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a b s t r a c t

Compound optimum design criteria which allow pure error degrees of freedom may
produce designs that break down when even a single run is missing, if the number of
experimental units is small. The inclusion, in the compound criteria, of a measure of
leverage uniformity is proposed in order to produce designs that aremore robust tomissing
observations. By appropriately choosing the weights of each part of the criterion, robust
designs are obtained that are also highly efficient in terms of other properties. Applications
to various experimental setups show the advantages of the new methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Processes, products and methods in many areas are discovered and improved by performing controlled experiments in
which the levels of several continuous inputs, experimental factors, are manipulated and at least one outcome is measured.
Empirical models, such as low order polynomials, relating the response to the factor levels have been extremely useful
for interpreting the data from such experiments. Such models and methods are part of the large area of Response Surface
Methodology. Designs for experiments in this setup are known as Response Surface (RS) designs.

It has long been recognized that the experimental design should have several good properties. In the context of RS, Box
and Draper (1975) started a list that was subsequently enlarged (Box and Draper, 1987, 2007) to 14 desired properties, some
of them conflicting, indicating that in practice it is wise and necessary to compromise in order to choose a good design.

On the other hand, optimum design methodologies have concentrated on variance-based criteria such as D-, A- and
I-optimality, the so called alphabetical optimality, see Atkinson et al. (2007) for an account of design criterion definitions.
The use of a single optimality criterion may lead to designs that lack practical appeal. Gilmour and Trinca (2012) re-
defined the alphabetical optimality criteria such that their properties are valid under inferences based on the randomization
process only. They proposed adjustments to the traditional criteria allowing for pure error degrees of freedom in order
to appropriately estimate random variation, the so called DP and AP criteria for instance. However, as recognized by
the authors, these criteria may produce extreme designs with no spare degrees of freedom for inclusion of additional
model terms. They further proposed compound criteria that aggregate into a single function the properties reflecting four
experimental objectives, including a simple component, based on degree of freedom efficiency (Daniel, 1976) to drive the
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design to allow some lack of fit degrees of freedom as well. The use of compound criteria as well as procedures for multiple
objectives (Lu et al., 2011) has the power to produce designs that are very statistically efficient and useful for experimenters.

Concerning the extreme designs produced by using a single property, e.g. DP , it was pointed out by Ridout (2012) that
small designs would break down in case of even onemissing observation from some treatment units. Robustness to missing
observations is closely related to insensitivity towild observations, a desired design property highlighted by Box andDraper.
A design is said to be robust to missing observations if the model parameters are still estimable, without too much loss of
precision, when observations from some experimental units are not available. Just as there are different design optimality
criteria for estimation and for inference, there are different criteria for robustness. Surrogate measures related to the so
called leverages, associated with a regression model, have been used to compare designs in this sense, as well as measures
related to precision.

For example, Box andDraper (1975) studied the connections of the sumof squares of leverages and other designmeasures
and found the best replication of center points and axial point values in central composite designs (CCD). Herzberg and
Andrews (1976) and Andrews and Herzberg (1979) noted that such a measure does not discriminate well between designs
and proposed extendedmeasures incorporating some probability for the event of amissing observation. Akhtar and Prescott
(1986) developed an efficiencymeasure relating theD criterion and the leverages and compared several CCDs, while Ahmad
andGilmour (2010) studied efficiency losswith respect to several optimality criteria due tomissing data fromdifferent types
of points in subset designs (Gilmour, 2006) and Ahmad et al. (2012) did the same for augmented pairs designs. Related
investigations were also presented by Ghosh (1982a,b) who studied robustness of certain designs under sets of s missing
runs and found the maximum s value for given designs. Adding to these works, Ghosh (1983, 1989) proposed measures to
study influence on estimation and prediction of observations. To the best of our knowledge, a property related to robustness
to missing data has not yet been incorporated in a criterion function in order to algorithmically construct an efficient RS
design robust to missing data.

In this paper we incorporate a measure for the contribution of leverages, related to Cook’s distance, in a compound
design criterion in order to prevent the optimal design from being too sensitive to some observations or to breakdown
in case of missing data. We show through several examples that such a property is particularly important in the case of
limited experimental resources. In Section 2, a criterion for assessing design robustness is developed and in Section 3 a brief
description of the algorithm is presented. The proposed criterion is shown to work well in several illustrative experiments
in Section 4. Some final comments are made in Section 5.

2. Efficient and robust designs

Consider a completely randomized design in which there are t treatments, the distinct combinations of levels of q
quantitative factors, to be allocated to n experimental units (t < n), treatment r being replicated nr times (nr ∈

N,
t

r=1 nr = n). The underlying model for the continuous random response variable Y is

yrj = µr + εrj r = 1, 2, . . . , t; j = 1, 2, . . . , nr , (1)

where, in matrix notation, E(ε) = 0 and V(ε) = σ 2I. Once data are collected the fitting of this model allows d = n − t
pure error degrees of freedom to estimate σ 2 unbiasedly. As argued in Box and Draper (2007), in RS experiments we want
to simplify the model and add interpretability by approximating

µr ≈ f(xr)′β r = 1, 2, . . . , t, (2)

where xr is the vector of levels of the q factors defining treatment r (the design experimental points), f is the function
that expands the levels according to the desired approximating function, usually a low order polynomial, and β is the p-
dimensional vector of parameters with its first element being the intercept denoted by β0. Inmatrix notation, letXp = [1|X]
be the n × p model matrix for Eq. (2) where each row of Xp corresponding to treatment r is f(xr)′, 1 is the n dimensional
column vector with all elements equal to 1 and X is a n× (p− 1) matrix.

