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Abstract

This paper revisits a number of data-rich prediction methods, like factor models, Bayesian
ridge regression and forecast combinations, which are widely used in macroeconomic fore-
casting, and compares these with a lesser known alternative method: partial least squares
regression. Under the latter, linear, orthogonal combinations of a large number of predic-
tor variables are constructed such that these linear combinations maximize the covariance
between the target variable and each of the common components constructed from the pre-
dictor variables. We provide a theorem that shows that when the data comply with a factor
structure, principal components and partial least squares regressions provide asymptotically
similar results. We also argue that forecast combinations can be interpreted as a restricted
form of partial least squares regression. Monte Carlo experiments confirm our theoretical
result that principal components and partial least squares regressions are asymptotically sim-
ilar when the data has a factor structure. These experiments also indicate that when there
is no factor structure in the data, partial least squares regression outperforms both principal
components and Bayesian ridge regressions. Finally, we apply partial least squares, principal
components and Bayesian ridge regressions on a large panel of monthly U.S. macroeconomic
and financial data to forecast, for the United States, CPI inflation, core CPI inflation, in-
dustrial production, unemployment and the federal funds rate across different sub-periods.
The results indicate that partial least squares regression usually has the best out-of-sample
performance relative to the two other data-rich prediction methods.

Keywords: Macroeconomic forecasting, factor models, forecast combination, principal com-
ponents, partial least squares, (Bayesian) ridge regression.
JEL classification: C22, C53, E37, E47.

1 Introduction

It has been a standard assumption in theoretical macroeconomic modeling that agents are pro-
cessing all the available quantities of information when forming their expectations for the future.
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Also, policymakers traditionally have looked at a vast array of indicator series in the run-up to
major policy decisions, or in the words of Lars Svensson (Svensson (2005)) about what central
bankers do in practice: ‘(l)arge amounts of data about the state of the economy and the rest of
the world ... are collected, processed, and analyzed before each major decision.’ However, most
traditional macroeconomic prediction approaches rarely consists of models that handle more
than 10 variables, because it is either inefficient or downright impossible to incorporate a much
larger number of variables in a single forecasting model and estimate it using standard economet-
ric techniques. This failure of traditional macroeconomic forecasting methods prompted a new
strand of research devoted to the theory and practice of alternative macroeconomic forecasting
methods that utilize large data sets.

These alternative methods can be distinguished into two main categories. As, e.g., outlined
in Hendry (1995), the methods of the first category involve inherently two steps: In the first
step some form of variable selection is undertaken. The variables that are chosen are then used
in a standard forecasting model. Recent developments in this line of research has focussed on
automated model selection procedures in order to be better able to select the optimal predictors
from large data sets; see Krolzig and Hendry (2001). An alternative group of forecasting methods
consists of estimation strategies that allow estimation of a single equation model that utilizes
all the information in a large data set and not just an ‘optimal’ subset of the available predictor
series. This is a diverse group of forecasting methods ranging from factor-based methods to
Bayesian regression and forecast combination. These two groups of methods inevitably overlap.
However, we feel that the step of variable selection is, and involves methods that are, sufficiently
distinct to merit separate mention and treatment. Instead, we focus in this paper on the latter
group of data-rich forecasting methods.

Within the group of data-rich forecasting techniques, factor methods have gained a prominent
place. These methods are related to the strict factor models used in finance, but, starting with
Chamberlain and Rothschild (1983), they use weaker assumptions regarding the behavior of
the idiosyncratic components, which allows the use of principal components in very large data
sets to identify the common factors in such a data set. Stock and Watson (2002a) and Bai
(2003) further formalized the underlying asymptotic theory. Stock and Watson (2002b) proved
to be the starting point of a large empirical research output where, with mixed success, a
limited number of principal components extracted from a large data set are used to forecast key
macroeconomic variables. However, the use of principal components does not always guarantee
that the information extracted from a large number of predictors is useful for forecasting. Boivin
and Ng (2006) make it clear that if the forecasting power comes from a certain factor, this
factor can be dominated by other factors in a large data set, as the principal components solely
provide the best fit for the large data set and not for the target variable. This could explain
why in some empirical applications principal components (PC) factor models are dominated
by Bayesian regression and forecast combinations. Under Bayesian regression one essentially
estimates a multivariate regression consisting of all predictor variables, but with the regression
coefficients shrunken to a value close to zero. Starting with Bates and Granger (1969), forecast
combination involves the use of subsets of predictor variables in distinct forecasting models and
the production of multiple forecasts for the target variable, which are then averaged to produce
a final forecast. The distinctive feature of these two approaches is that the information in a
large data set is compressed such that this has explanatory power for the target variable. Note,
however, that from an econometric perspective forecast combinations are ad hoc in nature,
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whereas it has been shown in De Mol et al. (2006) that Bayesian regression is theoretically
related to PC-based factor models.

In this paper we revisit the use of principal components (PC), Bayesian regression and
forecast combination for data-rich macroeconomic forecasting. In addition, we consider the
use of the lesser known method of partial least squares (PLS), introduced by Herman Wold
in the late 1970s, as a new data-rich approach that can be used with very large data sets for
macroeconomic forecasting. PLS has similarities to PC analysis but its major advantage over
PC is that it explicitly takes into account the target variable when constructing the factors
which are used as summaries of the available large data set. One significant contribution of our
paper is that we provide a theoretical result that relates PLS to PC for large data sets. Also,
we argue that the range of forecast combination techniques can be seen as restricted versions
of PLS. PLS, therefore, has explicit theoretical links with the currently used range of data-rich
macroeconomic forecasting tools, i.e. PC, Bayesian regression and forecast combination. Next,
we also consider in detail the properties of PLS, PC and Bayesian regression for forecasting
using both Monte Carlo analysis and an empirical application to gauge the potential of each of
these data-rich approaches.

In the remainder of this paper we have the following structure: Section 2 discusses the most
frequently used data-rich methods for macroeconomic forecasting. This section also provides
an overview of PLS and presents the theoretical result linking PLS to PC regression. Section 3
presents an extensive Monte Carlo study focusing on both in-sample and, more importantly,
out-of-sample properties of PLS, PC and Bayesian regression. Section 4 presents an empirical
application where PLS and the other data-rich forecasting methods are used on a large monthly
US macroeconomic data set. Finally, Section 5 concludes.

2 Useful Data-rich Methods for Macroeconomic Forecasting

In this section we provide a selective review of existing data-rich methods for macroeconomic
forecasting and suggest a possible alternative method.

2.1 Frequently Used Methods

A useful framework for studying existing methods is provided by the following forecasting equa-
tion

yt = α′xt + εt; t = 1, . . . , T, (1)

where yt is the target of the forecasting exercise, xt = (x1t · · ·xNt)′ is a vector of dimension N×1
and thus α = (α1 · · ·αN )′ is also N × 1. It is assumed that the number of indicator variables N
is too large for α to be determined by standard methods such as ordinary least squares (OLS).

Factor Methods

The most widely used class of data-rich forecasting methods are factor methods. Factor methods
have been at the forefront of developments in forecasting with large data sets and in fact started
this literature with the influential work of Stock and Watson (2002a). The defining characteristic
of most factor methods is that relatively few summaries of the large data sets are used in
forecasting equations which thereby becomes a standard forecasting equation as they only involve
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a few variables. The assumption is that the co-movements across the indicator variables can be
captured by a r × 1 vector of unobserved factors Ft = (F1t · · ·Frt)′, i.e.

x̃t = Λ′Ft + et (2)

where x̃t may be equal to xt or may involve other variables such as, e.g., lags and leads of xt and
Λ is a r×N matrix of parameters describing how the individual indicator variables relate to each
of the r factors, which we denote with the terms ‘loadings’. In (2) et represents a zero-mean I(0)
vector of errors that represent for each indicator variable the fraction of dynamics unexplained
by Ft, the ‘idiosyncratic components’. The number of factors is assumed to be small, meaning
r < min(N, T ). So, implicitly, in (1) α′ = α̃′Ξx̃t, where Ft = Ξx̃t, which means that a small, r,
number of linear combinations of x̃t represent the factors and act as the predictors for yt. The
main difference between different factor methods relate to how Ξ is obtained.

The use of principal components (PC) for the estimation of factor models is, by far, the most
popular factor extraction method. It has been popularised by Stock and Watson (2002a,b), in
the context of large data sets, although the idea had been well established in the traditional mul-
tivariate statistical literature. The method of principal components (PC) is simple. Estimates
of Λ and the factors Ft are obtained by solving:

V (r) = min
Λ,F

1
NT

N∑

i=1

T∑

t=1

(x̃it − λ′iFt)2, (3)

where λi is a r×1 vector of loadings that represent the N columns of Λ = (λ1 · · ·λN ). One, non-
unique, solution of (3) can be found by taking the eigenvectors corresponding to the r largest
eigenvalues of the second moment matrix X ′X, which then are assumed to represent the rows
in Ξ, and the resulting estimate of Ξ provides the forecaster with an estimate of the r factors
F̂t = Ξ̂x̃t. To identify the factors up to a rotation, the data are usually normalised to have zero
mean and unit variance prior to the application of principal components; see Stock and Watson
(2002a) and Bai (2003)

PC estimation of the factor structure is essentially a static exercise as no lags or leads of xt

are considered. On alternative is dynamic principal components, which, as a method of factor
extraction, has been suggested in a series of papers by Forni, Hallin, Lippi and Reichlin (see,
e.g., Forni et al. (2000, 2004) among others) is designed to address this issue. Dynamic principal
components are extracted in similar fashion to static principal components but , instead of the
second moment matrix, the spectral density matrices of the data at various frequencies are used.
These are then used to construct estimates of the common component of the data set which is
a function of the unobserved factors. This method used leads of the data and as a result its
application to forecasting has been slow for obvious reasons. Recent work by the developers of the
method has addressed this issue (see, e.g., Forni et al. (2005)). Another alternative way of factor
estimation, assumes a parametric state space model for the data set, xt. This follows earlier work
by Stock and Watson (1989) who used state space models to extract factors via the Kalman filter
and maximum likelihood estimation, for small data sets. Conventional wisdom suggested that
such methods would be too computationally intensive for large data sets. Borrowing work from
the engineering literature which again focused on small data sets, Kapetanios and Marcellino
(2003) suggest using subspace algorithms to estimate factors from a state space model. This
essentially uses OLS estimation to obtain estimates of the matrix coefficient in a multivariate
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regression of leads of xt on lags of xt. Then a reduced rank approximation to this estimated
coefficient matrix provides estimates for the factors. In a Monte Carlo study Kapetanios and
Marcellino (2003) found that subspace estimation compared favorably to static and dynamic
principal components.

