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Abstract

The mixture approach to clustering requires the user to specify both the number of components to be fitted to the model and the
form of the component distributions. In the Multimix class of models, the user also has to decide on the correlation structure
to be introduced into the model. The behaviour of some commonly used model selection criteria is investigated when using the
finite mixture model to cluster data containing mixed categorical and continuous attributes. The performance of these criteria
in selecting both the number of components in the model and the form of the correlation structure amongst the attributes when
fitting the Multimix class of models is illustrated using simulated data and a real medical data set. It is found that criteria based
on the integrated classification likelihood have the best performance in detecting the number of clusters to be fitted to the model
and in selecting the form of the component distributions. The performance of the Bayesian information criterion in detecting the
correct model depends on the partitioning structure among the attributes while the Akaike information criterion and classification
likelihood criterion perform in a less satisfactory way.

c© 2013 Published by Elsevier Ltd.
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1. Introduction

Finite mixture models are widely used in a variety of applications to model the distributions of various events
and to cluster data sets, see for example McLachlan and Peel (2000), McLaclan and Chang (2004), Everitt et al
(2011), Stahl and Sallis (2012) and Melnykov (2013). This paper focuses on the use of the mixture model approach
to clustering which provides a formal statistical framework on which the clustering can be based. The procedure
gives a probabilistic clustering that allows for overlapping clusters which correspond to the components in the model,
and where each component in the finite mixture model corresponds to a cluster in the data. The probability that an
observation belongs to each of the clusters can be obtained from the estimates of the posterior probabilities of cluster
membership. A definitive partitioning of the observations into components (clusters) is obtained by assigning each
observation to the component to which it has highest probability of belonging. The finite mixture model requires
the specification of both the form of the density function of each of the underlying components and the number of
components to be fitted in the model.
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1.1. Number of components

Prior knowledge concerning the number of components, K, in the mixture reduces the complexity of the analysis.
However there are many situations where there is no a priori knowledge of the number of components to be fitted,
and thus finding the number of components present in the data becomes part of the clustering problem.

An obvious way of approaching this problem is to use the likelihood ratio statistic λ to test for the smallest
value of K compatible with the data. However when testing for the number of components in a mixture, the usual
regularity conditions do not hold for −2 log λ to have its standard asymptotic null distribution of χ2 with the degrees
of freedom equal to the difference between the number of parameters under the full and reduced models. Accounts of
the breakdown of the regularity conditions are given for example, by Hartigan (1977, 1985a, b), Titterington (1981),
Titterington, Smith and Makov (1985), Ghosh and Sen (1985), McLachlan and Basford (1988), and McLachlan and
Peel (2000).

An alternative procedure is to use a bootstrap approach. McLachlan (1987) proposed a resampling procedure that
involves a bootstrapped likelihood ratio test. Bootstrap samples are generated from the finite mixture model fitted
under the null hypothesis of K components, where the parameters of the mixture are the likelihood estimates after
fitting a K component model to the original sample. The value of the likelihood ratio statistic is computed for each
of the bootstrap samples generated after fitting mixtures with K and K′ components, where K′ > K . The process
is repeated independently B times. The replicated values of −2 log λ formed from the successive bootstrap samples
provide an assessment of the true null distribution of −2 log λ: see also Feng and McCulloch (1996), and McLachlan
and Peel (1997). However, the problem with bootstrap methods is that they can be computationally intensive when
the number of components is large, and little is known about the performance of the test when the distributional and
model assumptions are violated (see Nyland et al 2007). See also Lo et al (2001) for details on another approach
called the Lo−Mendell−Rubin likelihood ratio test which uses an approximation of the distribution of the difference
of the two log likelihoods.

The use of information criteria to estimate the number of components of a finite mixture has become increasingly
popular in model based cluster analysis. Information criteria allow the user to quantify the differences between a
candidate set of models and help determine the number of components to be fitted to the mixture model. Many
criteria have been proposed with some criteria derived within a Bayesian framework. The authors of this papaer have
used criteria that are Bayesian based, information criteria and classification criteria. See for example, McLachlan and
Peel (2000, chapter 6), Frayley and Raftery(2002), Miloslavski and Van der Laan (2003), McLachlan and Rathnayake
(2014) plus the references therein for discussions on other approaches to the problem of determining the number of
components.

The specification of the component distributions is also required in the fitting of a mixture model. There has been
extensive use of mixtures where the component distributions are multivariate normal and there has been much interest
in determining the number of components to be fitted to this model. McLachlan and Ng (2000) report Monte Carlo
simulations to compare the performance of some criteria with that of classical criteria such as the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), for determining the number of components in mixtures
of multivariate normals.

1.2. Covariance structure for models

While it is common to take the component distributions to be multivariate normal, decisions still need to be
made on the structure of the components’ covariance matrices. There is the unrestricted case where the component
covariances Σk are unequal, however this may be too general for many situations in practice. Often the component
covariances are restricted to being the same (Σk = Σ for k = 1, . . . ,K), but this can have an adverse effect on the
resulting clustering (Chapter 3, McLachlan and Peel, 2000).

Another way of proceeding is to adopt some model that is intermediate between homoscedasity and the general
unrestricted heteroscedastic case. Several authors (Banfield and Raftery, 1993; Celeux and Govaert, 1995; Bensmail,
Celeux, Raftery and Robert, 1997) have used the eigenvalue decomposition of the component covariance matrices
in Gaussian mixtures to propose models for clustering. The covariance matrix Σk can be written in the form Σk =

λkDkAkD′k where Dk is the matrix of eigenvectors of Σk, Ak is a diagonal matrix with the normalised eigenvectors of
Σk on the diagonal in decreasing order with |Ak | = 1, and λk = |Σk | 1d where d denotes the number of variables. The
volume, orientation and shape of the kth component are determined by λk, Dk and Ak respectively. Celeux and Govaert
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(1995) and Bensmail and Celeux (1996) consider 14 different models corresponding to different assumptions on the
components’ covariance matrices.

Biernacki and Govaert (1999) performed Monte Carlo simulations using two component bivariate Gaussian mix-
tures with different covariance matrices to compare the performance of several classical criteria in selecting a relevant
and parsimonious model. The covariance matrices for the component distributions were determined using the 14 mod-
els relating to different assumptions on the component covariance matrix. They performed simulations using small
(n = 40) and larger (n = 200) samples where the components were mixed in both equal and different proportions.

Hunt (1996) and Hunt and Jorgensen (1999) proposed a set of models that they termed the Multimix class of
mixture models. The Multimix approach uses a form of conditional independence within the components, and can
be used to cluster data containing both categorical and continuous attributes. When using the Multimix approach to
clustering, Hunt (1996) suggested that a form of forward selection of covariates be used for selecting the correlation
structure in the model.

Galimberti and Soffritti (2013) also used conditional independence within the components when clustering using
the finite mixture model. These authors’ approach imposed constaints on the component covariance matrices and only
applied to quantitative attributes. Their approach cannot cope with attributes that are categorical.

The behaviour of some commonly used model selection criteria is investigated when the finite mixture model is
used to cluster mixed data with categorical and continuous attributes. In Section 2, the mixture model framework for
clustering is reviewed and the differences between the likelihood and the classification likelihood is emphasized. The
Multimix approach is reviewed in Section 3, and Section 4 examines the criteria that will be used to assess the fitted
models. In Section 5, the performance of the criteria is assessed using data simulated from multivariate normal and
discrete distributions and a real medical data set.

