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Abstract

We propose a novel Bayesian nonparametric method for hierarchical modelling on a

set of related density functions, where grouped data in the form of samples from each

density function are available. Borrowing strength across the groups is a major chal-

lenge in this context. To address this problem, we introduce a hierarchically structured

prior, defined over a set of univariate density functions, using convenient transforma-

tions of Gaussian processes. Inference is performed through approximate Bayesian

computation (ABC), via a novel functional regression adjustment. The performance

of the proposed method is illustrated via a simulation study and an analysis of rural

high school exam performance in Brazil.
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1 Introduction

We introduce a new statistical procedure for hierarchical modelling on a set of related den-

sities fi(x) for i = 1, . . . , g, based on random samples {Xij} such that Xij ∼ fi(x) for

j = 1, . . . , ni. The benefits of hierarchical modelling are well known in the parametric con-

text, where the same model is fitted to different but related datasets or groups, and where

model parameters are allowed to vary across groups (Gelman et al., 2004). A hierarchical

prior may be defined on the group varying parameters, and the data used to determine

how much pooling of information to perform across groups. The problem considered here is

the nonparametric equivalent of this. Here, the nonparametric density functions fi(x) are

thought to be related and we aim to share information hierarchically to improve estimation

of each density, especially for those densities fi(x) for which the corresponding sample size

ni is small.

Bayesian nonparametric methods have made enormous advances over the last two decades.

The Dirichlet process (DP) (Ferguson, 1973) has played a central role in this development.

Methods based on Dirichlet process mixture (DPM) models, where a mixing distribution

is given a Dirichlet process prior, are a standard approach to flexible Bayesian density es-

timation (Lo, 1984; West et al., 1994; Escobar and West, 1995). These methods also have

extensions to grouped data and the estimation of a set of related density functions, the prob-

lem considered here. Important methods for grouped data include the analysis of densities

model of Tomlinson and Escobar (1999) which uses a DPM model for each density in which

the base measure for the mixing densities is the same and given a DPM prior; the hierarchical

Dirichlet process (Teh et al., 2006) where mixing distributions are given DP priors with a

common base measure which is given a DP prior; Dirichlet process mixture of ANOVA mod-

els (De Iorio et al., 2004) where the atoms in a Dirichlet process are modelled as dependent

on a covariate following an ANOVA type dependence structure; and the hierarchical model

of Muller et al. (2004) in which distributions are modelled as a mixture of a common and
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group specific component, with these components being given DP mixture priors.

One alternative to DP based methods in Bayesian nonparametrics is the use of Gaussian

processes (Leonard, 1978; Thorburn, 1986; Lenk, 1988, 1991; Tokdar, 2007; Tokdar and

Ghosh, 2007). However, to the best of our knowledge hierarchical versions of Gaussian

process priors for grouped data situations have not been developed in the literature. Gaussian

process methods can be attractive because the parameters in the resulting priors allow very

easy expression of relevant prior information, such as smoothness of the densities and, in the

hierarchical setting, the extent of sharing information between groups. For the DP mixture

based methods, on the other hand, generally prior information must be expressed through

a prior on a mixing distribution, through which it is difficult to adequately express similar

prior beliefs. One reason that Gaussian process density estimation methods are not more

popular is perhaps the computational difficulty. Such difficulties are even more acute in the

hierarchical setting involving grouped data.

Here we introduce a hierarchical Gaussian process prior, a reformulated version of the

prior proposed by Adams et al. (2009), and discuss tractable methods for computation with

this prior. Our construction, besides being able to handle an arbitrary number of hierar-

chy levels, provides a convenient way of expressing prior beliefs regarding both the degree

of similarity between the densities and the nature of their characterising features, such as

smoothness and support. We also establish a remarkably different approach for making in-

ference. Instead of relying on Markov chain Monte Carlo (MCMC) methods to draw samples

from the posterior distribution, as is commonly implemented in other approaches to Gaus-

sian process density estimation (Adams et al., 2009) which can suffer from poor performance,

we alternatively introduce an approximate Bayesian computation (ABC) (Beaumont et al.,

2002) functional regression-adjustment to draw approximate samples from the posterior.