Bayesian Regression Estimation

Bayesian regression is a standard tool for providing inference for α in (1) and there exist a large
variety of approaches for implementing Bayesian regression. We will provide a brief exposition
of this method. A starting point is the specification of a prior distribution for α. Once this is
in place standard Bayesian analysis proceeds by incorporating the likelihood from the observed
data to obtain a posterior distribution for α which can then be used for a variety of inferential
purposes, including, of course, forecasting.

A popular and simple implementation of Bayesian regression results in a shrinkage estimator
for α in (1) given by

α̂BRR = (X ′−1X ′y (4)

where X = (x1, ..., xT )′, y = (y1, .., yT )′ and v is a shrinkage scalar parameter. The shrink-
age estimator (4) shrinks the OLS estimator, given by (X ′−1X ′y towards zero, thus enabling
a reduction in the variance of the resulting estimator. This is a major feature of Bayesian re-
gression that makes it useful in forecasting when large data sets are available. This particular
implementation of Bayesian regression implies that elements of α are small but different from
zero ensuring that all variables in xt are used for forecasting. In this sense, Bayesian regression
can be linked to other data-rich approaches. When a factor structure is assumed in the data,
Bayesian regression through (4) will forecast yt by projecting it on a weighted sum of all N
principal components of X, with decaying weights, instead of projecting it on a limited number
of r principal components with equal weights as in PC regression; see De Mol et al. (2006). Even
if a factor structure does not hold for X, the implementation in (4) can be successful as it can
be seen as a form of forecast combination. Other implementations use prior distributions for α
that imply that only a few of the variables in xt are actually used in forecasting, thereby closely
relating Bayesian regression to variable selection methods.

Forecast Combination

A frequently used alternative forecasting tool when one is faced with multiple forecasts of the
same variable is forecast combination. Forecast combinations have been used with great success
across a wide array of applications, i.e. macroeconomic forecasting, empirical finance and several
non-economic applications, prompting a rich line of research to uncover theoretical reasons for
this success.1 Despite that, the reasons for the empirical success of forecast combinations, in
particular of simple forecast averages, are still poorly understood. Diversification across infor-
mation sets when it is not feasible to pool the underlying individual information sets to construct
a ‘super’ model that nests each of the underlying forecasting models has been mentioned as one
reason. Also, a forecast combination can exhibit more adaptability than individual forecasts
when structural changes occur if there is a heterogenous response to these changes. Related to

1Timmermann (2006) provides a comprehensive and up-to-date survey of the forecast combination literature.
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that, in case of unknown misspecification bias combining individual forecasts can be seen as a
way to make the forecast robust again this bias.

Although ad hoc, forecast combination provides an alternative data-rich forecasting method
that is relatively simple to apply and which has been shown to be capable of rivalling other
data-rich methods in terms of forecasting performance. For example, Faust and Wright (2007)
show that forecast combination methods provide better out-of-sample performance than factor
methods when applied to high-dimensional real-time panels of U.S. macroeconomic and financial
data. Within our data-rich setting we combine models to forecast y with each of our N indicator
variables xi separately resulting in an aggregate of N forecasts for y:

ŷt =
N∑

i=1

ωi(α̂ixit) (5)

where the α̂i’s results from estimates of

yt = αixit + εit; i = 1, . . . , N

and ωi is the weight of the ith forecast model. Several approaches have been proposed to
determine the weights of the individual models in the forecast combination, and it has been
shown that this choice is a major factor in determining the success of a forecast combination.
Granger and Ramanathan (1984) suggest regressing the individual forecasts in (5) on the target
variable over a historical sample, where one can add the restriction that

∑N
i=1 ωi = 1, and the

resulting parameter estimates can be used as weights in (5). More generally, by specifying a loss
function one can derive weights ωi that are optimal under that specific loss function, see e.g.
Elliott and Timmermann (2004). So under mean squared forecast error (MSE) loss functions,
the weights in (5) would be inversely related to the MSE’s of the individual forecasts and also
reflect the correlation across the individual forecast errors.

However, estimates of the weights in (5) using one of the earlier discussed methods, can often
be substantially biased, which essentially reflects a ‘generated regressor’ problem as the input
for the forecast combination are recursive generated forecasts from individual models. This
explains why in general simple averages of individual forecasts, i.e. ω1 = · · · = ωN = 1

N in (5),
or combinations with weights determined by (Bayesian) shrinkage towards the simple average
as in Wright (2003a,b) are shown to perform really well empirically. A successful variation on
this has recently been introduced by Capistrán and Timmermann (2007): projection on equal-
weighted mean (PEW). Under PEW one simply regresses in our context, with OLS, the target
variable yt on an intercept and a simple average of the individual forecasts in (5), resulting in
the following forecast for yt:

ŷt = δ̂ + β̂ȳt (6)

with

ȳt =
1
N

N∑

i=1

(α̂ixit).

The non-zero intercept and slope coefficients in (6) will correct for bias in the individual forecasts
and allow for more flexibility than possible in the simple average case. Both the empirical and
Monte Carlo applications in Capistrán and Timmermann (2007) indicate that PEW frequently
outperforms other combination methods, including simple forecast averages and Bayesian shrink-
age weights.
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2.2 An Alternative: Partial Least Squares

Introduced by Herman Wold and co-workers between 1975 and 1982,2 partial least squares (PLS)
is a relatively new method for estimating regression equations, that has received much attention
in a variety of disciplines and especially in chemometrics. The basic idea is similar to principal
component analysis in that factors or components, which are linear combinations of the original
regression variables, are used, instead of the original variables, as regressors. A major difference
between PC and PLS is that, whereas in PC regressions the factors are constructed taking
into account only the values of the xt variables, in PLS, the relationship between yt and xt is
considered as well in constructing the factors.

There are a variety of definitions for PLS and accompanying specific PLS algorithms that
inevitably have much in common. We provide a brief description of these definitions and algo-
rithms we feel are most appropriate for conveying the essence of PLS. A conceptually powerful
way of defining PLS is to note that the PLS factors are those linear combinations of xt, denoted
by Λxt, that give maximum covariance between yt and Λxt while being orthogonal to each other.
Of course, in analogy to PC factors, an identification assumption is needed, to construct PLS
factors, in the usual form of a normalization.

A simple algorithm to construct k1 PLS factors is discussed among others, in detail, in
Helland (1990). Assuming for simplicity that both yt and xt have been normalised to have zero
mean, a simplified version of the algorithm is given below

Algorithm 1

1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Determine the N × 1 vector of indicator variable weights or loadings wj = (w1j · · ·wNj)′

by computing individual covariances: wij = Cov(ut, vit), i = 1, ..., N . Construct the j-th
PLS factor by taking the linear combination given by w′jvt and denote this factor by fj,t.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt and
ṽi,t respectively.

4. If j = k1 stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

This algorithm makes clear that PLS is computationally tractable for very large data sets.
Once PLS factors are constructed yt can be modeled or forecast by regressing yt on fj,t j =
1, ..., k1. Helland (1988, 1990) provide a general description of the partial least squares (PLS)
regression problem. Helland (1988) shows that the PLS estimates of the regression coefficients,
α, of the regression of yt on xt obtained implicitly via PLS Algorithm 1 and a regression of yt

on fj,t j = 1, ..., m, can be equivalently obtained by the following formula

α̂PLS = Vk1(V
′
k1

X ′XVk1)
−1V ′

k1
X ′y (7)

where Vk1 = (X ′y, X ′XX ′y, ..., (X ′k1−1X ′y), X = (x1, ..., xT )′ and y = (y1, ..., yT )′. A major
question relates to the determination of the number of PLS factors, denoted by k1 in Algorithm

2See, e.g., Wold (1982).
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1. The PLS literature seems to have little to say on this question from a theoretical statistical
point of view. A suggestion that seems to be partly adopted in the PLS literature is to set
k1 so that V ′

k1
X ′XVk1 is well-conditioned whereas V ′

k1+1X
′XVk1+1 is not (see, e.g., Stoica and

Söderström (1998)).
PLS regression does not seem to have been explicitly considered for large data sets (i.e.

when N is assumed to tend to infinity). As a result there is a discrepancy between the large
theoretical literature on PC regression for large data sets as developed in, e.g., Bai (2003) and
theoretical results for PLS. Therefore, in what follows we provide an extension of a well known
link between PLS and PC regression to the case where N → ∞. We wish to show that PLS
and PC regression analyses are equivalent as N, T → ∞, under certain conditions. We use the
framework of Stoica and Söderström (1998). Denote the PLS and PC regression estimates by
α̂PLS and α̂PC respectively, based on (7) and

α̂PC = Λ′(ΛX ′XΛ′−1ΛX ′y (8)

where Λ is the r×N matrix of linear combinations of the xit’s that result from minimizing (3).
Let the matrix norm we use be ||A|| = tr(A′1/2. Assume that

X ′X = SΨS′ + Cδ (9)

where Ψ = diag(ψ1, ..., ψr) for some r < N , S′S = I, Cδ denotes a term whose matrix norm is
Op(δ) and δ → 0. Then,

||α̂PLS − α̂PC || = Op(δ). (10)

An interesting aside that comes out of the above setup of Stoica and Söderström (1998) is that
if the definition of k1, suggested in the previous paragraph, is adopted then, for finite N at least,
and assuming a reduced rank structure of the form (9) we have that k1 < r.

