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Abstract

This article discusses optimal Bayesian crossover designs for generalized linear models.

Crossover trials with t treatments and p periods, for t <= p, are considered. The designs

proposed in this paper minimize the log determinant of the variance of the estimated treat-

ment effects over all possible allocation of the n subjects to the treatment sequences. It is

assumed that the p observations from each subject are mutually correlated while the ob-

servations from different subjects are uncorrelated. Since main interest is in estimating the

treatment effects, the subject effect is assumed to be nuisance, and generalized estimating

equations are used to estimate the marginal means. To address the issue of parameter de-

pendence a Bayesian approach is employed. Prior distributions are assumed on the model

parameters which are then incorporated into the DA-optimal design criterion by integrat-

ing it over the prior distribution. Three case studies, one with binary outcomes in a 4 × 4

crossover trial, second one based on count data for a 2×2 trial and a third one with Gamma

responses in a 3× 2 crossover trial are used to illustrate the proposed method. The effect of

the choice of prior distributions on the designs is also studied. A general equivalence theorem

is stated to verify the optimality of designs obtained.

Keywords: Bayesian designs; Count data; Efficiency; Gamma response; Generalized estimat-

ing equations; Logistic regression.
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1. Introduction

In this article we introduce Bayesian optimal crossover designs for generalized linear

models (GLMs). Crossover trials with t treatments and p periods, for t ≤ p are considered.

The designs selected minimize the log determinant of the variance-covariance matrix of the

treatment effects, over all possible allocation of the n subjects to the treatment sequences.

Due to the dependence of the variance matrix on the model parameters a Bayesian approach

is proposed.

Crossover designs were originally developed to be used in agricultural sciences (Cochran

(1939)). Later, these repeated measurement designs were found to be useful in many

other fields, such as pharmaceutical and clinical trials, bioequivalence and biological stud-

ies. Optimal crossover designs for normal response have been studied by many reserachers,

namely Hedayat and Afsarinejad (1975, 1978), Cheng and Wu (1980), Laska et al. (1983),

Laska and Meisner (1985), Stufken (1991), Carrire and Reinsel (1993), Kushner (1997, 1998)

and Carriere and Huang (2000). For a detailed review of crossover designs, we would like to

refer to the paper by Bose and Dey (2013) and books by Bose and Dey (2009), Senn (2002)

and Jones and Kenward (2014).

Most of the available literature on optimal crossover designs (as discussed above) mainly

focuses on normal responses. However, in biological studies, very often we find responses

that are non-normal (Layard and Arvesen (1978) and Forster (1992)) and have to be modeled

using a generalized linear model (GLM). While methods for analyzing GLM data arising from

crossover trials are available in Senn (2002) and Jones and Kenward (2014), the question of

designing such studies for GLMs in an optimal manner does not seem to have been much

explored in the statistical literature. Waterhouse et al. (2006) studied optimal 2×2 crossover

trial for binary data in some special cases, like the carryover effect is proportional to the

direct treatment effect and no period effects are considered. Adaptive crossover designs

restricted to two period two treatment binary data useful in clinical trials have also been

investigated by Bandyopadhyay et al. (2009).
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In this article, we study optimal Bayesian crossover designs for GLMs. Three case studies

based on non-normal responses are used to illustrate the proposed methodology. Generalized

estimating equations of Liang and Zeger (1986) are used to estimate the marginal means.

The correlation between observations within subjects are modeled using a “working correla-

tion structure”, which is assumed to be compound symmetric or auto regressive in nature.

Since the main interest is in estimating the treatment effects, the subject effects as taken as

nuisance parameters. As in all GLM designs, the variance of the treatment effect estimator

depends on the model parameters. To address the issue of the parameter dependence and ob-

tain robust designs we propose the Bayesian approach to design selection. Bayesian designs

have been a popular choice whenever the variance-covariance matrix depends on the model

parameters, for some references see (Chaloner and Larntz (1989), Dette and Sperlich (1994),

Woods and Van de Ven (2011) and Mylona et al. (2014) ). In our approach, a prior distri-

bution is assumed on the model parameters, which is then incorporated into an appropriate

objective function (variance of the treatment contrast) by integrating and averaging over the

prior distribution. Similar to our Bayesian design criterion, an average criterion called A-

criterion have been used before for crossover designs for normal responses by (Kempton et al.

(2001), Baily and Kunert (2006), Zheng (2013) and Li et al. (2015)).

2. Case studies

For illustration purpose we consider three case studies based on crossover trials involving

binary, count and Gamma responses.

2.1. A four periods four treatments binary response crossover trial

The first case study presented here is from a trial based on the four-period, four treatment

Williams design. It has been reported in Kenward and Jones (1992). The four treatments

are denoted by A,B,C and D. Eighty subjects are randomly assigned to the four treatment

sequences {ABCD,BDAC,CADB,DCBA}, with about twenty subjects allocated to each
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treatment sequence. The response is a binary outcome taking values 1 and 0 based on patient

relief and no relief, respectively.

The research question which arises from the above case study is why did the experimenter

select the 4 treatment sequences {ABCD,BDAC,CADB,DCBA} forming a Williams de-

sign (Williams (1949)). Is this the best possible selection of treatment sequences? The book

by Bose and Dey (2009), page 40 shows that for normal response crossover models, for the

4 treatment and 4 periods case, Williams design is the optimal design. But can we be sure

that the same design applies to a binary response crossover framework as well? Does the

selected design change if the correlation structure between observations change say, from

equicorrelated to auto regressive structure?

2.2. Two periods two treatments Poisson response crossover trial

This study is based on an example described in Layard and Arvesen (1978). Two drugs,

standard drug A and an innovation drug B, is administered for controlling angina in 20

patients. It is known that the innovative drug B is no worse than the standard drug A. For

a given patient, number of angina attacks on weekly basis is assumed to follow a Poisson

distribution (Layard and Arvesen (1978)). Number of attacks for each patient of consecutive

two weeks are recorded. Treatment sequences considered are {AB, BA} and 10 patients are

assigned to each of the treatment sequences. This is a 2-treatments 2-periods crossover trial.

As in case study I, the question arises why does the experimenter choose the design

{AB,BA}. Is this the best or most efficient design under the repeated measures setup when

responses follow a Poisson distribution?

2.3. Three periods two treatments Gamma response trial

The length of hospital stay is an important measure of the success of hospital activity,

costs incurred by patients and the treatment administered to a patient. However, its empir-

ical distribution is often right skewed and a Gamma distribution with a log link has been

seen to be a good fit (Faddy et al. (2009)). In this case study we consider a crossover trial
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where two treatments are applied over three periods and length of hospital stay, assumed to

having a Gamma distribution, is the primary end point.

