gmunden
(see, e.g., Government of Upper Austria, Department of Statistics, 2013a). The areas in the North and East of Linz behave
differently, as many young families have moved to the green areas having good connection to Linz. Within these regions,
the fertility rate is much higher than the average of Upper Austria and also the population growth is substantially higher
than the average. This regional pattern is well captured by the LISA map in Fig. 7. For instance, the area marked in blue in
the East of Linz (Altenmarkt, a part of the region Urfahr Umgebung) experienced a population growth of about 10% in the last
10 years (Government of Upper Austria, Department of Statistics, 2013b).

Regarding the second SFPC (bottom panels in Fig. 13), different regional structures appear in the North with respect to
the rest of the map. Indeed, the district of Rohrbach is associated with pretty low scores for men (i.e., high incidence of
69–95 years old population), and very low scores for women. Similarly, very low scores appear for women in the Schärd-
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(a) Explained variance. (b) Scores along FPC1 and FPC2 .

(c) FPC1 (f : 46.39%;m: 42.12% of variability). (d) FPC2 (f : 22.76%;m: 25.77% of variability).

(e) f : Mean ±2
√

ρ1 FPC1 . (f) f : Mean ±2
√

ρ2 FPC2 .

(g)m: Mean ±2
√

ρ1 FPC1 . (h)m: Mean ±2
√

ρ2 FPC2 .

(i) Original densities.

(j) Approximated densities (via FPC1 and FPC2).

Fig. 11. FPCA in the L2(I) geometry. In panels (e)–(h): the solid black curve indicates the mean function, the red curve indicates the mean minus the SFPC,
the blue curve indicates themean plus the SFPC. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)
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(a) Original densities. (b) Approximated densities (via SFPC1 and
SFPC2).

(c) Approximated densities (via FPC1 and FPC2).

Fig. 12. Dimensionality reduction in B2(I) and L2(I): approximation via the first two principal components and original data, in the clr-space.

Fig. 13. Geographical regional representation of the first and second SFPCs scores.

ing district. These regions are mostly rural, with very few industries. In particular, these areas have low fertility rates and
negative balance regarding the population size, see the area of St. Florian am Inn (in Schärding), which is a low–low area for
men and women (Government of Upper Austria, Department of Statistics, 2013c). Instead, high scores appear in the regions
around Linz and around the highway that crosses Upper Austria in direction E–NE to W–SW. This is particularly evident for
women, marked with a red zone in the LISA map (Fig. 14). Several industries are placed nearby that highway. This makes
the area particularly attractive for a large portion of the young population, which moves there to work.

7. Conclusions

The choice of an appropriate space to perform the analysis is crucial prior to any statistical processing using FDA meth-
ods. This is particularly evident in the presence of constrained data, such as functional compositions. We focused on the
problem of dimensionality reduction for probability density functions. In this case, although the numerical problems result-
ing from the unit-integral constraint of densities could be overcome by applying an appropriate pre-processing (e.g., log-
transformation), their inherent properties – as scale invariance and relative scale – are only captured when the theory of
Bayes spaces is incorporated. The centred log-ratio transformation isometrically maps the Bayes space B2(I) into the space
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Fig. 14. Geographical regional representation of the first and second SFPCs scores using LISA maps. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

L2(I), and provides a way to easily apply the well-known FDA methods in the presence of functional compositions. In this
sense, it is possible to meaningfully use the standard tools for the interpretation of FPCA (e.g., the plot of mean ± eigen-
functions), if interpreted in the light of the Aitchison geometry which takes into account the relative information captured
by density functions. We note that our proposal stands in continuity with the work of Delicado (2011), who pointed out
that his most promising results were obtained through multidimensional scaling in the Bayes space B2(I). However, our
methodological developments provide a clear direction for the extension to density functions of several methods which are
in use in FDA, besides opening a variety of challenges for the future. One of these is the possibility of considering alternative
computational tools, such as the log-ratio transformations with respect to an orthonormal basis in the Bayes space, with
the aim of avoiding the zero-integral constraint resulting from the clr-transformation. Even more promising could be the
possibility of extending the support I to the general case of the whole real line (or any Borel subset) as proposed in Van den
Boogaart et al. (2014). The choice of a non-uniform reference measure still needs to be thoroughly discussed in terms of
applicative consequences, and certainly deserves to be further investigated.
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Appendix. Computation of B-spline coefficients

