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Abstract

This study proposes a robust estimator for stochastic frontier models by integrating the idea of Basu

et al. [1998, Biometrika 85, 549-559] into such models. We verify that the suggested estimator is strongly

consistent and asymptotic normal under regularity conditions and investigate robust properties. We use

a simulation study to demonstrate that the estimator has strong robust properties with little loss in

asymptotic efficiency relative to the maximum likelihood estimator. A real data analysis is performed

for illustrating the use of the estimator.
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1 Introduction

Technical efficiency (TE) measures have been used for several decades for benchmarking purposes. The

concept of TE was first introduced by Farrell (1957). Since then, two strands of TE measurement developed

in the late 1970s and early 1980s: data envelopment analysis (DEA), based on linear programming, and

stochastic frontier analysis (SFA), which commonly uses parametric stochastic frontier (SF) models.
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The DEA technique is mainly used to measure TE scores in the research fields of managerial and economics

studies. Since DEA often requires only input and output quantities, it is quite easy to understand the

technique’s empirical results and to apply these results to any empirical investigations. However, a weakness

of DEA is that it is sensitive to extreme values, making it difficult to apply the technique to data sets with

outliers. Several attempts have been made to solve this problem. For example, Wilson (1993, 1995) suggested

a method for detecting outliers and Cazals et al. (2002) proposed a robust estimator for the nonparametric

frontier model. Simar (2003) employed the method of Cazals et al. (2002) to detect outliers using classic

DEA estimators. Florens and Simar (2005) also proposed robust parametric estimators of nonparametric

frontiers.

The SFA framework is a counterpart to the DEA in that it is a parametric approach. This means that

the functional form, such as production or cost functions, needs to be assumed before estimating the TE

score. One of the pioneering methodologies in the SFA framework was developed by Jondrow et al. (1982),

who proposed a formula for separating a random error component and a TE component. Owing to the ease

of application, various models have been developed and SF models have been widely employed in efficiency

measurement studies. For example, the approach suggested by Battese and Coelli (1995) provides the TE

and the determinants of the TE. Numerous statistical methods have been proposed for estimating SF models.

For example, Park and Simar (1994) and Park et al. (1998) considered semiparametric estimation in SF

panel models and Kumbhakar et al. (2007) introduced an approach for nonparametric SF models. Kopp

and Mullahy (1990) and Van den Broeck et al. (1994) applied the generalized method of moments procedure

and Bayesian method, respectively, to parametric SF models. Kneip et al. (2015) proposed an alternative

and new approach for nonparametric SF models using penalized likelihood.

This study addresses the estimation of parametric SF models, particularly in the presence of high- or

low-performing observations. In empirical data analyses, one often faces observations with a comparative

advantage, such as highly advanced technology, which yield a super efficiency score. These observations

should be treated carefully because they can influence the estimation procedure in the same way as outliers

do. As is widely recognized in the literature, the maximum likelihood (ML) estimation method is influenced

strongly by outliers or extreme values. Our simulation shows that applying the ML estimator to the SF

model suffers from the same problem, requiring the development of a robust estimation method for SF

models. However, to the best of our knowledge, little effort has been made in this regard.

The purpose of this study is to propose a robust estimator for SF models. To construct a robust

estimator, we consider the estimation method based on divergence, which evaluates the discrepancy between
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any two probability distributions. The divergence-based estimation method has been used successfully in

constructing robust estimators in the past. For a review, refer to Pardo (2006) and Cichocki and Amari

(2010), as well as the references therein. In this study, we employ density power divergence, as proposed

by Basu et al. (1998) (henceforth, BHHJ). BHHJ proposed a minimum density power divergence (MDPD)

estimator, and demonstrated that it possesses, relative to the ML estimator, strong robust properties with

little loss in asymptotic efficiency. Compared with other robust methods, such as the minimum Hellinger

distance estimation, the BHHJ method does not require any smoothing methods. Hence, it avoids the

difficulty of selecting a bandwidth when estimating the nonparametric density estimation. For this reason,

the BHHJ method can be applied conventionally to any parametric models to which the ML estimation can

be applied. For example, see Juárez and Schucany (2004), Fujisawa and Eguchi (2006), and Kim and Lee

(2013).