2. The Mixture model approach to clustering data

Let x1, . . . , xn be the observed values of a random sample from a mixture of K underlying populations in unknown

proportions π1, . . . , πK , and where 0 < πk < 1, for k = 1, . . . ,K and
K∑

k=1
πk = 1. The density of the ith observation xi

for i = 1, . . . , n, in the sample is a p × 1 vector, that can be represented as the finite mixture

f (xi;φ) =

K∑

k=1

πk fk(xi; θk, ) (1)

where the vector of unknown parameters φ = (θ′,π′)′, for π = (π1, . . . , πK)′, and θ = (θ1, . . . , θK)′, and where fk(xi; θk)
is the density of xi in component k, and θk is the parameter vector for component k. For clustering purposes, each
component in the mixture model corresponds to a cluster.

2.1. Likelihood approach

The log-likelihood function for φ can be formed from the observed data by

log L(φ) =

n∑

i=1

log f (xi;φ) =

n∑

i=1

log{
K∑

k=1

πk fk(xi; θk)}, (2)

where L(φ) denotes the likelihood for φ.
The maximum likelihood estimate φ̂ of φ is the global maximiser of the likelihood function assuming that this

function is bounded, and is obtained as a solution of the log-likelihood (score) equation given by ∂

∂φ log L(φ) = 0. In

the case where the likelihood is unbounded, the estimator of φ can be taken to be an appropriate root of the likelihood
equation, corresponding to a local maximum. In this situation, φ̂ is usually taken to correspond to the largest of the
maxima located. See, for example, McLachlan and Peel (2000) for a discussion on maximum likelihood estimation
for mixture models.

The EM algorithm of Dempster, Laird and Rubin (1977) is used for the computation of the maximum likelihood
estimates of φ by viewing the data as incomplete (see for example, McLaclan and Peel (2000), McLachlan and
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Krishnan (2008)). For the finite mixture model, the ‘missing’ data zi = (zi1, . . . , ziK)′, are the unobserved indicators of
component membership defined by

zik =

{
1 if individual i ∈ component k;
0 if individual i < component k,

where zi, i = 1, . . . , n, are independently and identically distributed according to a multinomial distribution generated
by a single trial of an experiment with K mutually exclusive outcomes having probabilities π1, . . . , πK . The complete
data, in EM terminology, consists of the n × p array of observed data x1, . . . , xn, and the conceptual n × K array {zik}
of class membership indicators. The EM algorithm iterates between the E step and the M step until convergence of
the likelihood.

The posterior probability that an observation with measurements xi belongs to the kth component is given by

τk (xi;φ) = pr (zik = 1 |xi ) =
πk fk (xi; θk)

f (xi;φ)
(3)

for i = 1, . . . , n; k = 1, . . . ,K.

2.2. Classification Likelihood approach
The classification likelihood approach is another likelihood based approach to clustering. With this approach,

φ and the unknown indicators of component membership zi, i = 1, . . . , n, are chosen to maximise log LC(φ), the
complete data log-likelihood for φ given by

log LC(φ) =

n∑

i=1

K∑

k=1

zik
{
log πk + log fk (xi; θk)

}
. (4)

This is also known as the classification log-likelihood. The classification likelihood approach treats the zi as
unknown parameters that are estimated along with φ. This approach to clustering has been shown to be equivalent to
some commonly used clustering criteria under varying assumptions on the component densities. Further details on the
classification likelihood approach to clustering may be found in for example, Basford and McLachlan (1988), Section
1.2, Celeux and Govaert (1991, 1993, 1995) and Banfield and Raftery (1993).

2.3. Relationship between the Likelihood and Classification Likelihood approaches
As noted by Hathaway (1986), and others, the relationship between the log-likelihood for the mixture model (1)

and the classification log-likelihood (4) can be written as

log L(φ) = log LC(φ) − log g(φ), (5)

where

log g(φ) =

n∑

i=1

K∑

k=1

zik log τik,

τik = τk (xi;φ) is the posterior probability that xi comes from the kth component defined by (3), and g(φ) is the
conditional density of z = (z1

′, . . . , zn
′)′ given the observed data x = (x1

′, . . . , xn
′)′.

The conditional mean of log g(φ) given the observed data is equal to −EN(τ), where

EN(τ) = −
n∑

i=1

k∑

k=1

τik log τik

is the entropy of the fuzzy classification matrix composed of elements τik, and where τ = (τ1
′, . . . , τn

′)′ and τi =

(τi1, . . . , τik)′ is the vector of posterior probabilities of component membership of xi (i = 1, . . . , n). It follows from (5)
that if z is replaced by τ̂ in log LC(φ), then

log LC(φ̂) = log L(φ̂) − EN(τ̂), (6)

where τ̂ is the maximum likelihood estimate of τ formed by replacing τik with τ̂ik = τk(xi; φ̂) for i = 1, . . . , n; k =

1, . . . ,K.
4
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3. The Multimix approach

When clustering real multivariate data sets that have a large number of attributes, it is rare to find all attributes
being either categorical or continuous, as some approaches based on mixture models require. Hunt (1996) and Hunt
and Jorgensen (1999) proposed the Multimix class of models. They suggest an approach based on a form of local
independence by partitioning the attribute vector x = (x1, x2, . . . , xp)′ into L subvectors of varying sizes such that

x = (x̆′1, x̆2
′, . . . , x̆′L)′

where the attributes within subvector x̆l are independent of the attributes in subvector x̆l′ , for l, l′ = 1, . . . , L, and l , l′,
within each of the K components. Thus if individual i belongs to component k, then we write

fk(xi) =

L∏

l=1

fkl(x̆il).

The Multimix approach allows the clustering of mixed data containing both categorical and continuous attributes.
Although it is possible to use other distributions for the partition cells, only the following two distributions are con-
sidered for the subvector partitions l:

1. Discrete distributions where x̆l is a one dimensional discrete attribute that can take the values 1, . . . ,Ml with
probability λkl1, . . . , λklMl . This distribution will be denoted by D(λkl1, . . . , λklMl ).

2. Multivariate Normal Distributions where x̆l is a pl-dimensional vector with a Npl (µkl,Σkl) distribution.

The subvectors resulting from the partitioning, are usually formed with vectors of the same type, categorical or
continuous. When a subvector contains only a single variable, that variable is independent of all other variables within
each component. As described by Hunt and Jorgensen (1999), if all attributes are continuous, then the distribution
given by (1) is a mixture of multivariate normal distributions. The form of the matrix of covariance parameters in
each component distribution fk is determined by the way in which the set of attributes is partitioned into subvectors.
The form is block diagonal with a square block corresponding to each subvector. If all the attributes are discrete, the
model is the usual latent class model. If strong within-cluster associations between two discrete attributes are detected
after a preliminary clustering, the two attributes may be combined into a single discrete attribute with a level for each
cell of the two-way table (or fewer, if some cells are pooled). However, this has the disadvantage of increasing the
number of parameters that need to be estimated.

To cope with the possibility of within-cluster associations between a discrete attribute and several continuous
attributes, a location model distribution (Krzanowski (1983)) could be used for a subvector partition. Although this
possibility is introduced in the general MULTIMIX model (Hunt and Jorgensen (1999)), it has the disadvantage that it
greatly increases the number of parameters that need to be estimated. We do not consider location model distributions
for the subvector partitions.