As in the earlier two case studies, we investigate the best design for a two treatment

three periods design with a gamma response.

3. The model

We consider experiments where there are t treatments and n subjects, and p repeated

measurements are taken from each subject. The observations from each subject may be cor-

related. The marginal distribution of the response Yij is described by a working generalized

linear model with the following three components (Liang and Zeger (1986)):

1. Yij has a distribution from the exponential family form,

f(yij|φij, ψ) = exp {[yijφij − b(φij) + c(yij)]ψ + d(yij, ψ)} (1)

where φij is a function of the model parameters, b(·), c(·) and d(·) are known functions

and ψ is the dispersion parameter. It can be shown that: E(Yij) = µij =
db(φij )

dφij
and

V ar(Yij) =
d2b(φij )

dφ2

ij

/ψ.

2. The linear predictor ηij in a repeated measures setup can be written as (Bose and Dey

(2009)),

ηij = ν + βi + τd(i,j) + γd(i−1,j); i = 1 . . . , p, j = 1, . . . , n, (2)

where ν is the fixed unknown parameter, βi represents the effect of the ith period, τs

is the direct effect due to treatment s and γs is the carryover effect due to treatment

s, s = 1, . . . , t. It is assumed that γd(0,j) = 0.

3. The mean of yij denoted by µij is related to ηij through a link function g, where

g(µij) = ηij and the inverse of g exists.
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3.1. Estimation

Regression coefficients as well as their variances are estimated by the GEE approach of

Liang and Zeger (1986) and Zeger et al. (1988). Due to observations from the same subject

being correlated, a “working correlation” matrix, R(α), is used to describe the dependencies

between repeated observations from a subject. Here α is a vector of length l, which fully

characterizes R(α) (Liang and Zeger (1986)). For cases where R(α) is the true correlation

matrix of Yj = (Y1j, · · · , Ypj)′, the covariance of Yj is

Vj = A
1/2
j R(α)A

1/2
j , (3)

Aj = diag(Var(Y1j), . . . ,Var(Ypj)). If the correlation structure is compound symmetric that

is corr(Yij, Yi′j) = α for all i 6= i′, then l = 1, if the correlation structure is left unspecified

then l = p(p−1)
2

. Also, the asymptotic variance for the GEE estimator θ̂ (see Zeger et al.

(1988), equation (3.2)) is

V ar(θ̂) =

[

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ

]−1

, (4)

where θ = (ν,β′, τ ′,γ′)′, β′ = (β1, · · ·βp), τ ′ = (τ1, · · · , τt) and γ ′ = (γ1, · · · , γt).

However, if the true correlation structure varies from the “working correlation” structure,

then V ar(θ̂) is given by the sandwich formula (Zeger et al. (1988), equation (3.2))

V ar(θ̂) =

[

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ

]−1 [ n
∑

j=1

∂µ′
j

∂θ
V −1
j Cov(Yj)V

−1
j

∂µj

∂θ

][

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ

]−1

. (5)

For the crossover model (1), the ith element of
∂µj

∂θ
is

∂µij

∂θ
= x′ij

∂g−1(ηij)

∂ηij
, where x′ij

is the ith row of Xj for i = 1, . . . , p. The design matrix is Xj = [1p Pj Tj Fj], where

Pj = Ip; T = (T ′
1, . . . , T

′
n)

′, where Tj is a p × t matrix with its (i, s)th entry equal to 1 if

subject j receives the direct effect of the treatment s in the ith period and zero otherwise;

F = (F ′
1, . . . , F

′
n)

′, where Fj is a p × t matrix with its (i, s)th entry equal to 1 if subject j

receives the carryover effect of the treatment s in the ith period and zero otherwise.
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3.2. Specific case: Bernoulli distribution

If Yij ∼ Bernoulli(µij), then the probability mass function of Yij is:

f(yij|µij) = exp

{

yijlog
µij

1− µij
+ log(1− µij)

}

Comparing with equation (1), we get φij = log
µij

1−µij
, b(φij) = −log(1 − µij) = log(1 +

exp(φij)), c(yij) = 0, ψ = 1 and d(yij, ψ) = 0. The mean of Yij is E(Yij) = µij =
db(φij)

dφij
=

exp(φij)

1+exp(φij)
, and Var(Yij) =

d2b(φij)

dφ2

ij

/ψ =
exp(φij)

(1+exp(φij))2
= µij(1− µij).

Considering the logit link function to relate the linear predictor ηij to the mean µij,

g(µij) = log
µij

1−µij
. Thus g−1(ηij) =

eηij
1+eηij , and the ith component of

∂µj

∂θ
is

∂µij

∂θ
= x′ij

∂g−1(ηij )

∂ηij
=

x′ij
eηij

(1+eηij )2
= x′ijµij(1−µij). This implies

∂µj

∂θ
= DjXj, where Dj is the diagonal p×p matrix

with elements µij(1 − µij), i = 1, · · · , p. The matrix Aj defined in equation (3) is same as

Dj in this case. Using equation (4), the asymptotic information matrix is:

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ
=

n
∑

j=1

X ′
jDjA

−1/2
j R−1(α)A

−1/2
j DjXj

=
n

∑

j=1

X ′
jA

1/2
j R−1(α)A

1/2
j Xj.

3.3. Specific case: Poisson distribution

If Yij ∼ Poisson(µij), then the probability mass function of Yij is:

f(yij|µij) = exp {yijlog(µij)− µij − log(yij!)}

Comparing with equation (1), we get φij = log(µij), b(φij) = µij = eφij , c(yij) =

−log(yij!), ψ = 1 and d(yij, ψ) = 0. The mean of Yij is E(Yij) = µij = eφij and Var(Yij) =

eφij = µij .

Using the log link we obtain, g(µij) = log(µij) = ηij , and the ith component of
∂µj

∂θ
is
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∂µij

∂θ
= x′ij

∂g−1(ηij )

∂ηij
= x′ije

ηij = x′ijµij. This implies
∂µj

∂θ
= DjXj , where Dj is the diagonal

p× p matrix with elements µij, i = 1, · · · , p. The matrix Aj defined in equation (3) is again

same as Dj in this case. The asymptotic information matrix is:

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ
=

n
∑

j=1

X ′
jDjA

−1/2
j R−1(α)A

−1/2
j DjXj

=

n
∑

j=1

X ′
jA

1/2
j R−1(α)A

1/2
j Xj.