We make the following assumptions

Assumption 1 Let Σ = ΣN = [σij ] denote the N ×N second moment matrix of X. Σ can be
factorised as follows:

Σ = S̃Ψ̃S̃′ + R

where S̃S̃′ = I, Ψ̃ = diag(ψ̃N1, ..., ψ̃Nr), r < N and ||R|| = o(N).

Assumption 2 For all i, j = 1, ..., N

T∑

t=1

(xi,txj,t − σi,j) = Op(T 1/2)

Remark 1 These assumptions deserve some comment. Assumption 1 states that the variables
in X are asymptotically with respect to N collinear. It is instructive to compare this assumption
with the standard factor assumption. In one sense this assumption is stronger than the standard
factor assumption because in standard factor models the sum of all bounded eigenvalues of the
covariance matrix is O(N) whereas under assumption 1 it is o(N). On the other hand this
assumption is weaker. Under a standard factor assumption there can be only a finite number
of unbounded eigenvalues, and hence unbounded singular values, for the covariance matrix of
the data. In our case we can have an infinity of unbounded eigenvalues as long as the sum
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of all but the first r eigenvalues is o(N). In particular the remainder term, R, can, in fact,
be parametrised as a neglected ‘weak’ factor model whose eigenvalue characterisation allows for
unbounded eigenvalues which, however, have to grow at a rate slower than N . Assumption 2 is
a mild, high level, assumption. It is sufficient to have a central limit theorem for (xi,txj,t− σi,j)
for this assumption to hold.

We have the following Theorem

Theorem 1 Under Assumptions 1-2, and as N, T →∞ sequentially,

||α̂PLS − α̂PC || = op

(
(NT )−1/2

)
(11)

Proof: In order the prove this result in our case we simply need to show that as N,T →∞,
assumption (9) holds in probability asymptotically. We first note the following obvious fact: If

||α̂n
PLS − α̂n

PC || = op(aN,T ), (12)

for some sequence aN,T , then

||α̂PLS − α̂PC || = op(aN,T /bN,T ), (13)

where α̂n
PLS and α̂n

PC are the the PLS and PC regression estimates obtained when

Xn =
1

bN,T
X

are used as regressors. Given this fact, we focus on α̂n
PLS and α̂n

PC where we set bN,T = (NT )1/2.
First, we have that

Xn′Xn =
1
N

Σ +
1
N

(
Xn′Xn

T
− Σ

)

But, by the factor assumption,
1
N

Σ =
1
N

S̃Ψ̃S̃′ + o(1)

where
ψ̃Ni = O(N), i = 1, . . . , r.

The proof is complete if we show that
∥∥∥∥∥

1
N

(
Xn′Xn

T
− Σ

)∥∥∥∥∥ = op(1),

since, then, by (9) and (10), it follows that

||α̂n
PLS − α̂n

PC || = op(1),
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and then, by (12) and (13), (11) follows. But,
∥∥∥∥∥

1
N

(
Xn′Xn

T
− Σ

)∥∥∥∥∥ =


 1

N2

N∑

i=1

N∑

j=1

(
1
T

T∑

t=1

(xi,txj,t − σi,j)

)2



1/2

= Op(T−1/2),

where the second equality follows by Assumption 2, proving the result. Q.E.D.
Garthwaite (1994) provides a rationale to cast (ad hoc) forecast combinations in terms of the

above described PLS framework. Essentially what Garthwaite (1994) shows is that a general
PLS algorithm like Algorithm 1 can be cast in terms of sequences of univariate regressions, i.e.

Algorithm 2

1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

2. Regress ut on vi,t, i = 1, ..., N and denote the OLS estimate of the coefficient of each
regression by βi. Construct the j-th PLS factor by taking the weighted average of βivit:
fj,t = w̃′jvt with w̃j = ((β1w1j) · · · (βNwNj))

′ where (w1j · · ·wNj) are given.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt and
ṽi,t respectively.

4. If j = k1 stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

Hence, when in this algorithm one sets (w1j · · ·wNj) = (V ar(v1t) · · ·V ar(vNt)) Algorithm 1
follows, but if one assumes, as suggested by Garthwaite (1994), (w1j · · ·wNj) = ( 1

N · · · 1
N ) than

in the one-factor case the Capistrán and Timmermann (2007) PEW forecast combination (6)
follows. In general, forecast combinations can be interpreted through Algorithm 2 as restricted
approximations to one-factor PLS regression, with alternative specifications for (w1j · · ·wNj)
and often with zero intercept and slope coefficients in the final forecast regression. This ex-
plains why forecast combinations often do very well compared to PC regressions within a factor
environment, and why we would expect that PLS still would do well in a data-rich forecast
environment where the factor assumption does not hold. Note, though, that PLS is much more
general and it allows for several factors to be included in the forecast regression.

So given the aforementioned link between forecast combinations and PLS regression, The-
orem 1 can then used to show that under certain conditions, i.e. the assumptions underlying
Theorem 1 as well as an one-factor PLS regression specification, forecast combinations and PC
regression are asymptotically identical. Similarly, as discussed in Section 2.1, De Mol et al.
(2006) prove the existence of asymptotic equivalence between PC regression and Bayesian re-
gression when the underlying data comply with a factor structure.3 Thus, given that structure,

3It is worth noting that the assumption made by De Mol et al. (2006) on the idiosyncratic part of their
entertained factor model bears similarities to our assumtion 1. In particular, just like the implication of our
assumption 1, discussed in remark 1, the idiosyncratic component of their factor model can accommodate a
residual ‘weak’ factor model in the sense that the eigenvalues implied by that factor model can be unbounded but
have to grow at a rate slower than N .
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Bayesian regression should, via Theorem 1, be asymptotically equivalent to PLS regression and,
under the one-factor assumption, forecast combinations. Therefore, the introduction of the PLS
regression framework provide a means to asymptotically tie together different existing data-rich
forecasting methods and provides a theoretical rationale for the common empirical finding that
different data-rich approaches have similar performance.

3 Monte Carlo Analysis

In this Section we present a Monte Carlo study of the finite sample properties of PLS regression
for large data sets. We compare the performance of PLS to that of PCA regression and Bayesian
regression. Details on these alternative methods are given in Section 4.

3.1 Monte Carlo Set-up

We wish to explore the finite sample relative performance of the various methods both for the
case when the data have a factor structure and for the case where there is no factor structure.
We consider the following setup:

yt = α′xt + εt, t = 1, ..., T (14)

with
xt = Λ′ft + ut (15)

where xt = (x1,t, ..., xN,t)′, ut = (u1,t, ..., uN,t)′, α = (α1, ..., αN )′, Λ = (λ1, ..., λN ) and λi =
(λi,1, ..., λi,r)′. We set αi ∼ NIID(0, 1). For the case where there is a factor structure we
set λi,j ∼ NIID(0, 1). If there is no factor structure then in (15) λi,j = 0 for all i, j. ui,t ∼
NIID(0, 1).4 An important parameter for the Monte Carlo study is the R2 of the regression
equation (14). We control this by controlling the variance of εt. Therefore, we have that
εt =

√
cNεt where εt ∼ NIID(0, 1). Setting c = 1, 4, 9 gives an R2 of 0.5, 0.2 and 0.1 respectively

for the case of no factors. For the case of factors the R2 is slightly higher but this is a minor
deviation since r << N . We consider these values for R2 to provide reasonable representations
of empirically relevant situations. We set r = 1, 4, 6 and assume that the assumed number
of PCA factors, k2, is equal to the true number of factors, r, when carrying out PCA. For
the case of PLS we know that the number of PLS factors, k1, is smaller than the number of
PCA factors (see, e.g., Stoica and Söderström (1998)). Therefore, we set k1 to 1,2 and 3 to
correspond to the number of PCA factors used. When the data do not have a factor structure
we still keep the same number of assumed factors both for PCA and PLS. For the Bayesian
regression we set the shrinkage parameter to qN where q = 0.01, 1, 2, 5, 10. Finally, we set
N, T = 20, 30, 50, 100, 200, 400. We carry out 1000 Monte Carlo replications.

