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Abstract

A functional regression model with a scalar response and multiple functional predictors is 

proposed that accommodates two-way interactions in addition to their main effects. The proposed 

estimation procedure models the main effects using penalized regression splines, and the 

interaction effect by a tensor product basis. Extensions to generalized linear models and data 

observed on sparse grids or with measurement error are presented. A hypothesis testing procedure 

for the functional interaction effect is described. The proposed method can be easily implemented 

through existing software. Numerical studies show that fitting an additive model in the presence of 

interaction leads to both poor estimation performance and lost prediction power, while fitting an 

interaction model where there is in fact no interaction leads to negligible losses. The methodology 

is illustrated on the AneuRisk65 study data.
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1. Introduction

Functional regression models with scalar response and functional covariate have received a 

considerable amount of attention in the functional data analysis literature. Perhaps one of the 

most popular functional regression models is the so called functional linear model (FLM), 

first introduced by [41]. A typical FLM with a single functional predictor quantifies the 

effect of the predictor as an inner product between the functional predictor and an unknown 

coefficient function; see e.g., [27, 40, 18, 6] for general discussions on this type of model. 

Recently, there has been a lot of interest in functional regression models that relax the 

linearity assumption used in FLM. For the case of a single functional predictor, current 

advances in this direction include: purely nonparametric functional regression models (see 

[13, 18]) and functional partially linear models, where the functional covariate is modeled 

nonparametrically and other scalar or vector valued covariates are modeled parametrically 
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(see e.g., [3, 4, 32, 33], among many others). These models are commonly developed using 

nonparametric kernel smoothing based-techniques. In the spline smoothing framework, [58] 

developed spline estimation for a semi-functional linear model, while [36] and [35] 

developed estimation and testing procedures for functional generalized additive models. 

Non-linear extensions to the usual FLM include single-index models, where instead of 

modeling the entire functional covariate nonparametrically, one models a linear index 

(defined by the inner product of the function with an unknown coefficient function) via an 

unknown smooth function; see e.g., [30, 1, 8, 17] and references therein. A kernel machine 

regression based approach to fit a linear functional regression model was proposed by [57]. 

Recently, [31] developed kNN based estimation procedure for nonparametric functional 

regression models and provided uniform consistency results.

Applications involving two or more functional covariates are becoming increasingly 

popular. There are several extensions of the simple FLM that incorporate multiple functional 

predictors: 1) such as generalized functional linear models [29] for exponential family 

response variables, 2) penalized functional regression [24], 3) group lasso based variable 

selection for functional linear models [20], 4) linear functional additive models for time 

series prediction [22], among many others. Extensions beyond the linear relationship 

include: functional partially linear models, where some of the functional covariates are 

modeled are modeled nonparametrically while the rest of the covariates are modeled 

linearly, see for example [5] and [32], among others. Fully nonparametric functional 

regression models were recently developed for both continuous and general response 

variables in [37] and [19], respectively, where each of the functional predictors are modeled 

using smooth nonparametric functionals. These articles also include development of 

functional index models with multiple functional predictors. Recently, [23] proposed a 

partitioned functional single-index model where the domain of functional covariate in 

partitioned into several smaller interval and separate indices are formed for each interval, 

and the indices are modeled nonparametrically in an additive fashion. Multivariate 

functional non-parametric models and additive functional non-parametric models are 

developed by [3]. There are several resources (such as [6, 18, 27, 40]) that provide extensive 

discussion on various types of functional regression models; we refer the readers to these 

resources for further background.

While there is a significant amount of literature available on functional regression with 

multiple predictors, a common assumption made by all the above mentioned models is that 

the effects of the functional predictors are additive, that is only the main effects of the 

individual functional covariates enter the regression model. Thus any interaction between 

the functional covariates are not taken into account. In general, ignoring such interaction 

terms may lead to inaccurate and biased estimation of the model parameters which in turn 

lead to incorrect conclusions. Therefore, development of a functional regression model is 

needed where one can accommodate both multiple functional predictors as well as 

interactions among them. In this article, we develop a functional linear interaction model, as 

well as a penalized spline based estimation procedure for the interaction effect and 

individual main effects of the functional covariates.
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The model we consider is described as follows. Suppose for i = 1, . . ., n, we observe a scalar 

response Yi, and independent real-valued, zero-mean, and square integrable random 

functions X1i(·) and X2i(·) observed without noise, on dense grids. We consider the model

(1)

where α is the overall mean, β1(·) and β2(·) are real-valued functions defined on τ1 and τ2 

respectively, and γ(·, ·) is a real valued bi-variate function defined on τ1 × τ2. The unknown 

functions β1 and β2 capture the main effects of the functional covariates, while γ captures the 

interaction effect. To gain some insight, consider the particular case β1(·) ≡ β01, β2(·) ≡ β02, 

γ(·, ·) ≡ γ0, for scalars β01, β02, and γ0. This case reduces to the common two-way 

interaction model, with covariates X̄
ji = Xji(s) ds, which act as a sufficient summaries, Xji, j = 

1, 2. Thus the proposed model is an extension of the common two-way interaction model 

from scalar covariates to functional covariates. The denseness of the sampling design and 

the noise free assumption are made for simplicity and will be relaxed in later sections.