3.4. Specific case: Gamma distribution

If Yij ∼ Gamma(κ, λij), where κ > 0 is the shape parameter and λij > 0 is the rate

parameter. Then the probability density function of Yij is:

f(yij|λij, κ) = exp

{[

yij

(

−λij
κ

)

+ log

(

λij
κ

)

+ log(yij)

]

κ+ κlog(κ)− log(yij)− logΓκ

}

Comparing with equation (1), we get φij = −λij

κ
, b(φij) = −log(

λij

κ
) = −log(−φij), c(yij) =

log(yij), ψ = κ and d(yij, ψ) = κlog(κ) − log(yij)(Γκ) = ψlog(ψ)− log(yij)(Γψ). The mean

of Yij is E(Yij) = µij = κ/λij and Var(Yij) =
k
λ2

ij

=
µ2

ij

κ
.

In case of a log link function, g(µij) = log(µij) = ηij . The ith component of
∂µj

∂θ
is

∂µij

∂θ
= x′ij

∂g−1(ηij )

∂ηij
= x′ije

ηij = x′ijµij. This implies
∂µj

∂θ
= DjXj , where Dj is the diagonal

p×p matrix with elements µij, i = 1, · · · , p. The matrix Aj defined in equation (3) is diagonal

p× p matrix with elements
µ2

ij

κ
, i = 1, · · · , p. The asymptotic information matrix is:
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n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ
=

n
∑

j=1

X ′
jDjA

−1/2
j R−1(α)A

−1/2
j DjXj

=
n

∑

j=1

X ′
j

{√
κIp

}

R−1(α)
{√

κIp
}

Xj

= κ

n
∑

j=1

X ′
jR

−1(α)Xj.

In case of a reciprocal link function, g(µij) = 1
ηij

. The ith component of
∂µj

∂θ
is

∂µij

∂θ
=

x′ij
∂g−1(ηij)

∂ηij
= −x′

ij

η2ij
= −x′ijµ2

ij . This implies
∂µj

∂θ
= DjXj, whereDj is the diagonal p×pmatrix

with elements −µ2
ij , i = 1, · · · , p. The matrix Aj defined in equation (3) is A diagonal p× p

matrix with elements
µ2

ij

κ
, i = 1, · · · , p. The asymptotic information matrix can be written

as:

n
∑

j=1

∂µ′
j

∂θ
V −1
j

∂µj

∂θ
=

n
∑

j=1

X ′
jDjA

−1/2
j R−1(α)A

−1/2
j DjXj

=

n
∑

j=1

X ′
j

{

−
√
κD∗

j

}

R−1(α)
{

−
√
κD∗

j

}

Xj

= κ
n

∑

j=1

X ′
jD

∗
jR

−1(α)D∗
jXj,

where D∗
j is the diagonal matrix with diagonal elements µij, i = 1, · · · , p.

Note that the shape parameter κ is a multiplicative constant in the expression of the

information matrices and hence does not affect design selection.

4. Approximate designs

For finding optimal crossover designs for the logistic model we use the approximate theory

as in Laska et al. (1983) and Kushner (1997, 1998). Suppose Ω is the set of treatment

sequences of the form ω = (t1, . . . , tp)
′, ti ∈ {1, . . . , t}, and nω is the number of subjects

9



assigned to sequence ω. Then, n =
∑

ω∈Ω nω, nω ≥ 0. A design ζ in approximate theory is

specified by the set {pω, ω ∈ Ω} where pω = nω/n, is the proportion of subjects assigned to

treatment sequence ω.

The matrices Tj and Fj depend only on the treatment sequence ω to which the jth subject

is assigned, so Tj = Tω, Fj = Fω, implying, Xj = Xω. Thus, the variance of θ̂ is

V arζ(θ̂) =

[

∑

ω∈Ω

npω
∂µ′

ω

∂θ
V −1
ω

∂µω

∂θ

]−1 [
∑

ω∈Ω

npω
∂µ′

ω

∂θ
V −1
ω Cov(Yω)V

−1
ω

∂µω

∂θ

][

∑

ω∈Ω

npω
∂µ′

ω

∂θ
V −1
ω

∂µω

∂θ

]−1

.

(6)

If the true correlation of Yj is equal to R(α) then we have a much simpler form,

V arζ(θ̂) =

[

∑

ω∈Ω

npω
∂µ′

ω

∂θ
V −1
ω

∂µω

∂θ

]−1

. (7)

4.1. Design criterion

In repeated measures trials when the interest is in only estimating direct treatment effect

contrasts, we may instead work with V ar(τ̂ ) given by,

V arζ(τ̂ ) = EV arζ(θ̂)E
′, (8)

where E is a t×m matrix given by [0t1, 0tp, It, 0tt] and m is the total number of parameters

in θ. Here by 0p1p2 we mean a p1 × p2 matrix of zeros.

The design minimizing the criterion

Λ(ζ, θ, α) = log Det(V arζ(τ̂ )). (9)

is known as the DA-optimal design (Atkinson et al. (2007) , page 137). Since it is a GLM

the variance depends on the model parameters as well as the covariance parameters, and the

design obtained is locally optimal.

To obtain DA-optimal designs robust to uncertainties in the parameters we propose a
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Bayesian approach. This method has been used before for logistic regression by Chaloner and Larntz

(1989), and Dror and Steinberg (2006) and for block designs by Woods and Van de Ven

(2011). For repeated measures models, the design which minimizes

Ψ(B, ζ, α) =

∫

B

Λ(ζ, θ, α) dF (θ), (10)

where B ⊂ R
m is the parameter space of parameter vector θ and F (θ) is a proper prior

distribution for θ, is the DA-optimal Bayesian crossover design (or the average DA-optimal

design of Pettersson (2005)). Note, for all working examples (in Sections 5.1, 5.2 and 5.3)

no prior distributions are assigned to the correlation parameters α, designs are obtained

only for some fixed values chosen for α. However, in Section 7 we investigated the design

performance when there are priors on α.

In our computations we have used both uniform and normal priors for θ. The minimiza-

tion of the objective function in (10) with respect to ζ , requires high-dimensional integral

calculation. Similar to Woods and Van de Ven (2011), Latin Hypercube Sampling (LHS)

has been used for deriving an approximate solution of the above optimization problem.

For evaluating the performance of design ζ with respect to the reference design ζ∗ (DA-

optimal Bayesian design), we use an efficiency criterion defined as:

EffD(ζ, ζ
∗,B, α) = [exp {Ψ(B, ζ∗, α)−Ψ(B, ζ, α)}]1/m , (11)

here m is the number of model parameters. Similar efficiency function has been used before

by Woods et al. (2006).

