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Abstract

We introduce a simple method for nearly simultaneous computation of all mo-
ments needed for quasi maximum likelihood estimation of parameters in dis-
cretely observed stochastic differential equations commonly seen in finance. The
method proposed in this papers is not restricted to any particular dynamics of
the differential equation and is virtually insensitive to the sampling interval. The
key contribution of the paper is that computational complexity is sublinear in the
number of observations as we compute all moments through a single operation.
Furthermore, that operation can be done offline. The simulations show that the
method is unbiased for all practical purposes for any sampling design, includ-
ing random sampling, and that the computational cost is comparable (actually
faster for moderate and large data sets) to the simple, often severely biased, Euler-
Maruyama approximation.

Keywords: Quasi likelihood, Diffusion process, Conditional moment, Maximum
likelihood, Stochastic differential equation
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1. Introduction

Most applications such as simulation or estimation involving Itō stochastic
differential equations (SDEs) are in one way or another linked to the transition
probabilities of the process. For example, it would be straightforward to estimate
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parameters using the maximum likelihood method if transition probability density
was known, but this is rarely the case in practice.

However, it is often possible to approximate the transition probability density.
The probability density was obtained by brute force numerical computation of
the solution to the Fokker-Planck equation (a partial differential equation) in Lo
(1988); Lindström (2007) while Monte Carlo based approaches were proposed in
Pedersen (1995b); Durham and Gallant (2002); Beskos et al. (2009); Lindström
(2012b) and references therein. Those methods are computational expensive,
making them unsuitable for large data sets. A Gauss-Hermite series expansion
of the transition probability density was proposed by Aı̈t-Sahalia (2002), although
that approach is limited to models with a specific structure.

The recent advances in collecting and storing large amounts of data are shifting
the focus away from computationally slow but statistically efficient maximum
likelihood methods towards computationally faster, yet not quite as statistically
efficient quasi-maximum likelihood methods as the abundance of data often more
than makes up for the loss of efficiency.

A simple approach based on the quasi maximum likelihood technique was in-
troduced in Florens-Zmirou (1989) where the conditional mean and variance were
obtained from an Euler-Maruyama discretization of the model, cf. Kloeden and
Platen (1992). This is very efficient from a computational point of view and it was
shown in Florens-Zmirou (1989) that their method is equivalent to the maximum
likelihood estimator as the sampling interval goes to zero, as the bias vanishes. A
higher order version of this approach is proposed in Kessler (1997). Quasi max-
imum likelihood methods are generally unbiased, see Sørensen (2012) provided
that the mean and variance are correctly specified. The bias in the Florens-Zmirou
(1989); Kessler (1997) methods therefore explicitly depends on the quality of the
approximation of conditional moments, cf. Höök and Lindström (2014).

The purpose of this paper is to develop a computationally fast method quasi
maximum likelihood estimator for discretely observed diffusion processes that is
suitable for moderate to large data sets. We show that the computational cost is
sublinear rather than superlinear due to way the moments are computed. (our sim-
ulations shows the computational complexity is comparable to that of the Euler-
Maruyama scheme, and hence magnitudes faster than any approximate maximum
likelihood method). This will be achieved without the bias problems associated
with the Euler-Maruyama method, a property that is virtually independent of the
sampling interval.

The outline of the paper is as follows. In Section 2 we formulate the statis-
tical problem and discuss some alternative techniques for calculating conditional
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moments. This is followed by Section 3 where we present a numerical implemen-
tation that results in sublinear complexity. The resulting parameter estimation
algorithm is demonstrated in Section 4 on two qualitatively different diffusion
processes as well a randomly sampled data followed by the conclusions being
drawn in Section 5.

2. Diffusion processes and conditional moments

Let (Ω,F , P, {Ft}t≥0) be a filtered probability space and letXt(θ) be a stochas-
tic process defined on that space that solves the following one dimensional stochas-
tic differential equation (SDE)

dXt = aθ(Xt)dt+ bθ(Xt)dWt, Xt0 = x. (1)

We assume throughout the paper that the drift and diffusion terms are regular
enough (e.g. bounded growth and local Lipschitz, see Karatzas and Shreve (2012)
for alternative conditions) to ensure existence and uniqueness of the solution.