Recently, [55] introduced a class of functional polynomial regression models of which 

model (1) is a special case; they showed that accounting for a functional interaction effect 

between depth spectrograms and temperature time series improved prediction of sturgeon 

spawning rates in the Lower Missouri river. The proposed methodology relies on an 

orthonormal basis decomposition of the functional covariates and parameter functions, 

combined with stochastic search variable selection in a fully Bayesian framework. Their 

approach requires full prior specification of several parameters, along with implementation 

of an MCMC algorithm for model fitting.

The main contribution of this article is a novel approach for estimation, inference and 

prediction in a parametric functional linear model that incorporates a two-way interaction. 

We consider a frequentist view and model the unknown functions using pre-determined 

spline bases and control their smoothness with quadratic penalization. The inclusion of an 

interaction term between the functional predictors involves additional computational and 

modeling challenges. A tensor product basis is used to model the interaction surface; such a 

choice is particularly attractive as it can automatically handle predictors that are on different 

scales, allows for flexible smoothing in separate directions of the interaction contour, and 

easily extends to higher dimensions; see [12] for important early work, see also [16]. The 

main advantage of our approach is that it can be implemented with readily available 

software, that accomodates 1) responses from any exponential family, 2) functional 

covariates observed with error, or on a sparse or dense grid, and 3) produces p-values for 

individual model components, which include the interaction term. The paper also includes a 

numerical comparison between the additive and interaction functional models involving 

scalar response. Our findings can be summarized as follows. When the true model contains 

an interaction between the functional covariates, as specified in (1), then fitting a simpler 

additive model [24] leads to biased estimates and low prediction performance compared to 

fitting a functional interaction model. When the true model contains no interaction effect, 

then with sufficient sample size, fitting the more complex functional interaction model does 

not harm the estimation, inference or prediction performance.
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The remainder of this paper is as follows. In Section 2, we develop the estimation 

framework of the model in (1). Section 3 extends the methodology to handle general 

outcomes or where predictors are measured sparsely or with error; and describes hypothesis 

testing for interaction. In Section 4, we evaluate our method via a simulation study. In 

Section 5, we apply the interaction model to the AneuRisk65 data. Sections 6 and 7 discuss 

implementation and present future directions for research, respectively.

2. Modeling Methodology

2.1. Estimation

We first discuss the case when the response variable is continuous and the covariates are 

observed on a dense design and without noise. In later sections, we generalize our procedure 

to accommodate noisy and/or sparely observed predictors as well as generalized response 

variables. The central idea behind our approach is to model the parameter functions using 

pre-specified bases and then use a penalized estimation procedure to control smoothness of 

the estimates.

In this article, we consider basis function decompositions of the parameter functions using 

known spline bases. Specifically, let  and  be two bases in ℒ2(τ1) and 

ℒ2(τ2) respectively, and furthermore let {ϕkl(s, t) = ψ1k(s)ψ2l(t)}1≤k≤K,1≤l≤L be the 

corresponding tensor product basis in ℒ2(τ1 × τ2). We assume the representations: 

, and , 

where η1k’s, η2l’s, and νk,l’s are the corresponding coefficients, which are unknown. Thus 

estimation of the parameter functions is reduced to estimation of the unknown coefficients. 

Using the basis function expansions we write

where a1k,i ≈ ∫ X1i(s)ψ1k(s)ds is calculated by numerical integration techniques; see for 

example [24] who employ a similar technique. Similarly, we have 

 and , where 

a2l,i ≈ ∫ X2i(t)ψ2k(t)dt and ak,l,i ≈ {∫ X1i(s)ψ1k(s)ds} {∫X2i(t) ψ2k(t)dt} respectively are 

calculated numerically. The assumption that the functional covariates are observed on dense 

grids of points ensures that these integrals are approximated accurately.