Working correlation matrix structures such as the compound symmetric (or equi-correlated)

and the AR(1) are investigated. Under the equi-correlated covariance structure, Rj =

(1− α)Ip + αJp, and under the AR(1) assumption, Rj = α|i−i′|, i 6= i′.
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5. Examples

5.1. Example 1: Four periods, four treatments binary response trial

In Case study 1, a four periods four treatments crossover trial described in Kenward and Jones

(1992) is considered. There are eighty subjects allocated to the four treatment sequences,

with about twenty subjects per sequence. Treatments are denoted by A, B, C and D. The

treatment sequences form a Williams design given as follows:



















A B C D

B D A C

C A D B

D C B A



















The response variable is binary in nature. The data set is available in Table 3 of Kenward and Jones

(1992). For a four periods, four treatments trial, there are 24 possible Latin square designs

(LSDs) with every treatment represented once and only once in each row and in each column

(see Table 5.1 Senn (2002)). A special form of Latin square design is called Williams square

design (WSD) in which every treatment follows every other treatment only once. In the case

of normal responses when t = p and t is even, for reduced models (no carryover effects) LSD

and for full models (carryover effects present) WSDs are variance balanced designs (Lawson

(2014), page 361). However, these designs may not be optimal in general. But under some

subject constraints WSD is universally optimal for even t, n ≤ t(t + 2)/2 and 4 ≤ t ≤ 12

(Bose and Dey (2009), page 40).

Instead of using equation (2) directly as the linear predictor ηij we use a reparametrized

version ,

ηij = ν + β∗
1P1 + β∗

2P2 + β∗
3P3 + τ ∗1T1 + τ ∗2T2 + τ ∗3T3 + γ∗1C1 + γ∗2C2 + γ∗3C3, (12)

where
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P1 P2 P3

Period 1 0 0 0

Period 2 1 0 0

Period 3 0 1 0

Period 4 0 0 1

Ti’s and Ci’s for i = 1, · · · , 4, are similarly defined. Also, β1 = 0, βi = β∗
i−1, i = 2, . . . , 4,

τA = 0, τB = τ ∗1 , τC = τ ∗2 , τD = τ ∗3 , γA = 0, γB = γ∗1 , γC = γ∗2 and γD = γ∗3 . Note

that carryover effect in the first period is taken to be zero. It is noted that total number of

parameters reduces to m∗ = m− 3, where m in equation (2) was 13 for a 4× 4 design. The

E matrix defined in equation (8) will be of same form but m is replaced by m∗.

Point estimates and corresponding confidence intervals of the parameters are calculated

using PROC GENMOD procedure in SAS software (SAS Institute Inc. (2003)). Results are

summarized in Table 1 for both reduced and full models. In a reduced model it is assumed

that there are no carryover treatment effects, while in a full model both direct and carryover

treatment effects are assumed to be present. The working correlation structure is taken to

be compound symmetric (CS) in nature, the correlation coefficient is estimated to be 0.215.
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Table 1: Point estimates and confidence intervals for both reduced and full models under the compound
symmetric correlation structure (Example 1).

Parameter Point estimate [95%Confidence interval]

no carryover effect with carryover effect

ν 1.0980 [0.4232 1.7728] 1.0158 [0.3474 1.6842]

β∗
1 -0.3056 [-0.8643 0.2532] -0.5525 [-1.2565 0.1515]

β∗
2 -0.2414 [-0.8228 0.3399] -0.4842 [-1.2034 0.2349]

β∗
3 0.3817 [-0.2391 1.0026] 0.1234 [-0.6888 0.9356]

τ ∗1 -0.3270 [-0.8660 0.2119] -0.2564 [-0.8075 0.2948]

τ ∗2 -0.0681 [-0.6996 0.5635] 0.0069 [-0.6473 0.6610]

τ ∗3 -0.5322 [-1.1684 0.1041] -0.3736 [-1.0165 0.2693]

γ∗1 - 0.1786 [-0.5965 0.9538]

γ∗2 - 0.2242 [-0.5443 0.9927]

γ∗3 - 0.6620 [-0.1352 1.4591]

For a 4 × 4 crossover trial the number of all possible treatment sequences are 44 = 256.

However, in this example we restrict our design space to only 16 treatment sequences, i.e.,

Ω = {ACDB, BDCA, CBAD, DABC, ADCB, BCDA, CABD, DBAC, AABB, BBAA,

CCDD, DDCC, AAAB, BBBA, CCCD, DDDC}. These sequences are chosen since they

can be used to form LSDs (including WSDs) and also non LSD crossover designs. Note

in the normal response case it has been reported that WSDs under certain constraints are

universally optimal for the 4 treatment and 4 period case. Thus, we felt it was enough to

restrict Ω to these 16 sequences. Also lowering the number of treatment sequences increases

our computational speed. The Bayesian designs found, also satisfy the conditions of the

equivalence theorem given in the appendix.

The following prior distributions are considered for the model parameters, θ, for obtaining

the Bayesian optimal design:
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Prior 1: Cartesian product of 95% confidence intervals of parameters given in Table 1.

Prior 2: Cartesian product of the nonnegative part of 95% confidence intervals of parameters

given in Table 1.

Prior 3 and 4: Independent multivariate normal distribution with mean vector as the point

estimates of the parameters given in Table 1 and (for prior 3) the variance is 0.25, (for

prior 4) the variance is 0.50.

Note prior 2 is asymmetric around 0 and priors 3 and 4 are the normal priors with different

variances. The Bayesian crossover design is obtained by minimizing formula 10, and denoting

it by DB.

The performance ofDB is compared with 24 LSDs including 6 WSDs, and 24 extra period

designs (EPDs) (a design in which first three rows correspond to a LSD and the last row

is same as the previous one (Patterson and Lucas (1959)). We noted that the performance

of each LSD is same among the 18 LSDs under the reduced and full models for both of the

correlation structures and priors used. Same is true for 6 WSDs and 24 EPDs. Thus the

results are based on one LSD, one WSD and one EPD.

5.1.1. Reduced model: No carryover effects

The Bayesian DA-optimal design is obtained under three correlation structures, inde-

pendent (α = 0), compound symmetric (CS) and AR(1). The proportions assigned to each

treatment sequence by DB for varying α are plotted in Figure 1. It is noted (see Fig-

ure 1(A)) that under the independent correlation structure (i.e., α = 0), DB utilizes all

the 16 sequences for priors 1, 3 and 4. In the case of prior 2 and α = 0, the sequences

{BDCA,CBAD,BCDA,DBAC,AAAB,BBBA} are left unused. As α increases for the

CS structure, DB utilizes the sequences forming a LSD (ADCB,BCDA,DABC,CBAD)

with almost 100% weightage and equal proportions to each. Under the AR(1) structure,

DB uses only the first eight sequences (see Figure 1(B)). The efficiencies of the LSD, WSD

and EPD with respect to DB are presented in Figure 2 (A). Note that under CS structure
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both LSD and WSD designs are as good as DB, while EPD has lower efficiency, especially

for priors 1 and 2. Efficiencies of LSD and WSD are constant with respect to α and also

overlap. Under the AR(1) structure (see Figure 2 (B)), WSD is more efficient followed by

LSD, and EPD performs worst. Note that performance of EPD also worsens as α increases.