When using the Multimix approach to clustering, Hunt and Jorgensen (1996, 1999) suggested that once it is
decided that a mixture model is appropriate, the model of complete local independence should firstly be fitted for
various values of K. These authors then used i) the approximation for the likelihood ratio test suggested by Wolfe
(1971), and ii) the estimates of the posterior probabilities of component membership as guides for testing the number
of components to be fitted to the mixture. For the selected value (or values) of K, the observations are assigned to the
component to which they have greatest posterior probability of belonging. Using the component assignment from this
model, modifications to the model are made by examining correlations, scatter plots and two-way tables within each
of the components formed. Attributes with strong within-component associations are grouped together in a subvector
partition for the next series of fits. This process is repeated with the model modified as necessary. Note that this is
a form of forward selection of attributes. Correlations are introduced into the model sparingly as this increases the
number of parameters that need to be estimated.

Hunt and Jorgensen (1996,1999) recommend that subject knowledge should also be used to see if the components
produced are meaningful. For a specified value of K, they use the likelihood ratio test for nested models. For testing
between competing non-nested models, they do not specify any criteria to aid in whether a correlation should be
incorporated in the model – this is left to the judgement of the user.
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The use of information criteria to quantify the differences between a set of candidate models has become increas-
ingly popular in model based cluster analysis (Stahl and Sallis (2012)). The fitting strategy suggested by Hunt and
Jorgensen (1999) is followed, but various clustering criteria are also calculated and used to guide in the selection of
the final form of the model.

4. Criteria for assessing the mixture model

4.1. Akaike Information Criterion

The Akaike Information Criterion (AIC) (Akaike (1973, 1974)) is given by

AIC = −2 log L(φ̂) + 2d,

where L(φ̂) is the maximised likelihood function for φ, the unknown parameters of the model, and d is equal to the
total number of free parameters in the model. This criterion selects the model and the number of components K in the
model, to be the combination that has the smallest AIC.

It is well known (see for example, Aitkin and Rubin (1985)) that the regularity conditions on which the AIC
criterion relies, do not hold for tests on the number of components in a mixture model. Studies have shown that the
AIC criterion tends to overestimate the number of components in the model (see for example, Celeux and Soromenho
(1996)). However, this criterion is often used to assess the number of components to be fitted.

4.2. Bayesian Information Criterion

The Bayesian Information Criterion (BIC) of Schwarz (1978) is another criterion that is commonly used for model
selection. This criterion was derived in a Bayesian framework but it can also be used in a non-Bayesian framework
for model selection in mixture models (Fraley and Raftery (2002), Steele and Raftery (2010)). The BIC is given by

BIC = −2 log L(φ̂) + d log n, (7)

where d and L(φ̂) are as defined above, and n is the number of individuals. It uses an approximation to the exact
Bayes solution, with the number of components K to be fitted to the model chosen to be that value that has minimum
BIC. Similarly to the AIC, the BIC also depends on regularity conditions that do not hold for assessing the number
of components. However several authors, for example Fraley and Raftery (1998), Dasgupta and Raftery (1998),
Steele and Raftery (2010), Everitt et al (2011) report that there is appreciable support for use of BIC in this context.
Choosing the model with the minimum BIC is equivalent to choosing the model with the largest posterior probability,
asymptotically.

The BIC can also be used to also to compare models with differing parameterizations (Biernacki and Govaert
(1999) and Raftery and Dean (2006)). It can determine the relative merits of each of the M models considered (Hastie
et al (2001)) by computing the BIC for each of these models (BIC1, . . . , BICM), and then estimating the posterior
probability of each model as

e−
1
2 BICm

M∑
m=1

e−
1
2 BICm

for m = 1, . . . ,M.
It can be seen from equation (7) that the penalty term in the BIC penalizes complex models more heavily than

AIC, and that the criterion gives preference to simpler models. However, for small samples where the model for
the component densities is valid, the BIC has been found to fit models that have too few components (Celeux and
Soromenho (1996)). If the correct model is not one of the models being considered, the BIC will tend to fit too many
components in the model (Biernacki and Govaert (1999)).
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4.3. Classification Likelihood Information Criterion

Biernacki and Govaert (1997, 1999) suggested an approach based on the classification likelihood of Symons
(1981). They proposed a criterion that makes use of the relationship that exists between the log-likelihood L(φ)
and the classification log-likelihood LC(φ) (see equation (6)). This criterion is known as the classification likelihood
information criterion (CLC). The number of components in the mixture model is chosen by minimizing

CLC = −2 log L(φ̂) + 2EN(τ̂), (8)

where the entropy EN(τ̂) is a term that penalizes the standard likelihood and measures the quality of the partition
(Celeux and Soromenho (1996)). The entropy measures the overlap of the mixture components and can be regarded
as a measure of the ability of the mixture model to provide well separated clusters. If the mixture components are well
separated, EN(τ̂) will be close to its minimum value of zero, whereas if the components are poorly separated EN(τ̂)
will have a large value.

Biernacki and Govaert (1997, 1999) suggested four strategies for using the classification likelihood to determine
the number of components in the mixture model. They compared the performance of these strategies with some stan-
dard criteria using simulated data and Fisher’s Iris data. Biernacki et al (1999) found that the classification likelihood
criterion worked well when the mixing proportions were restricted to be equal, but when no restrictions were placed
on the mixing proportions, the criterion tended to overestimate the correct number of components. Biernacki et al
(1998, 2000) suggested that this occurred because the classification likelihood does not penalize the complexity of the
mixture model.

4.4. Integrated Completed Likelihood Criterion

The integrated completed likelihood (ICL) criterion was proposed by Biernacki et al (1998, 2000) in an attempt
to overcome the shortcomings of BIC and CLC. This criterion is based on the integrated likelihood of the complete
data (x, z). These authors use a Jeffrey’s non informative prior where α = 0.5. Twice the negative of the log integrated
classification likelihood can be approximated by

−2 log L(φ̂) + 2EN(τ̂) + 2n
K∑

k=1

π̂k log π̂k + d1 log n − 2Υ(nπ̂1, . . . , nπ̂K),

where d1 is the number of unknown parameters, and

Υ(nπ̂1, . . . , nπ̂K) =

K∑

k=1

log Γ(nπ̂k + α) − log Γ(n + Kα) − K log Γ(α) + log Γ(Kα).

The ICL criterion can be used for choosing the number of components to be fitted to the mixture model, and also
for choosing the form of a relevant model by selecting the model that has minimum value of ICL. Further details
on the derivation of this criterion may be found for example, in Biernacki et al (2000), McLachlan and Ng (2000)
and McLachlan and Peel (2000). Biernacki et al (2000) compared the behaviour of BIC, ICL and an approximation
that they termed the Cheeseman Stutz approximation of the integrated complete likelihood for choosing the form of
the component distributions and the number of components in the mixture using simulated and real data sets. They
restricted their attention to Gaussian mixtures. They found that the ICL performed well in assessing the number of
components to be fitted to the mixture model and the form of the component distributions.

Biernacki et al (1998) also derived an approximation to the ICL that holds in situations with large cluster sizes.
Similarly to McLachlan and Ng (2000), we refer to this version of the ICL as ICL − BIC. This criterion is given by

ICL − BIC = −2 log L(φ̂) + 2EN(τ̂) + d log n. (9)

Biernacki et al (1998) found that the performance of this criterion differed little from that of the ICL even though the
approximation is only appropriate for large cluster sizes.