To control the smoothness of the parameter functions, we take the approach [15, 43, 7, 16] 

of considering rich bases to model the parameter functions and adding a “roughness” penalty 

to the least squares fitting criterion. Let η1 = (η11, . . ., η1L)T; similarly define η2 and ν. Then 

the parameters α, η1, η2 and ν are estimated by minimizing the penalized criterion:

(2)

where a1,i is the K-dimensional vector of a1k,i, a2,i is the L-dimensional vector of a2l,i, and 

a3,i is the K × L-dimensional vector of ak,l,i; P1(λ1, η1), P2(λ2, η2), and P3(λ3, λ4, ν) are 
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penalty terms, and λ1, λ2, λ3, λ4 are corresponding smoothing parameters. We use penalties 

based on integrated pth order derivatives, that is, , j = 1, 2 are 

the penalty terms corresponding to the main effects of the functional covariates, and 

 is the penalty corresponding to 

the interaction term. Here the norm ||·||L2 is induced by the inner product < f, g >= ∫ fg. The 

specification of the interaction penalty term follows from multivariate spline smoothing 

literature [52], and it accommodates the possibility of having different smoothness in the 

directions s and t. Define ψ(p)(t) = dpψ(t)/dtp for some generic function ψ(·). Then it is easily 

seen that  and P3(λ3, λ4, ν) = νT {λ3P1p ⊗ 

IK + λ4IL × P2p}ν, where  and  with 

 and .

Many authors have chosen to penalize integrated squared second derivatives, i.e. p = 2, for 

fitting (2); see for example [40]. In this paper, we favor penalties on the integrated squared 

first derivatives, i.e. p = 1; see also [20] who considered this idea. One major reason for this 

choice is that the first derivative penalty directly penalizes deviations from a non-functional 

model. Infinite penalties enforce constant parameters, say β01, β02 and γ0, as considered in 

the Section 1, and revert the model back to Yi = α + X̄
1iβ01 + X̄

2iβ02 + X̄
1iX̄

2iγ0 + εi - a 

standard two-way interaction model with the average of the functional variables as 

continuous covariates. Thus, penalizing the first derivatives shows preference for the 

standard interaction model’s simplicity.

Using spline bases to represent the smooth effects as well as using a penalized criterion as in 

(2) has several advantages. First the model fitting is adapted from existing software; more 

about the implementation is described in Section 6. Second, additional covariate effects can 

be accommodated without difficulty. For example a linear effect of additional covariates as 

well as non-parametric effects of scalar covariates can be easily incorporated in the model 

using similar ideas to [28].

It is worthwhile to note that from (2) the unknown parameter functions β1(·), β2(·) and γ(·, ·) 

of model (1) can be identified uniquely only up to the projections onto the respective spaces 

that generate the X1i’s, X2i’s, and their tensor products. For example, the true β1(·) may not 

be recovered completely; instead only its projection on the space defined by the curves X1i(·) 

will be estimated. To see this, imagine a case where all X1i(·) lie in a finite dimensional 

space, say  for some orthogonal basis in ℒ2(τ1), {Φℓ(·)}ℓ. If 

 such that < Ψq′, Φℓ >L2 = 0 for all 1 ≤ ℓ ≤ q, then we have 

. The situation is similar for the other two smooth effects, 

β2 and γ.

The criterion in (2) has an available analytical solution. Stack the column vectors defined 

from (2) into individual design matrices A1 = [a11|...|a1n]T, A2 = [a21|...|a2n]T, and A3 = 

[a31|...|a3n]T. Then define an overall model design matrix A = [1|A1|A2|A3], and define Sλ to 
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be a block diagonal matrix with blocks [0, λ1P1, λ2P2, λ3P1 ⊗ IL + λ4IK ⊗ P2]. By the 

standard ridge regression formula we obtain parameter estimates

(3)

and by extracting η̂
1, η̂

2, and ν̂ we obtain

Predicted values for the response are obtained by

(4)

Here Hλ represents the hat or influence matrix, which will be in important in Section 3.3 

when discussing testing. Both prediction and estimation of the parameter functions depends 

on the choice of the smoothness parameters λ1, λ2, λ3, λ4. We discuss smoothness parameter 

selection in Section 2.3.

2.2. Standard Error Estimation

Estimation of confidence bands using penalized splines is a delicate issue (see [44], Chapter 

6). A straightforward approach is to construct approximate point-wise errors bands on the 

frequentist covariance matrix Cov(θ̂) = (AT A + Sλ)−1AT A(AT A + Sλ)−1σ2. This is the 

approach presented by [40] (Chapter 15) in their treatment of the simple functional linear 

model, and has also been used in the context of non-parametric regression [15, 24, 26]. 