The remainder of the paper is organized as follows. Section 2 reviews the BHHJ estimation method and

proposes a robust estimator for SF models based on density power divergence. This section also examines

the asymptotic and robust properties of the proposed estimator. In Section 3, we discuss our simulation

study that compares the performance of the conventional ML estimator and the MDPD estimator in the

SFA framework. In Section 4, we analyze real data that contain some low-performing observations using

both estimators, again for comparative purposes. Lastly, Section 5 concludes the paper.

2 Robust estimation in the stochastic frontier models

This section reviews the MDPD estimator and integrates it into the SFA framework in order to estimate the

TE.

2.1 Minimum density power divergence estimator

In this subsection, we review the BHHJ estimation procedure that minimizes a density-based divergence

measure.

Let f and g be probability densities. To measure the difference between f and g, BHHJ defined the
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density power divergence, dα(f, g), as follows:

dα(g, f) :=



∫ {
f1+α(z)− (1 +

1

α
) g(z) fα(z) +

1

α
g1+α(z)

}
dz , α > 0,

∫
g(z) {log g(z)− log f(z)} dz , α = 0.

(1)

Note that the divergence includes Kullback–Leibler divergence and L2-distance as special cases. Since dα(f, g)

converges to d0(f, g) as α→ 0, the above divergence with 0 < α < 1 provides a smooth bridge between the

Kullback–Leibler divergence and the L2-distance.

Consider a family of parametric distributions {Fθ : θ ∈ Θ ⊂ Rm} possessing densities {fθ} with respect

to the Lebesgue measure, and let G be the class of all distributions having densities with respect to the

Lebesgue measure. For a distribution G ∈ G with density g, the MDPD functional at G (i.e., Tα(G)) with

respect to {Fθ : θ ∈ Θ} is defined by

Tα(G) = argmin
θ∈Θ

dα(g, fθ), (2)

where it is assumed that Tα(G) exists and is unique, as will normally be the case. Note that when G belongs

to {Fθ} (i.e., G = Fθ′ for some θ′ ∈ Θ), Tα(G) becomes θ′. Roughly speaking, FTα(G) can be considered as

a projection of G onto the space of {Fθ : θ ∈ Θ} in terms of the divergence, and Tα(G) becomes the target

parameter of the MDPD estimator below.

Given a random sample X1, · · · , Xn with unknown density g, the MDPD estimator for the parameter

Tα(G) is defined as an empirical version of (2). That is,

θ̂α,n = argmin
θ∈Θ

1

n

n∑
i=1

Hα(Xi; θ), (3)

where

Hα(Xi; θ) =


∫
f1+α
θ (z)dz −

(
1 +

1

α

)
fαθ (Xi) , α > 0,

− log fθ(Xi) , α = 0.

BHHJ showed that θ̂α,n is weakly consistent with Tα(G) and asymptotically normal, and demonstrated that

the estimator has strong robust properties. The robust property of the estimator can be understood by
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checking the following estimating equation:

1

n

n∑
i=1

∂

∂θ
Hα(Xi; θ) = (1 + α)

∫
Uθ(z)f

1+α
θ (z)dz − 1

n

n∑
i=1

Uθ(Xi)f
α
θ (Xi) = 0,

where Uθ(x) = ∂
∂θ log fθ(x). Comparing the estimating equation of the ML estimator (i.e.,

∑n
i=1 Uθ(Xi) = 0),

one can see that the MDPD estimator provides density power weight, fαθ (Xi), to each Uθ(Xi), whereas the

ML estimator gives the equal weight. This means that the robustness of the MDPD estimator is obtained by

providing a down-weight to the outliers. Indeed, α controls the trade-off between robustness and asymptotic

efficiency in the estimation procedure. In the literature that applies the BHHJ procedure to other statistical

or econometric models, the MDPD estimators show good robustness against outliers, while still having a

high efficiency relative to the ML estimator, especially when the true distribution belongs to {Fθ} and α is

close to 0. For example, Juárez and Schucany (2004) and Fujisawa and Eguchi (2006) applied the procedure

to the generalized Pareto distribution and the normal mixture distribution, respectively. Lee and Song

(2009, 2013) introduced the MDPD estimator for the GARCH and diffusion models, respectively, and Kim

and Lee (2013) employed the estimation method for the copula parameter in the SCOMDY models. Since

the estimator with α > 1 causes a significant loss of efficiency, estimations with α ∈ [0, 1] are commonly

employed.