In contrast to the use of the likelihood ratio test statistic, −2 log λ, for the determination of the number of com-
ponents K, the likelihood ratio test statistic can be used when comparing two nested models and it should not give
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misleading results (see for example, Wolfe (1971), Hunt and Jorgensen, 1999). The test is based on the approximate
distribution for -2 log λ being χ2 with the degrees of freedom equal to the difference in the number of parameters in
the two models.

McLachlan and Peel (2000, Chapter 6), give a discussion on assessing the number of components in mixture
models where the model has been used for clustering. McLachlan and Ng (2000) describe some of the criteria
proposed for determining the number of components in the mixture model. They report the results of three simulated
data sets for comparing the performance of these criteria with the classical criteria, AIC and BIC. They show that
some of the more recent criteria performed better than the classical criteria and correctly determined the true number
of components in all three simulated data sets.

5. The analysis

Various criteria for model selection will be calculated when we consider the clustering of cases using the pretrial
variables from the prostate cancer clinical trial data reported by Byar and Green (1980). The dataset is available at
http://lib.stat.cmu.edu/datasets/Andrews/T46.1. These data were obtained from a randomized clinical trial comparing
four treatments for 506 patients with prostatic cancer. Twelve pre-trial attributes (Table 1) had been measured on each
patient. Seven of these attributes may be taken to be continuous, four to be discrete, and one attribute (‘Index of tumour
stage and histolic grade’, SG) may be taken as either categorical or continuous. This measurement is considered as
a continuous attribute. Similarly to Hunt and Jorgensen (1999), two covariates, ‘Size of primary tumour’ (SZ) and
‘Serum prostatic acid phosphatase’ (AP), have been transformed to make their distributions more symmetric, SZ with
a square root transformation and AP by a logarithmic transformation.

Attribute Abbreviation Number of levels if categorical

Age Age
Weight index WT
Performance rating PF 4
Cardiovascular disease history HX 2
Systolic blood pressure SBP
Diastolic blood pressure DBP
Electrocardiogram code EKG 7
Serum haemoglobin HG
Size of primary tumour SZ
Index of tumour stage and histolic grade SG
Serum prostatic acid phosphatase AP
Bone metastasis BM 2

Table 1. Pre-trial attributes. Adapted from: Hunt and Jorgensen (1999)

A complete case clustering of the twelve pretrial attributes is reported where individuals that had missing values
in any of these pretrial attributes were omitted from further analysis, leaving 475 out of the original 506 individuals
available. A classification of the data is available as physicians had classified the patients using clinical criteria as
having either Stage 3 or Stage 4 prostatic cancer. However this information shall be excluded from the fitting of the
models as in most cluster analyses that are performed, a classification of the data is not available. The fitting strategy
of Hunt and Jorgensen (1996) will be followed.

We regard the data as a random sample from the distribution given by equation (1). Under the model of com-

plete local independence, the component distributions will be of the form
12∏
l=1

fkl(xil; θkl) where fkl is the Nkl(µkl, σ
2
kl)

distribution for each of the eight continuous attributes and D(λkl1, ...., λklMl ) for each of the four discrete attributes.
The partitioning in the local independence model will be referred to as Attribute Partition 1 (AP1). To determine the
number of components to be fitted to the mixture model, models with partition AP1 were fitted for K = 1, . . . , 4.
Clustering criteria were calculated for each of the fitted models.

8
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The models were fitted iteratively using the EM algorithm from various different starting values generated by
splitting the data into clusters both randomly and using various criteria. Several local maxima were found, and the
solution of the likelihood equation was taken to be the one corresponding to the largest of the local maxima. Each
individual was assigned to the component to which it had highest estimated posterior probability of belonging.

Figure 1. Clustering criteria, AIC, BIC, CLC, ICL − BIC and ICL, for Attribute Partition 1 (AP1) for K = 1, . . . , 4 for clustering the prostate
cancer clinical trial data.

It can be seen from Figure 1 that the two criteria, ICL − BIC and ICL, had minimum value at K=2, indicating
that there were two components in the data, whereas the BIC for the models with partion AP1, had minimum value
at K = 3, indicating three components. Both the CLC and AIC had minimum value at K = 4 components. It is
known that AIC traditionally overestimates the number of components to be fitted to the model, and that CLC does
not perform well when the mixing proportions are unequal. For the four component model, there was increased
sensitivity to starting values and more tendency to converge to local maxima. Note that for the four component
models, we are unsure whether we have achieved the best endpoint because of this difficulty. As more components
were added to the model, there was an increasing tendency to converge to local maxima. This was not unexpected as
each additional component added to the model required an additional 28 parameters to be estimated. It was therefore
decided not to investigate the model with K = 5 components.

The log-likelihood ratio test was also considered as a guide to the possible number of components to be fitted to
the model. To test the hypothesis of K = 1 versus K = 2 components in the models with AP1, the likelihood ratio test
statistic (LRTS) −2 log λ = 823.202. Thus we can be confident that there is not a single component. The LRTS for the
AP1 models fitted with K = 2 versus K = 3 had −2 log λ = 195.474. While for the models with K = 3 versus K = 4,
the LRTS −2 log λ = 150.136. These are both significant values. Clearly there are at least two components.

The posterior probabilities were also examined to guide the number of components to be fitted. Table 2 shows
that as the number of components fitted to the model increased, there was a decrease in the number of individuals
that were decisively assigned (ẑik ≥ 0.95) to a component. It can also be seen that as the number of components in
the model increased, there were also more individuals that had appreciable membership in more than one component.
The two component model had more individuals that were decisively assigned.

9
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Components K
Max

k ẑik 2 3 4

0.25− < 0.80 33 100 132
0.80− < 0.95 44 99 142
0.95− < 0.99 46 75 85
0.99 − 1.0 352 201 116

Table 2. Maximum Posterior probabilities for models with partition AP1 for clustering the prostate cancer clinical trial data.

The observations were assigned to the component of greatest posterior probability for k = 2, . . . , 4, and the
‘statistical diagnosis’ was compared with the clinical classification. As detailed in Hunt (1996), the two component
model also has an interpretation that agrees with the clinical classification of Stage 3 and Stage 4 prostatic cancer,
with the statistical and clinical classifications only differing for 41 individuals. For the three component model, 90.7%
of the Stage 3 patients were divided among two components and most (89.6%) of the Stage 4 patients were assigned
to the third component. In the four component model, the two components of the Stage 3 patients were virtually
identical to those found in the three component model, however the component corresponding to the Stage 4 patients
had been divided among two components. This type of division indicates the stability of the clustering structure under
the models fitted.

We then investigated models for finite mixtures fitted with both two and three components. The ‘forward selection
of attributes’ strategy given by Hunt and Jorgensen (1999) was used, commencing with the model of complete local
independence. After fitting this model for the fixed number of components i.e. either K = 2 or K = 3, each individual
was assigned to the component of greatest posterior probability. The within cluster correlation structure was examined
and local correlations were added progressively to the model by considering partitions with more parameters.

5.1. Attribute Partitions for Two Components

When the data were placed into two clusters using the posterior assignments from the model fitted with partitioning
AP1, it was found that both clusters exhibited a moderate correlation between systolic blood pressure SBP and dias-
tolic blood pressure DBP, 0.629 for component one and 0.623 for component two. This correlation was incorporated
into a subvector partition, Attribute Partition 2 (AP2), by placing these two attributes together into a subvector, with
all other attributes independent. The local independence assumption was weakened slightly by adding this covariance
parameter in each component.