However, we find in the simulation study of section 4 that confidence bands based on this 

covariance often provide point-wise under-coverage. This problem has been noticed 

previously for non-parametric additive models [52], and for functional linear models [24, 

36]. Such under-coverage can be attributed to several important factors. First, the penalized 

fitting procedure provides biased estimates of θ whenever θ ≠ 0. Second, the fitting is 

conditional on the smoothing parameters whose uncertainty is not taken into account. Third, 

the level of bias induced by the penalty parameters can vary over the domain of the 

functional parameters. One possible alternative to account for bias is to use the Bayesian 

standard errors first proposed for smoothing splines by [51] and cubic splines in [47]. By 

specifying an improper prior, fθ (θ) ∝ e−θTSλθ, it can be shown that θ|Y, λ ~ N (θ̂, (AT A + 

Sλ)−1σ2) (see [52], Section 4.8). The matrix CovB (θ̂) = (AT A + Sλ)−1σ2 is known as the 

Bayesian covariance matrix. This matrix can be decomposed:

(5)
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to obtain standard errors for the parameter estimates. The Bayesian formulation to the 

covariance for the estimates of θ̂ is important because we use it to obtain confidence 

intervals. For example, if we consider ϕ(s, t) = [ϕ1(s, t), ..., ϕKL(s, t)] we can obtain the 

covariance for interaction Σγ̂(s,t) = ϕ(s, t)T Σν̂ ϕ(s, t). Intervals are found from γ̂(s, t) ~ N(E[γ̂

(s, t)], Σγ̂(s, t)) by standard linear models tools.

[51] presents Bayesian confidence intervals in a general framework that contains the 

functional linear models; but theoretical and numerical studies of the finite sample 

properties of these intervals have focused on non-parametric regression [25, 34, 38]. 

Broadly, these studies conclude the main issue for proper interval coverage, in the across-

the-function sense, is that the bias must only represent a modest fraction of the overall mean 

squared error. The finite sample properties of Bayesian intervals in functional linear models 

is open research.

2.3. Smoothing parameter selection

There are several approaches to select the smoothing parameters λ1, λ2, λ3, λ4. One class of 

approaches selects the smoothing parameters to minimize a prediction error criterion, using 

Akaike’s information criterion (AIC), cross validation or generalized cross validation 

(GCV); see for example [11]. A second class of approaches treats minimization of the 

penalized criterion as fitting an equivalent mixed effects model, where the smoothing 

parameters enter as variance components. The variance parameters are then estimated by 

maximum likelihood (ML, [2]) or restricted maximum likelihood/generalized maximum 

likelihood (REML/GML, [51]). It is generally known that the prediction error methods are 

rather unstable and may lead to occasional under-smoothing, whereas the more 

computationally intensive likelihood-based criteria such as REML/ML are more resistant to 

over-fitting and show greater numerical stability [42].

3. Extensions

3.1. Generalized Functional Interaction Models

Consider now the case when the outcome Yi is generated from an exponential family EF(ϑi, 

ϱ) with dispersion parameter ϱ such that E{Y |X1i(·), X2i(·)} = g−1(ϑi), where the linear 

predictor ϑi = α + ∫ X1i(s)β1(s)ds+ ∫ X2i(t)β2(t)dt+ ∫ ∫ X1i(s)X2i(t) γ(s, t)dsdt and g(·) is a 

known link function. As in Section 2.1, decompositions using pre-determined basis 

functions are used for the unknown parameter functions β1, β2, and γ. The linear predictor 

can then be simplified to , 

where K and L are chosen sufficiently large to capture the variability in the parameter 

functions. We then estimate the model components by minimizing (2) with the 

understanding that the sum of squares is now replaced by the appropriate negative log-

likelihood function. For given smoothing parameters λ1, λ2, λ3, and λ4, there is an unique 

solution which can be obtained by a penalized version of the iteratively re-weighted least 

squares (see [52]). Asymptotic normality of these estimators follows from the large sample 

properties of maximum likelihood estimators and thus approximate confidence error bands 

can be determined accordingly (see for example [10]). [52] also proposes an efficient and 

stable methodology to select the smoothing parameters for generalized outcomes by 
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employing a Laplace approximation to the REML/ML criteria and using a nested iteration 

procedure.

3.2. Noisy and Sparse Functional Predictors

Consider now the case when the functional predictors are observed on a dense grid of points, 

but with measurement error. In particular, instead of observing X1(·) and X2(·), we observe 

W1i(s) = X1i(s) + δ1i(s) and W2i(t) = X2i(t) + δ2i(t), where δji(·) for j = 1, 2 are white noise 

processes with zero-mean and constant variances . The methodology described in Section 

2.1 can be still applicable with the difference that in the penalty criterion (2) for normal 

responses, or the negative likelihood analog for generalized responses, the terms a1,i, a2,i 

and a3i are calculated based on W1i’s and W2i’s in place of the X1i’s and X2i’s. One may also 

apply functional principal component analysis (FPCA) (discussed in [14, 50, 56]) to the 

noisy data and obtain the smoothed trajectories first, and then apply the estimation method 

on the smoothed covariates.