Efficiency comparisons are not much affected by the choice of the priors in the AR(1) case.

5.1.2. Full model: With carryover effect

It is observed from Figures 1 (C) and (D), for α = 0, under priors 2 and 3, DB utilizes all

sequences except {BBBA}. For α = 0, prior 1: sequences {BBBA,CCDD,DDCC} and

prior 4: {BBBA,CCDD,DDCC,AABB}, are left unused , respectively. Under the CS and

AR(1) structure, DB utilizes the first eight sequences with more than 70% of weight (see

Figure 1 (C) and (D)), and as α increases the first eight sequences get more than 80% weight.

It can be observed from Figure 2 (C) and (D) that WSD is most efficient as compared to

LSD and EPD under all correlation structures. Also contrary to the reduced model, here the

LSD performs worse (with about 85% efficiency) than EPD. Efficiency comparisons are not

much affected by the choice of the priors. Equation (14) in Theorem 1 in the appendix has

been used to confirm the DA-optimality of all Bayesian designs obtained for both reduced

and full models.

16



0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

α

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω

Prior 1

ω

α

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω

Prior 2

ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω

Prior 3

ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω

Prior 4

ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

(A)

(B)

0 0.05
0.1 0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

α

0 0.05
0.1

0.15 0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

α

0 0.05
0.1

0.15 0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0 0.05
0.1

0.15 0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 

pω
ω

 

ACDB BDCA CBAD DABC ADCB BCDA CABD DBAC AABB BBAA CCDD DDCC AAAB BBBA CCCD DDDC

0
0.05

0.1 0.15
0.2

0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0
0.05

0.1 0.15
0.2

0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

0
0.05

0.1
0.15

0.2
0.25

abcdefghijklmnop
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

pω
ω

(C)

(D)

Figure 1: Weights (pω) versus the treatment sequences for different α values using priors 1-4 for the model
parameters in Example 1. Treatment sequences labeled as {a, b, ..., p} correspond to the treatment sequences
given in the design space Ω in Example 1 (Section 5.1). (A): Model with no carry over effect and correlation
structure is CS (B): Model with no carry over effect and correlation structure is AR(1) (C): Model with
carry over effect and correlation structure is CS (D): Model with carry over effect and correlation structure
is AR(1)
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Figure 2: Efficiencies of WSD, LSD and EPD compared with DB using priors 1-4 for the model parameters
in Example 1, (A): Model with no carry over effect and correlation structure is CS (B): Model with no carry
over effect and correlation structure is AR(1) (C): Model with carry over effect and correlation structure is
CS (D): Model with carry over effect and correlation structure is AR(1)

5.2. Example 2: Two periods two treatments Poisson response trial

A crossover trial with two drugs given in two periods for controlling angina in 20 patients

is considered. The count of attacks suffered by the patients is assumed to be a Poisson

random variable. Treatment sequences AB and BA are used in the trial. However, we should

note that this design does not permit the unbiased estimation of the treatment contrast

under carryover effect (Jones and Kenward (2014)), though the estimates and corresponding
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confidence intervals may still be used to choose the prior distributions.

Reparametrizing the linear predictor ηij for this 2× 2 crossover design as done by Laska

and Meisner (1985),

ηij = ν + β∗P + τ ∗T + γ∗C.

Here, τ ∗ = (τA − τB)/2, γ
∗ = (γA − γB)/2, β1 = 0 and β2 = β∗. The variables P is coded

1 for period 2 and zero otherwise, while T, C = 1 for treatment A and −1 for treatment

B. It is assumed that carryover effect is zero in the first period. For a 2 × 2 cross-over

trial compound symmetric and AR(1) correlation structures are equal. Estimation of the

parameters is again done by using PROC GENMOD in SAS software (SAS Institute Inc.

(2003)). Point estimates and their 95% confidence intervals are listed in Table 2. Estimate

of the correlation coefficient is α = 0.0798.

Table 2: Point estimates and confidence intervals for both reduced and full models for Poisson data in
Example 2.

Parameter Point estimate [95% Confidence interval]

no carryover effect with carryover effect

ν 0.0493 [-0.4457 0.5444] -0.0541 [-1.0405 0.9324]

β∗ -0.0011 [-0.4256 0.4234] 0.0541 [-0.4519 0.5600]

τ ∗ 0.5664 [0.1006 1.0322] 0.6419 [-0.1036 1.3873]

γ∗ - 0.1494 [-0.8566 1.1553]

For a 2 × 2 crossover design, the set of all possible treatment sequences is taken to be

Ω = {AB,BA,AA,BB}. The Bayesian design with the DA-optimal allocation of subjects

to the treatment sequences {AB,BA,AA,BB} is denoted by DB. The performance of DB

is compared to DI = {AB,BA,AA,BB} and DII = {AB,BA}. Both DI and DII assigns

equal allocation to each of their treatment sequences.

Following prior distributions for the model parameters were chosen:
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Prior 1: Cartesian product of 95% confidence intervals of parameters given in Table 2.

Prior 2: Cartesian product of the nonnegative part of 95% confidence intervals of parameters

given in Table 2.

Prior 3 and 4: Independent multivariate normal distribution with mean vector as the point

estimates of the parameters given in Table 2 and (for prior 3) the variance is 0.25, (for

prior 4) the variance is 0.50.

5.2.1. Reduced model: No carryover effects

By observing Figure 3 (A), it is concluded that for α = 0, DB utilizes all sequences, for

all priors. For α > 0, the Bayesian crossover design DB for the reduced model consists of

sequences {AB, BA} with approximately equal weightage to each sequence, thus DII and

DB are very similar under the reduced model. From Figure 3 (C) we see that DII is more

efficient than DI and also the performance of DI worsens as α increases. Choices of the prior

distributions do not effect the results. Also, the results matches with those for the normal

response model for a 2× 2 crossover design (Laska and Meisner (1985)).

5.2.2. Full model: With carryover effects

Introducing crossover effects in the model, however changes the results completely except

for the α = 0 case. The Bayesian crossover design DB for the full model now utilizes the

sequences {AA, AB} and its dual. Proportions assigned to the treatment sequences are

sensitive to the choice of the prior distribution as noted from Figure 3 (B). Figure 3 (D)

shows that the design DI has efficiency values close to 1 and performs better than DII .