The next partitioning of attributes chosen had two bivariate subvectors, with SBP and DBP in one subvector,
Weight (Wt) and Serum Haemoglobin (Hg) in another subvector, and all other attributes were independent. This is
Attribute Partition 3 (AP3). The process of examining the within component correlation structure and only introducing
correlations into the model as they were forced in, was repeated, resulting in AP4, AP5, AP6 and AP7. Table 3 shows
the attribute partitions, the correlation structure within the partitions, and the number of parameters to be estimated
for the considered models.

It can be seen from Figure 2 that the criteria AIC and CLC both selected the model with the correlation structure
in AP7, whereas the criteria BIC, ICL − BIC and ICL all selected the model with the correlation structure in AP6
as the best model for the data. In fact, there was not much difference between the BIC, ICL and ICL − BIC criteria
values for models with the correlation structure in AP3 and AP6. Hunt and Jorgensen (1999) studied models with the
correlation structure in AP2 in more detail whereas Hunt (1996), Jorgensen and Hunt (1996) analysed models with the
correlation structure in AP4. These authors originally selected AP4 as the preferred partitioning because they thought
that on physical grounds there would be correlations between a patient’s weight and the two types of blood pressure.

5.1.1. Comparison of Attribute Partitions for Two Component Models
The likelihood ratio test was also used as a guide for the preferred model. The model with attribute partition AP2

had two extra parameters in comparison to the model with attribute partition AP1, i.e. the covariance between the two
blood pressures for each component. The log-likelihood ratio −2 log λ = 235.08, clearly a definite improvement. The
attribute partition AP3 added covariances between Hg and Wt to the attribute partiton AP2, with - 2 log λ = 29.27
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Attribute
Partitions Correlation Structure No. Parameters Log-likelihood

AP1 Local Independence 55 -11386.27
AP2 {SBP, DBP} 57 -11268.72
AP3 {SBP, DBP}, {Wt, Hg} 59 -11254.09
AP4 {SBP, DBP, Wt} 61 -11254.74
AP5 {SBP, DBP, Wt, Hg } 67 -11235.96
AP6 {SBP, DBP}, {AP, Wt, Hg} 63 -11236.85
AP7 {AP, SBP, DBP, Wt, Hg } 75 -11217.10

Table 3. Attribute Partitions, correlation structure within a partition, number of parameters (including the mixing proportions) and log-likelihoods
for the two component models fitted to the prostate cancer clinical trial data.

Figure 2. Clustering criteria, AIC, BIC, CLC, ICL − BIC and ICL, for partitions AP1 to AP7 for K = 2 for the prostate cancer clinical trial data.
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for the cost of two extra parameters. The partition AP5 added covariances between Hg and Wt, and SBP and DBP to
partition AP3, for the cost of eight parameters with −2 log λ = 36.26. Partition AP4 added four extra parameters to
AP2 with −2 log λ = 27.96. Partition AP5 added six extra parameters to AP4, with −2 log λ = 37.56. Partition AP6
added four extra parameters to AP4, with −2 log λ = 34.48. Attribute partitions AP2 to AP6 were all better fitting
models than the fully local independence model AP1, at a cost of a modest number of extra parameters. Partitions
AP3 and AP4 were better fitting models than AP2, again for a small number of extra parameters.

For each of the models fitted, the observations were assigned to their cluster of greater posterior probability, and
the clusters were compared with the clinical classification. The models with partitions AP4 and AP6, detected the
clinical classification of Stage correctly for 91.8% of the observations, whilst models with partitions AP3, AP7, and
AP5 detected the clinical classification of Stage correctly for 91.6% of the observations. Models with partitions AP1
and AP2, respectively, detected the clinical classification of Stage correctly for 91.4% and 91.1% of the observations.
Investigation of the clusters formed for each of the fitted models found that they only differed in the assignment of a
maximum of four observations.

5.2. Attribute Partitions for Three Components

The fitting strategy described above was followed for models with three components. Models with the attribute
partitions shown in Table 3 were fitted. Note that following the fitting strategy described above, the attribute partitions,
AP6 and AP7, only showed a weak correlation in two of the components and would not be considered as possible
partitioning.

Figure 3. Clustering criteria, AIC, BIC, CLC, ICL − BIC and ICL, for partitions AP1 to AP7 for K = 3 for the prostate cancer clinical trial data.

We see from Figure 3 that the criteria, BIC, ICL − BIC, and ICL, all picked attribute partition AP3 as the best
model whereas the criteria AIC and CLC, both picked the model with partition AP5. This was not unexpected as AIC
has a tendency to pick a model with more parameters. CLC does not work as well when the mixing proportions are
not equal, (π̂ = (0.308, 0.278, 0.415)). Note that if the attribute partitions AP6 and AP7, were included, both AIC and
CLC would pick the model with the partitioning given in AP7.
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5.2.1. Comparison of Attribute Partitions for Three component Models
In comparison to a three component model with partition AP1, AP2 has three extra parameters to be estimated.

Twice the difference in the log-likelihoods is 224.58, clearly a definite improvement. The attribute partition AP3 added
the covariances between Hg and Wt to attribute partition AP2 (at a cost of the estimation of three extra parameters),
with −2logλ = 25.962. Attribute partition AP5 added 12 extra parameters to partition AP3 with −2 log λ = 42.944.
The partition AP4 added six extra parameters to partition AP2 with −2 log λ = 33.384. Attribute partition AP5 added
9 extra parameters to AP4 with −2 log λ = 35.522. Models with attribute partitions AP2 to AP5, are all better fitting
models than the local independence model (AP1) with the cost of a modest number of parameters. Models with
attribute partitions AP3 and AP4 are better fitting models than partition AP2, again for a small number of parameters.

For each of the fitted models with K = 3, the observations were assigned to the cluster of greatest posterior
probability. The clusters were compared to the clusters from the comparable two component model. When a three
component model was fitted, most (96%) of the observations in the cluster that corresponded to a clinical classification
of Stage 4, were assigned to a single cluster, whilst the bulk (98.5%) of the remaining cluster was divided into two
other clusters. Investigation of the clusters formed in the three component models with different partitioning of the
attributes, found that they differed in the assignment of a maximum of six observations, indicating the stability of the
grouping structure under the models fitted.

5.3. The fitted model with attribute partition AP3

The number of components to be fitted to the model was then assessed using the attribute partition AP3.

Figure 4. Clustering criteria, AIC, BIC, CLC, ICL − BIC and ICL, for model selection for investigating the number of components to be fitted
using the partition AP3 for the prostate cancer clinical trial data.

It can be seen from Figure 4 that both AIC and CLC overestimated the number of components to be fitted
to the mixture model. For the model with four components, the estimates of the mixing proportions were π̂ =

(0.278, 0.283, 0.264, 0.176). Criterion CLC performs better when the mixing proportions are equal (Biernacki and
Govaert (1997)). The remaining criteria all have their minimum value at K = 2 components.
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The criteria were then examined for all two component (AP1 to AP7) and three component (AP1 to AP5) models
that had been fitted. Criteria, AIC and CLC, both had minimum value for partition AP5 for K = 3 components,
whereas criteria, BIC, ICL and ICL − BIC, had minimum value for partition AP6 for K = 2 components.