The use of ABC to estimate functional (infinite-dimensional) objects in itself represents an

important contribution to the ABC literature.

In Section 2, we introduce the hierarchical Gaussian process prior and present an al-
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gorithm for sampling data from this prior. Section 3 describes the inferential strategy for

estimating the infinite-dimensional parameter. Performance of the proposed density esti-

mator is investigated in a simulation study in Section 4. Finally, in Section 5, we use the

proposed estimator to compare rural high school exam performance across states in Brazil.

2 The hierarchical Gaussian process prior

We specify a hierarchical Gaussian process prior on the set of densities fi(x), i = 1, . . . , g,

as follows:

fi(x) =
L(Zi(x))b(x|φ)

ci(φ, Zi(x))
(1a)

Zi(x) ∼ GP(µ(x), k(x, x′|θ1)) (1b)

µ(x) ∼ GP(m(x), k(x, x′|θ2)) (1c)

(θ1, θ2) ∼ π(·). (1d)

Here L(z) = 1/(1 + exp(−z)) denotes the logistic function, b(x|φ) is an arbitrarily chosen

parametric base density with hyperparameters φ, and GP(µ(x), k(x, x′|θ)) represents a Gaus-

sian process with mean function µ(x) and covariance function k(x, x′|θ) with parameters θ.

The function m(x) is a conveniently chosen function discussed further below, π(·) is a hyper-

prior for the parameters of each covariance function, and ci(φ, Zi(x)) =
∫
L(Zi(x))b(x|φ)dx

is the normalising constant of fi(x). Gaussian processes are a common tool for modelling

functional data and can be understood as an infinite-dimensional generalisation of the Gaus-

sian distribution. A comprehensive review of Gaussian processes is found in Rasmussen and

Williams (2006). See also Shi and Choi (2011) for a book length treatment of Gaussian

processes in functional data analysis.

Equation (1a) defines a deterministic map from auxiliary functions Zi(x) to the nor-

malised densities fi(x). Operating on the transformed space avoids difficulties otherwise
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implied by the intrinsic properties of density functions – namely, that they be non-negative

and integrate to one. Under this prior, all marginal densities are considered potentially re-

lated, and bound by a common Gaussian process mean function µ(x) (Equation 1b), which

is itself unknown. The above formulation, though simple, will be shown to be highly adapt-

able, and capable of adequately describing a wide range of possible prior beliefs. For ease

of presentation only two levels of hierarchy are described above, but it is straightforward to

incorporate multiple hierarchical levels, as is illustrated in the analysis of Brazilian school

exam performance in Section 5.

For this article, we adopt the squared exponential kernel, k(x, x′) = σ2 exp(−α(x−x′)2) as

covariance function, although other options are easily accommodated. The hyperparameters

(θ1, θ2) = (σ1, α1, σ2, α2) play a crucial role in the behaviour of fi(x). Figure 1 shows g = 5

densities drawn from the proposed prior under various parameter settings for (σ1, α1, σ2, α2).

The standard uniform distribution was chosen as the base density b(x|φ) and we set m(x) =

−10 (the motivation for this choice will be made clear in Section 3).

While the α’s are length-scale parameters that determine the speed with which the co-

variance decays as a function of the distance |x− x′|, the σ parameters dictate how similar

the densities are to b(x|φ), with larger σ indicating less similarity. The ratio σ1/σ2 defines

how closely related the different densities are: if the ratio is large, the densities are nearly

independent (Figures 1a and 1c). On the other hand, if the ratio is small, most of the vari-

ability is due to the variation of the common mean, which results in very similar marginal

densities (Figures 1b and 1d).