In this Appendix, we briefly describe the procedure to obtain the B-splines coefficients that honour the zero integral
constraint of clr-transformed densities. We refer to Machalová et al. (2015) for further details. Let ∆τ := τ0 = a < τ1 <
· · · < τg < b = τg+1 be a given sequence of knots in I . Then every polynomial spline sk of degree k > 0 has a unique
representation

sk (t) =

g
i=−k

ciφk+1
i (t) , (14)

where c = (c−k, . . . , cg)⊤ is the vector of B-spline coefficients of sk, and φk+1
i (t) , i = −k, . . . , g are B-splines of degree k.

We call

8k+1(t) =


φk+1

−k (t1) · · · φk+1
g (t1)

...
. . .

...

φk+1
−k (tn) · · · φk+1

g (tn)

 ∈ Rn,g+k+1 (15)

the collocationmatrix and Sl = DlLl . . .D1L1 ∈ Rg+k+1−l,g+k+1 the upper triangular matrix, which is formed by thematrices
Dj ∈ Rg+k+1−j,g+k+1−j such that

Dj = (k + 1 − j) diag

d−k+j, . . . , dg


with di =

1
τi+k+1−j − τi

∀i = −k + j, . . . , g

and

Lj :=

−1 1
. . .

. . .

−1 1

 ∈ Rg+k+1−j,g+k+2−j.

Given a raw datum x(ti), observed at the time points ti ∈ I, i = 1, . . . , n, we seek for the coefficients of the smoothing
spline (de Boor, 2001) that minimizes the functional

Jl(sk) =

n
i=1

wi [x(ti) − sk(ti)]2 + λ


I


s(l)k (t)

2
dt, (16)

and fulfils the condition
I
sk(t) dx = 0, (17)

wherewi ≥ 0, i = 1, . . . , n, n ≥ g+1, are givenweights andλ ≥ 0 a given parameter. The parameterλ controls the impact
of the differential penalization appearing in (16), and is thus associatedwith the smoothness of the resulting approximation.
In the case study considered in Section 6, we set the weights as well as the value of the smoothing parameter λ to one,
following the default setting of Machalová et al. (2015). For possible sensible determination of λ using, e.g., cross-validation,
we refer to Kneip et al. (2012) and Liebl (2013). In general, for the purpose of setting the parameters, all the techniques
which are in use in FDA can be employed in this case as well.

In our setting, an explicit expression can be derived for the optimal coefficients. Indeed, they are obtained as (Machalová
et al., 2015)

c̄∗
= DK


(8k+1(t)DK)⊤ W8k+1(t)DK + λ (DK)⊤ NklDK

+ K⊤D⊤8⊤

k+1(t)Wy,

whereW = diag(w), A+ denotes Moore–Penrose pseudoinverse of a matrix A,

D = (k + 1) diag


1
τ1 − τ−k

, . . . ,
1

τg+k+1 − τg


∈ Rg+k+1,g+k+1,

K =


1 0 0 · · · −1

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 1

 ∈ Rg+k+1,g+k+1
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and Nkl = S⊤

l MklSl is a positive semidefinite matrix, with

Mkl =


⟨φk+1−l

−k+l , φk+1−l
−k+l ⟩2 · · · ⟨φk+1−l

g , φk+1−l
−k+l ⟩2

...
...

⟨φk+1−l
−k+l , φk+1−l

g ⟩2 · · · ⟨φk+1−l
g , φk+1−l

g ⟩2

 ∈ Rg+k+1−l,g+k+1−l.
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