The optimal method for estimating the parameters, θ, is the maximum likeli-
hood estimator. Let xk = x(tk), k = 1, . . . , K be observations generated from
Eq (1). The maximum likelihood estimator is defined as

θ̂MLE = argmax
θ∈Θ

`(θ) (2)

where the log-likelihood function is given by

`(θ) = log pθ(x0) +
K∑
k=1

log pθ(xk|xk−1). (3)

The transition probability densities, pθ(xk|xk−1) are implicitly defined by the
model. The properties of the model are found by analysing the generator

L = aθ(x)
∂

∂x
+

1

2
b2
θ(x)

∂2

∂x2
. (4)

The transition probability pθ(xk|xk−1) is the solution to the Fokker-Planck
equation, which is defined from the adjoint operator (Lu, v) = (u,L∗v) under the
inner product (·, ·). The Fokker-Planck equation, when starting from xk at time tk
and ending at tk+1 is given by

∂

∂t
pθ(x, t) = −L∗pθ(x, t) (5)
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with the initial condition pθ(x|xk) = δ(x− xk). This initial condition is likely to
cause problems for numerical implementations of Eq. (5) due to discontinuity, see
the implementation in Lo (1988) and the remedy proposed in Lindström (2007).

Another method for computing the transition probability is to use the Markov
property and law of total probability, adding and integrating out an intermediate
state variable, see Pedersen (1995b,a) Let tk−1 < s < tk. It then holds that

pθ(xk|xk−1) =

∫
pθ(xk, xs|xk−1)dxs

= Eθ [pθ(xk|xs)|xk−1] (6)

Monte Carlo methods can easily approximate that expected value, but the use of
variance reduction techniques is needed for most applications, cf. Durham and
Gallant (2002); Lindström (2012a).

However, we cannot expect to be able to solve either the Fokker-Planck equa-
tion Eq. (5) or the conditional expectation in Eq. (6) in closed form for more
complex models. That means that the complexity of any of these approximate
maximum likelihood method will be linear (in terms of expensive operations) in
the number of observations.

A possible remedy are the Gauss-Hermite, see Aı̈t-Sahalia (2002), or saddle
point, see Aı̈t-Sahalia and Yu (2006) expansions. These can be very accurate
for frequently sampled data but there are also important limitations. Such as the
existence of the Lamperti transform, and as well as ∆k = tk − tk−1 being small
as the error typically is O

(
∆L+1
k

)
with L being the number of terms in the series

expansion. A key operation is to employ a Lamperti transformation of the process

Yt = g(Xt) (7)

such that the dynamics of Zt is given by

dYt = f(Yt)dt+ dWt. (8)

The transition probability in Aı̈t-Sahalia (2002) is given by the Hermite series
approximation (here assuming that ∆k = ∆ for all observations)

pY (yk|yk−1) = ∆1/2φ

(
yk − yk−1

∆1/2

) ∞∑
j=0

ηθjHj

(
yk − yk−1

∆1/2

)
(9)

with the coefficients given by

ηθj =
1

j!
Eθ

[
Hj

(
yk − yk−1

∆1/2

)
|zn−1

]
(10)
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where Hj is a Hermite polynomial of order j. It is worth noting that the series
expansion will not converge for all distributions and that a finite expansion may
be negative for some values. The latter can be solved by considering a series ex-
pansion of the log-density, but that series may not integrate to unity. Still, the
complexity is essentially sublinear as the major complexity, deriving the expan-
sion, is performed only once.