For theDP design criterion (Gilmour and Trinca, 2012)we shouldminimize

Fp,d;1−α

p
/|X′pXp|, where Fp,d;1−α is the 1−α

quantile of the F distribution with p numerator and d denominator degrees of freedom and 1 − α is the confidence level
of the confidence region for the p-parameter vector β. Other alphabetical optimalities can be defined similarly. Using the
(DP)S criterion, for the case of interest in a subset of p2 (p2 < p) parameters we should minimize


Fp2,d;1−α

p2
|(M−1)22|,

where M = X′pXp and (M−1)22 is the portion of M−1 referring to the subset of p2 parameters of interest. See Atkinson et al.
(2007) for details on DS and other useful design criteria. If we use p2 = p− 1 which drops only the intercept (β0) from the
set of parameters of interest, minimizing |(M−1)22| is equivalent to maximizing |X′QX|, where Q = I − 1

n11
′ and I is the

n× n identity matrix. Focusing on four design objectives, each with a priority weight κl (
4

l=1 κl = 1), representing

1. global F test for treatment effects in β, with significance level α1;
2. partial confidence intervals for each regression parameter each with confidence level of 1− α2;
3. point estimation of each regression parameter; and
4. lack of fit degrees of freedom,
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Gilmour and Trinca (2012) formulated the compound criterion

|X′QX|
κ1
p−1 (n− d)κ4

(Fp−1,d;1−α1)
κ1(F1,d;1−α2)

κ2 [tr{W(X′QX)−1}]κ2+κ3
, (3)

whereW is a diagonalmatrix ofweights for aweighted-A criterion andα1 andα2 are the significance levels used in objectives
1 and 2, respectively.

As discussed in Ridout (2012), for small n, considering only the first objective may result in designs that break down in
the case of a single missing observation. For design breakdown we use the same meaning as Ghosh (1982a,b), that is, the
rank of the M matrix relative to the reduced design is less than p, if the data from some experimental unit is lost, and thus
it is not possible to estimate all the elements of β. One step in the direction of constructing efficient designs with respect
to several properties and simultaneously safeguarding against the related missing observation problems is incorporating in
the compound criterion some measure to guide the design search in this respect. Missing observations are a fairly common
problem in response surface studies, since many of the combinations of factor levels will never have been studied before
and might lead to no response being possible. We will see an example of this in practice in Section 4.

Ghosh (1982a) defined a design to be robust against the unavailability of s observations if the design does not break down
after omitting any set of s runs. A complete investigation of robustness would require evaluation of the design under each
possible set of smissing data points, which can become very computationally intensive. In practice, if the experimenter faces
a situation of high risk of having more than one or two missing observations, he or she should be prepared to start with a
reasonably large n, in which case, the sensitivity of the design to unavailable data should be low. Our development, based
on well known results in linear models, leads to the use of a surrogate measure of sensitivity that will prevent the design
from breaking down when a single observation goes missing.

From least squares theory, e.g. Hoaglin andWelsh (1978), if observation i, is removed from the data, the covariancematrix
ofβ(−i), the new estimator of β, except for the constant σ 2, is

M−1(−i) = (X′p(−i)Xp(−i))
−1
= M−1 +

M−1f(xi)f(xi)′M−1

1− hi
, (4)

where hi, called leverage, is the ith element of the diagonal of the projection or hat matrix given by H = XpM−1X′p.
It is well known that rank(H) = trace(H) = p and 1

n ≤ hi ≤ 1. The ideal hi value is p/n (i = 1, 2, . . . , n) in which case
the contribution from each observation to estimate its response is the same for all points, none of them being influential due
to the design. For replicated xi the reciprocal of the number of replications is the upper bound for hi, so only for unreplicated
treatments can hi reach the value 1. From Eq. (4) it is easily seen that if hi = 1 and observation i is removed from the data
the design breaks down in the sense that the reduced data does not support the fitting of the intended model. Cook and
Weisberg (1982) show that

hi =
1
n
+ X′i(X

′X)−1Xi, (5)

where Xi is the ith row of X, and

hi =
1
n
+

p
l=1

(vl′Xi)
2

λl
=

1
n
+ X′iXi

p
l=1

cos2(θli)
λl

,

where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of X′X, v1, v2, . . . , vp are the corresponding eigenvectors and θli is the
angle between vl and Xi. Thus hi is large if X′iXi is large, that is, xi is far away from the bulk of the design points. hi can also
be large when Xi is in the direction of an eigenvector corresponding to a small eigenvalue. But note that if X′iXi is small, hi is
small no matter its direction. Thus, for level balanced factors, design points closer to the center of the experimental region
have small hi values as we show in the illustrations in Section 4.

Each hi can also be expressed as

hi = f(xi)′M−1f(xi) (6)

such that we can write Var(ŷ(xi)) = hiσ
2 where ŷ(xi) is the estimate of the mean response (estimated from the fitted

polynomial) under treatment xi. This expression establishes the relations between leveragemeasures and theG and I criteria
(Box and Draper, 1975; Ahmad and Gilmour, 2010) and, together with Eq. (4), shows the dangers of having high leverage
design points. The determinant of the information matrix of the design with design points removed can also be written as a
function of the full design information matrix and the elements of the Hmatrix, as shown in Andrews and Herzberg (1979),
thus giving a link to the D criterion.

For illustration, Table 1 shows a (DP)S design constructed by Gilmour and Trinca (2012) together with the hi value for
each design point. The design allows 6 degrees of freedom for estimating σ 2 but, if at least one observation from the set of
design points 1, 6, 9 and 12 goes missing, the second order model cannot be fitted. Note that when hi = 1 the estimated
response from the full data matches exactly its observed value. Even if the situation is not so drastic that the design breaks
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Table 1
Designs for Example 1: three 3-level factors in n = 16 and p = 10.

i (DP)S H κ1 = 0.5; κ5 = 0.5
(2) (4) (5)
X1 X2 X3 hi X1 X2 X3 hi X1 X2 X3 hi

1 −1 −1 −1 1.000 −1 −1 −1 0.644 −1 −1 0 0.500
2 −1 0 1 0.500 −1 −1 0 0.613 −1 −1 0 0.500
3 −1 0 1 0.500 −1 0 −1 0.644 −1 0 −1 0.729
4 −1 1 −1 0.500 −1 0 0 0.571 −1 0 1 0.729
5 −1 1 −1 0.500 −1 0 1 0.644 −1 1 −1 0.789
6 0 −1 1 1.000 −1 1 0 0.613 −1 1 1 0.789
7 0 0 −1 0.500 −1 1 1 0.644 0 −1 −1 0.729
8 0 0 −1 0.500 0 −1 0 0.625 0 −1 1 0.729
9 0 1 0 1.000 0 1 0 0.625 0 0 0 0.500