6. Simulation studies

In this section, the results of some simulation studies to assess the various criteria in determining the optimal form
of distributions and the number of components in the mixture model are reported. It was decided to assess the criteria
on mixed data that had a known classification and a known correlation structure within each component, as although
the cancer data had an available classification, the correlation structure within each of the components was unknown.

A two component mixture of 500 observations was generated where the proportion of observations in each com-
ponent was 0.574 and 0.426. Note that this is similar to the proportion of observations in the cancer data set that were
classified as having Stage 3 or Stage 4 prostate cancer. Each observation consisted of 12 attributes, A, B,C, . . . , L,
where 8 attributes, A, B,C, . . . ,H, were continuous and 4 attributes, I, . . . , L, were categorical. Similarly to the cancer
data, one categorical attribute had 7 levels, another had 4 levels and the remaining two attributes each had 2 levels.
Each continuous attribute was generated from a normal distribution. Within each component, the parameters for the
continuous attributes and the probability of being at a particular level for the categorical attributes were similar to
those for the observations classified as having Stage 3 or Stage 4 prostate cancer. Fifty data sets were generated for
each set of simulations.

The Multimix program of Hunt (1996) was used to fit various models to the simulated data sets. Twenty random
starts were performed for each data set to initiate the algorithm. The solution corresponding to the largest of the
local maximum was taken to be the solution of the likelihood equation, and the values of each of the five criteria,
AIC, BIC,CLC, ICL − BIC and ICL, were noted for this solution.

The fitting strategy given by Hunt and Jorgensen (1999) was followed and K component (K = 1, . . . , 4) models
were fitted to the data. The value of K that had minimum value over the four components for each of the criteria
calculated, was noted for each data set. For the selected models, each observation was assigned to the component
which it has highest estimated posterior probability of belonging. The within component correlation structure was
examined and variables with strong within component correlations were put together into a partition cell for the next
series of fits. This process was repeated until there were no further associations to be incorporated into the model.

6.1. Simulation Set 1

In the first set of 50 simulations, the data were generated such that each of the attributes was independent within
the two sub populations. The model of complete local independence was fitted for K = 1, . . . , 4, and the five clustering
criteria were calculated for each model.

The percentage of times each criterion had its minimum value at K components for K = 2, . . . , 4 is listed in
Table 4. This helped identify the number of components K to be fitted to the local independence model. We see
from Table 4 that the criteria BIC, ICL − BIC and ICL did not differ in the number of components K to be fitted to
the model. The criteria BIC, ICL − BIC and ICL correctly identified the number of components in the mixture 96%
of the times whereas both AIC and CLC did not perform as well. Examination of the within component correlation
structure after assigning each observation to its component of greater posterior probability for K = 2 did not indicate
the need to incorporate any local associations in the model for any of the simulation sets analysed. It can therefore be
concluded that the local independence model with two components could be used for clustering the data.

6.2. Simulation Set 2

Data were simulated from a two component distribution with the partitioning {A, B}, with a correlation of 0.5
existing between the two attributes A and B within each component, while all other 10 attributes were independent.

It can be seen in Table 4 that when the partitioning of the correct model is not included in the model fitted to the
data, AIC overfits the data and picks the model with the highest number of components. The criteria BIC, ICL− BIC
and ICL correctly picked the number of components to be fitted to the data in all simulations.

Examination of the within cluster correlation structure after assigning each observation to its component of greater
posterior probability for K = 2 indicated a within component correlation between the two variables A and B, in both
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Underlying Fitted
Simulation Attribute Attribute Number of

Set Partition Partition Components, K AIC CLC BIC ICL − BIC ICL
1 Local Local 2 78 56 96 96 96

Independence Independence 3 20 42 4 4 4
4 2 2 0 0 0

2 {A, B} Local 2 0 44 100 100 100
Independence 3 20 56 0 0 0

4 80 0 0 0 0
{A, B} 2 78 44 100 100 100

3 22 56 0 0 0
4 0 0 0 0 0

3 {A, B},{C,D} Local 2 0 56 100 100 100
Independence 3 20 20 0 0 0

4 80 4 0 0 0
{A, B} 2 0 72 100 100 100

3 36 24 0 0 0
4 64 4 0 0 0

{A, B}, {C,D} 2 60 40 100 100 100
3 20 20 0 0 0
4 20 40 0 0 0

4 {A, B,C} Local 2 0 0 54 100 100
Independence 3 0 0 32 0 0

4 100 100 14 0 0
{A, B,C} 2 0 24 100 100 100

3 0 36 0 0 0
4 100 40 0 0 0

5 {A, B}, {C,D, E}, Local 2 0 0 48 100 100
Independence 3 0 8 48 0 0

4 100 92 4 0 0
{A, B} 2 0 0 60 100 100

3 0 6 38 0 0
4 100 94 2 0 0

{A, B}, {C,D, E} 2 58 28 100 100 100
3 28 20 0 0 0
4 16 52 0 0 0

6 {A, B,C,D, E}, {A, B} 2 0 0 0 0 0
3 0 0 0 30 30
4 100 100 100 70 70

{A, B,C} 2 0 0 12 100 100
3 0 0 48 0 0
4 100 100 40 0 0

{A, B,C,D} 2 0 0 100 100 100
3 4 28 0 0 0
4 96 72 0 0 0

{A, B,C,D, E} 2 62 18 100 100 100
3 32 42 0 0 0
4 6 40 0 0 0

Table 4. The percentage of times each of the five criteria, AIC, CLC, BIC, ICL − BIC and ICL, had minimum value at K components for each
fitted AP for a given underlying AP for the Simulation Sets.
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components. The attribute partition {A, B} was incorporated into the model. After fitting this model, the within
component correlation structure was examined. There were no further correlations to be incorporated into the model.
The number of components to be fitted to this model was then investigated.

Table 4 indicates that when the partition {A, B} was included in the partitioning of the attributes, the criteria BIC,
ICL − BIC and ICL all had minimum value for models with K = 2 components. The criterion AIC selected two
components in the model for 78% of the simulations whereas CLC did not perform as well with a model with three
components being predicted in 56% of the simulations. Examination of the within component correlation structure
after each observation had been assigned to its component of greater posterior probability for K = 2 did not indicate
the need for any further associations to be incorporated into the model.

Each of the five criteria calculated for the local independence model was compared with the one calculated for
the fitted model with attribute partition {A, B} for all simulations, K = 1, . . . , 4. The minimum value of each criterion
in all simulations was that for the fitted model with attribute partition {A, B}. It can therefore be concluded that the
model with the partitioning {A, B} and K = 2 components could be used for clustering the data.

6.3. Simulation Set 3

Data were simulated from a two component distribution with the partitioning {A, B}, {C,D}, where there was a
correlation of 0.5 existing between the two attributes A and B, and the attributes C and D, within each of the two
components, while all other 8 attributes were independent, (Model 3, Table 4).

It can be seen from Table 4 that when the model of complete local independence was fitted, AIC picked four
components in 80% of the simulations and selected three components in the remaining simulations. CLC picked
two components in 56% of the simulations, and picked three or four components respectively in 20% and 24% of
the simulations. The criteria BIC, ICL and ICL − BIC all selected two components in the model. Examination
of the within component correlation structure after assigning each observation to its component of greater posterior
probability for K = 2, showed moderate correlations existing between attributes A and B and also between C and D
in each of the two components. This indicated that some attribute partitions needed to be incorporated into the model.