We evaluate the competing methods using one in-sample and one out-of-sample criterion.
The in-sample criterion is the average R2 over the Monte Carlo replications. The out-of-sample

4This setting implies that for the case of no factors the xt variables are not correlated. This maybe considered
restrictive. However, we have carried out an alternative Monte Carlo experiment where we allowed cross-sectional
correlation in ut by setting the 5 diagonals below and above the main diagonal of the covariance matrix of ut

to positive numbers, while ensuring positive-definiteness and symmetry for the covariance matrix. The results,
which are not reported, are very similar to those reported in the next subsection for the case of no factors and
are available upon request.
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criterion is the relative forecast MSE compared to PCA regression. To construct this we estimate
all models over T observations and we use the implied regression weights to do one-step ahead
forecasting and get forecast errors over a forecast evaluation sample of 100 observations.

3.2 Monte Carlo Results

Results are reported in Tables 1-12. Tables 1-6 report results for the case where the data do not
have a factor structure whereas Tables 7-12 report results for the case where the data have a
factor structure. Starting with the former case we see that the average R2 of PLS exceeds that
of PCA for all cases considered which is expected given the absence of a factor structure. The
average R2 of Bayesian regression depends crucially on the shrinkage parameter.

The in-sample measure is not very informative for forecasting and therefore we focus on the
relative forecast MSE presented in Tables 4-6. PLS outperforms massively PCA for all true R2

considered. The degree of superiority for PLS is marginally more apparent for higher true R2.
It is also more apparent when the assumed number of PLS and PCA factors is higher. Moving
to a comparison between PLS and Bayesian regression we see that PLS usually outperforms
Bayesian regression. The only value of the shrinkage parameter for which this is not the case
is 0.01, in which case Bayesian regression has extremely variable performance depending on the
values of N and T . Given that we report relative forecast MSE the performance of Bayesian
regression also depends on the assumed number of PCA factors. For this case we note that
although, for high values of N and T , Bayesian regression can outperform PLS for this value of
the shrinkage parameter, the reverse occurs on a massive scale for low values of N and T .

Moving on to the case where the data do have a factor structure we see that the performance
of PLS and PCA is much more similar. This reflects the theoretical result we have proved in the
previous section. The only other noteworthy feature for this case, given already available Monte
Carlo work on the relative performance of PCA and Bayesian regression, is the confirmation of
the superiority of Bayesian regression in a large number of cases.

To conclude we see that our Monte Carlo study suggests a great advantage for PLS compared
to all other methods we considered in terms of forecasting performance, in the case where the
data do not have a standard parsimonious representation such as a factor structure.

4 Empirical Applications

4.1 Implementation of the Data-Rich Methods and the Forecast Comparison

We follow standard practice in the macroeconomic forecasting literature and use as benchmark
for our data-rich based forecasts an autoregressive (AR) model

∆yt+h,t = αh +
p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t, t = 1, . . . , T (16)

with ∆yt+h,t = yt+h− yt for h > 0 and ∆yt−i+1,t−i = yt−i+1− yt−i for i = 1, . . . , p. The number
of lagged first differences p in (16) is determined by sequentially applying Schwarz (1978)’s
Bayesian Information Criterion (BIC) starting with a maximum lag order of p = pmax down to
p = 1. Next, we use as benchmark the unconditional mean,

∆yt+h,t = αh + εt+h,t, (17)
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which implies a random walk (RW) forecast for the level of the forecast variable yt. Our assess-
ment of the forecasting performance of the data-rich methods relative to pure AR-based and
random walk-based forecasts is based on the square root of the mean of the squared forecast
errors (RMSE)

RMSE =

√√√√ 1
T − t0 − h

T−h∑
s=t0

e2
s+h,s, (18)

where es+h,s is the forecast error of the model-generated prediction of a forecast variable relative
to the observed ∆yt+h,t. In Section 4.3 we will report ratios of the RMSE of the respective
data-rich forecasting approaches relative to the RMSE based on either (16) or (17). Superior
out-of-sample performance of a data-rich method relative to these benchmarks is, obviously,
indicated by a RMSE ratio smaller than one.

Our data-rich forecasts of h period-ahead changes in yt are generated using a model that adds
the information extracted from the N indicator variables in the N ×1 vector Xt = (x1,t · · ·xN,t)
to the benchmark models (16) and (17), i.e. respectively

∆yt+h,t = αh + βh′z(Xt) +
p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t (19)

and
∆yt+h,t = αh + βh′z(Xt) + εt+h,t. (20)

where βh is r × 1. In (19) and (20) z(Xt) represents a r × 1 function of Xt that compresses
the information in the N indicator variables, i.e. through principal components (PC), partial
least squares (PLS) or by estimating the βh’s through Bayesian ridge regression (BRR, where
r = N). We operationalize the construction of z(Xt) on our data sets as follows:

Principal Components

Following Stock and Watson (2002b) we take our T × N matrix of N indicator variables X =
(X ′

1 · · ·X ′
T )′ and normalize this such that the variables are in zero-mean and unity variance

space, which results in the T ×N matrix X̃. Having done that, we compute the r eigenvectors
of the N×N matrix X̃ ′X̃ that correspond to the first r largest eigenvalues of that matrix, which
we assemble in the N × r matrix Λr. As discussed in Section 2.1, these eigenvectors are often
used to approximate the common factors F that determine the series in X, i.e. F = 1√

N
X̃Λr.

z(Xt) in (19) and (20) can therefore be approximated as:


z′(X1)

...
z′(XT )


 ≡




F ′
1
...

F ′
T


 = F =

1√
N

X̃Λr. (21)

Our forecasting models will be updated based on an expanding window of historical data,
which in case of the principal components-based models evolves as follows:

1. First forecast for all h is generated on t0.

2. Extract r principal components Ft from the N indicator variables N over the sample
t = 1, . . . , t0 − h.
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3. Estimate either (19) or (20) with z(Xt) = Ft over the sample t = 1, . . . , t0 − h for each h.

4. Extract r principal components Ft from the N indicator variables N over the sample
t = 1, . . . , t0.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and Ft from
step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.

Bayesian Ridge Regression

When Bayesian ridge regression is used to compress the forecast information in the N indicator
variables z(Xt) in (19) and (20) simply equals Xt, whereas βh is estimated with a restricted
estimator, i.e. in case of (20) we have

∆yt+h,t = αh + βh′
BRRX̃t + εt+h,t, (22)

where

β̂h
BRR =

(
X̃ ′X̃ + νIN

)
X̃ ′∆Ẏh; ∆Ẏh =

(
IT − ι(ι′−1ι′

)



∆yh+1,1
...

∆yT,T−h




with ν is the (scalar) ridge or shrinkage parameter, ι is a T × 1 vector of ones and Iq is a q-
dimensional identity matrix. As in the case of principal components-based regressions we use in
(22) a normalized version of the T ×N matrix of indicator variables X = (X ′

1 · · ·X ′
T )′, indicated

with X̃, and we also demean ∆yt+h,t first before we estimate βh
BRR. By doing this we follow De

Mol et al. (2006), as the ridge regression (22) can be interpreted as a Bayesian regression with
a Gaussian prior. In case of (19) we have

∆yt+h,t = αh + βh′
BRRX̃t +

p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t, (23)

with

β̂h
BRR =

(
¨̃X ′ ¨̃X + νIN

)
¨̃X ′∆Ÿh;

∆Ÿh =
(
IT −W (W ′−1W ′)∆Ẏh, ¨̃X =

(
IT −W (W ′−1W ′) X̃

where the projection is on the T×p matrix of lagged predictor variables W = (W1 · · ·WT )′, Wt =
(∆yt,t−1 · · ·∆yt−p+1,t−p). The projection of the demeaned predictor variable and the N normal-
ized indicator variables is done to guarantee that the indicator variables are orthogonal to the
autoregressive terms. For both (22) and (23) the values of α̂h, ρ̂1, . . . , ρ̂p compatible with β̂h

BRR

can be retrieved simply by regressing (∆yt+h,t− β̂h′
BRRx̃t) on an intercept term and, if applicable,

∆yt,t−1, . . . ,∆yt−p+1,t−p.
Forecasts with (22) and (23) make use of model updates based on an expanding window of

known historical data:

1. First forecast for all h is generated on t0.
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2. Estimate either (22) or (23) over the sample t = 1, . . . , t0 − h for each h.

3. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 2.

4. Repeat for t0 + 1, . . . , T − h for each h.

Partial Least Squares

With partial least squares (PLS) regression, z(Xt) in (19) and (20) is constructed by computing
r orthogonal combinations from the N indicator variables, where the weights of the individual
indicator variables in the respective combinations are chosen such that the covariance with
∆yt+h,t is maximized. The general PLS algorithm from Section 2.2 can be implemented for
macroeconomic forecasting as follows:

Algorithm 3

1. Denote, as before, the T ×N matrix of indicator variables, each normalized to have a zero
mean and unit variance, as X̃ and demean the predictor variable, i.e.

∆Ẏh =
(
IT − ι(ι′−1ι′

)



∆yh+1,1
...

∆yT,T−h


 .

2. The r PLS factors FPLS
1,t , . . . , FPLS

r,t and their loadings w1, . . . , wr are iteratively build up
through projections on lower order PLS factors followed by computing the covariances
between the resulting residuals of the columns from X̃ and those of ∆Ẏh:

FPLS
l = X̃l|l−1wl; wl =

1
T − 1

X̃ ′
l|l−1∆Ẏh,l|l−1 for l = 1, . . . , r (24)

where for l = 1 (the first PLS factor)

X̃1|0 = X̃, ∆Ẏh,1|0 = ∆Ẏh,

and for l > 1

X̃l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
X̃l−1|l−2 and

∆Ẏh,l|l−1 =
(
IT − FPLS

l−1 (FPLS′
l−1 FPLS

l−1 )−1FPLS′
l−1

)
∆Ẏh,l−1|l−2.