2.1 Sampling from the prior

Approximate draws from this prior may be naturally obtained by sequentially sampling

the unknown parameters from the top (Equation (1d)) to the bottom (Equation (1a)) of

the hierarchy. It is possible to derive an exact sampler using a variation of Algorithm 3.1

in Adams et al. (2009). However, for a faster simulator, we favour a finite-dimensional
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Figure 1: Samples from the prior distribution based on the squared exponential function with
g = 5, under varying prior conditions. The above panels show: (a) independence and dissimilarity
to the base density (σ1 = 1, α1 = 100, σ2 = 0.1, α2 = 100); (b) dependence and dissimilarity to the
base density (σ1 = 0.1, α1 = 100, σ2 = 1, α2 = 100); (c) independence and similarity to the base
density (σ1 = 1, α1 = 1, σ2 = 0.1, α2 = 1), and (d) dependence and similarity to the base density
(σ1 = 0.1, α1 = 1, σ2 = 1, α2 = 1).

approximation as in Tokdar (2007), which results in the so-called surrogate prior.

In particular, we first sample the hyperparameters (θ1, θ2) ∼ π(·) from (1d). Next, define

xlow and xhigh to be the lower and upper β-quantiles of b(x|φ), where β is chosen to be small,

and construct a regular grid of k points on the range [xlow, xhigh], i.e., ψ1 < . . . < ψk, with

ψj = xlow + (xhigh − xlow)(j − 1)/(k − 1), for j = 1, . . . , k.

It follows from the Gaussian process definition that µψ = (µ(ψ1), . . . , µ(ψk))
> follows a k-

variate normal distribution with mean mψ = (m(ψ1), . . . ,m(ψk))
> and covariance matrix Σ,

with typical element Σij = k(ψi, ψj|θ2). Sampling µψ is therefore trivial. Similarly, we obtain
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Zψ
i = (Zi(ψ1), . . . , Zi(ψk))

>, i = 1, . . . , g, as draws from the multivariate normal distribution

N(µψ,Λ), with covariance matrix defined as Λij = k(ψi, ψj|θ1). The normalising constants

ci(φ, Zi(x)) may then be estimated using numerical integration. Through (1a), this uniquely

determines the corresponding densities fψ1 , . . . , f
ψ
g .

Each vector Zψ
i and fψi represents a discretised observation of the corresponding underly-

ing function. Continuous approximations for Zi(x) and fi(x) can then be obtained by fitting

B-splines to each of these vectors via least squares, resulting in Z̃i(x) and f̃i(x), respectively.

The quality of this approximation is controlled by the number of points in the grid, k, and

the number of basis functions used. Finally, data Xij may be generated from f̃i(x) using

a rejection sampling algorithm with b(x|φ) as the proposal distribution. A candidate x∗ is

accepted with probability f̃i(x
∗)/[Mb(x∗|φ)], where M = max{f̃i(x)/b(x|φ)}. The value of

M is unknown, but may be determined by numerical search.

3 An approximate Bayesian inferential procedure

The resulting posterior distribution is given as

p(Z, θ|D) =
p(Z, θ)p(D|Z)∫ ∫

p(Z′, θ′)p(D|Z′)dZ′dθ′

∝ π(θ1, θ2)p(µ(x)|θ2)
g∏
i=1

p(Zi(x)|µ(x), θ1)

ni∏
j=1

L(Zi(xij))b(xij|φ)

ci(φ, Zi(xij))
,

where p denotes a joint or conditional distribution, θ = (θ1, θ2), Z compactly denotes the

set of functions Z1(x), . . . , Zg(x) and D represents the observed data. The above posterior

distribution is computationally difficult to work with directly. As an alternative we develop

an approximate Bayesian computation procedure. ABC methods have been extensively

developed to draw samples from an approximation to the posterior distribution, based only on

the ability to sample data from the model, without the need to evaluate the posterior directly.

See e.g. Beaumont et al. (2002); Blum et al. (2013); Nott et al. (2014) for more details on
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ABC methods. As part of this inference, we extend the ideas behind the ABC regression-

adjustment (Beaumont et al., 2002) to the functional (infinite-dimensional) setting.

Samples from the posterior distribution can be used to estimate any quantity of interest,

such as the mean or quantiles of fi(x). Here, the posterior mean E[fi(x)|D], which is a func-

tion itself, is a Bayes estimator for fi(x). Note that while any given sample from p(Zi(x)|D)

corresponds to a unique sample from p(fi(x)|D), the reverse does not hold.