Consider next the situation when the proxy functional covariates are measured on sparse 

and/or irregular design points such that the set of all observation points is dense. A different 

approach is now needed as the terms a1,i, a2,i and a3i cannot be estimated accurately any 

longer by usual numerical integration methods. Instead, we estimate the trajectories of the 

underlying functional predictors X1i, X2i first by using FPCA, and then the approach 

outlined in Section 2.1 can be readily applied.

3.3. Hypothesis Testing

An advantage of our fitting approach is that it facilitates hypothesis testing based on the 

Wald-type test of [53]. The test applies to any exponential family response, and produces p-

values directly from the software implementation described in section 6. This test could be 

especially useful as a model selection tool in functional linear models. We explain this next 

for testing the null hypothesis that there is no interaction.

Consider testing the hypothesis

(6)

The intuition for testing is as follows. Define μγ = [μ11, ..., μ1n]T be a vector of signals that 

correspond to interaction for each subject; where μγi = ∫ ∫ X1i(s)X2i(t)γ(s, t)dsdt for i = 1, ..., 

n. Since the null hypothesis implies μγ ≡ 0, we can base the test procedure off μγ̂ .

From the proposed fitting procedure in (2) , and therefore . It follows that 

μ̂
γ = A3ν̂ where A3 = [a31|...|a3n]T. If the response is normally distributed, from the Bayesian 

covariance matrix Σν̂ described in Section 2.2, and linear models tools

(7)
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for E(μ̂) = A3E(ν̂) and . For responses generated from any exponential 

family the normality of μ̂ is valid asymptotically. The test statistic is based off the quadratic 

form

where  is a generalized rank-r pseudo-inverse of Σμ̂
γ defined by [53]. Here r 

corresponds to the effective degrees of freedom as defined by the trace of the lower diagonal 

KL elements of 2Hλ − HλHλ, where Hλ is the hat matrix from (4). If r is an integer, under the 

null hypothesis Tr follows an asymptotic  distribution. When r is non-integer the 

asymptotic null distribution of Tr is non-standard, and p-values are calculated according to 

[53].

The key assumption in testing for interaction is that the Bayesian covariance matrix Σν̂ 

accounts for the added uncertainty due to the bias in the estimated coefficient parameters. 

One way to assess this is through point-wise confidence interval coverage. In our simulation 

we observe the confidence intervals for the functional parameters produced by the Bayesian 

standard errors often provide over-coverage, which is evidence toward the testing procedure 

being valid.

4. Simulation

In this section we perform a numerical study of our method. The primary objective of this 

simulation is to evaluate our procedure, in terms of both parameter estimation and predictive 

performance. The functional parameter estimates are evaluated in terms of the 1) bias, 2) 

consistency, and 3) confidence interval coverage. Prediction is assessed in terms of 

estimates of the residual variance for gaussian data and mis-classification rates for bernoulli 

data. A secondary objective of this study is to investigate the effects of model mis-

specification. The results show that fitting a purely additive model when interaction is 

present may lead to biased estimates but fitting our approach when the true model is in fact 

additive does not result in significant loss of accuracy in estimation.

4.1. Design and Assessment

The functional covariates , j = 1, 2, are generated so that ξ1i ~ M V N (0, Σ) 

and ξ2i ~ M V N (0, Σ) with Σ = diag(8, 4, 4, 2, 2, 1, 1), and ϕ1(s) = [1, sin(πs), cos(πs), 

sin(3πs), cos(3πs), sin(4πs), cos(4πs)] and ϕ2(t) = [1, sin(πt), cos(πt), sin(2πt), cos (2πt), 

sin(4πt), cos(4πt)]. We generate the observed functional covariates both with and without 

independent measurement error, according to the model W1i(s) = X1i(s) + δ1i(s) and W2i(t) = 

X2i(t) + δ2i(t), such that for j = 1, 2, δji is a white noise process with , 1/4, or 4. For the 

parameter functions, the main effects are defined as β1(s) = 2cos(3πs), a truly functional 

signal, and β2(t) = 0.5, constant and non-dependent on t. We consider two interaction 
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parameters: γ1(s, t) = 0, corresponding to an additive model, and γ2(s, t) = sin(πs)sin(πt), a 

non-trivial interaction.