3. Finally, we simply plug in the r PLS factors FPLS
t = (FPLS

1,t · · ·FPLS
r,t )′ from (24) in the

predictive regression (20) which we estimate in the standard way:

∆yt+h,t = αh + βh′FPLS
t + εt+h,t. (25)
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When lagged predictor variables are included in the predictive regression, as in (19), it
slightly complicates the extraction of the PLS factors. As in the BRR case one needs to control
for the effect of ∆yt,t−1, . . . ,∆yt−p+1,t−p on the covariances between ∆yt+h,t and x1,t, . . . , xN,t,
but unlike BRR one cannot do that by simply projecting these on ∆yt,t−1, . . . ,∆yt−p+1,t−p as in
the PLS case the relationship between ∆yt+h,t and x1,t, . . . , xN,t is non-linear in nature. However,
∆yt+h,t is linear in the r PLS factors and we can use that feature to adapt the above algorithm
for the lagged predictor case:

Algorithm 4

1. Estimate with OLS:
∆Ÿh = F̈PLSβh + ε̈, (26)

where

∆Ÿh =
(
IT − W̌ (W̌ ′W̌ )−1W̌ ′) ∆Yh, F̈PLS =

(
IT − W̌ (W̌ ′W̌ )−1W̌ ′)FPLS

and W̌ = (W ι) with W the same as in (23) and FPLS identical to (25) (so assuming
no lagged predictors).

2. Estimate with OLS: (
∆Yh − FPLS β̂h

)
= W̌ρ + ξ. (27)

3. Replace in (24) ∆Ẏh with
(
∆Yh − W̌ ρ̂

)
and compute the r PLS factors and corresponding

loadings as in (24); call these FPLS∗ and w∗ = (w∗1 · · ·w∗r).
4. Go back to step 1 using FPLS∗ from the previous step and repeat until the relative improve-

ment in the sum of squared residuals
(
∆Yh − FPLS∗ β̂h − W̌ ρ̂

)′ (
∆Yh − FPLS∗ β̂h − W̌ ρ̂

)

is smaller than a chosen threshold ς (typically ς equals a number like 10−3 or 10−4).

5. After convergence in step 4, use the resulting optimal PLS factors FPLS∗ in (19), which
can be estimated in the standard way:

∆yt+h,t = αh + βh′FPLS∗
t +

p∑

i=1

ρi∆yt−i+1,t−i + εt+h,t (28)

Finally, forecasts from (25) and (28) are generated as follows, again using an expanding
window of historical data:

1. First forecast for all h is generated on t0.

2. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0−h

for each h based on either Algorithm 3 or 4.

3. Estimate either (25) or (28) over the sample t = 1, . . . , t0 − h for each h.
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4. Extract r PLS factors FPLS
t from the N indicator variables over the sample t = 1, . . . , t0

for each h using the corresponding loadings wr from step 2 based on either Algorithm 3
or 4.

5. Generate for h the forecast ∆ŷt+h,t using the parameter estimates from step 3 and FPLS
t

from step 4.

6. Repeat for t0 + 1, . . . , T − h for each h.

4.2 The Data Set and Variable Construction

Stock and Watson (2007) reorganize the large panel of macroeconomic, financial and survey-
based indicator variables for the United States from Stock and Watson (2002b) and update the
span of the data to the end of 2006. Both our forecast variables and our panel of indicator
variables are extracted from Stock and Watson (2007)5 and we focus on the 109 monthly series
from this U.S. data set, which before transformation span a sample starting in January 1959
and ending in December 2006.

The panel of indicator variables consist of 104 series spanning real variables (sectoral indus-
trial production, employment, subcomponents of unemployment and hours worked), nominal
variables (subcomponents of consumer price index, producer price indexes, deflators, wages,
money and credit aggregates), asset prices (interest rates, stock prices and exchange rates) and
surveys; the 5 predictor variables (discussed below) are not included, but their subcomponents
are included. The indicator variables are transformed such that they are I(0), which in gen-
eral means that the real variables are expressed in log first differences and we use simply first
differences of series expressed in rates, such as interest rates and unemployment series; see Ap-
pendix A for more details. With respect to prices, wages, money and credit series we transform
these into first differences of annual growth rates in order to guarantee that the dynamic prop-
erties of these transformed series are comparable to those of the rest of the indicator variable
panel, as for example motivated in D’Agostino and Giannone (2006, Appendix B).6 Hence, after
transforming the indicator variables we end up with an effective span of the data that starts in
February 1960 (i.e. 1960.2) and ends in December 2006 (i.e. 2006.12).

The aforementioned panel of indicator variables will be used to forecast appropriate trans-
formations of U.S. CPI inflation, U.S. core CPI inflation (this is CPI inflation minus food and
energy prices), U.S. industrial production, the U.S. unemployment rate and the U.S. federal
funds rate. These five forecast variables are not part of the panel of predictors and are chosen to
cover the full range of nominal and real developments in the U.S. economy. Table 13 provides an
overview of the appropriate transformation of each forecast variable, which guarantees station-
arity, for each of the respective versions of our predictive regressions (19) and (20). As described
in the previous subsection, these forecasting models are updated based on an expanding window
of data and all forecasts are direct forecasts for 4 horizons (in months): h = 1, h = 3, h = 12 and
h = 24, which are horizons commonly analyzed in the literature. The forecast evaluation spans
three samples: January 1972 - December 2006, January 1972 - December 1984 and January

5We are very grateful to Mark Watson who provided us with the underlying raw data from Stock and Watson
(2007).

6This particular transformation acknowledges that series like log price levels and log money aggregate levels be-
have as if they are I(2), possibly because of mean growth shifts due to policy regime shifts, financial liberalizations
and other phenomena.
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1985 - December 2006. The latter two sub-samples split the first sample in two around the start
of the ‘Great Moderation’, e.g. Kim and Nelson (1999), McConnell and Perez-Quiros (2000),
Sensier and van Dijk (2004) and Groen and Mumtaz (2007) all find evidence for a downward,
exogenous, shift in the volatility of a large number of U.S. macroeconomic time series around
1985. This sample split is of particular importance for forecasting U.S. economic time series,
as it has been shown that it is difficult for a lot of data-rich, approaches (including Greenbook
projections from the Federal Reserve Board) to beat simple, non-structural benchmarks like RW
and AR models after the occurrence of the ‘Great Moderation’.7

4.3 Forecasting Results

As discussed in Section 4.1, we will assess the forecasting performance of our three data-rich
forecast methods with two simple benchmark forecasts: those based on an autoregressive (AR)
specification and those based on the unconditional mean or random walk (RW) model (respec-
tively (16) and (17)). Before we discuss these forecast comparisons in more detail, it is of interest
to assess for each forecast variable and each evaluation sample which benchmark would be more
difficult to beat. Table 14 provides this assessment based on the data described in Section 4.2.
Generally, the results in this table suggest that for industrial production the AR model is the
most appropriate benchmark, for the federal funds rate it is the RW, and for the other forecast
variables there is a more mixed picture with the AR model outperforming the RW model slightly
at shorter horizons and vice versa at longer horizons.

The first set of evaluation results can be found in Table 15 and relate to forecasting changes
in annual CPI inflation. Over the full 1972-2006 evaluation sample, the PLS model, in particular
the one-factor specification, is the best performing model, although the principal components-
based approach is a good second best. When we focus on the two sub-samples, the PLS approach
is less dominant and either has to compete with the principal components approach (the 1985-
2006 sample) or the Bayesian ridge regression (the 1972-1984 period); note, though, that when
it loses out to either of these two the PLS approach still provides a close second best. Of course,
the overall forecasting performance of the data-rich approaches is quite poor over the post-Great
Moderation period.

For changes in annual core CPI inflation in Table 16, the one-factor PLS approach dominates
in both the overall 1972-2006 evaluation sample and the 1972-1984 period. Even more striking
than in the CPI inflation case is the overall poor performance of the data-rich models for 1985-
2006, which possibly reflects a less volatile monetary policy regime that credibly attempts to
stabilize inflation in the longer term; see e.g. Clarida et al. (2000).

The Great Moderation has less of a negative effect on the predictive performance of our data-
rich methods for our real forecast variables, i.e. industrial production growth and unemployment
rate changes; see the results for 1985-2006 in Tables 17-18. In case of industrial production
growth (Table 17) the PLS model is the dominant approach relative to the AR benchmark for
1972-2006 and 1985-2006, and the AR benchmark outperforms in Table 14 the RW benchmark
for industrial production growth throughout all evaluation samples. For 1972-1984 PLS has to
compete with the other two approaches, although PLS is the only method for this evaluation
sample that consistently outperforms the benchmarks at all horizons. The domination of the

7See, for example, D’Agostino et al. (2006) who compare PC-based, VAR-based and Greenbook forecasts for
U.S. inflation and economic growth with simple benchmarks for both pre- and post-Great Moderation samples.
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PLS approach vis-à-vis principal components and BRR becomes more striking for unemployment
(Table 18): only for the two-year horizon in the 1972-1984 period is BRR able to perform better.
Across all evaluation samples and horizons, PLS outperforms both benchmarks, which cannot
be said for the other data-rich methods.