3.1 ABC for Gaussian process density estimation

Approximate Bayesian computation methods implement an approximate Bayesian inference

based on the matching of simulated and observed summary statistics. A typical rejection-

sampling ABC algorithm applied to this particular context would be as follows:

1. Draw a sample (a set of density functions) from the hierarchical Gaussian process

prior using the method described in Section 2.1, and generate synthetic data from

these densities of the same size as the observed data.

2. Summarise the synthetic data using a set of summary statistics. We adopt the well

known kernel density estimator, computed for each group, i = 1, . . . , g.

3. If the resulting summary statistic is, by an appropriate metric, similar to the summary

statistic computed over the observed data, accept the densities generated in step 1.

Otherwise these are rejected.

4. Repeat steps 1–3 to produce m accepted samples.

The popularity and computational simplicity of the kernel density estimator makes it a

suitable candidate to play the role of the summary statistic in the ABC procedure. In

particular, we employ a Gaussian kernel and set the bandwidth as h = σ̂(4/3n)−1/5 where

σ̂ denotes the sample standard deviation (Scott, 1992). We denote by Ki`(ψj) the resulting

kernel density estimate obtained from the data in group i in synthetic dataset ` evaluated at
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ψj, for i = 1, . . . , g, ` = 1, . . . ,m. Alternative density estimators can be adopted, providing

they are computationally fast.

Step 3 above requires the specification of a measure of similarity between the synthetic

and observed data. Here, a natural and convenient option is to define the divergence of

synthetic dataset ` from the observed data as

D` =

g∑
i=1

k∑
j=1

∣∣log(Kobs
i (ψj))− log(Ki`(ψj))

∣∣ Kobs
i (ψj), (2)

where | · | denotes the absolute value operator, and where Kobs
i (ψj) denotes the kernel density

estimator described above applied to the observed data in group i, evaluated at ψj.

This divergence measure is closely related to the sum of the Kullback-Leibler divergences

of the kernel density estimates computed over the observed and synthetic data.

In order to produce more accurate posterior samples, we follow Beaumont et al. (2002)

and weight the samples according to how well the synthetic data reproduces the observed

data through (2) using the Epanechnikov kernel w(D) = 1 − (D/δ)2 for D ≤ δ and 0

otherwise. Here δ is a threshold which determines how close the synthetic and observed

summary statistics must be before the sample densities are accepted as an approximate

draw from the posterior distribution in step 3. Its value is often determined in terms of a

quantile of the

3.2 A functional regression-adjustment

As with all ABC algorithms, the approximation error associated with the ABC method

described in Section 3.1 can be substantial, unless the threshold δ is small. However, if δ

is too small, then the acceptance rate of the algorithm will be prohibitively low. Beaumont

et al. (2002) proposed the regression-adjustment as a simple approach to adjust the posterior

samples obtained with δ > 0, so that δ ≈ 0. In the simple finite-dimensional, parametric
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model considered, a (local) linear relationship

ϑ = α + β>(s− sobs) + ε

is assumed to hold between the model parameters ϑ and the vector of simulated and observed

summary statistics, s and sobs, where ε denotes a zero mean error. If this model holds, then

ϑ∗ = ϑ− β̂>(s− sobs),

where β̂ is the least-squares estimate of β, is an approximate draw from the posterior with s =

sobs (i.e. δ = 0.) See Beaumont et al. (2002); Blum and Francios (2010); Blum et al. (2013)

for further discussion of regression-adjustment methods. In the present setting, we may

similarly perform a regression-adjustment, but using a functional regression model (Ramsay

and Silverman, 2005) due to the functional nature of the parameters and summary statistics.

From the definition of the logistic function, log(L(z)) ≈ z, for negative and sufficiently

small z. Accordingly, Equation (1a) can be rewritten as

Zi(x) ≈ log

(
fi(x)ci(φ, Zi(x))

b(x|φ)

)
. (3)

This approximation is accurate up to the fourth decimal place for Zi(x) ≤ −10,∀x, which

can be easily achieved through appropriate choice of m(x). In this article we set m(x) = −10.