A simpler alternative is to resort to a quasi maximum likelihood estimator,
cf. Godambe and Heyde (2010); Sørensen (2012); Lindström et al. (2015). The
downside is a loss of statistical efficiency as the distribution of the Maximum
likelihood estimate is given by

√
N
(
θ̂ − θ0

)
d→ N(0, I−1

F ), (11)

where θ0 is the true parameter and IF is the Fisher information matrix defined as

(IF )i,j = E

[
∂2

∂θi∂θj
log p(X|θ0)

]
(12)

or equivalently

(IF )i,j = E

[
(
∂

∂θi
log p(X|θ0))(

∂

∂θj
log p(X|θ0))

]
(13)

whereas the distribution of the quasi maximum likelihood estimate is given by

√
N
(
θ̂ − θ0

)
d→ N(0, J−1IJ−1), (14)

where

(J)i,j = E

[
∂2

∂θi∂θj
log Ψ(X|θ0)

]
and

(I)i,j = E

[
((
∂

∂θi
log Ψ(X|θ0))(

∂

∂θj
log Ψ(X|θ0))

]
with Ψ being a Gaussian density with location and scale parameters given by the
conditional mean and (co)variance. That covariance is always larger or equal to
the variance of the maximum likelihood estimate (this follows from the Cramer-
Rao inequality), with the difference typically being rather small for nearly Gaus-
sian models, cf. Overbeck and Rydén (1997).
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2.1. Conditional moments
Parameter estimation using QML is a reason for bringing us to the topic of

calculating conditional moments of the stochastic process. We will throughout
this section assume that g(·) is a general function representing any conditional
moment of interest. The conditional moment is given by

Eθ[g(Xk)|Xk−1 = xk] =

∫
g(xk)pθ(xk|xk−1)dxk, (15)

where pθ(xk|xk−1) is the conditional probability density.
The discussion in the previous section illustrates why Eq. (15) is intractable

in the general case, which is why we have to resort to approximations. Most
approximations of a conditional moment can be expressed as a weighted sum

Eθ[g(Xk)|Xk−1 = xk] ≈
∑
i

ωig(ξi). (16)

This approximation includes techniques like Monte Carlo estimation and various
deterministic quadrature rules, such as rectangular rule, the trapezoidal rule of the
Gauss-Hermite quadrature.

It is also possible to approximate that conditional expectation using an Itō -
Taylor expansion. Assume that the function g is 2k+ 1 times continuously differ-
entiable. It then holds that

Eθ[g(Xk)|Xk−1 = xk] =
L∑
l=0

Llg(xk)
∆l
k

l!
+O(∆L+1

k ), ∆k = tk − tk−1. (17)

Note that this expansion is not guaranteed to converge unless additional con-
straints are imposed on X , see Aı̈t-Sahalia (2002) for details, but it often works
quite well for small time intervals as the leading error term isO(∆L+1

k ). This type
of approximation is used compute moments in the Hermite series expansion in
Aı̈t-Sahalia (2002). It may be necessary to iterate the Itō -Taylor expansion over
a series of smaller steps ∆t/m for sparsely sampled data, cf. Runge-Kutta and
multistep methods, see Kloeden and Platen (1992).

An alternative, mentioned in the beginning, is to calculate conditional mo-
ments using the generator. This will require us to solve one PDEs for each mo-
ment. The Feynman-Kac (F-K) formula, see Karatzas and Shreve (2012), estab-
lishes the relation between conditional expectations and parabolic partial differ-
ential equations. Specifically, let τ ∈ [tk−1, tk] and define the conditional expec-
tation

u(x, τ) = Eθ[g(Xk)|Xτ = x] (18)

6



when the dynamics is given by Eq. (1). The solution to the expectation is then
given as the solution to

∂

∂τ
u(x, τ) = −Lu(x, τ). (19)

where the operator L is defined in Eq. (4) and the initial condition is given by
u(x, tk) = g(x).

There are at least two advantages of solving the adjoint problem compared to
the Fokker-Planck equation. The first is that we only need to solve one single PDE
for any number of observations, which should be compared to the computational
complexity of the Monte Carlo and quadrature methods where it is necessary to
propagate weights and/or particles between each observation. Secondly, it is more
robust from a numerical point of view to solve the adjoint equation as it has a
well posed initial condition (the equation is solved backwards in time) e.g. for the
standard moments a polynomial, xp.

We will later show that it is in fact enough to solve a single PDE regardless of
the number of moments we are interested in. That makes the computational com-
plexity marginal compared to that of a full blown approximate maximum likeli-
hood estimator.

We present a conceptual summary of the pros and cons of each method respec-
tively in Table 1. We have marked the Fokker-Planck method with a (∗) since the
performance of this method for small ∆k depends strongly in the type of initial
condition as described earlier.