Also, DII is affected by increasing α (see Figure 3 (D)). For normal responses in case of a

full model, similar results are noted by (Laska and Meisner (1985)). All designs obtained

for the Poisson response here are verified to be DA-optimal using Theorem 1 given in the

Appendix.
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Figure 3: Weights (pω) assigned to each of the treatment sequences for different α values using priors 1-4
for the model parameters in Example 1 in (A): Model with no carry over effect (B): Model with carry over
effect. Efficiency plots of designs DI and DII in (C): Model with no carry over effect (D): Model with carry
over effect

5.3. Example 3: Three periods two treatment Gamma response trial

We consider a hypothetical gamma response trial with two treatments, A and B applied in

three periods. For the 3×2 crossover design the set of all possible treatment sequences is taken

to be Ω = {AAA,AAB,ABB,ABA,BBA,BAA,BAB,BBB}. The response is length of

hospital stay which is assumed to follow a Gamma distribution. The Bayesian crossover

design DB is determined by searching over Ω. The linear predictor is again reparametrized
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as in Example 2, using τ ∗ = (τA − τB)/2, γ
∗ = (γA − γB)/2, β1 = 0, βi = β∗

i−1, i = 2, 3, and

T, C = 1 for treatment A and −1 for treatment B,

ηij = ν + β∗
1P1 + β∗

2P2 + τ ∗T + γ∗C,

it is assumed that carryover effect is zero in the first period.

The data sets are simulated using the parameter values (ν, β∗
1 , β

∗
2 , τ

∗) = (0.50, 0.15, 0.20, 0.25)

for a reduced model and (ν, β∗
1 , β

∗
2 , τ

∗, γ∗) = (0.50, 0.20, 0.30, 0.25, 0.15) for a full model. We

have considered the treatment sequences ABB and BAA with the assignment of 10 sub-

jects each to generate the data. Observations are assumed to be independent within the

periods. The link function used is the reciprocal link and the shape parameter κ is fixed at

2.0. Point estimates and corresponding confidence intervals of the parameters are calculated

using PROC GENMOD procedure in SAS software (SAS Institute Inc. (2003)).

Following prior distributions for the model parameters are used to obtain the Bayesian

optimal designs:

Prior 1: Cartesian product of 95% confidence intervals of parameters given in Table 3.

Prior 2: Cartesian product of the nonnegative part of 95% confidence intervals of parameters

given in Table 3.

Prior 3: (ν, β∗
1 , β

∗
2 , τ

∗, γ∗) ∈ [−100, 100]×[−100, 100]×[−100, 100]×[−100, 100]×[−100, 100].

Prior 4 and 5: Independent multivariate normal distribution with mean vector as the point

estimates of the parameters given in Table 3 and (for prior 4) the variance is 0.25, (for

prior 5) the variance is 0.50.

For the reciprocal link function, we use the restriction ηij > 0, i = 1, · · · , p, j = 1, · · · , n.

Prior 3 is a new prior considered here. Priors similar to prior 3 were not used in Exam-

ples 1 and 2, since such large values of parameters may have introduced singularity in the

asymptotic variance covariance matrix of the parameter estimates.
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The Bayesian design DB has been compared with the following designs:

Da = ABB,BAA,AAB,BBA with equal allocation to each treatment sequence.

Db = ABB,BAA with equal allocation to each treatment sequence.

Dc = ABA,BAB,ABB,BAA with equal allocation to each treatment sequence.

Table 3: Point estimates and confidence intervals for both reduced and full models for Gamma response in
Example 3.

Parameter Point estimate [95% Confidence interval]

no carryover effect with carryover effect

ν 0.5846 [ 0.3137 0.8556] 0.4653 [ 0.2671 0.6635]

β∗
1 0.1842 [ -0.0906 0.4591] 0.1360 [ -0.1814 0.4535]

β∗
2 0.2422 [ -0.0873 0.5717] 0.3661 [ 0.0818 0.6503]

τ ∗ 0.2310 [ 0.0446 0.4173] 0.2830 [ -0.0150 0.5810]

γ∗ - 0.1178 [ -0.3020 0.5377]

5.3.1. Reduced model: No carryover effects

For log link function, asymptotic variance covariance matrix of parameter estimates does

not depend on the model parameters, θ, as observed from the information matrix given

in section 3.4 under the log link function. Thus results are similar to those in the normal

response case. Under the CS structure, design {ABB, BAA} with equal proportions is the

optimal design for direct treatment effect. Under AR(1) structure, optimal design utilizes

the sequences ABA and BAB with equal proportions.

For reciprocal link function (see Figure 4 (A)), it is seen that for α = 0, all 8 sequences

are utilized by DB except in the case of prior 3 (sequences BAB,ABB are not used). For

most of the positive α values and priors 1, 2 and 5, for the CS structure DB utilizes the

sequences {BBA,BAB,BAA,ABB}. For priors 3 and 4 the sequence BAA is left unused
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for high α values. Under each prior approximately 40% weightage is given to sequence ABB.

With an increase in α, weights on BBA and BAB also increase however weights on BAA

decrease. We also note that the weights on BAA is sensitive to the prior used. From Figure

5 (A), it is noted that Db is most efficient, this is also true for normal responses.

Under AR(1) structure, DB utilizes the sequences {ABA,BAB} with approximately

45% and 55% weightage, respectively, for each priors. These proportions are not affected by

increasing α values (see Figure 4 (B)). From the efficiency plots (see Figure 5 (B)) design

Dc turns out to be the most efficient as compared to Da and Db.

5.3.2. Full model: With carryover effects

For log link function again the results are similar to those in the normal response case.

Under CS structure, {ABB,BAA} is the optimal design and for AR(1) structure, optimal

design is {ABB,AAB,BAA,BBA} with more than 90% weightage given to the sequence

AAB and its dual.

For reciprocal link function, when α = 0, DB uses all sequences. Under both CS and

AR(1) structures, DB uses the sequences {AAB,BAA,ABB,BAA,ABA} (see Figure 4 (C)

and (D)). It is observed that for smaller values of α, the treatment sequence AAA is included

in the design. In Prior 1, the treatment sequence AAA has approximate 30% weight for α = 0

and weightage decreases as α increases. From the efficiency plots (Figure 5 (C) and (D)),

observe that design Da is the most efficient for CS correlation structures. Under the AR(1)

structure, again Da performs well compared to other designs. Under prior 1 and 2, design

Dc has approximate equal efficiency as Da for α > 0.4. Note that, design Da is the optimal

design for normal responses under AR(1) as noted in Laska and Meisner (1985).