10 1 −1 −1 0.500 1 −1 −1 0.644 0 0 0 0.500
11 1 −1 −1 0.500 1 −1 0 0.613 1 −1 −1 0.789
12 1 0 0 1.000 1 0 −1 0.644 1 −1 1 0.789
13 1 1 −1 0.500 1 0 0 0.571 1 1 −1 0.482
14 1 1 −1 0.500 1 0 1 0.644 1 1 −1 0.482
15 1 1 1 0.500 1 1 0 0.613 1 1 1 0.482
16 1 1 1 0.500 1 1 1 0.644 1 1 1 0.482

down, a design point with high leverage may cause inflation in the variances of parameter estimators if its observation goes
missing. Thus, when designing an experiment, especially if the number of experimental units is limited, we should caution
against the use of design points with high leverage. For p and n fixed Box and Draper (1975) considered minimizing the
variance of leverages given by

n−1
n

i=1


hi −

p
n

2
, (7)

or its square root, for obtaining designs robust to wild observations. They showed how this measure of robustness varied
with the number of center points and the values for the axial points used in CCDs.

Other quantities based on the hi values are appealing. For example, recall that the contribution of each leverage to Cook’s
distance is hi

(1−hi)2
. Thus minimizing

1
n

n
i=1

hi

(1− hi)2
(8)

when choosing a design is also a good idea. However, as discussed by Andrews and Herzberg (1979), the use of (7) or (8) or
any other measure based only on the leverages as a design criterion may result in very inefficient designs. One explanation
for this comes from Eq. (5) which indicates, as pointed out by Cook andWeisberg (1982), that a design with low his benefits
from points that are closer to the center of the region. Since such points have less information for estimating many terms of
the polynomial model the design will perform poorly in terms of estimation precision.

Following the line of compromising among objectives or design properties, in this paper we consider the construction of
compound optimum designs that are efficient in terms of several properties but also control for high leverage. For this last
property we choose to use Eq. (8) because of its relation to common diagnostic techniques and also because we can easily
define a design efficiency measure with respect to leverage. Thus Eq. (8) will be referred to as the H criterion function and
the H-efficiency of design X will be calculated by

Heff = 100


n

i=1

hiH
(1−hiH )2

n
i=1

hiX
(1−hiX )2

 , (9)

where the subscript H refers to the H optimum design. Note that a design with at least one point with hi = 1 is 0% efficient
under theH criterion. For the theoretical or idealH-optimum design the numerator in (9) reduces to np

(n−p)2
but such an ideal

design rarely exists so we prefer to use Eq. (9) for measuring the efficiency with respect to the leverages.
Thus, the compound criteria we propose in this paper maximize the compound function

|X′QX|
κ1
p−1 (n− d)κ4

(Fp−1,d;1−α1)
κ1(F1,d;1−α2)

κ2 [tr{W(X′QX)−1}]κ2+κ3


n

i=1

hi
(1−hi)2

κ5
, (10)
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for finding optimal designs, where κ5 is the weight for H-efficiency and
5

i=1 κi = 1. Choosing different values of the κi is
subjective and problem dependent, like the choice of utility function in most applications. However, small changes in their
values make little difference in practice and small positive weights for particular criteria do not differ much from ignoring
these criteria. As suggested by Gilmour and Trinca (2012), it is reasonable to simplify the choice by using relative weights
of 3, 1 and 0 for objectives that are considered major, minor or unimportant. When time allows, we would also recommend
users to try various weights and to consider all the properties of the designs produced. As with all methods of optimal
design, that proposed here should be considered to be mainly a way to produce interesting designs for consideration by the
experimental team.

3. An algorithm

To find the optimum designs we used exchange algorithms. Both point exchange (Cook and Nachtsheim, 1980) and
coordinate exchange (Meyer and Nachtsheim, 1995) versions were explored. The nature of these algorithms is sequentially
performing changes in design points or factor coordinates that improve a given initial design, usually a random initial design.
The search is performed many times from different initial designs in order to increase the probability of finding the best
solution. In this paper we consider candidate design points belonging to the complete factorial design with the minimum
number of levels necessary for the response surface model aimed at. A basic description of the algorithm for the coordinate
exchange version is given in Algorithm 1 and R (R Core Team, 2016) code is provided in the Supplementary Material.

Algorithm 1: Coordinate Exchange Algorithm
Input: number of factors k; levels[k][.]; model terms indicator; design size N; number of tries Ntries; weight vector for

compound criteria κ = (κ1, . . . , κ5); weight vector forW; significance level for pure error adjustments α1 and
α2; number of iterations for recalibration Ncali

1 for m← 1 to nTries do
2 X←model matrix from a randomly generated initial design
3 crit ← evaluate equation (10)
4 crit0 ← crit
5 improve← 1
6 while improve == 1 do
7 improve← 0
8 for j← 1 to k do
9 for i← 1 to N do

10 exchange(X[i][j])
11 complete all elements of X[i][.] according to the model
12 crit0 ← evaluate equation (10)
13 if crit0 > crit then
14 improve← 1
15 crit ← crit0
16 else
17 revert exchange(X[i][j])

18 ifm == 1 then
19 Xbest ← X
20 critbest ← crit
21 else
22 if crit > critbest then
23 Xbest ← X
24 critbest ← crit

25 Return Xbest

For criteria that require the calculation of the determinant and/or the inverse of the appropriate information matrix we
should use updating formulas after each exchange in step 12. Here we used the methods of Cook and Nachtsheim (1989).
If desired, determinants and inverses can be recalculated after each change or after a prespecified number of changes,
e.g. to recalibrate calculations in order to avoid building up numerical rounding errors. However, our experience shows
that recalibration is unnecessary. The number of degrees of freedom for pure error is n minus the number of distinct
treatments. For the point exchange algorithm, a treatment label is attached to each point in the candidate setwhich is carried
forward during the search. For coordinate exchange, treatment labels are attached to the rows of X after each change in the
design.
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Table 2
Properties of designs for the second order model, Example 1 (q = 3, p = 10 and n = 16).