A useful, additional advantage of using a negative mean function for µ(x) is that this prior

does not give strong support to unrealistic, flat-peaked densities, which can happen if one

sets m(x) = 0. Equation (3) forms the basis to appropriately specify a functional regression

model. For i = 1, . . . , g, we write

Z̃i`(x) = offset + γi0(x) + γi1(x) log(K̃i`(x)) + γi2(x)log(K̃−i,`(x)) + ε`(x), (4)
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where Z̃i`(x) denotes a B-spline fitted to Zi`(ψ1), . . . , Zi`(ψk), γ
i
0(x), γi1(x) and γi2(x) are

functional regression parameters to be estimated, and ε`(x) is a zero-mean error term. The

offset term is given by log
(

b(x|φ)
ci(φ,Z̃i`(x))

)
and is computed through (1a), K̃i`(x) denotes a

B-spline fitted to Ki`(ψ1), . . . , Ki`(ψk), and

log(K̃−i,`(x)) =
1

g − 1

∑
1≤h≤g
h6=i

log(K̃h`(x)). (5)

With this construction, while log(K̃i`(x)) conveys information from the i -th group itself,

log(K̃−i,`(x)) explores what has been observed in the remaining groups. Accordingly, γi2(x)

defines how much (and where) strength should be borrowed.

From (3)–(5) it can be seen that the data relates to Z̃i(x) through the function

log

(
[K̃i(x)]γ1(x)

∏
1≤h≤g
h6=i

[K̃h(x)]γ2(x)/(g−1)
)
.

This means we are ultimately using the logarithm of a weighted geometric mean of the kernel

densities to model the dependent functional object. By no means we are suggesting, though,

that our final estimate is a weighted geometric average of the kernel densities – there are other

terms in the model. The weights, which are estimated from (4) via least squares, are subject

to the condition that all groups other than group i have the same weight γ2(x)/(g−1). This

enforced condition simplifies the problem without losing too much information.

Based on (4), approximate samples from the marginal posterior distribution p(Zi(x)|D)

can then be obtained by performing the functional regression adjustment

Z̃∗i`(x) = Z̃i`(x)− γ̂i1(x)[log(K̃i`(x))− log(K̃obs
i (x))]− γ̂i2(x)[log(K̃−i,`(x))− log(K̃obs

−i (x))] (6)

where γ̂i1(x) and γ̂i2(x) are least-squares estimates of γi1(x) and γi2(x) (obtained using the

R package fda, Ramsay et al. (2013)), and where K̃obs
i (x) and K̃obs

−i (x) are the equivalent

11



summary statistics obtained from the observed data.

Note that the right-hand side of the proposed functional regression model (4) is only

defined for strictly positive kernel estimates. If necessary, this can be artificially satisfied by

adding an arbitrary tiny constant to the kernel estimates. This modified summary statistic

ensures the model is well-defined and may provide extra stability.

Finally, while the above regression models are intuitive and seem sensible, as with the

parametric regression-adjustment (Beaumont et al., 2002) they remain only a model for the

perhaps complex relationships that exist between the density estimates and the summary

statistics. Given that the regression model is fitted to those samples for which D` < δ,

this means that the local-linearity assumption of (4) may be adequate for many situations

providing that δ is sufficiently small. As for the parametric regression-adjustment, more

complex models can be developed if required (Blum and Francios, 2010).

4 A simulated example

In this section we present a simulated analysis to illustrate some important features of the

ABC density estimator. We construct g = 10 groups, with sample sizes 5, 20, 35, . . . , 140.

The base density is taken to be the standard uniform distribution and the priors for the

parameters of the squared exponential covariance functions are σ1, σ2 ∼ Gamma(3, 5) and

α1, α2 ∼ Gamma(1, 0.1), which are fairly uninformative. We generate 50, 000 samples from

the prior distribution and accept the m = 5, 000 samples closest to the observed data. We

use k = 100 grid points and fit the B-splines functions using 50 basis terms.