Table 1: Feasibility of different methods for parameter estimation.

Method Small ∆ Large ∆ Small data set Large data set

Euler-Maruyama Yes - Yes Yes
Itō -Taylor (Eq. (17)) Yes - Yes Yes
Fokker-Planck ∗ Yes Yes -
Monte Carlo Yes Yes Yes -
Hermite series Yes - Yes Yes
Generator (F-K) Yes Yes Yes Yes

In the following section we will present a numerical approach to calculate the
conditional moments from the Kolmogorov-backward equation.
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3. Discretization of the Kolmogorov backward equation

Solving the Kolmogorov backward equation numerically can be achieved with
a large number of different methods. We have opted for a semi-discretization with
central differences in space to achieve maximum simplicity and as we will later
see also the possibility to reuse calculation. The backward equation Eq. (19) is a
Cauchy problem in the sense that it has a final condition defined by the conditional
moment of interest, u(x, T ) = g(x), but lacks boundary conditions. This is sim-
ilar to many option pricing problems where it is common to impose a boundary
condition from asymptotic expansion of the solution, cf. von Sydow et al. (2015)
for an overview of numerical techniques for computing option prices. For Eq. (19)
to be well-posed it is necessary to impose boundary conditions for certain values
of the coefficients. The condition when this is necessary may be found from the
Fichera function (here in one dimension),

Fich =

0,N∑
i

(
aθ(xi) +

1

2

∂

∂x
b2
θ(xi)

)
κ (20)

where κ = {−1, 1} are the boundary normals. Boundary conditions are not re-
quired when Fich ≥ 0, Fichera (1956). As an example the Fichera condition
for the Cox-Ingersoll-Ross model at x0 = 0 is given by ab ≥ σ2/2 which is also
known as the Feller condition. Under the assumption that the backward equation
is well-posed without boundary conditions in the sense of positive Fichera, we still
need to define some conditions for the boundary values for the semi-discretized
system. In Ekström et al. (2009) it was suggested to calculate the boundary values
by solving a simplified backward equation at the boundaries with finite differences
defined on the internal node points. We generalize this approach here by solving
the full equation Eq. (19) at the boundary using interior node points. The advan-
tage of this approach is that it does not require a large solution domain and it does
not introduce a right hand side vector in the algebraic system. This enables rapid
calculation of the time integration of the solution which we will utilize.

Turning to the discretization of the derivatives for the interior nodes. The first
and second partial derivatives are approximated by second order central differ-
ences with un = u(xmin + nh), h being the distance between two nodes. The
derivatives are then given by

∂un
∂x
≈ 1

2h
(un+1 − un−1) (21)
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and
∂2un
∂x2

≈ 1

h2
(un+1 − 2un + un−1) . (22)

with both approximations having errors of size O(h2). Inserting the FD approxi-
mations (21 and 22) into Eq. (19) results in

∂un
∂τ

= −aθ(xn)
1

2h
(un+1 − un−1)− 1

2h2
b2
θ(xn) (un+1 − 2un + un−1) . (23)

At the boundaries 0, N we need to solve Eq. (19) with skewed finite differences.
On the lower boundary we use the following scheme:

∂un
∂x
≈ −1

h

(
3

2
u0 − 2u1 +

1

2
u2

)
(24)

and
∂2un
∂x2

≈ 1

h2
(2u0 − 5u1 + 4u2 − u3) . (25)

Similar approximations are used on the upper boundary,

∂un
∂x
≈ 1

h

(
3

2
uN − 2uN−1 +

1

2
uN−2

)
(26)

and
∂2un
∂x2

≈ 1

h2
(2uN − 5uN−1 + 4uN−2 − uN−3) . (27)

Inserting these FD approximations (24-27) into Eq. (19) result in similarly equa-
tions as Eq. (23). Our approximation to the Kolmogorov-backward equation after
approximating the spatial operator is given by,

∂un
∂τ

= Aun(τ) (28)

where A is a banded matrix with the following elements,

Ai,i+1 = aθ(xi)
2h
− bθ(xi)

2

2h2
, Ai,i = bθ(xi)

2

h2
, Ai,i−1 = −aθ(xi)

2h
− bθ(xi)

2

2h2
.