All functions are evaluated at H = 100 equally spaced points over s, t ∈ [0, 1]. We used 

Riemann sums to approximate μji = ∫ Xji(s)βj (s)ds, j = 1, 2, and μ3i = ∫ X1i(s)X2i(t)γ(s, 

t)dsdt. We consider two cases: (A) Yi ~ N (α + μ1i + μ2i + μ3i, 1) and (B) Yi ~ 

Bern{(eα+μ1i+μ2i+μ3i)/(1 + eα+μ1i+μ2i+μ3i)}. We use sample sizes n = 100, 200, and 500 for 

(A); and n = 300 and 500 for (B). For each generated sample, we observe 

. In all our simulations, we chose Ψ1(s) and Ψ2(t) to be cubic B-

spline basis functions with 10 equally spaced internal knots, and penalize integrated squared 

first derivatives. The penalty parameters were estimated using REML, or with the Laplace 

approximation to REML for Gaussian and Bernoulli data, respectively. For comparison 

purposes, we also fit the additive functional linear model with the same model specifications 

for bases, penalty, and roughness penalty selection procedure.

We ran 1000 Monte Carlo simulations for each setting described above. Performance was 

assessed on the aggregate over all Monte Carlo runs, and the entire grids s, t ∈ [0, 1], for 

each functional parameter. We evaluated estimates in terms of mean integrated squared 

error: , where β̂
1j is the estimated 

parameter for the jth simulated dataset. Also reported are mean point-wise (1−α)100% 

confidence interval coverages: 

. Predictive 

performance for the Gaussian data is evaluated by average prediction error (APE): 

. The optimal APE equals the residual variance of 1, 

APEs below 1 indicate over-fitting of the model to the data, and APEs above 1 suggest 

under-fitting of the model. For the Bernoulli data we focus on the mis-classification (MC) 

rate: , where ŷi = 0 if π̂
i ≤ .5 and ŷi = 1 otherwise.

4.2. Results

Focus first on the results without measurement error in Table 1. For the situation where 

Gaussian data is generated with the interaction term γ2 (non-trivial interaction effect), and 

the interaction model is correctly used, the parameter function estimates have monotonically 

decreasing MISEs with increasing sample size. The APEs are all below 1 which suggests 

over-fitting on the average, however this over-fitting is only moderate and decreases with 

sample size. In contrast, when the additive model is incorrectly used, the estimates are 

affected adversely for all metrics of evaluation. There is a marked increase in the MISEs for 

estimation of β1 and β2, and a large loss of prediction power even for increasing sample size.

We compare these results of mis-specification to the situation where data is generated with 

γ1 (an additive model). At sample size n = 100, fitting an interaction model resulted in 

moderately increased MISEs and lower APEs, due to more over-fitting. Nevertheless, 

application of the additive and interaction model gave highly similar results for sample sizes 
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of 200 and 500. The key is that with sufficient sample size to empower selection of the 

smoothing parameters, the model chooses the additive fit on it’s own.

The frequentist intervals tend to provide under-coverage, while the Bayesian intervals tend 

to give over-coverage, at the 95% nominal level. This challenging issue is not specific to the 

interaction model however; it persists when there is no interaction and an additive model is 

correctly fit. Further investigation indicates that on average, the empirical Monte Carlo 

standard errors of the parameter estimates are sandwiched between the average estimated 

frequentist and Bayesian standard errors. The over-coverage of the Bayesian intervals is a 

result of an over-correction for the bias caused by the penalized regression procedure.

The reduced information in the Bernoulli responses led to less efficient estimation of all 

parameters. One difference from the results of the Gaussian data, is that there is noticeable 

bias in the estimation of γ2, and poor confidence interval coverage for interaction. However, 

the effects of mis-specification tell a similar story. When γ2 is the truth and the additive 

model is fit, we have inflated biases, almost non-existent confidence interval coverage, and 

larger mis-classification rates. In contrast, if the data is generated from γ1 and the interaction 

model is fit, the results are highly similar to those found when the additive model is applied.

Results for when the functional covariates are generated with measurement error appear in 

Appendix Tables A1 and A2. When  the results are highly similar to the case of no 

error. For  the measurement error noise is on the scale of the scores generating the true 

covariates, and in this case all the metrics are affected adversely.

5. AneuRisk study

To illustrate our method we focus on the AneuRisk65 data described in [46]. A broad goal 

of this study is to identify the relationship between the geometry of the internal carotid 

artery (ICA) and the presence or absence of an aneurysm downstream of the ICA. The study 

contains a collection of 3D angiographic images taken from 65 subjects thought to be 

affected by a cerebral aneurysm. Of these 65 subjects, 33 have an aneurysm located 

downstream of a terminal bifurcation in the ICA (upper group), 25 have an aneurysm 

located on the terminal bifurcation of the ICA (lower group), and 7 have no aneurysm (no-

group). In this study, the presence or absence of an aneurysm downstream of the ICA is of 

primary of interest, and therefore the 32 subjects in the latter two groups are combined 

(lower group) [46]. For each subject, the images are summarized to describe the geometry of 

the ICA. [39] approximate the centerline of the artery in 3D space and estimate the 

corresponding width of the artery along this centerline in terms maximum inscribed sphere 

radius (MISR). [46] provide a measure of curvature of the artery in 3D space along the 

artery centerline. The curvature and MISR profiles observed along the ICA centerline serve 

as our functional predictors. In this situation, the 3D geometries of the arteries are more 

thoroughly described by the combination the curvature and MISR values taken along the 

ICA centerline, and therefore it makes sense to include a two-way interaction term in the 

model. Our interest is two-fold: 1) to classify the subjects using the curvature and MISR 

profiles with the proposed penalized spline framework; and 2) to infer whether a including a 
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two-way interaction term between the curvature and MISR profiles helps better explain 

group status.