We focus our attention on groups 1 and 10, as they have the smallest and largest sample

sizes, respectively. Figure 2 shows the true densities (left panel) and kernel density estimates

(right panel) of each of the groups, with the latter also representing a first “crude” estimation

of the respective densities. Although the density estimate for group 10 looks reasonable, the

estimation for group 1 is clearly unsatisfactory due to the low sample size. The well known

boundary-bias of this kernel density estimator (Wand et al., 1991; Chen, 1999; Jones, 1993;
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Figure 2: (a) True densities and (b) kernel density estimates of the simulated data from g = 10
groups. Group 1 (5 datapoints) and group 10 (140 datapoints) are highlighted.

Jones and Henderson, 2007; Dai and Sperlich, 2010; Geenens, 2014) is clearly visible as a

downward dip in the density estimates near the borders of the support.

Figure 3 (left panel) shows the estimated functional regression coefficients for groups 1

(solid lines) and 10 (dashed lines). The intercepts γ10 and γ100 (black lines) are effectively

zero except for upward ticks near the boundaries. In effect, the regression model is both

identifying and attempting to correct for the boundary-bias in the density estimates. The

other regression parameters describe the contribution of log(K̃obs
i (x)) and log(K̃obs

−i (x)) in

estimating Z̃i(x). For Group 1, virtually all relevant information comes from the kernel

estimates of the other groups, as γ̂11 (solid grey line) is near zero over the entire range. For

Group 10, the situation is reversed – most of the information comes from its own kernel

density (γ̂101 (x) is large), although it still borrows strength from other groups as γ̂102 (x) (light

grey dashed line) is far from zero everywhere. All parameter estimates are not constant,

indicating that the relationship varies in different regions of the data-space. For groups 2 to

9 (plots not shown), a steady transition is observed between the results of groups 1 and 10.
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Figure 3: (a) Least-squares estimates of the functional regression coefficients γ0(x), γ1(x) and γ2(x)
for groups 1 (solid lines) and 10 (dashed lines); (b) Least-squares functional residuals for groups 1
(black lines) and 10 (grey lines).

The right panel of Figure 3 shows the plot of the estimated functional residuals given

by ε̂i` = Z̃i`(x) − Ẑi`(x), for i = 1, 10, where Ẑi`(x) denotes the fitted regression model.

For both groups, the residuals are centred on zero everywhere, with greater variability near

the boundary as expected. In addition, the residuals are more variable for group 1 than for

group 10 due to the differences in the sample sizes.

The left panels in Figure 4 illustrate 250 randomly chosen approximate samples from

the posterior. The darker lines indicate larger sample weights. It is clear that the samples

cluster around the true densities, with the variability for group 1 (small sample size) being

greater than that of group 10. The right panels in Figure 4 depict pointwise 95% central

credibility intervals of the posterior distribution, the posterior mean E[fi(x)|D], the initial

group kernel density estimate and the true density function. As expected, the ABC posterior

mean strongly outperforms the initial kernel density estimate. For group 1, the hierarchical

sharing of information between density estimates has produced a substantially improved and

more accurate estimate. Even for group 10, which has the most data, the posterior mean is
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Figure 4: Left panels: Samples from the posterior distribution for groups 1 and 10 (grey lines),
with a darker line indicating greater sample weight. True density is indicated by the coloured line.
Right panels: Comparison of the true densities, the initial kernel density estimate and the ABC
posterior mean E[fi(x)|D] with pointwise 95% central credible intervals, for groups 1 and 10.
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more accurate, and less biased at the boundaries than the initial kernel density estimate.

5 An analysis of high school exam performance in Brazil

Appropriate assessment of school performance is paramount to efficiently manage large ed-

ucational systems. In 1998 the Brazilian government introduced the high school national

exam, Enem (Exame Nacional do Ensino Medio), which annually evaluates high school stu-

dents in all states of the country. Enem is used by the Department of Education to set

the education agenda and strategically define public policies, and by Federal universities

and other educational institutes as part of their student selection criteria. According to the

Organisation for Economic Co-operation and Development, students who attend schools in

urban areas tend to perform at higher levels than other students (OECD, 2013). They con-

clude that beyond socio-economic reasons, schools in urban areas are generally larger and

benefit from better resources and greater autonomy.