The first and last rows in A have extra nonzero columns from the extrapolated
boundary equations. Now that we have discretized the spatial operator we turn
to the time discretization. In this paper we will use the matrix exponential to
propagate in time, see Moler and Loan (2003). This is feasible due to the boundary
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technique introduced earlier. To illustrate the benefit of our approach of including
the boundary values in A we consider the case when standard boundary conditions
e.g. Dirichlet are used. The semi-discretized system then become

∂un
∂τ

= Ãun(τ) + b (29)

where b contains the boundary values (here assumed to be time independent). The
general solution of Eq. (29) is given by

un(tk−1) = exp
(
Ã(tk−1 − tk)

)
un(tk) + Ã−1

(
exp

(
Ã(tk−1 − tk)

)
− I
)
b

(30)
which is computationally more expensive then the solution of Eq. (28),

un(tk−1) = exp (A(tk−1 − tk))un(tk). (31)

Furthermore another drawback with the classical boundary values is dim(Ã) �
dim(A) since it requires a larger solution domain to avoid boundary values in-
fluencing the solution which is an additional computational cost. Returning to
Eq. (31) the approximation error to the analytical solution (in terms of an expo-
nential map) is given by,

u(x, tk−1) = exp (L(tk−1 − tk))u(x, tk) (32)
≈ exp (A(tk−1 − tk))un(tk) = un(tk−1) +O(h2). (33)

Since A is not normal we might need to subiterate the solution in time for stabil-
ity reasons. This is also required when we need to evaluate the solution at non-
equidistant time intervals e.g. when the data is collected at random time instances.
A subiterated solution is obtained from the following identity exp (Aτ) = (exp (Aτ/m))m

where a typical good value for m can be found from the following condition
‖Aτ/m‖ ≤ 1 given in Moler and Loan (2003).

We use cubic spline interpolation to compute the conditional expectation for
values that are not part of the finite difference grid. The interpolation error due to
the cubic splines are O(h4) which is dominated by the finite difference error for a
dense grid.

The conditional mean and variance are accurately computed from the solution
of the first moment

û(1)(x, tk−1) = Ê[Xk|Xk−1 = x]

and second moment

û(2)(x, tk−1) = Ê[X2
k |Xk−1 = x].
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The conditional variance is then obtain through a combination of these

V̂ar[Xk|Xk−1 = x] = Ê[X2
k |Xk−1 = x]− Ê2[Xk|Xk−1 = x]

= û(2)(x, tk−1)− û(1)(x, tk−1)2. (34)

3.1. Convergence
The semi discretization does not introduce any errors due to the time inte-

gration. However, the discretization of the derivatives and the interpolation do
introduce errors. We can decompose the interpolated numerical solution ûinterp

by adding and subtracting the numerical solution without interpolation û and the
true solution u. This leads to

ûinterp = ûinterp ± û± u
= ûinterp − û︸ ︷︷ ︸

Interpolation, O(h4)

+ û− u︸ ︷︷ ︸
Discretization, O(h2)

+u

= u+O(h2). (35)

Hence, the interpolation error is dominated by the discretization error if a good
interpolation method is used. That trivially implies that the conditional mean can
be computed with arbitrary accuracy.

Next, we find that the conditional variance is given by

û(2),interp − (û(1),interp)2 =
(
u(2) +O(h2)

)
−
(
u(1) +O(h2)

)2
(36)

= u(2) − (u(1))2 +O(h2) (37)

meaning that also the error in the conditional variance is controlled by the dense-
ness of the finite difference grid, h. This means that both the error in the mean
and covariance can be made arbitrarily small (we choose the design parameter h),
leading to consistent estimates, cf. Sørensen (2012). This is in contrast to the ap-
proximate QML estimators in Florens-Zmirou (1989) and Kessler (1997) where
no refinement of the estimates are possible.