Finally, we turn to the results for the federal funds rate in Table 19. As the federal funds
rate is in the end determined by the Federal Reserve Board, which sets the target for the federal
funds rate by taking into account both nominal and real developments, one would expect that
the data-rich methods would now have a performance somewhere in between that for the nominal
and real forecasting variables. This seems certainly to be the case for principal components and
BRR, although BRR performs poorly for the post-Great Moderation 1985-2006 period. PLS,
however, performs well throughout the different evaluation samples and structurally outperforms
the RW benchmark, which according to the results in Table 14 dominates the AR benchmarks
for the federal funds rate.

The empirical forecast evaluation leads to a number of general observations. First, the PLS-
based forecast models are, generally speaking, amongst the best performing models. Even in
the few cases when they are outperformed by either PC- or BRR-based approaches, they are
close competitors. Note also that in Tables 15-19 the performance of methods that use principal
components and PLS factors are pretty close, with PLS usually having the edge over principal
components-based regressions. These findings are almost identical to our Monte Carlo evaluation
in Section 3.2 when we assume that the data complies with a factor structure. However, in that
case the Monte Carlo simulations also indicated that BRR models outperform the rest, whereas
in the empirical results of this subsection the BRR models hardly ever dominate in terms of
forecasting performance.

5 Conclusions

In this paper we have revisited a number of approaches for prediction with many predictors that
are widely used in macroeconomic forecasting and compare these with a less widely known alter-
native approach: partial least squares (PLS) regression. Under PLS regression, one constructs a
number of linear combinations of the predictor variables such that the covariances between the
target variable and each of these linear combinations are maximized.

We provide theoretical arguments for asymptotic similarity between principal components
(PC) regression and PLS regression when the underlying data has a factor structure. More
specifically, we prove that when the second moment matrix of the predictor variables is reduced
rank in nature, differences between PC and PLS regressions disappear rapidly at a rate exceeding
(NT )1/2, where N (T ) is the cross-section (time series) dimension of the data. We also argue that
forecast combinations can be considered as a specific form of PLS regression. Hence, whether
or not a large panel of predictors has a factor structure, we would expect PLS regression, like
Bayesian ridge regression, to do well in macroeconomic forecasting.

An extensive Monte Carlo analysis, which compares PC regression and Bayesian ridge re-
gression (for several ridge parameter values) with PLS regression, yields a number of interesting
insights. Firstly, when we assume that the predictors relate to the target variable through a
factor structure, PLS regression is shown to have an in-sample and out-of-sample performances
that are at least comparable to, and often better than PC regression. PLS regression also com-
pares well to Bayesian ridge regression under this data specification, although Bayesian ridge

19



regression generally performs the best across the three approaches. When the relation between
the predictors and the target variable does not comply with a factor structure, PLS regression
clearly has the edge in terms of in-sample fit and out-of-sample forecasting performance.

Finally, we apply PC, PLS and Bayesian ridge regression on a panel of 104 U.S. monthly
macroeconomic and financial variables to forecast, for the United States, CPI inflation, core
CPI inflation, industrial production, unemployment and the federal funds rate, where these
forecasts are evaluated across several sub-samples. PLS regression turns out to be generally the
best performing prediction method, and even in the few cases when it is outperformed by PC
regression or Bayesian ridge regression PLS regression still is a close competitor.
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Table 13: Transformation of the forecast variables

Yt ∆yt,t−1 ∆yt+h,t

CPI index ∆ lnYt,t−12 −∆lnYt−1,t−13 ∆ lnYt+h,t+h−12 −∆lnYt,t−12

core CPI index ∆ lnYt,t−12 −∆lnYt−1,t−13 ∆ lnYt+h,t+h−12 −∆lnYt,t−12

Industrial Production index ∆ lnYt,t−1 ∆lnYt+h,t

Unemployment rate ∆Yt,t−1 ∆Yt+h,t

Federal Funds rate ∆Yt,t−1 ∆Yt+h,t

Notes: The table illustrates the transformation of a forecast variable Yt, indicated in the first column,
for use in prediction regressions (19) and (20).

Table 14: Relative forecast performance of the benchmark models: AR versus RW

h CPI inflation core CPI infl. Ind. Prod. Unemployment Fed. Funds Rate

January 1972 - December 2006

1 0.8343 0.9094 0.9185 0.9617 1.0074
3 0.9938 0.8960 0.8833 0.8992 1.0625
12 1.0302 1.0270 0.9039 0.9871 1.0794
24 1.1023 1.0349 0.8966 1.0379 1.0483

January 1985 - December 2006

1 0.8347 0.9014 0.9993 0.9946 0.9157
3 0.9551 0.9265 0.8653 0.9507 1.0099
12 1.0780 1.1252 0.7257 0.9592 1.0318
24 1.0517 1.0889 0.6602 1.0237 1.0526

January 1972 - December 1984

1 0.8339 0.9110 0.8747 0.9403 1.0142
3 0.8763 0.9975 0.8902 0.8800 1.0678
12 0.9935 1.0259 0.9950 0.9956 1.0931
24 1.0978 1.0302 1.1477 1.0399 1.0376

Notes: The table reports the ratio of the root mean squared prediction error (18) of the autore-
gressive model (16) vis-à-vis the random walk model (17) for each of our forecast variables (see
Table 13)) at each horizon h (in months).

33



Table 15: Forecast evaluation for CPI inflation

PC PLS BRR
h 1 PC 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N 10N 20N

January 1972 - December 2006

Benchmark: RW
1 0.9440 0.9291 0.9138 0.9293 0.9114 0.9208 0.9333 1.0684 1.0231 1.0000 0.9751
3 0.8950 0.9064 0.8951 0.8975 0.8678 0.9003 0.9213 1.0529 1.0211 1.0008 0.9777
12 0.8281 0.8411 0.8308 0.8559 0.8101 0.8233 0.8446 1.0090 0.9552 0.9268 0.8983
24 0.8974 0.9102 0.8659 0.8933 0.8441 0.8476 0.8636 0.9761 0.9301 0.9045 0.8792

Benchmark: AR
1 0.9650 0.9804 0.9795 0.9847 0.9643 1.0044 1.0565 1.2076 1.1337 1.1141 1.0849
3 0.9404 0.9582 0.9692 0.9754 0.9229 0.9769 1.0059 1.1377 1.0994 1.0782 1.0568
12 0.8166 0.8541 0.8201 0.8360 0.8032 0.8031 0.8251 0.9831 0.9341 0.9085 0.8827
24 0.8193 0.8223 0.7694 0.7942 0.7709 0.7701 0.7884 0.8673 0.8336 0.8150 0.7956

January 1985 - December 2006

Benchmark: RW
1 0.9747 0.9594 0.9395 0.9431 0.9510 0.9372 0.9508 1.0372 1.0200 1.0082 0.9923
3 0.9837 1.0149 1.0088 0.9972 0.9928 1.0230 1.0263 1.1211 1.1047 1.0945 1.0808
12 1.0143 1.0180 1.1165 1.1323 1.0158 1.0729 1.1061 1.2494 1.2235 1.2064 1.1830
24 1.0765 1.0205 1.0884 1.1553 1.0127 1.0546 1.1322 1.4302 1.3693 1.3165 1.2494

Benchmark: AR
1 0.9867 0.9777 0.9587 0.9481 0.9707 0.9487 1.0340 1.0782 1.0659 1.0555 1.0414
3 0.9828 0.9733 0.9602 0.9580 0.9696 0.9853 1.0681 1.1658 1.1603 1.1458 1.1220
12 0.9401 0.9165 0.9798 0.9918 0.9024 0.9433 0.9859 1.1498 1.1191 1.0973 1.0708
24 1.0045 0.9737 1.0086 1.1228 0.9446 1.0047 1.0787 1.3602 1.2993 1.2517 1.1893

January 1972 - December 1984

Benchmark: RW
1 0.9132 0.8985 0.8881 0.9156 0.8710 0.9045 0.9160 1.0979 1.0260 0.9920 0.9580
3 0.8282 0.8244 0.8082 0.8229 0.7703 0.8067 0.8432 1.0058 0.9616 0.9331 0.9020
12 0.7509 0.7679 0.7098 0.7417 0.7242 0.7221 0.7413 0.9267 0.8617 0.8278 0.7954
24 0.8456 0.8657 0.7984 0.8039 0.7791 0.7615 0.7570 0.7747 0.7436 0.7337 0.7284

Benchmark: AR
1 0.9433 0.9830 0.9995 1.0193 0.9579 1.0559 1.0780 1.3219 1.1963 1.1685 1.1258
3 0.9059 0.9461 0.9757 0.9883 0.8848 0.9705 0.9552 1.1162 1.0506 1.0236 1.0040
12 0.7443 0.8083 0.7374 0.7589 0.7504 0.7336 0.7472 0.9155 0.8564 0.8275 0.7999
24 0.7795 0.7826 0.7134 0.7148 0.7196 0.6922 0.6959 0.7052 0.6780 0.6687 0.6631

Notes: The table reports the ratio of the root mean squared prediction error (18) of either a version of (19)
vis-à-vis autoregressive model (16) or a version of (20) vis-à-vis the random walk model (17) for CPI inflation
(see Table 13)) at each horizon h (in months). Versions of (19) and (20) depend on the usage of principal
components (PC), partial least squares (PLS) or Bayesian ridge regression (BRR) to compress the information
in the panel of predictor variables; see Section 4.1. In each case we use several sub-variants, depending either
on the number of principal components, PLS factors or shrinkage parameters (BRR), where the shrinkage
parameters is assumed to be proportional to the number of predictors in the panel (N = 104). The best
performing method relative to the benchmarks are highlighted in bold.
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Table 16: Forecast evaluation for core CPI inflation