Design Criterion DF Efficiencies
(PE; Lof) DS (DP)S AS (AP)S H hmax

1 DS ; AS (0; 6) 100.00 0.00 100.00 0.00 50.57 0.843
2 (DP)S (6; 0) 83.09 100.00 65.38 83.64 0.00 1.000
3 (AP)S (5; 1) 93.03 96.17 86.27 100.00 26.71 0.857
4 H (0; 6) 66.22 0.00 34.85 0.00 100.00 0.644
5 κ1 = κ5 = 0.5 (4; 2) 92.58 76.13 82.16 81.64 57.40 0.789
6 κ1 = 0.3; κ5 = 0.7 (3; 3) 96.62 54.09 93.18 70.47 73.70 0.750
7 κ1 = 0.5; κ4 = 0.5 (5; 1) 93.03 96.17 86.17 99.89 26.71 0.857
8 κ1 = 0.2; κ4 = 0.8 (4; 2) 95.10 78.21 89.46 88.89 36.68 0.832
9 CCD (1; 5) 93.15 1.91 90.75 4.31 43.07 0.796

4. Applications

In this sectionwe show the performances of the proposed criteria in four experimental layouts.We used α1 = α2 = 0.05
for the (DP)S and (AP)S criteria throughout and at least 1000 tries. The number of tries was increased when the best design
appeared just once.

4.1. Example 1

We considered Example 1 from Gilmour and Trinca (2012) and constructed several new designs for the experiment
which involved three three-level factors in 16 runs with the second order model as the primary model. In Table 1 we show
the (DP)S- andH-optimum designs and a compromise design obtained by composing the (DP)S andH properties with equal
weights. The hi values for the design points are also shown. As already discussed in Section 2 the (DP)S-optimum design
has four points with the upper bound leverage value. For the H-optimum design the best that can be done is choosing all
16 points with leverages ranging from 0.571 to 0.644 (note that the ideal value would be 10

16 = 0.625). The efficiencies in
Table 2 show that this design lacks efficiency in terms of other properties. For the compromise design the hi values range
from 0.482 to 0.789.

These three designs are contrasted with several others in Table 2 (designs 1, 3 and 8 are shown in Gilmour and Trinca
(2012), the CCD is the central composite design in a cubic regionwith two center points).We see thatDS andH single criteria
produce designs that do not allow degrees of freedom (DF) for estimating pure error (see designs 1 and 4) while the pure
error adjusted criteria produce designs that are poor for lack of fit checking and leverage efficiency (designs 2 and 3). The
CCD has just one DF for error and thus has low efficiencies for the adjusted criteria. Designs from 5 to 8 show that we may
drive the design by changing the weight pattern in the compound criterion, recalling that κ1 represents the weight given
to inference, κ4 the weight given to checking for lack of fit and κ5 the weight given to robustness to missing values. In this
case for example we obtained an attractive compromise design (design 5) when considering (DP)S andH with equal weight,
which performs reasonably well in several respects and will not break down if a point goes missing. Designs 7 and 8 were
obtained composing the (DP)S and DF efficiencies (as in Gilmour and Trinca (2012)) and show that although DF efficiency
attenuates leverage problems, the resulting designs are different from those using the H property. Note that design 7 is very
similar to design 3 but not equivalent. This highlights the value of constructing several designs and comparing them in terms
of a wide range of properties, although in this case the difference is very small.

4.2. Example 2

In this illustration we use as motivation the experiment from Mountzouris et al. (1999) that studied the effects
of substrate concentration (X1), enzyme concentration (X2) and transmembrane pressure (X3) on several quantitative
characteristics of the product formed (types of oligodextrans). The investigation aimed to fit empirical models, in particular
second order polynomials and thus the design used was a three-level CCD with four center runs (n = 18). For one of the
treatments, X1 and X3 at the highest levels and X2 at the lowest level (run 15 in Table 3), the reaction did not work and thus
the respective run was removed from the data analysis. Fortunately the CCD design with run 15 removed still allowed the
fitting of the assumed model. Note however that all points from the two-level factorial have the maximum hi value that is
close to 0.8.

We constructed several alternative designs for this experiment, someofwhich are shown in Tables 3 and 4. The properties
of all designs are shown in Table 5. The ideal value of hi is 10

18 = 0.556 and the H-optimum design gives hi ranging from
0.514 to 0.589 but no pure error DF. Despite the high number of distinct treatments in this design, its efficiencies in terms of
point estimation are not very high. The other designs constructed by single criteria have very low efficiencies in at least one
of the properties studied. Among them, the DS optimum design has the best performance in terms the H property but only
2 pure error DF. Note that designs 3, 4 and 11 are all (DP)S optimal but the three designs behave slightly differently with
respect to the AS and (AP)S criteria, highlighting the importance of evaluating several properties for design choice. Designs
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Table 3
Possible designs for Example 2: three 3-level factors in n = 18 and p = 10.

i (DP)S H CCD κ1 = κ3 = κ4 = κ5 = 0.25
(3) (5) (14) (10)
X1 X2 X3 hi X1 X2 X3 hi X1 X2 X3 hi X1 X2 X3 hi

1 −1 −1 −1 0.458 −1 −1 0 0.564 −1 −1 −1 0.794 −1 −1 0 0.678
2 −1 −1 −1 0.458 −1 −1 1 0.589 −1 −1 1 0.794 −1 −1 1 0.663
3 −1 −1 1 0.833 −1 0 −1 0.564 −1 0 0 0.505 −1 0 −1 0.678
4 −1 1 −1 0.833 −1 0 1 0.514 −1 1 −1 0.794 −1 1 −1 0.663
5 −1 1 1 0.458 −1 1 −1 0.589 −1 1 1 0.794 −1 1 1 0.457
6 −1 1 1 0.458 −1 1 0 0.514 0 −1 0 0.505 −1 1 1 0.457
7 0 −1 0 0.500 −1 1 1 0.589 0 0 −1 0.505 0 −1 −1 0.661
8 0 −1 0 0.500 0 −1 −1 0.564 0 0 0 0.155 0 0 1 0.722
9 0 0 −1 0.500 0 −1 1 0.514 0 0 0 0.155 0 1 0 0.722