The numerical quality of the method is benchmarked by comparing it against
the conditional mean and variance of the Cox-Ingersoll-Ross (CIR) and the con-
ditional mean of its inverse (iCIR). These models are defined by,

dXt = a(b−Xt)dt+ σX
1/2
t dWt CIR (38)

dX̃t =
[
aX̃t + (σ2 − ab)X̃2

t

]
dt− σX̃3/2

t dWt iCIR (39)
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Figure 1: Absolute error for the CIR model compared between different methods
for T = 1/6. The methods are the Euler-Maruyama scheme, truncated Itō -Taylor
(k = 1) Eq. (17) and the proposed method. Note that the conditional var (right
figure) is equal for the Euler-Maruyama and the Itō -Taylor while the mean (left
figure) is not. The time T was selected such that all methods converged. The
Euler-Maruyama and the generator approximation would perform even worse if
larger T is used.

with X̃t = 1/Xt. That means that we can (at least conceptually) compute the
transition probability density as well as moments for the iCIR process.

Let xn ∈ {xmin, . . . , xmax} be a grid with xmin = 0.05 and xmax = 0.15 and
tm ∈ {0, . . . , T} where the final time T = 1/6. The conditional mean of the iCIR
process is quite lengthy and involves a Gamma function and will not be expressed
here, see Ahn and Gao (1999). The absolute error between the proposed method,
conditional moments using the Itō -Taylor expansion and the Euler-Maruyama
scheme are compared to the exact moments for the CIR model in Figure 1.

The convergence of the numerical method is seen in Figure 2 where we have
plotted the relative error (relative mean square error) as a function of spatial
discretization for the CIR model using parameters Nx = 24:9 − 1 with h =
(xmax − xmin)/Nx.

4. Parameter estimation

To test the applicability of the proposed framework we evaluate the quasi max-
imum likelihood estimator on two diffusion models. The quasi maximum likeli-
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Figure 2: Spatial relative mean square error of the conditional mean for the iCIR
and CIR model and conditional variance for the CIR model. Here τ = 1/6 and
number of time steps are Nt = 1000. Parameters for this test was {a, b, σ} =
{15, 3, 2}.

hood estimator is defined as

θ̂ = argmax
θ∈Θ

K∑
k=1

log Ψ
(
xk; Êθ[xt|xk−1], V̂arθ[xk|xk−1]

)
(40)

where Ψ
(
xk; Êθ[xk|xk−1], V̂arθ[xk|xk−1]

)
is the Gaussian density function with

mean Êθ[xk|xk−1] and variance V̂arθ[xk|xk−1] computed with the new method.
We compare the moments computed from the adjoint equation in Section 3 with
the Euler-Maruyama method and to the exact moments when they are known.

4.1. Estimation on moderate data set
We also consider the inverse CIR model commonly used in interest rate model-

ing, see Eq. (39). This model (or actually a simplification of it) was the preferred
model in for US interest rate data in the likelihood based analysis in Durham
(2003). The model is challenging as the drift is non-linear but it can be shown that
the conditional moments can be calculated analytically. The test data was gen-
erated from the inverse CIR model using monthly time steps ∆t = 1/12. Using
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x0 = 5 initial value, we generated N = 1000 observations using the parameter
{a, b, σ} = {15, 3, 2} . The first 100 observations were then discarded as burnin,
leaving us with 900 observations. This was repeated 100 times in order to evaluate
the estimators on independent data sets.

The estimation was conducted within the quasi maximum likelihood frame-
work on an Intel R© Core i5 @ 2.5 Ghz with 8GB of RAM. As an optimizer we
used the standard Nelder-Mead, (fminsearch) in Matlab R© (R2014b) with initial
guess {10, 5, 1}. The results for the iCIR process is presented in Figure 3 where
we see that the proposed method is unbiased whereas the Euler-Maruyama as well
as the Durham-Gallant, see Durham and Gallant (2002), approximate maximum
likelihood estimator are biased (the latter is due to insufficient imputation in the
time domain). We also see that the proposed method is as virtually as good as
the maximum likelihood estimator based on the closed form transition probability
density. We also note that the Euler-Maruyama is still worse than the proposed
method even when a more densely sampled data set is available for that estimator.