There are a few registration approaches proposed in the literature to align the profiles [54, 

21, 9, 49]; for a discussion of these approaches see [45] (rejoinder). We are using the 

technique discussed in [49], based on the Fisher-Rao curve registration method [48]. 

Previous analyses with this registration approach showed similar classification results to the 

approaches proposed by [9] and [46].

The aligned profiles and their estimated means are shown in Figure 1; the abscissa 

parameter takes values from −1 to 0, where the negative values indicate the direction along 

the ICA opposite to the blood flow. Individuals with an aneurysm on the ICA are coded as 1, 

while the rest are 0. We regress this binary response on the aligned and de-meaned profiles 

for curvature and MISR. We apply the interaction model specified for a logistic link 

function, penalize the first derivative norms, and capture the effect of β1, β2, and γ via cubic 

spline bases with 5 equally spaced knots (K = L = 7). The number of knots are chosen to be 

as large as possible. The fitting procedure described later in section 6 requires the number of 

coefficients for model fitting to be less than sample size. Therefore, we specify K = L = 7 so 

that the penalized likelihood has 1 + 7 + 7 + 49 = 64 < 65 coefficients. For comparison, we 

apply the analogous additive model to that fit in pfr, and maintain the same bases and 

penalization as used in the interaction model.

Figure 2 displays the estimated interaction contour. There is a significant and positive 

estimated effect of interaction over the region where curvature takes values from −0.5 to 0 

and MISR from −0.6 to −0.2. Therefore, over these regions subjects with curvature values 

above the population mean, and MISRs below the population mean, should tend to be 

classified in the lower group. This is in line with data shown in Figure 1. Those in the lower 

group tend to have distinctly higher values of curvature around two sharp peaks in curvature 

near −0.2 and −0.3, and more often have lower values of MISR over the region of −0.6 to 

−0.2. The main effects estimates are shown in Figure 3. The main effects estimates are 

similar for the additive and interaction models. However, in the interaction model the 

estimate of β1 is more slightly downward sloping the than the estimate from the additive 

model. Both models give positive estimates for β2 from −1 to −0.4, and over this region the 

MISRs for those in the upper group tend to take values higher than for those in the lower 

group. For both models, the Bayesian confidence intervals for the positive MISR main 

effects exclude 0 in a small region around −.63.

We compare prediction in terms of the number of subjects mis-classified from the direct 

sample estimates using the apparent error rate (APER), and also include the leave-one-out 

error rate (L1ER). Observations whose estimated probability of upper group membership 

exceed .5 are classified as 1 and vice versa. The error rates for the additive model are 19/65 

and 24/65 for the APER and L1ER respectively; and 11/65 and 22/65 for the interaction 

model. While the reduction in mis-classification error was less for the leave-one-out 

estimates, we observe that the median difference of the probability of group membership for 

the leave-one-out estimates still differs substantially (see Table 2 and Figure 4 below).
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[46] used quadratic discriminant analysis (QDA) of the top principal component (PC) scores 

and achieved APER and L1ER mis-classification rates of 10/65 and 14/65. Their 

classification procedure is similar to ours in that QDA allows for interaction, but at the level 

of the PC scores. While their procedure shows better classification rates, especially for the 

L1ER, it is important to note that the number of principal components were chosen to 

minimize the L1ER criteria directly, as opposed to our automated dimension reduction with 

smoothing parameters selected by REML. Furthermore, a possible advantage of our model 

is that the parameter estimates can provide visual insight into the relation between the 

functional covariates and the response, while QDA is focused solely on classification. For 

further comparison, we estimated the main effects and interaction contour with a regression 

approach that uses models the top functional principal components similar to [46] (see 

Figures 5 and 6).