Note again all designs obtained in this section are verified to be optimal using Theorem

1 given in the Appendix.
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Figure 4: Weights (pω) assigned to each treatment sequence for different α values using priors 1-5 for the
model parameters in Example 3, (A): Model with no carry over effect and correlation structure is CS (B):
Model with no carry over effect and correlation structure is AR(1) (C): Model with carry over effect and
correlation structure is CS (D): Model with carry over effect and correlation structure is AR(1)

25



0 0.5 1
0.985

0.99

0.995

1

α

E
ffi

ci
en

cy

Prior 1

 

 

0 0.5 1
0.985

0.99

0.995

1

α

Prior 3

 

 

0 0.5 1
0.985

0.99

0.995

1

α

Prior 4

 

 

0 0.5 1
0.985

0.99

0.995

1

α

Prior 5

 

 

0 0.5 1

0.88

0.92

0.96

1

α

E
ffi

ci
en

cy

0 0.5 1
0.88

0.92

0.96

1

α
0 0.5 1

0.88

0.92

0.96

1

α
0 0.5 1

0.88

0.92

0.96

1

α

0 0.5 1
0.985

0.99

0.995

1
Prior 2

α

0 0.5 1
0.88

0.92

0.96

1

α

(A)

(B)

0 0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

α

E
ffi

ci
en

cy

0 0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α

0 0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

α

E
ffi

ci
en

cy

 

 

0 0.2 0.4 0.6 0.8
0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α
0 0.2 0.4 0.6 0.8

0.9

0.92

0.94

0.96

0.98

1

α

D
a

D
b

D
c

(C)

(D)

Figure 5: Efficiencies of designs Da, Db and Dc compared with DB using priors 1-5 for the model parameters
in Example 3, (A): Model with no carry over effect and correlation structure is CS (B): Model with no carry
over effect and correlation structure is AR(1) (C): Model with carry over effect and correlation structure is
CS (D): Model with carry over effect and correlation structure is AR(1)

6. Sensitivity of designs to the assumed correlation structure

Till now in all our computations we assume that the working correlation (WC) matrix

is equal to the true correlation (TC) matrix as defined in equation (7). In this section

we investigate the effect of misspecifying the correlation on performance of designs. For

illustration, Example 1 is used. There are two cases considered: Case (1): the working

correlation structure is compound symmetric but the true correlation structure is AR(1),
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Case (2): the working correlation structure is AR(1) but the true correlation structure

is compound symmetric. Prior 1 used before in Example 1 is assigned to the regression

parameters.

First we consider a model without the carryover effect. The Bayesian DA-optimal design,

DB, is found using equation (6) in equation (10). DB utilizes the sequences forming a LSD

under both cases 1 and 2. Under misspecification, performance of WSD is affected very

slightly (see Figure 6 (A1) and (A2)), EPD performs the worst and its performance worsens

with α.. However, for the TC=WC case, we had noted earlier that both LSD and WSD are

equally efficient. Thus, misspecification under the reduced model case, has a slight adverse

effect on the performance of the WSD but not the LSD.

For the model with carryover effect, for both cases 1 and 2, DB utilizes the first 8

sequences with more than 70% weights (this is consistent with results obtained under TC =

WC). Though the performance of WSD is affected it is still the most efficient compared to

EPD and LSD (see Figure 6 (B1) and (B2)), while LSD is the worst.

0 0.2 0.4 0.6 0.8
0.94

0.96

0.98

1

(A1)

α

E
ffi

ci
en

cy

 

 

0 0.2 0.4 0.6 0.8
0.94

0.96

0.98

1

(A2)

α

E
ffi

ci
en

cy

0 0.2 0.4 0.6 0.8
0.8

0.85

0.9

0.95

1
(B2)

α

E
ffi

ci
en

cy

WSD LSD EPD

0 0.2 0.4 0.6 0.8
0.8

0.85

0.9

0.95

1
(B1)

α

E
ffi

ci
en

cy

Figure 6: Efficiency plots of WSD, LSD and EPD compared to DB when true correlation (TC) and working
correlation (WC) are not equal (A1) Model without carryover effect and WC = compound symmetric (CS),
TC = autoregressive (AR(1)), (A2) Model without carryover effect and WC = AR(1), TC = CS, (B1)
Model with carryover effect and WC = CS, TC = AR(1), (B2) Model without carryover effect and WC =
AR(1), TC = CS
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7. Prior distributions on α and its effect on design performances

Designs obtained so far are based on some fixed values of α. In this section, we validate the

performance of the optimal designs using priors on α. For illustration purpose, we consider

the two periods two treatments Poisson response model with carry over effect from Example

2. Prior 1 of Example 2 is chosen for the parameters involved in the linear predictor. The

estimate of α using the data given in Example 2 is 0.0798. Based on this information we use

the following set of priors covering the value 0.0789.

• (i) Uniform(0, 0.2) (ii) Uniform(0, 0.5) (iii) Uniform(0, 0.8) (iv) Uniform(0, 1)

• (i) Beta(2, 38) (ii) Beta(4, 12) (iii) Beta(6, 10) (iv) Beta(5, 5).

The first four uniform and beta priors (i-iv) are chosen such that they have similar ranges,

i.e., the range of uniform (i) is similar to beta prior (i) and so on. They are also chosen to

look at the effect of increasing uncertainty of the prior information on the designs. Uniform

and Beta priors have been used before by Spiegelhalter (2001) and Singh and Mukhopadhyay

(2016) for the correlation parameter of cluster randomized trials.

The DA-optimal Bayesian criterion defined in equation (10) changes to the design which

minimizes

Ψ(B∗, ζ) =

∫

B∗

Λ(ζ, θ, α) dF (θ, α), (13)

where B
∗ ⊂ R

m × [0, 1] is the parameter space of parameter vector (θ, α) and F (θ, α) is a

proper prior distribution for (θ, α). Optimal proportions of DB using the above criterion

for different priors of α are given in Table 4. As noted before in Example 2, design DI =

{AA,AB,BA,BB} with equal proportions performs well as compared to the Bayesian DA-

optimal design with efficiency values approximately equal to 1. From Table 4, it is observed

that optimal proportions are slightly sensitive to the choice of priors. For example see the

optimal allocations corresponding to Uniform(0, 0.2) and Beta(5, 5) priors. Overall, we may
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conclude that there is not much change in the results when we use a prior for α instead of

some fixed values.