4.2. Estimation on randomly sampled data sets
To further test the applicability of the proposed method we estimate parame-

ters on a simulated data set from a CIR process with samples arriving at random
times, cf. Aı̈t-Sahalia and Mykland (2003). This would be a challenging problem
for a discrete time model, but can readily be handled with a continuous time model
within the proposed framework. We have simulated 1000 observations from the
CIR process, cf. Eq. (38) with the same parameters and burnin as for the iCIR
process with random time intervals. The time intervals are uniformly distributed
tk− tk−1 ∼ U([1/252, 1/6]). The results when estimating the parameters with the
proposed method, Durham-Gallant method and the Euler-Maruyama is presented
in Figure 4 (note that we only present the a and σ parameters as the b essentially
is given by the unconditional mean of the data). It can be seen that the proposed
method is unbiased even for randomly sampled data, but also that the variance
for the proposed method is worse than that of the maximum likelihood estimator
based on the analytical transition probability density. This is in line with our in-
tuition as the transition density will become less Gaussian for sparsely sampled
data, making the MLE the preferred estimator in that situation.

4.3. Estimation on large data sets
The challenge of large data sets is to develop fast methods. The Euler-Maruyama

method is very fast (moments are given in closed form) but requires ∆t → 0 and
K∆t→∞ for consistency, cf. Sørensen (2012). The proposed method computes
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Figure 3: Estimated parameters for the iCIR model using an analytical expression
for the likelihood function, the Euler Maruyama approximation, the Durham-
Gallant method, our proposed method and an Euler Maruyama estimator using
more densely sampled data. The data sampling interval was ∆t = 1/12 for the
iCIR model. Since this time step resulted in a large bias in the Euler-Maruyama
method; We also ran it on a data set with ∆t = 1/52, dashed boxes in the Fig-
ure. For this dense data set the Euler-Maruyama method performed better, but still
suffers from bias.
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Figure 4: Estimated parameters for the CIR model with randomly sampled data
using an analytical expression for the likelihood function, the Euler Maruyama
approximation, the Durham-Gallant method and our proposed method. The data
sampling interval was randomly distributed as ∆t ∼ U([1/252, 1/6]).

practically unbiased estimates, cf. Figures 3 and 4, for any sampling interval when
the finite difference grid is dense enough, and will therefore only require K →∞
for consistency.

Here we evaluate the computational performance when computing the quasi
likelihood function when the data consists of K = 2 000 000 observations, which
makes the data set computationally infeasible for most other estimators. The pa-
rameters and sampling is the same as in Section 4.1. We present the time needed
to compute the quasi likelihood function for an increasing set of observations
(each point in the graph represents 1000 additional observations) for the Euler-
Maruyama and the proposed method in Figure 5. The plot is based on the average
taken over three simulations. The proposed method is initially more expensive
than the Euler-Maruyama as we need to compute one matrix exponential to obtain
the moments. However, the cost after the initial computation scales similarly as
for Euler-Maruyama (it is actually somewhat cheaper for many observations), in
spite that our method is consistent while the Euler-Maruyama is severely biased.
This result is very encouraging as we do not need to have frequently sampled data
for consistency meaning that we can work with data sets sampled over longer time
horizons at the same computational cost, meaning that we could estimate certain
(typically drift parameters) much better than what would be possible using only
the Euler-Maruyama or similar algorithms.
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Figure 5: Computational time (wall-clock time) averaged over three consecutive
measurements as a function of the data set size.
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5. Conclusions

This paper introduces a framework for computing conditional moments for
diffusion models based on numerical computation of the Kolmogorov-backward
equation which is the adjoint to the Fokker-Planck equation with exact integration
in the time domain. The numerical solution is very accurate compared to standard
methods for computing conditional moments. We used the computed moments
in this paper to form a quasi maximum likelihood function for parameter estima-
tion. The method is computationally very fast, as the complexity is sublinear. All
that is needed is to compute a single matrix exponential to compute all moments,
regardless of the number of observations. This makes the method well suited
for parameter estimation of large data sets, which was confirmed by Figure 5, in
stark contrast to many approximate maximum likelihood methods for which the
computational complexity typically is superlinear in the number of observations.
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