10 0 0 −1 0.500 0 1 −1 0.514 0 0 0 0.155 1 −1 −1 0.663
11 1 −1 −1 0.458 0 1 1 0.564 0 0 0 0.155 1 −1 1 0.456
12 1 −1 −1 0.458 1 −1 −1 0.589 0 0 1 0.505 1 −1 1 0.456
13 1 −1 1 0.833 1 −1 0 0.514 0 1 0 0.505 1 0 0 0.422
14 1 0 0 0.500 1 −1 1 0.589 1 −1 −1 0.794 1 0 0 0.422
15 1 0 0 0.500 1 0 −1 0.514 1 −1 1 0.794 1 1 −1 0.456
16 1 1 −1 0.458 1 0 1 0.564 1 0 0 0.505 1 1 −1 0.456
17 1 1 −1 0.458 1 1 −1 0.589 1 1 −1 0.794 1 1 1 0.484
18 1 1 1 0.833 1 1 0 0.564 1 1 1 0.794 1 1 1 0.484

Table 4
Possible designs for Example 2: three 3-level factors in n = 18 and p = 10 (continued).

i DS AS (AP)S κ1 = 0.2; κ5 = 0.8
(1) (2) (4) (8)
X1 X2 X3 hi X1 X2 X3 hi X1 X2 X3 hi X1 X2 X3 hi

1 −1 −1 −1 0.455 −1 −1 −1 0.539 −1 −1 −1 0.458 −1 −1 −1 0.485
2 −1 −1 −1 0.455 −1 −1 0 0.533 −1 −1 −1 0.458 −1 −1 −1 0.485
3 −1 −1 1 0.708 −1 −1 1 0.509 −1 −1 1 0.833 −1 −1 1 0.662
4 −1 0 0 0.506 −1 0 −1 0.453 −1 1 −1 0.833 −1 0 1 0.662
5 −1 0 1 0.460 −1 0 1 0.506 −1 1 1 0.458 −1 1 −1 0.485
6 −1 1 −1 0.708 −1 1 −1 0.715 −1 1 1 0.458 −1 1 −1 0.485
7 −1 1 0 0.460 −1 1 1 0.698 0 −1 0 0.500 0 −1 0 0.616
8 −1 1 1 0.523 0 −1 −1 0.460 0 −1 0 0.500 0 −1 1 0.656
9 0 −1 0 0.648 0 −1 1 0.518 0 0 1 0.500 0 0 0 0.616

10 0 0 −1 0.648 0 0 −1 0.487 0 0 1 0.500 0 0 1 0.600
11 0 1 1 0.591 0 1 0 0.626 1 −1 −1 0.458 0 1 1 0.494
12 1 −1 −1 0.457 1 −1 −1 0.612 1 −1 −1 0.458 0 1 1 0.494
13 1 −1 −1 0.457 1 −1 0 0.453 1 −1 1 0.833 1 −1 −1 0.485
14 1 −1 1 0.690 1 −1 1 0.616 1 0 0 0.500 1 −1 −1 0.485
15 1 0 1 0.518 1 0 0 0.536 1 0 0 0.500 1 −1 1 0.662
16 1 1 −1 0.690 1 1 −1 0.455 1 1 −1 0.833 1 0 1 0.662
17 1 1 0 0.518 1 1 −1 0.455 1 1 1 0.458 1 1 −1 0.485
18 1 1 1 0.509 1 1 1 0.830 1 1 1 0.458 1 1 −1 0.485

from 6 to 13were obtained by the compound criteria varying the associatedweights. The results show thatmany interesting
designs can be constructed and the use of many properties with some weight greater than zero on each is promising as in
design 10.

4.3. Example 3

Subset designs under minimax loss due to missing design points were studied by Ahmad and Gilmour (2010). The loss
for design point i was defined as hi. In their Example 1 they studied several possible subset designs for fitting the four
factor second order model in 36 runs. Here we study the properties of their nine designs (Table 5 of Ahmad and Gilmour
(2010)) in a cuboidal region and several other alternatives such as DS, AS, (DP)S and (AP)S-optimum designs and some
compromise designs obtained by using the compound criterion. Some designs are shown in Tables 6 and 7 and Table 8
shows the properties of the designs.

From the subset designs (designs 1–9) the most efficient in terms of leverage is design 4, composed of the S3 subset plus
some center points. It is followed by design 5 and by the modified CCDs which are more efficient in terms of pure error DF.
Because the experiment is reasonably large for the model, single criterion optimum designs perform quite well generally
except the DS and AS optimum designs which result in low pure error DF. Note that the ideal hi value is 0.417. For the sake
of curiosity we also searched for the design that minimizes the maximum hi value (maximum loss) and found design 16,
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Table 5
Properties of designs for the second order model, Example 2 (q = 3, p = 10 and n = 18).

Design Criterion DF Efficiencies
(PE; Lof) DS (DP)S AS (AP)S H hmax

1 DS (2; 6) 100.00 20.36 99.65 35.14 79.45 0.708
2 AS (1; 7) 99.91 1.64 100.00 4.04 63.79 0.830
3 (DP)S (7; 1) 93.14 100.00 84.71 98.91 35.81 0.833
4 (AP)S (7; 1) 93.14 100.00 85.65 100.00 35.81 0.833
5 H (0; 8) 89.56 0.00 75.63 0.00 100.00 0.589
6 κ1 = κ5 = 0.5 (6; 2) 79.69 76.75 55.87 60.92 82.00 0.724
7 κ1 = 0.7; κ5 = 0.3 (6; 2) 89.46 86.16 74.22 80.92 75.54 0.727
8 κ1 = 0.2; κ5 = 0.8 (5; 3) 83.30 68.90 59.06 58.35 87.34 0.662
9 κ1 = κ2 = 0.35; κ5 = 0.3 (6; 2) 91.09 87.73 86.03 93.81 67.44 0.787

10 κ1 = κ3 = κ4 = κ5 = 0.25 (5; 3) 97.98 81.05 94.91 93.77 73.36 0.722
11 κ1 = κ4 = 0.5 (7; 1) 93.14 100.00 85.07 99.33 35.81 0.833
12 κ1 = 0.4; κ4 = 0.6 (6; 2) 94.93 91.43 88.30 96.28 45.70 0.807
13 κ1 = 0.2; κ4 = 0.8 (4; 4) 99.69 65.60 97.33 82.43 77.69 0.705
14 CCD (3; 5) 84.74 37.96 80.79 52.08 31.75 0.794