Table 4: Optimal allocation of DB under different priors for α and efficiency values of DI (Section 7).

pω

Prior AA AB BA BB Efficiency

Uni(0, 0.2) 0.1520 0.2700 0.2133 0.3647 0.988

Uni(0, 0.5) 0.1506 0.2716 0.2161 0.3617 0.988

Uni(0, 0.8) 0.1503 0.2744 0.2167 0.3586 0.988

Uni(0, 1.0) 0.1515 0.2766 0.2124 0.3595 0.988

Beta(2, 38) 0.2000 0.2000 0.3000 0.3000 0.996

Beta(4, 12) 0.1997 0.1992 0.3005 0.3006 0.995

Beta(6, 10) 0.2060 0.1986 0.2908 0.3047 0.991

Beta(5, 5) 0.1843 0.1841 0.2876 0.3440 0.989

8. Computer programs used to obtain the optimal designs and estimate the

parameters

Approximation of the multidimensional integrals of the objective functions in equa-

tions (10) and (13) to obtain the optimal designs is done with Latin Hypercube Sampling

(LHS). For uniform priors, we use the average of (10) and (13) across 100-point discrete

samples using LHS as the approximate solution of (10) and (13), respectively. When θ

has a Gaussian distribution, Latin Hypercube Sampling from Gaussian fields is used (for

more details see Stein (1987)). A MATLAB function lhsdesign is used to sample points

from the parameter space. To obtain the optimal proportions of subjects (pω) assigned

to treatment (ω), fmincon function in MATLAB is used. The fmincon algorithm finds

a minimum of a constrained nonlinear multivariable function, and by default is based on

the Sequential Quadratic Programming algorithm. For more details please see the link
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http://in.mathworks.com/help/optim/ug/fmincon.html#description. A genetic algorithm

(GA function in MATLAB) verifies the results obtained from the fmincon. The estima-

tion and the estimated confidence intervals of model parameters are done using GENMOD

procedure in SAS (SAS Institute Inc. (2003)).

Note: All MATLAB and SAS programs are available to the readers upon request from

the first author of this article.

9. Concluding Remarks

Crossover designs are popular as designs of choice in many clinical and pharmaceutical

trials for comparing treatments. However, very often in these situations the response does

not follow the usual assumptions of normality, and generalized linear models have to be used

to model the data. In this article, we address the designing of such crossover trials when a

GLM is fitted. Since the designs are dependent on the model parameters, Bayesian designs

are proposed. Comparing our main results based on GLMs with those of normal response

models, we see that they are quite similar in many cases.

The main results on the estimation of direct treatment effects using the proposed DA-

optimal Bayesian designs (DB) are summarized below.

• For t = p = 4 when the response is binary : Williams design is as efficient as DB

and is seen to perform the best under both CS and AR(1) correlation structures for a

reduced as well as a full model.

• For p = t = 2 when the response is Poisson distributed: Design {AB,BA}

has the highest efficiency in a reduced model framework while for a full model, design

{AB,BA,AA,BB} is most efficient. Both designs have equivalent efficiency as DB for

the respective models.

• For p = 3, t = 2 when the response is Gamma distributed: Under log link

function, DA-optimal Bayesian designs are same as in case of normal responses.
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For reciprocal link function, under reduced model, design Db (treatment sequences

{ABB, BAA} with equal proportions), perform as well as DB under the CS correla-

tion structure, while for AR(1) correlation structure, design Dc (treatment sequences

{ABA,BAB, ABB,BAA} with equal proportions) has the equal efficiency as DB.

In case of full model, design Da (treatment sequences {ABB,BAA,AAB,BBA} with

equal proportions) is equally efficient as DB, and performs better than Db and Dc.

In many biological experiments while studying the effect of drugs, the response measured

may not be binary in nature but say ordinal. As an example consider a 3× 3 crossover trial

(cited by Jones and Kenward (2014)) where the effect of three treatments on the amount of

patient relief is studied. The response obtained is categorized as none, moderate or complete,

making it ordinal in nature with three categories. Thus, there is a need to address optimal

crossover deigns not just for binary models but also for multi categorical responses. In these

cases, instead of the logit link, a generalized logit or a proportional odds model may be used.

Also, other than the correlation between measurements from the same subject we would have

to consider the relation between response categories. Jones and Kenward (2014) discusses

modeling of ordinal data using the GEE approach. In future, we are interested to study

D-optimal Bayesian designs for such multicategorical models.

Appendix

Consider a finitely supported approximate crossover design with k treatment sequences.

The design can be expressed in the form of a probability measure as follows:

ζ =











ω1 ω2 . . . ωk

pω1
pω2

. . . pωk











,

where ωi ∈ Ω (set of all treatment sequences considered) and pωi
is the proportion of subjects

assign to treatment sequence ωi such that pωi
≥ 0 and

∑k
i=1 pωi

= 1, for i = 1, · · · , k. Let
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M = M(ζ, θ) denotes the asymptotic information matrix of estimates of the parameter

vector θ. This in turn is the reciprocal of the variance-covariance matrix defined in equation

(7). If the interest is in the estimation of a linear combination of the parameters of the form

λ = W ′θ, where W is a m× s matrix with rank s ≤ m. The information matrix of λ for a

design ζ is given by C = C(ζ, λ) = (W ′M−1W )−1. Next theorem insures the optimality of

designs obtain for the estimation of λ under the prior distribution of θ.

Theorem 1. Under the GEE model considered for the linear predictor, link function and

working correlation, the following conditions for a continuous design ζ∗ are equivalent:

1. ζ∗ minimizes Ψ(B, ζ, α) defined in equation (10), ∀ ζ ∈ χ, where χ is the set of all

possible designs.

2. ζ∗ satisfies the following condition:

EF

[

tr
(

M(ζ∗, θ)−1WCW ′M(ζ∗, θ)−1
)

M(ζω, θ)
]

≤ s ∀ ω ∈ Ω, (14)

where F is the prior distribution of θ and M(ζω, θ) is the information matrix with

respect to the design ζω having unit mass at single treatment sequence ω. Equality in

equation (14) is achieved if any ω in the Bayesian DA-optimal design is inserted.

Proof of this theorem follows directly from Theorem 3.1 of Pettersson (2005). These

optimal designs are known as average DA-optimal designs. A similar equivalence theorem is

proved and used by Woods and Van de Ven (2011) to show the optimality of blocked designs

with non-normal responses. Expressions of matrix W , θ and respective ranks for examples

used in this article are:

• Example 1

W ′ =













0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0












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θ = (ν, β∗
1 , β

∗
2 , β

∗
3 , τ

∗
1 , τ

∗
2 , τ

∗
3 , γ

∗
1 , γ

∗
2 , γ

∗
3)

′ and s = 3.

• Example 2

W ′ =

[

0 0 1 0

]

θ = (ν, β∗, τ ∗, γ∗)′ and s = 1.

• Example 3

W ′ =

[

0 0 0 1 0

]

θ = (ν, β∗
1 , β

∗
2 , τ

∗, γ∗)′ and s = 1.
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