We analyse data extracted from the 2012 Enem dataset to evaluate rural school perfor-

mance. The observational units are the rural schools themselves, each of which is measured by

the mean grade of its students. Interest is in estimating and comparing the grade densities of

each of the 27 states. Only schools with more than 10 student attending the exam are consid-

ered. The number of recorded rural schools in each state varies from 3 in Roraima, to 101 in

Sao Paulo. The data are available from http://portal.inep.gov.br/basica-levantamentos-acessar.

The 27 states are divided into 5 regions – North, Northeast, West Central, Southeast and

South. We expect that there may be some degree of similarity between states in the same

region, and so a reasonable prior should allow us to express this formally. For this purpose,
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Figure 5: Samples from the two-level prior distribution based on the squared exponential
covariance function with g1 = 27 state groups and g2 = 5 regional groups under varying pa-
rameter conditions. The above panels show: (a) moderate state and regional dissimilarity;
(b) moderate state dissimilarity and regional similarity; (c) strong state and regional dis-
similarity, and (d) strong state similarity and regional dissimilarity. Density colours indicate
regional membership.
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we can extend the prior described in (1a)–(1d) to include an additional level. More precisely,

fi(x) =
L(Z1

i (x))b(x|φ)

ci(φ, Z1
i (x))

Z1
i (x) ∼ GP(Z2

δ(i)(x), k(x, x′|σ1, α1))

Z2
j (x) ∼ GP(Z3(x), k(x, x′|σ2, α2))

Z3(x) ∼ GP(m(x), k(x, x′|σ3, α3)),

for i = 1, . . . , g1 = 27 and j = 1, . . . , g2 = 5, and where δ(i) indicates the region to which state

i belongs. Figure 5 illustrates samples from this prior under varying parameter conditions,

where the different colours indicate regional membership. Panels (a) and (d) represent the

case where there are differences between regions, but where the states within each regions

are fairly similar. This flexibility would be effectively impossible without an extra level of

prior hierarchy.

To handle this extended prior, we modify the functional regression model (4) appropri-

ately by including a regional level predictor. Specifically, the functional regression model for

state i, located in region j, is given by

Z̃i`(x) = offset + γi0(x) + γi1(x) log(K̃i`(x)) + γi2(x)logRj
(K̃`(x)) + γi3(x)log(K̃`(x)) + ε`(x),

for ` = 1, . . . ,m, where

logRj
(K̃`(x)) =

1

|Rj|
∑
i∈Rj

log(K̃i`(x)) and log(K̃`(x)) =
1

5

5∑
j=1

logRj
(K̃`(x)).

where Rj denotes the set of states in region j, and |Rj| the number of states in region j.

The functional regressors γi1(x), γi2(x) and γi3(x) correspond to the Gaussian processes in the

three levels of the hierarchy: state, region and country. The functional regression-adjustment

is then performed by modifying (6) in the obvious way. Beyond performing the regression-

adjustment, if there is interest in analysing the fitted regression coefficients, then the model
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may be reparametrised so that group i is only contained in one of the regressors, as in (4).

Notice that any reparametrisation does not affect the model prediction nor the adjustment.
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Figure 6: (a) Independent kernel density estimates for each of the g1 = 27 states in the Brazilian
Enem analysis. Line colour indicates region membership. (b) ABC posterior mean density estimates
for each state. (c) Sample means versus posterior means for each state. Circle area is proportional
to the number of observations in each state. (d) Posterior rank of each state according to the mean
of the posterior density estimates. Crosses indicate the rank of each state according to the sample
mean (x-axis in panel (c)).

In the following, we take the base density b(x|φ) to be N(500, 5000) and specify the

prior for the parameters of the covariance functions of the Gaussian processes to be σh ∼

Gamma(3, 5) and αh ∼ Gamma(1, 10000), for h = 1, 2, 3. We use k = 200 grid points and

150 B-spline basis functions. We generate 10, 000 samples from the prior distribution, and
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accept the m = 1, 000 samples closest to the observed data.

Figure 6(a) illustrates independent kernel density estimates of the school’s mean grades

for each of the 27 states, with line colour indicating membership in the 5 regions. While

there is some inter-state variability, there appear to be some visible similarities of density

estimates for states in the same region. These similarities become clearer in Figure 6(b),

which shows the regression-adjusted posterior mean density estimates (notice the different

plot scale). These densities indicate a strong regional clustering, and some obvious sharing

of information between states within each region.