Table 6
Possible designs for Example 3: four 3-level factors in n = 36 and p = 15.

i DS; AS (DP)S H
(10) (11) (13)
X1 X2 X3 X4 hi X1 X2 X3 X4 hi X1 X2 X3 X4 hi

1 −1 −1 −1 1 0.387 −1 −1 −1 0 0.373 −1 −1 −1 −1 0.420
2 −1 −1 −1 0 0.379 −1 −1 −1 0 0.373 −1 −1 −1 −1 0.420
3 −1 −1 0 −1 0.424 −1 −1 0 1 0.397 −1 −1 0 −1 0.399
4 −1 −1 0 1 0.379 −1 −1 0 1 0.397 −1 −1 1 1 0.423
5 −1 −1 1 −1 0.440 −1 −1 1 −1 0.463 −1 −1 1 1 0.423
6 −1 −1 1 0 0.424 −1 −1 1 −1 0.463 −1 0 0 0 0.390
7 −1 0 −1 1 0.379 −1 0 −1 −1 0.373 −1 0 1 1 0.401
8 −1 0 −1 −1 0.424 −1 0 −1 −1 0.373 −1 1 −1 1 0.415
9 −1 0 1 1 0.424 −1 0 1 1 0.401 −1 1 −1 1 0.415

10 −1 1 −1 −1 0.440 −1 0 1 1 0.401 −1 1 0 1 0.406
11 −1 1 −1 0 0.424 −1 1 −1 1 0.450 −1 1 1 −1 0.413
12 −1 1 0 1 0.424 −1 1 −1 1 0.450 −1 1 1 −1 0.413
13 −1 1 1 1 0.440 −1 1 0 −1 0.397 −1 1 1 0 0.411
14 −1 1 1 −1 0.404 −1 1 0 −1 0.397 0 −1 −1 1 0.425
15 −1 1 1 −1 0.404 −1 1 1 0 0.401 0 −1 −1 1 0.425
16 0 −1 −1 1 0.379 −1 1 1 0 0.401 0 −1 0 0 0.415
17 0 −1 −1 −1 0.424 0 −1 −1 1 0.397 0 −1 1 −1 0.432
18 0 −1 1 1 0.424 0 −1 −1 1 0.397 0 −1 1 −1 0.432
19 0 0 0 −1 0.408 0 0 0 0 0.465 0 0 −1 0 0.413
20 0 0 1 0 0.408 0 0 0 0 0.465 0 0 0 1 0.427
21 0 1 −1 1 0.424 0 1 −1 −1 0.397 0 1 −1 −1 0.425
22 0 1 0 0 0.408 0 1 −1 −1 0.397 0 1 −1 −1 0.425
23 1 −1 −1 −1 0.440 1 −1 −1 −1 0.463 0 1 1 1 0.419
24 1 −1 −1 0 0.424 1 −1 −1 −1 0.463 0 1 1 1 0.419
25 1 −1 0 1 0.424 1 −1 1 −1 0.347 1 −1 −1 −1 0.413
26 1 −1 1 1 0.440 1 −1 1 −1 0.347 1 −1 −1 −1 0.413
27 1 −1 1 −1 0.404 1 −1 1 1 0.445 1 −1 1 0 0.414
28 1 −1 1 −1 0.404 1 −1 1 1 0.445 1 −1 1 1 0.423
29 1 0 −1 1 0.424 1 1 −1 0 0.401 1 −1 1 1 0.423
30 1 0 0 0 0.408 1 1 −1 0 0.401 1 0 −1 −1 0.416
31 1 1 −1 −1 0.404 1 0 −1 1 0.401 1 1 −1 0 0.413
32 1 1 −1 1 0.440 1 0 −1 1 0.401 1 1 −1 1 0.413
33 1 1 −1 −1 0.404 1 1 1 −1 0.445 1 1 −1 1 0.413
34 1 1 1 −1 0.517 1 1 1 −1 0.445 1 1 0 −1 0.425
35 1 1 1 1 0.404 1 1 1 1 0.484 1 1 1 −1 0.415
36 1 1 1 1 0.404 1 1 1 1 0.484 1 1 1 −1 0.415

with no pure error DF. In this example we found design 13, the best in terms of criterion H , only when using a compound
criterion. Even trying the single H criterion on 50,000 initial designs, the algorithm returned an inferior design to this one.
Again, by using compound criteria we obtained interesting designs for the experiment.
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Table 7
Possible designs for Example 3: four 3-level factors in n = 36 and p = 15 (continued).

i κ1 = 0.05; κ3 = 0.10; κ5 = 0.85 Hmax
(15) (16)
X1 X2 X3 X4 hi X1 X2 X3 X4 hi

1 −1 −1 −1 −1 0.442 −1 −1 −1 0 0.425
2 −1 −1 −1 0 0.410 −1 −1 0 −1 0.432
3 −1 −1 0 −1 0.464 −1 −1 0 1 0.432
4 −1 −1 1 1 0.428 −1 −1 1 0 0.423
5 −1 −1 1 1 0.428 −1 0 −1 −1 0.425
6 −1 0 −1 −1 0.392 −1 0 −1 1 0.344
7 −1 0 0 1 0.424 −1 0 0 0 0.413
8 −1 0 1 0 0.440 −1 0 1 −1 0.423
9 −1 1 −1 −1 0.394 −1 0 1 1 0.421