PC PLS BRR
h 1 PC 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N 10N 20N

January 1972 - December 2006

Benchmark: RW
1 0.9787 0.9384 0.9574 0.9504 0.9109 0.9631 0.9651 1.2467 1.1775 1.1361 1.0894
3 0.9503 0.9167 0.9318 0.9340 0.8329 0.8828 0.9020 1.1053 1.0420 1.0107 0.9782
12 0.8512 0.9750 0.9958 1.0141 0.7928 0.8657 0.8935 1.0904 1.0222 0.9865 0.9495
24 0.8363 0.8619 0.8282 0.8425 0.8220 0.8621 0.9063 1.0040 0.9598 0.9319 0.9029

Benchmark: AR
1 0.9893 0.9677 1.0111 1.0203 0.9803 1.0516 1.0560 1.2930 1.2203 1.1802 1.1217
3 0.9587 0.9275 0.9356 0.9189 0.8697 0.8808 0.9175 1.0596 1.0170 0.9950 0.9711
12 0.8346 0.9631 0.9748 0.9768 0.7806 0.8428 0.8694 1.0463 0.9945 0.9624 0.9265
24 0.8089 0.8381 0.8037 0.8043 0.7957 0.8362 0.8744 0.9749 0.9323 0.9047 0.8754

January 1985 - December 2006

Benchmark: RW
1 0.9991 1.0649 1.0592 1.0696 1.0525 1.0630 1.1549 1.5885 1.5161 1.4656 1.4001
3 1.0270 1.2869 1.3188 1.2906 1.1525 1.1733 1.1855 1.6692 1.5536 1.4830 1.4064
12 1.1841 1.3313 1.5884 1.5856 1.2658 1.3608 1.3023 1.6925 1.5659 1.5012 1.4295
24 1.1129 1.1117 1.5048 1.5467 1.1487 1.3837 1.4891 1.6831 1.6374 1.5862 1.5184

Benchmark: AR
1 1.0076 1.0308 1.0256 1.0262 1.0214 1.0519 1.1818 1.4999 1.4469 1.4064 1.3385
3 1.0438 1.1884 1.1978 1.2123 1.0940 1.1312 1.2094 1.6346 1.5353 1.4740 1.4052
12 1.1097 1.2269 1.4571 1.4239 1.1726 1.2693 1.2065 1.5380 1.4514 1.3918 1.3202
24 1.0245 1.0261 1.3693 1.4246 1.0599 1.2665 1.3638 1.5588 1.4927 1.4437 1.3818

January 1972 - December 1984

Benchmark: RW
1 0.9747 0.9118 0.9363 0.9254 0.8807 0.9425 0.9237 1.1688 1.0996 1.0603 1.0181
3 0.9426 0.8740 0.8874 0.8942 0.7966 0.8508 0.8710 1.0324 0.9766 0.9513 0.9253
12 0.8121 0.9357 0.9318 0.9580 0.7385 0.8170 0.8592 1.0237 0.9642 0.9344 0.9046
24 0.7933 0.8221 0.7422 0.7507 0.7692 0.7896 0.8291 0.8825 0.8489 0.8301 0.8117

Benchmark: AR
1 0.9857 0.9553 1.0083 1.0192 0.9723 1.0516 1.0303 1.2498 1.1722 1.1320 1.0754
3 0.9518 0.9017 0.9101 0.8897 0.8482 0.8559 0.8881 0.9905 0.9556 0.9391 0.9216
12 0.7983 0.9314 0.9195 0.9281 0.7326 0.7980 0.8398 0.9941 0.9475 0.9198 0.8897
24 0.7709 0.8039 0.7257 0.7213 0.7480 0.7703 0.8025 0.8765 0.8408 0.8193 0.7973

Notes: See the notes for Table 15.
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Table 17: Forecast evaluation for industrial production

PC PLS BRR
h 1 PC 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N 10N 20N

January 1972 - December 2006

Benchmark: RW
1 0.8775 0.8600 0.8557 0.8547 0.8437 0.8589 0.8615 1.1243 1.0127 0.9672 0.9276
3 0.8658 0.8216 0.8287 0.8412 0.7784 0.7668 0.7836 1.0538 0.9444 0.8981 0.8564
12 0.9182 1.0414 1.0621 1.0657 0.7912 0.8558 0.8630 1.0785 1.0022 0.9673 0.9324
24 0.9138 1.0734 1.0875 1.0929 0.9037 0.8575 0.8963 1.0131 0.9691 0.9480 0.9253

Benchmark: AR
1 0.9581 0.9388 0.9291 0.9303 0.9239 0.9246 0.9664 1.2110 1.1275 1.0774 1.0308
3 0.9839 0.9289 0.9310 0.9411 0.8870 0.8752 0.9036 1.2080 1.1060 1.0605 1.0149
12 1.0218 1.1922 1.2204 1.1878 0.8768 0.9598 0.9514 1.1584 1.1133 1.0876 1.0567
24 1.0156 1.1505 1.1803 1.1840 1.0030 0.9657 0.9994 1.1511 1.1196 1.0950 1.0653

January 1985 - December 2006

Benchmark: RW
1 0.9664 0.9758 0.9822 0.9751 0.9610 0.9876 0.9810 1.1179 1.0852 1.0652 1.0426
3 0.8450 0.8486 0.8562 0.8628 0.8196 0.8737 0.9021 1.1527 1.1024 1.0690 1.0296
12 0.7217 0.7791 0.7878 0.7980 0.7422 0.8619 0.9127 1.1417 1.1000 1.0701 1.0311
24 0.6902 0.7044 0.7216 0.7312 0.7699 0.7432 0.8405 1.1055 1.0625 1.0295 0.9849

Benchmark: AR
1 0.9743 0.9685 0.9874 0.9831 0.9528 0.9650 1.0141 1.1502 1.1331 1.1023 1.0706
3 0.9861 0.9784 0.9874 0.9880 0.9443 1.0287 1.0490 1.3272 1.2904 1.2598 1.2187
12 1.0242 1.0794 1.0815 1.0794 0.9759 1.2166 1.2446 1.6380 1.5960 1.5586 1.5046
24 1.0820 1.0725 1.0761 1.0867 1.1274 1.1642 1.2677 1.6543 1.6082 1.5657 1.5054

January 1972 - December 1984

Benchmark: RW
1 0.8289 0.7950 0.7839 0.7867 0.7776 0.7858 0.7941 1.1276 0.9739 0.9136 0.8636
3 0.8737 0.8086 0.8161 0.8307 0.7605 0.7181 0.7309 1.0115 0.8732 0.8199 0.7765
12 1.0180 1.1660 1.1946 1.1940 0.8043 0.8338 0.8139 1.0110 0.9087 0.8715 0.8420
24 1.1578 1.4260 1.4413 1.4439 1.0704 0.9961 0.9845 0.8976 0.8549 0.8559 0.8697

Benchmark: AR
1 0.9473 0.9186 0.8884 0.8937 0.9043 0.8969 0.9336 1.2495 1.1237 1.0607 1.0037
3 0.9828 0.9066 0.9070 0.9206 0.8634 0.8081 0.8420 1.1593 1.0276 0.9747 0.9265
12 1.0218 1.2216 1.2589 1.2169 0.8299 0.8448 0.8187 0.9288 0.8784 0.8583 0.8400
24 0.9913 1.1835 1.2218 1.2184 0.9508 0.8605 0.8604 0.8562 0.8312 0.8181 0.8101

Notes: See the notes for Table 15.
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Table 18: Forecast evaluation for unemployment

PC PLS BRR
h 1 PC 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N 10N 20N

January 1972 - December 2006

Benchmark: RW
1 0.9101 0.8927 0.8977 0.9073 0.8856 0.8879 0.8923 1.0738 1.0115 0.9809 0.9495
3 0.8669 0.8095 0.8119 0.8227 0.7964 0.7705 0.8018 0.9908 0.9154 0.8823 0.8500
12 0.9949 1.0483 1.0516 1.0424 0.8338 0.8434 0.8759 1.1440 1.0647 1.0254 0.9835
24 1.0522 1.1398 1.1686 1.1453 0.9195 0.8471 0.8950 1.0952 1.0231 0.9888 0.9539

Benchmark: AR
1 0.9380 0.9057 0.9169 0.9228 0.9061 0.9009 0.9182 1.1588 1.0848 1.0452 1.0055
3 0.9777 0.9031 0.9065 0.9352 0.8889 0.8616 0.8935 1.1236 1.0553 1.0204 0.9839
12 1.0099 1.0542 1.0494 1.0438 0.8606 0.8645 0.8873 1.1004 1.0408 1.0116 0.9798
24 1.0113 1.0761 1.1071 1.0861 0.8926 0.8221 0.8618 0.9718 0.9367 0.9170 0.8955

January 1985 - December 2006

Benchmark: RW
1 0.9825 0.9850 0.9848 0.9867 0.9761 0.9781 0.9875 1.1489 1.1203 1.1030 1.0813
3 0.9095 0.8959 0.8918 0.8897 0.8741 0.8926 0.9357 1.1207 1.0996 1.0786 1.0483
12 0.9422 0.9602 0.9393 0.9332 0.8257 0.9385 0.9403 1.3248 1.2620 1.2137 1.1511
24 1.0501 1.0090 1.0537 1.0204 1.0248 0.9305 1.0132 1.3772 1.3150 1.2652 1.1994