A model with the partitioning {A, B}, with all other attributes independent was fitted, (Model 2, Table 4), and the
number of components K to be fitted to the model was investigated. It can be seen from Table 4 that the criteria
BIC, ICL and ICL − BIC all selected two components to be fitted in the model. AIC picked four components in
64% of the simulations and selected three components in the remaining simulations. CLC picked two components in
72% of the simulations, three components in 24% of the simulations and four components for 4% of the simulations.
For each of the Simulation Set 3 datasets, each of the five criteria calculated for the local independence model was
compared with the one calculated for the fitted model with attribute partition {A, B} for K = 1, . . . , 4. The minimum
value of each criterion in all simulations was that for the fitted model with attribute partition {A, B}. Examination
of the within component correlation structure after the observations had been assigned to their component of greater
posterior probability for K = 2 indicated that a further partitioning of the attributes was needed in the model to
incorporate the within-component correlation that existed between attributes C and D.

A model with the attribute partitions {A, B},{C,D}, (Model 3, Table 4), all other attributes being independent, was
then fitted. Examination of the within-component correlations for K = 2 did not indicate the need to incorporate any
further partitions in the model. This model was then fitted for K = 1, . . . , 4 components. It can be seen from Table 4
that when the fitted attribute partition is the same as that of the generated data, AIC selected two components in 60%
of the simulations and fitted too many components in the remaining 40% of the simulations, whereas CLC overfitted
in 60% of the simulations. The criteria BIC, ICL and ICL − BIC, selected two components in all simulations. It can
be seen that for Simulation Set 3, the criteria BIC, ICL and ICL − BIC selected two components regardless of the
partitioning that was incorporated in the model.

For each of the Simulation Set 3 datasets, each of the criteria calculated for the model with attribute partition {A, B}
was compared with the one calculated for the fitted model with attribute partition {A, B},{C,D} for K = 1, . . . , 4. The
minimum value of each criterion in all simulations was that for the fitted model with attribute partition {A, B},{C,D}.
For all models, (local independence, attribute partitions {A, B} and {A, B},{C,D}), fitted to the Simulation Set 3 datasets,
the minimum value of each criteria in all simulations was that for the model with fitted attribute partition {A, B},{C,D}.
It can therefore be concluded that the best model has two components, with attribute partition {A, B},{C,D}.
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6.4. Simulation Set 4

Data were simulated from a two component distribution with the attribute partition {A, B,C}, where there was a
correlation of 0.5 existing between the three attributes A, B, C within each of the two components, while all other
attributes were independent, (Model 4, Table 4).

Table 4 shows that when the fitted attribute partition is local independence, the criteria AIC and CLC, always
selected a model with four components to be fitted, whereas the criteria ICL and ICL − BIC always selected two
components. The criterion BIC correctly identified two components 54% of the time, selected three components 32%
of the time and selected four components 14% of the time.

Examination of the within component correlation structure for K = 2 indicated a within component correlation of
approximately 0.5 existing between each of A and B, B and C, and A and C. This indicated that the attribute partition
{A, B,C} should be incorporated into the model for K = 2. Examination of the within component correlation structure
for K = 3 showed a within component association of approximately 0.5 existing between all pairs of variables A, B,C
in only one component, whilst the correlations between all pairs of variables in the other two components were small.
This indicated that there was no need to incorporate any partitions of the attributes into the model for K = 3.

The posterior probabilities were examined for both K = 2 and K = 3. These showed that there was a slight
increase in the number of observations that had appreciable membership in two components for K = 3 in comparison
to K = 2. The observations were assigned to their component of greatest posterior probability for both models and the
resulting component assignments were compared. An examination of the assignments found that when going from
K = 2 to K = 3 components, one component was identical in both models whilst the second component for K = 2 had
been split into two components for K = 3. This indicated the stability of the component structure under the models
fitted.

The number of components to be fitted to a model with the partitioning {A, B,C} was then investigated. Table 4
shows that the criterion AIC overestimated the number of components to be fitted to the model even when the correct
partitioning is included in the model. The criterion CLC also did not perform well in selecting the number of compo-
nents to be fitted. The criteria BIC, ICL − BIC and ICL all selected two components to be fitted to the model. The
observations were assigned to their component of greater posterior probability and the within cluster association was
examined for K = 2. No further associations were required to be incorporated into the model.

For each of the simulation set 4 datasets, each of the five criteria calculated for the local independence model was
compared with the one calculated for the fitted model with attribute partition {A, B,C} for K = 1, . . . , 4. The minimum
value of each of the criteria in all simulations was that for the fitted model with attribute partition {A, B,C}. It can
therefore be concluded that the partition structure {A, B,C} with all other attributes independent, should be fitted to
the two component model.

Overall for this simulation set, we see that the BIC was able to detect the correct number of components to be fitted
to the model when the correct partitioning structure was included in the model, however when the correct partitioning
was not included in the model to be fitted, BIC tended to overestimate the number of components to be fitted to the
model. The criteria ICL − BIC and ICL, always selected two components regardless of the partition structure used in
the model whereas AIC always fitted too many components regardless of the partitioning.

6.5. Simulation Set 5

Data were simulated from a two component distribution with the partitioning {A, B}, {C,D, E}, with a correlation
of 0.5 existing between A and B, and also between all pairs of C,D and E, within each of the two components, while
the other seven attributes were independent, (Model 6, Table 4).

The local independence model was initially fitted for K = 1, 2, 3, 4. Table 4 shows that the criterion AIC always
selected four components to fit to the model. CLC also tended to fit too many components to the model. The
criteria ICL − BIC and ICL always selected two components whereas BIC selected both two components and three
components in 48% of the simulations. Examination of the within component correlation structure for K = 2 showed
correlations existing between A and B in both components and also all between all pairs of attributes C, D and E. The
largest of these existing in components 1 and 2 respectively was 0.557 and 0.555 between attributes A and B. This
correlation was incorporated into the model by putting the two attributes A and B into one partition, with all other
attributes independent. This model was then investigated.
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Table 4 shows that when the fitted attribute partition is {A, B}, criteria AIC and CLC both recommended fitting
more components to the model than the other criteria. BIC had minimum value at K = 2 in 60% of the simulations,
whereas ICL − BIC and ICL picked two components in all simulations. For each of the Simulation Set 5 datasets,
each criterion calculated for the local independence model was compared with the one calculated for the fitted model
with attribute partition {A, B}. The minimum value of each criterion in all simulations was that for the fitted model
with attribute partition {A, B}.

The within component correlation structure was investigated for K = 2 components. Correlations of approx-
imately 0.5 were found between all pairs of attributes C,D and E in both components. These correlations were
incorporated into the model by putting the attributes C,D, E into a partition cell.

Table 4 shows that with fitted attribute partition {A, B}, {C,D, E}, criteria BIC, ICL − BIC, and ICL always
selected two components to fit to the model, AIC selected two components in 58% of the simulations whilst CLC
selected four components in 52% of the simulations. The observations were assigned to their component of greater
posterior probability for K = 2 and the within component correlation structure was examined. There were no further
attribute partitions to be incorporated into the model.

For each of the 50 simulations, each criterion calculated for the fitted attriubute partition {A, B} model was
compared with the analogous criterion calculated for the fitted model with attribute partition {A, B}, {C,D, E} for
K = 1, . . . , 4. The minimum value for the criteria in all simulations were those for the model with fitted attribute
partition {A, B}, {C,D, E}. Thus it could be concluded that the partitioning {A, B}, {C,D, E} should be incorporated
into the model, and the model is likely to have two componentsl.