The small difference in the leave-one-out estimates from the additive and interaction model 

makes it difficult to determine whether including the interaction piece is helpful for this 

data. Therefore, we carried out a hypothesis test of the interaction effect using the procedure 

described in Section 3.3. The test statistic for the interaction effect T7.2 = 10.1; where r = 7.2 

represents the reference degrees of freedom; and this led to a p-value of .19. Since this result 

did not show significance we also tested main effects from the additive model. For tests of 

β1(s) = 0 and β2(t) = 0, the test statistics were T2.5 = 2.4 and T3.5 = 10.4 respectively, which 

corresponded to p-values of .40 and .02. While only the effect of β2(t) was declared 

statistically significant, we should interpret these results with caution due to the small 

sample size and the fact that the testing procedure is based on asymptotics. Furthermore, 

separate individual FLM analyses of curvature and MISR model fitting procedure produced 

p-values of .02 and .01; and APERs of 23/65 and 21/65 respectively.

6. Implementation

Fitting was carried out with the gam function from the mgcv package (see [52] for details). 

The gam function is highly flexible and allows for the model to be fit with a variety of basis 

and penalty combinations. The summary output gives measures of model fit in terms of R2 

and deviance explained, automatically provides p-values for each smooth functional 

parameter, and allows for direct plotting of the functional parameters along with their 

Bayesian confidence bands. A computer code demonstrating the proposed approach using R 

is available at http://www4.stat.ncsu.edu/~maity/software.html.

7. Discussion

We considered a penalized spline based method for functional regression that incorporates 

two-way interaction effects between functional predictors. The proposed framework can 

handle responses from any exponential family, functional predictors measured with error or 

on a sparse grid, and provides hypothesis tests for individual model components. The main 

advantage of our framework is that it can be fit with highly flexible and readily available 

software, that provides detailed summaries of the model fit. These summaries can guide 

whether inclusion of interaction into the functional linear model is appropriate.
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Mis-specification of an additive model in the face of interaction has adverse effects. 

Through simulation we found that failure to account for interaction led to poor parameter 

estimation, diminished confidence interval coverage, and lost prediction power. In contrast, 

mis-specification of the interaction model showed negligible adverse effects, especially for 

moderate or large sample sizes. Confidence interval coverage was an issue in the simulation 

study, but was not specific to the interaction model. Evaluation of Bayesian standard errors 

have mostly focused on non-parametric regressions and require further investigation for 

functional linear models. This issue is especially important because of the correspondence 

between the Bayesian covariance matrix and the proposed hypothesis testing procedure in 

section 3.3. Evaluation of this hypothesis testing procedure is part of our future research.

There are several other possible directions for future work. One main direction that we 

currently investigate is the development of alternative hypothesis tests for the interaction 

effect with greater power in finite samples. Equally important would be the theoretical study 

of the asymptotic distributions of the parameter estimators, β̂
1, β̂

2, and γ̂, akin to that 

provided by [37] in the situation of an additive model. Our paper provides a simple approach 

to account for interaction in a linear fashion; extensions to more flexible non-parametric 

dependence is part of our future research. Finally, the effect of dependence in the functional 

covariates will be rigorously investigated.
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Figure 1. 
Aligned curvature (left) and MISR (right) functions obtained from Fisher Rao curve 

registration. Color indicates group membership: blue for individuals with an aneurysm 

present on the ICA (upper group) and red for individuals where the aneurysm in absent on 

the ICA (lower-group). The thicker light blue and pink lines represent the group means for 

the upper and lower groups respectively.
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Figure 2. 
The estimated interaction contour along with measures of significance. Color-coding: dark 

red/blue is for positive/negative significant values (at 95% level), while light red/blue is 

used for positive/negative values.
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Figure 3. 
Results for the AneuRisk study using our proposed penalized splines methodology. The left 

and right plot show the main effects (black solid line) and point-wise 95% Bayesian 

confidence bands (red dashed) using the functional interaction model; overlaid are the 

estimated main effects using the functional additive model and the corresponding point-wise 

95% Bayesian confidence bands (blue dotted).
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Figure 4. 
The top row gives the probability estimates of an aneurysm on the ICA from the additive 

(left) and interaction (right) model. The bottom row corresponds to the leave-one-out (LOO) 

estimates from the spline-based additive (left) and interaction (right) model.
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Figure 5. 
Results for the AneuRisk study data using a functional principal components regression 

(FPCR) that incorporates interaction. The left and right plot show the main effects (black 

solid line) and point-wise 95% confidence bands (red dashed) using the functional 

interaction model estimated with FPCR; overlaid are the estimated main effects using the 

FPCR functional additive model and the corresponding point-wise 95% confidence bands 

(blue dotted).
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Figure 6. 
Results for the AneuRisk study data using a functional principal components regression 

(FPCR) that incorporates interaction. This plot displays the estimated interaction contour 

from FPCR along with measures of significance. Color-coding: dark red/blue is for positive/

negative significant values (at 95% level), while light red/blue is used for positive/negative 

values.
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