Benchmark: AR
1 0.9645 0.9584 0.9596 0.9592 0.9545 0.9534 0.9721 1.1642 1.1349 1.1147 1.0901
3 0.9626 0.9484 0.9477 0.9415 0.9095 0.9483 0.9839 1.2068 1.1785 1.1571 1.1279
12 0.9865 1.0078 0.9825 0.9543 0.8646 1.0096 0.9726 1.3550 1.3078 1.2679 1.2134
24 1.0320 0.9999 1.0305 0.9874 1.0153 0.9224 0.9844 1.2612 1.2246 1.1898 1.1414

January 1972 - December 1984

Benchmark: RW
1 0.8614 0.8294 0.8384 0.8536 0.8237 0.8261 0.8269 1.0238 0.9367 0.8957 0.8563
3 0.8509 0.7757 0.7806 0.7966 0.7665 0.7211 0.7480 0.9399 0.8395 0.8002 0.7665
12 1.0121 1.0740 1.0850 1.0765 0.8353 0.8030 0.8486 1.0655 0.9799 0.9459 0.9146
24 1.0430 1.2186 1.2438 1.2390 0.8714 0.7931 0.8218 0.9078 0.8196 0.7974 0.7881

Benchmark: AR
1 0.9188 0.8667 0.8856 0.8963 0.8705 0.8621 0.8782 1.1551 1.0481 0.9933 0.9414
3 0.9837 0.8833 0.8884 0.9321 0.8801 0.8222 0.8527 1.0857 0.9978 0.9560 0.9156
12 1.0181 1.0667 1.0686 1.0701 0.8586 0.8086 0.8550 1.0006 0.9356 0.9116 0.8904
24 1.0030 1.1536 1.1878 1.1822 0.8395 0.7597 0.7914 0.7837 0.7508 0.7449 0.7456

Notes: See the notes for Table 15.
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Table 19: Forecast evaluation for the federal funds rate

PC PLS BRR
h 1 PC 2 PC 4 PC 6 PC 1 PLS 2 PLS 3 PLS N 5N 10N 20N

January 1972 - December 2006

Benchmark: RW
1 0.9146 0.9175 0.9107 0.8897 0.8541 0.8374 0.8555 1.0380 0.9827 0.9537 0.9233
3 0.9228 0.9279 0.9560 0.9747 0.8920 0.9048 0.9196 1.1090 1.0512 1.0199 0.9873
12 0.9346 0.9490 0.9281 0.9345 0.8939 0.9424 0.9757 1.3180 1.2454 1.1993 1.1461
24 0.9719 1.0426 0.9947 1.0146 0.9262 1.0004 1.0154 1.2854 1.2179 1.1769 1.1309

Benchmark: AR
1 1.0347 1.0387 0.9664 0.9325 0.9713 0.8400 0.8593 1.0032 0.9682 0.9467 0.9222
3 0.9416 1.0253 1.0525 0.9795 0.9717 0.9211 0.9214 1.0222 0.9909 0.9783 0.9582
12 0.8516 0.8602 0.8474 0.8344 0.8136 0.8694 0.8944 1.1647 1.1172 1.0861 1.0478
24 0.9622 0.9739 0.9288 0.9425 0.8724 0.9513 0.9665 1.1305 1.0978 1.0727 1.0420

January 1985 - December 2006

Benchmark: RW
1 0.8445 0.8528 1.2544 1.2335 0.8909 1.1798 1.3448 1.6444 1.5520 1.5019 1.4433
3 0.7551 0.7880 1.0271 1.0339 0.7546 1.1476 1.2513 1.7976 1.6781 1.5973 1.4968
12 0.8224 0.8613 0.9935 0.9964 0.8102 1.0153 1.0762 1.3096 1.2410 1.2044 1.1675
24 0.9303 0.9447 0.9363 0.9516 0.8836 0.9970 1.0492 1.2708 1.1958 1.1535 1.1091

Benchmark: AR
1 0.9997 1.0731 1.3156 1.2996 1.0316 1.3079 1.4715 1.8148 1.7453 1.6981 1.6343
3 0.9492 0.9620 1.0767 1.0707 0.9482 1.1327 1.3825 1.6464 1.5490 1.4716 1.4299
12 0.7993 0.8188 0.9445 0.9398 0.7939 0.9752 1.0251 1.2399 1.2065 1.1837 1.1538
24 0.8724 0.8839 0.8847 0.8820 0.8404 0.9461 0.9928 1.1432 1.1030 1.0754 1.0445

January 1972 - December 1984

Benchmark: RW
1 0.9198 0.9223 0.8781 0.8569 0.8511 0.8044 0.8046 0.9746 0.9233 0.8966 0.8694
3 0.9372 0.9394 0.9492 0.9692 0.9040 0.8773 0.8819 1.0172 0.9688 0.9454 0.9234
12 0.9531 0.9590 0.8920 0.8985 0.9000 0.9031 0.9293 1.3084 1.2355 1.1862 1.1268
24 0.9605 1.0409 0.9758 0.9800 0.8812 0.9310 0.9179 1.1764 1.1122 1.0737 1.0314

Benchmark: AR
1 1.0369 1.0364 0.9397 0.9039 0.9673 0.8009 0.8045 0.9275 0.8959 0.8770 0.8567
3 0.9393 1.0296 1.0504 0.9710 0.9726 0.9002 0.8704 0.9463 0.9247 0.9217 0.9047
12 0.8505 0.8548 0.8044 0.7886 0.8003 0.8234 0.8411 1.1337 1.0803 1.0459 1.0037
24 0.9746 0.9740 0.9104 0.9153 0.8326 0.8910 0.8789 1.0143 0.9928 0.9740 0.9492

Notes: See the notes for Table 15.
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Table A.1: Transformation of the predictor variables

Transformation code Transformation Xt of raw series Yt

1 Xt = Yt

2 Xt = ∆Yt,t−1

3 Xt = ∆Yt,t−12 −∆Yt−1,t−13

4 Xt = ln Yt

5 Xt = ∆ lnYt,t−1

6 Xt = ∆ lnYt,t−12 −∆lnYt−1,t−13

Appendices

A Data Set

The data set used for forecasting are the monthly series from the panel of U.S. indicator series as
employed in Stock and Watson (2007), but excluding our five forecast variables: CPI inflation,
core CPI inflation, (aggregate) industrial production, (aggregate) unemployment rate and the
(effective) federal funds rate. In order to be sure that these predictor variables are I(0), the
underlying raw series need to be transformed such that this is the case; generally we employ
the same transformation as Stock and Watson (2007), except for the bulk of the nominal series
where we follow, e.g., D’Agostino and Giannone (2006) and use first differences of twelve-month
transformations of the raw series. Table A.1 summarizes our potential transformations for the
raw series.

Hence, we are using as predictor variables the following 104 series, which span the sample
January 1959 - December 2006 before the appropriate transformations are applied, and we refer
to Stock and Watson (2007) for more details regarding data construction and sources:

Series Yt Transformation:
(See Table A.1)

INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5
INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5
INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5
INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5
INDUSTRIAL PRODUCTION INDEX - MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5
INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5
INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 5
INDUSTRIAL PRODUCTION INDEX - FUELS 5
NAPM PRODUCTION INDEX (PERCENT) 1
CAPACITY UTILIZATION - MANUFACTURING (SIC) 1
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6
AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5
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REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5
REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5
EMPLOYEES, NONFARM - TOTAL PRIVATE 5
EMPLOYEES, NONFARM - GOODS-PRODUCING 5
EMPLOYEES, NONFARM - MINING EMPLOYEES, NONFARM - CONSTRUCTION 5
EMPLOYEES, NONFARM - MFG 5
EMPLOYEES, NONFARM - DURABLE GOODS 5
EMPLOYEES, NONFARM - NONDURABLE GOODS 5
EMPLOYEES, NONFARM - SERVICE-PROVIDING 5
EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES 5
EMPLOYEES, NONFARM - WHOLESALE TRADE 5
EMPLOYEES, NONFARM - RETAIL TRADE 5
EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES 5
EMPLOYEES, NONFARM - GOVERNMENT 5
INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5
CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5
UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5
UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5
AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING 1
AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM - MFG 2
HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4
HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,U)SA 4
HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4
HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4
HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4
HOUSING STARTS:WEST (THOUS.U.)S.A. 4
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2
INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2
BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
INTEREST RATE SPREAD: 6-MO. TREASURY BILLS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 1-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: 10-YR. TREASURY BONDS MINUS 3-MO. TREASURY BILLS 1
INTEREST RATE SPREAD: AAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
INTEREST RATE SPREAD: BAA CORPORATE MINUS 10-YR. TREASURY BONDS 1
MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 6
MZM (SA) FRB St. Louis 6
MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP)(BIL$,SA) 6
MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 6
DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 6
DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 6
Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA) 6
CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 6
Personal Consumption Expenditures, Price Index (2000=100) , SAAR 6
Personal Consumption Expenditures - Durable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100), SAAR 6
Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR 6
PCE Price Index Less Food and Energy (SA) Fred 6
PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6
PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6
PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6
Real PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6
Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 5
PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA) 6
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PPI Crude (Relative to Core PCE) 5
NAPM COMMODITY PRICES INDEX (PERCENT) 1
UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5
FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5
S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 2
COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE 5
S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2
PURCHASING MANAGERS’ INDEX (SA) 1
NAPM NEW ORDERS INDEX (PERCENT) 1
NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
NAPM INVENTORIES INDEX (PERCENT) 1
NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI) 5
NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI) 5
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