For this set of simulations, it can be seen that the criteria ICL − BIC, and ICL always selected K = 2 components
regardless of the partitioning of the attributes. When the correct partition structure was incorporated into the model,
BIC always detected the correct number of components to be fitted to the model, however when the correct partitioning
was not in the model, BIC varied in the number of components to be fitted. The CLC tended to overestimate the
number of components to be fitted and AIC has variable performance.

6.6. Simulation set 6
Data were simulated from a two component distribution with the partitioning {A, B,C,D, E}, with a correlation of

0.5 existing between the five attributes, A, B,C,D and E, within each of the two components, while the other seven
attributes were independent (Model 7, Table 4).

When the local independence model was fitted, it was found that the criteria AIC, BIC, CLC, ICL and ICL− BIC
all selected K = 4 components to be fitted to the model for all 50 data sets. These results also include those obtained
from starting the algorithm using the known component assignment for K = 2. Examination of the within component
correlation structure for K = 4 showed that most correlations between pairs of variables were low. The highest
correlation between a pair of variables B,C was 0.437 in one component, however the correlations between the
variables B,C ranged between 0.143 and 0.211 in the other three components. This indicated that there were no
correlations to be incorporated into the model. Hence, it could be concluded that the local independence model with
K = 4 components could be used for this data.

Although the within component correlation structure did not indicate the need for any correlation structure to be
fitted to the model, it was decided to increasingly introduce associations into the local independence model to observe
the effect this would have on the criteria. The model with the partition {A, B} and all other attributes independent, was
fitted for K = 1, . . . , 4. It can be seen from Table 4 that AIC, CLC, BIC had minimum value at K = 4 components for
all simulations, whilst both ICL− BIC and ICL had minimum value at K = 4 components for 70% of the simulations
and K = 3 for the remaining simulations. Each criteria calculated for the local independence model was compared
with the one calculated for the model with partition {A, B} for K = 1, . . . , 4 and for all simulations. The BIC selected
the model of local independence model with four components in 8% of the simulations, and the four component model
with partition {A, B} in 96% of the simulations, whilst ICL and ICL − BIC selected the local independence model
with four components in 16% of the simulations, and a four component model with partition {A, B} in the remaining
simulations. AIC and CLC selected a four component model with partition {A, B} in all simulations. The observations
were assigned to their component of greatest probability for K = 4 and the within component correlations were
examined. This did not indicate the need to incorporate any further partitioning into the model.

The next set of models fitted had the partition {A, B,C} and all other attributes were independent. This model
was fitted for K = 1, . . . , 4. It can be seen from Table 4 that the criteria AIC and CLC, selected four components to
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be fitted, whereas the criteria ICL − BIC and ICL selected two components in all simulations. The criterion BIC,
selected three components in 48% of the simulations, four components in 40% of the simulations and two components
in the remaining 12% of the simulations. For each of the Simulation Set 5 datasets, each of the criteria calculated for
the models with partition {A, B,C} was compared with the one calculated for the fitted models with partition {A, B}.
The minimum value of each criterion in all simulations was that for the fitted model with partition {A, B}. Each
observation was assigned to its component of greatest posterior probabilty for K = 2 and K = 4. Examination of
the within component correlation structure for K = 2 showed a correlation of 0.5 existing between five attributes,
A, B,C,D and E within each of the two components. For K = 4 components, it was found that there was no need to
incorporate any further correlations into the model.

The number of components to be fitted to models with the partitioning {A, B,C,D} and all other attributes inde-
pendent, was then investigated for Simulation Set 6. Table 4 shows that the criteria AIC and CLC both tended to
recommend fitting models with four components whereas the criteria BIC, ICL − BIC and ICL selected two com-
ponents in all simulations. For each of the Simulation Set 5 datasets, each criterion calculated for the models with
partition {A, B,C,D} was compared with the one calculated for the fitted models with partition {A, B,C}. Criteria
AIC selected the model with partition {A,B,C} with K = 4 in all simulations whereas all other criteria selected the
models with partition {A, B,C,D} for K = 2, . . . , 4. Examination of the within component correlation structure for
K = 2 showed correlations of approximately 0.5 existing between all pairs of attributes A, B, C, D and E in both
components, indicating that the partitioning {A, B, C, D, E} needed to be incorporated into the model.

The model with the partitioning {A, B, C, D, E} and all other attributes independent, was fitted for K = 1, . . . , 4.
This is the same partitioning that was used to generate the data. It can be seen in Table 4 that the criteria BIC,
ICL − BIC and ICL selected K = 2 components to be fitted to the data in all simulations. The criterion AIC selected
K = 2 components in 62% of the simulations and selected more than two components in the remaining simulations.
The criterion CLC fitted more than two components in 82% of the simulations. For each of the Simulation Set 5
datasets, each criterion calculated for the models with partition {A, B,C,D, E} was compared with the one calculated
for the fitted models with partition {A, B,C,D}. All criteria selected the fitted model with partition {A, B,C,D, E} for
K = 2, . . . , 4.

For this set of simulations, it can be seen that when the correct partitioning was used in the model, the criteria
BIC, ICL − BIC, ICL detected the correct number of components to be fitted to the data. However, when the fitted
attribute partition structure is far from the underlying attribute partition, all criteria fitted too many components to the
model. Even though AIC selected a mixture model with too many components in all the fitted attribute partitions,
AIC performed better than CLC at detecting the structure in the generated data.

7. Discussion

The finite mixture model is a model based clustering approach that is characterized by the form of the compo-
nent densities and the number K of components. An important task when using the mixture model is choosing an
appropriate form for the component distributions and assessing the number of components in the model.

The investigations have found that caution is needed when following the procedure given by Hunt and Jorgensen
(1999) and using criteria to select your model. For the cancer data, the criteria ICL and its approximation ICL − BIC
performed in an identical manner in selecting both the number of components to be fiited to the model and the
partitioning structure of the attributes. With the exception of the local independence model initially fitted to the data,
criterion BIC performed similar to the two criteria, ICL and ICL − BIC in selecting the number of components
and the partitioning structure of the attributes. For all models fitted to this data set, AIC and CLC tended to overfit
the data with more complex models. For the models fitted to the two component simulation sets, the criteria based
on the integrated classification likelihood criterion ICL and its approximation ICL − BIC performed in an identical
manner and generally detected the correct number of components to be fitted to the model, even when the form of the
component distributions was not the same as that of the generated data. For models with a simple partitioning stucture
as in Simulation Sets 1 to 3, the BIC criterion always selected the same models as the criteria based on the integrated
classification likelihood. However, for models where there were more than two attributes in a partition subvector, the
criterion BIC could overestimate the number of components to be fitted to the model when the partitioning differed
from that of the generated data. When the partition structure to be fitted in the model was identical to that of the
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generated data, BIC always detected the correct number of components to be fitted in the mixture model. Both the
AIC and the CLC tended to overfit the data with more complex models.

The investigations reported here show that the criteria based on the integrated classification likelihood have the
best overall performance in detecting the form of the component distributions and the number of components to be
fitted when clustering with the Multimix class of mixture models. The performance of the Bayesian information
criterion in detecting the correct model to be fitted was variable, and this criterion tended to overestimate the number
of components to be fitted to the model when the partition structure incorporated into the model differed greatly from
that of the generated data. The Akaike information criterion and classification criterion performed in a less satisfactory
way.
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