Similarly to the example in Section 4, an analysis of the fitted regression coefficients (not

shown) indicates that the functional regressors have contrasting effects on each state. For

example, for the heavily populated state of Sao Paulo (SP), the posterior samples are mostly

determined by the kernel density estimate for this state. Alternatively, for small states in the

Northeast region, such as Alagoas (AL) and Paraiba (PB), the ABC posterior samples are

predominantly affected by the average of the kernel estimates of the states within this region.

Finally, for the Federal District (DF) and Acre (AC), although not the dominant regression

term, the overall country kernel estimate plays a substantial role. It is clear that the model is

capable of borrowing strength with the appropriate magnitude from the appropriate source

for each group.

Figure 6(c) plots the sample mean for each state against the mean of the mean posterior

density estimate, E[fi(x)|D]. Here the area of each point is proportional to the sample size

within each state. An obvious shrinkage effect can be observed, particularly in states with

fewer schools. In addition, the evident regional clusters (indicated by colouring) suggest that

geographical forces critically affect the system.

While not making full use of the posterior density estimates, a simple way to construct

a state ranking system could be via the means of these posterior densities. Figure 6(d)

illustrates the posterior distribution of the rank of each state, according to the mean of

the posterior density estimate, with a darker shade indicating greater posterior mass. The
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crosses mark each state’s rank according to the independent sample means (x-coordinate

values in Figure 6(c)). From the plot, we see that Sao Paulo (SP) is most likely in the top

3 states (probability > 0.98), and that the Federal District (DF) is likely ranked too high

according to the independent sample means, and Mato Grosso do Sul (MS) too low. The

posterior rank uncertainty is large for states in the lower part of the ranking. For example,

while Roraima (RR) and Amapa (AP) have substantially different sample means (421.27

and 463.76) the posterior probability of the mean of Roraima being greater than the mean

of Amapa is considerable at 0.28.
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Figure 7: Geographical maps for comparing (a) the sample and (b) posterior density means.

Finally, Figure 7 illustrates the spatial distribution of the sample means (panel (a)) and

the posterior means (panel (b)). The effect of the hierarchical model is apparent in panel

(b), as there is clear evidence of smoothing both within and between regions. There is

an obvious north-south effect in the mean performance of schools in the Enem examination.

Note that while comparison are made here in terms of means, any other feature could equally

be considered, including the densities variability and shape.
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6 Discussion

The hierarchical Gaussian process prior introduced in this paper permits, in a very simple

way, the characterisation of prior beliefs about a set of univariate densities. The use of

ABC methods allows the sampling of approximate draws from the posterior distribution

at a moderate computational cost. This cost is almost certainly smaller than could be

realistically obtained by developing a direct MCMC sampler along the lines of, say, Adams

et al. (2009).

One advantage of the approach presented here over hierarchical Dirichlet process models

is that the parameters in our hierarchical prior are easily interpretable, and allow very direct

control over the features of the prior. With Dirichlet process based methods, which build

elaborate hierarchies involving mixing distributions, it can be challenging to be expressive

of prior information.

The construction of a nonparametric extension to the standard ABC regression-adjustment

is a novel contribution to the ABC literature. However, ABC is an approximate inferential

procedure which heavily relies on the information content of its summary statistics and in

the accuracy of the regression-adjustment model. Fortunately, there is a range of credible

candidates for summarising the data – kernel density estimation methods have been ex-

tensively developed and investigated by numerous authors. Further, regression-adjustment

models are well understood in the ABC literature as a method to improve the conditional

density estimation of the posterior distribution (Blum, 2010).

Both the simulation study and the analysis of high school exam performance in Brazil

highlights the capability of the ABC procedure to borrow strength across multiple groups,

to appropriately produce shrinkage where needed (with small sample sizes), and to suitably

handle the boundary-bias problem of the kernel density estimator summary statistic. Ulti-

mately, the hierarchical Gaussian process density model presents an enhanced approach over

existing methodologies, and provides a valuable tool in the practitioners toolbox.
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