10 −1 1 −1 1 0.423 −1 1 −1 0 0.344
11 −1 1 −1 1 0.423 −1 1 −1 1 0.426
12 −1 1 0 0 0.392 −1 1 0 −1 0.432
13 −1 1 1 −1 0.428 −1 1 0 1 0.348
14 −1 1 1 −1 0.428 −1 1 1 0 0.421
15 0 −1 −1 1 0.413 0 −1 −1 −1 0.430
16 0 −1 −1 1 0.413 0 −1 −1 1 0.425
17 0 −1 1 −1 0.435 0 −1 1 −1 0.429
18 0 −1 1 −1 0.435 0 −1 1 1 0.423
19 0 0 −1 0 0.425 0 0 0 1 0.413
20 0 1 −1 −1 0.415 0 1 −1 −1 0.425
21 0 1 0 −1 0.435 0 1 −1 1 0.344
22 0 1 1 1 0.441 0 1 0 0 0.413
23 0 1 1 1 0.441 0 1 1 −1 0.423
24 1 −1 −1 −1 0.403 0 1 1 1 0.421
25 1 −1 −1 −1 0.403 1 −1 −1 0 0.430
26 1 −1 0 0 0.425 1 −1 0 −1 0.431
27 1 −1 1 1 0.406 1 −1 0 1 0.432
28 1 −1 1 1 0.406 1 −1 1 0 0.429
29 1 0 −1 −1 0.390 1 0 −1 −1 0.430
30 1 0 0 1 0.445 1 0 −1 1 0.425
31 1 1 −1 0 0.387 1 0 1 −1 0.429
32 1 1 −1 1 0.389 1 0 1 1 0.423
33 1 1 −1 1 0.389 1 1 −1 0 0.425
34 1 1 1 −1 0.406 1 1 0 −1 0.432
35 1 1 1 −1 0.406 1 1 0 1 0.432
36 1 1 1 0 0.373 1 1 1 0 0.423

Table 8
Properties of designs for the second order model, Example 3 (q = 4, p = 15 and n = 36).

Design Criterion DF Efficiencies
(PE, Lof) DS (DP)S AS (AP)S H hmax

1 S4 + 2S1 + 4S0 (11; 10) 78.82 70.36 75.03 75.46 71.61 0.636
2 S4 + S1 + 12S0 (11; 10) 67.07 59.88 59.15 59.50 65.09 0.658
3 S2 + S1 + 4S0 (3; 18) 42.29 11.86 30.21 14.53 84.53 0.532
4 S3 + 4S0 (3; 18) 89.17 25.02 87.00 41.86 97.93 0.438
5 S4 + 1

2 S3 + 4S0 (3; 18) 96.78 27.15 92.92 44.70 92.72 0.668
6 S4 + 1

2 S
III
4 + S1 + 4S0 (11; 10) 84.95 75.84 70.97 71.39 90.02 0.558

7 S4 + 1
2 S

IV
4 + S1 + 4S0 (11; 10) 84.78 75.68 70.65 71.06 89.12 0.570

8 1
2 S

III
4 + S2 + 4S0 (3; 18) 71.88 20.17 60.37 29.04 77.53 0.669

9 1
2 S

IV
4 + S2 + 4S0 (3; 18) 67.73 19.00 47.72 22.96 87.82 0.596

10 DS ; AS (4; 17) 100.00 41.63 100.00 63.21 99.48 0.517
11 (DP)S (18; 3) 93.67 100.00 86.73 95.74 98.87 0.484
12 (AP)S (16; 5) 95.63 98.51 92.23 100.00 98.08 0.520
13 H (12; 9) 93.39 86.58 87.30 89.60 100.00 0.432
14 κ1 = κ2 = 0.2; κ5 = 0.6 (16; 5) 95.25 98.12 90.06 97.65 98.65 0.482
15 κ1 = 0.05; κ3 = 0.10; κ5 =

0.85
(10; 11) 95.95 81.89 92.95 91.23 99.43 0.464

16 Hmax (0; 21) 87.69 0.00 83.56 0.00 99.56 0.432
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Table 9
Possible designs for Example 4: four 2-level factors in n = 16 and p = 11.

i DS; AS;H (DP)S; (AP)S κ1 = 0.15; κ5 = 0.85
(1) (2) (4)
X1 X2 X3 X4 hi X1 X2 X3 X4 hi X1 X2 X3 X4 hi

1 −1 −1 −1 −1 0.688 −1 −1 −1 −1 0.5 −1 −1 −1 −1 0.690
2 −1 −1 −1 1 0.688 −1 −1 −1 −1 0.5 −1 −1 −1 1 0.690
3 −1 −1 1 −1 0.688 −1 −1 1 −1 1.0 −1 −1 1 −1 0.833
4 −1 −1 1 1 0.688 −1 −1 1 1 0.5 −1 −1 1 1 0.833
5 −1 1 −1 −1 0.688 −1 −1 1 1 0.5 −1 1 −1 −1 0.833
6 −1 1 −1 1 0.688 −1 1 −1 1 0.5 −1 1 −1 1 0.833
7 −1 1 1 −1 0.688 −1 1 −1 1 0.5 −1 1 1 −1 0.690
8 −1 1 1 1 0.688 −1 1 1 −1 1.0 −1 1 1 1 0.690
9 1 −1 −1 −1 0.688 1 −1 −1 −1 1.0 1 −1 −1 −1 0.464

10 1 −1 −1 1 0.688 1 −1 −1 1 0.5 1 −1 −1 −1 0.464
11 1 −1 1 −1 0.688 1 −1 −1 1 0.5 1 −1 −1 1 0.690
12 1 −1 1 1 0.688 1 −1 1 1 1.0 1 −1 1 1 0.833
13 1 1 −1 −1 0.688 1 1 −1 −1 1.0 1 1 −1 1 0.833
14 1 1 −1 1 0.688 1 1 1 −1 0.5 1 1 1 −1 0.464
15 1 1 1 −1 0.688 1 1 1 −1 0.5 1 1 1 −1 0.464
16 1 1 1 1 0.688 1 1 1 1 1.0 1 1 1 1 0.690

Table 10
Properties of designs for main effects and two-factor interactions, Example 4 (q = 4, p = 11, n = 16 or n = 24).

Size Design Criterion DF Efficiencies
(PE; Lof) DS (DP)S AS (AP)S H hmax

n = 16 1 DS ; AS ; H (0; 5) 100.00 0.00 100.00 0.00 100.00 0.688
2 (DP)S ; (AP)S (5; 0) 76.68 100.00 57.32 91.92 0.00 1.000
3 κ1 = 0.2; κ3 = 0.1; κ5 =

0.7
(4; 1) 81.23 84.09 62.50 93.46 24.28 0.875

4 κ1 = 0.15; κ5 = 0.85 (2; 3) 89.45 28.48 73.30 41.96 49.03 0.833

n = 24 5 DS; AS; (AP)S; S4 + 1
2 S4 (8; 5) 100.00 93.90 100.00 100.00 86.19 0.583

6 (DP)S (11; 2) 90.79 100.00 79.49 87.25 98.85 0.557
7 H (12; 1) 87.51 99.89 73.50 82.34 100.00 0.500

4.4. Example 4

In this examplewe consider designswith two-level factors, themodel includingmain effects and two-factor interactions.
For four factors in n = 16 runs, some designs are shown in Table 9. The DS, AS and H-optimum designs are the same, the full
factorial. Obviously no pure error estimation is possible from this design and thus we cannot estimate σ 2 unbiasedly. The
(DP)S and (AP)S-optimum designs are also equivalent allowing 5 degrees of freedom for pure error. All the six points from
this design that are not replicated have hi = 1 and thus the design will break down if at least one of these goes missing.
Thus the efficiency in terms of Eq. (9) is 0%. A compound criterion involving estimation and leverages produced the design
with 4 pure error DF that is 24.28% efficient in terms of (9). This could be increased, if desired, by giving more weight to H
as in design 4 (see top part of Table 10).

Increasing n to 24 runs we obtained the designs shown in Table 11, whose properties are given in the lower part of
Table 10. In this case, as n is more than twice the number of parameters in the model, the usual criteria give reasonably
efficient designs as does the use of the full factorial plus a half replicate. Note that the H-optimum design allows more
degrees of freedom than the (DP)S-optimum design at the cost of some loss of efficiency for estimating the regression
parameters. All compound criteria we tried returned a design equivalent either to the (DP)S or to the H-optimum design,
showing that it is good practice to consider several properties in the design criterion.

5. Discussion

Robustness of designs to missing observation has been of concern in the planning of experiments. In this paper we
propose the inclusion of a property, the H property, in the compound criteria of Gilmour and Trinca (2012), in order to
construct optimum designs that will not break down if an observation goes missing. Similar properties have been used by
other authors to evaluate the performances of CCDs or subset designs but have not been used to drive the search of an
optimum design. We also confirm that the use of the H property as single criterion is not interesting because it does not
discriminate well between designs. We should highlight that in some examples we were able to find the best H design
only when using a compound criterion, even when trying many thousands of initial random designs. This may indicate this
criterion alone somehow drives the design to local solutions and perhaps, starting with generally better designs, instead of
at random, and improving them in terms of leverages may lead to even better designs.
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Table 11
Possible designs for Example 4: four 2-level factors in n = 24 and p = 11.

i DS; AS; (AP)S; S4 + 1
2 S4 (DP)S H

(5) (6) (7)
X1 X2 X3 X4 hi X1 X2 X3 X4 hi X1 X2 X3 X4 hi

1 −1 −1 −1 −1 0.396 −1 −1 −1 −1 0.557 −1 −1 −1 1 0.500
2 −1 −1 −1 1 0.583 −1 −1 −1 1 0.443 −1 −1 −1 1 0.500
3 −1 −1 1 −1 0.583 −1 −1 −1 1 0.443 −1 −1 1 −1 0.500
4 −1 −1 1 1 0.396 −1 −1 1 −1 0.443 −1 −1 1 −1 0.500
5 −1 1 −1 −1 0.583 −1 −1 1 −1 0.443 −1 1 −1 −1 0.438
6 −1 1 −1 1 0.396 −1 −1 1 1 0.443 −1 1 −1 −1 0.438
7 −1 1 1 −1 0.396 −1 −1 1 1 0.443 −1 1 −1 1 0.438
8 −1 1 1 1 0.583 −1 1 −1 −1 0.473 −1 1 −1 1 0.438
9 1 −1 −1 −1 0.583 −1 1 −1 −1 0.473 −1 1 1 −1 0.438

10 1 −1 −1 1 0.396 −1 1 1 1 0.473 −1 1 1 −1 0.438
11 1 −1 1 −1 0.396 −1 1 1 1 0.473 −1 1 1 1 0.438
12 1 −1 1 1 0.583 1 −1 −1 −1 0.443 −1 1 1 1 0.438
13 1 1 −1 −1 0.396 1 −1 −1 −1 0.443 1 −1 −1 −1 0.500
14 1 1 −1 1 0.583 1 −1 −1 1 0.443 1 −1 −1 −1 0.500
15 1 1 1 −1 0.583 1 −1 −1 1 0.443 1 −1 1 1 0.500
16 1 1 1 1 0.396 1 −1 1 −1 0.443 1 −1 1 1 0.500
17 −1 −1 −1 −1 0.396 1 −1 1 −1 0.443 1 1 −1 −1 0.438
18 −1 −1 1 1 0.396 1 −1 1 1 0.557 1 1 −1 −1 0.438
19 −1 1 −1 1 0.396 1 1 −1 1 0.473 1 1 −1 1 0.438
20 −1 1 1 −1 0.396 1 1 −1 1 0.473 1 1 −1 1 0.438
21 1 −1 −1 1 0.396 1 1 1 −1 0.473 1 1 1 −1 0.438
22 1 −1 1 −1 0.396 1 1 1 −1 0.473 1 1 1 −1 0.438
23 1 1 −1 −1 0.396 1 1 1 1 0.392 1 1 1 1 0.438
24 1 1 1 1 0.396 1 1 1 1 0.392 1 1 1 1 0.438

Although the surrogate measure used in this paper guarantees robustness of the design to just a single missing
observation, for reasonably sized designs the approach produces designs robust to three or four missing points. This was
shown by a small study carried out for each of the examples and reported in the Supplementary Material, Appendix. For
small n, missingmore than one run is likely to lead to very little information being obtained from the experiment. Of course,
the failure of a fairly large proportion of the runs to produce a response might in itself tell the experimenters something
important about the system under study.

The overall message of this paper is to reiterate the popular advice to consider many properties of factorial and response
surface designs before committing to use one for a particular experiment. The compound criterion used here, including the
H criterion will allow experimenters to build designs which are robust to missing or outlying observations. We recommend
it for use in practice.
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