This approach can be easily extended to estimations in regression models. Let {fθ(y|x)} be a family of

regression models with a parameter θ ∈ Θ, and let g(y|x) be the true density for Y , given X = x. Then, a

family of the x-conditional version of the density power divergence is defined as

dα(g(·|x), fθ(·|x)) =



∫ {
f1+α
θ (y|x)−

(
1 +

1

α

)
g(y|x)fαθ (y|x) +

1

α
g1+α(y|x)

}
dy , α > 0

∫
g(y|x) {log g(y|x)− log fθ(y|x)} dy , α = 0.

Given observations {(Xi, Yi)}ni=1, the above divergence makes it possible to employ the MDPD estimators

for regression models, as follows:

θ̂α,n = argmin
θ∈Θ

1

n

n∑
i=1

Hα(Xi, Yi; θ) (4)
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where

Hα(Xi, Yi; θ) =



∫
f1+α
θ (y|Xi)dy −

(
1 +

1

α

)
fαθ (Yi|Xi) , α > 0

− log fθ(Yi|Xi) , α = 0.

As an alternative to the ML estimation, we apply this estimator to the SF models, as described in the next

subsection.

2.2 The MDPD estimator for SF models

Consider a random sample {(Xi, Yi)}ni=1 with Xi ∈ Rp and Yi ∈ R, satisfying the following stochastic frontier

model:

Yi = g(Xi, β) + Vi − Ui, i = 1, · · · , n, (5)

where g(x, β) is the frontier production function with parameter β ∈ Rq; Vi and Ui are the random error

term and technical inefficiency, respectively; and {Vi} and {Ui} are assumed to be independent.

Denoting the true density functions of V and U by fV and fU , respectively, the true conditional density

of Y , given X = x, is obtained by

f(y|x) =

∫ ∞
0

fU (u)fV (u+ y − g(x, β))du.

Since it is not usually easy to specify the distributions of V and U , we consider a class of pseudo(or quasi)

distributions having parametric densities to construct the MDPD estimator. In this case, the SF model

under consideration is misspecified if the true distribution of V and U do not belong to the given family.

Let fθ(y|x) be the conditional density induced from the pseudo parametric distributions. Then, the MDPD

estimator can be defined by inserting the pseudo conditional density fθ(y|x) in the estimator given in (4)

and the pseudo parameter to be estimated is given by

θ∗α := argmin
θ∈Θ

E
[
dα(f(·|X), fθ(·|X))

]
,

where Θ denotes the parameter space. Note that if V and U are correctly specified, i.e., f(y|x) = fθ0(y|x)

6



for some θ0 ∈ Θ, it holds that θ∗α = θ0 for α ≥ 0.

In this paper, we consider the normal distribution and the truncated-normal(or the exponential) dis-

tribution as the pseudo distributions for V and U , respectively. That is, our MDPD estimator for (5) is

constructed using the pseudo conditional densities below regardless of whether the true densities fV and fU

belong to the assumed class or not.

• When N(0, σ2
v) and N+(µ, σ2

u) are employed as the pseudo distributions for V and U , respectively, the

pseudo conditional density is given by

fθ(y|x) =
1

σ

[
1− Φ

(
− µ

σu

)]−1

φ
(y − g(x, β) + µ

σ

)
Φ
( µ
σλ
− y − g(x, β)

σ
λ
)
, (6)

where Φ(·) and φ(·) are the standard normal cumulative distribution and density functions, respectively;

σ2 = σ2
v + σ2

u and λ = σu/σv; and θ denotes (β, µ, σu, σv). Note that setting µ = 0, (6) reduces to the

following conditional density:

fθ(y|x) =
2

σ
φ
(y − g(x, β)

σ

)
Φ
(
− y − g(x, β)

σ
λ
)
, (7)

which is the conditional density of the normal – half normal SF model.

• When N(0, σ2
v) and Exp(1/σu) are considered for the pseudo distributions of V and U , respectively,

we have

fθ(y|x) =
1

σu
Φ
(
− y − g(x, β)

σv
− σv
σu

)
exp

(y − g(x, β)

σu
+

σ2
v

2σ2
u

)
, (8)

where θ denotes (β,m, σv, σu).

In the case of α = 0, the above estimator becomes the quasi ML (QML) estimator. Hereafter, we denote by

[NT](resp. [NE]) the case in which (6)(resp. (8)) is adopted as the pseudo conditional density. Further, we

assume that infθ∈Θ(σv ∧ σu) > 0.

Remark 1. To the best of our knowledge, the integral of f1+α
θ (y|x) in (4) with (6) or (8) cannot be expressed

by a closed form. This makes it problematic to obtain the explicit form of the above objective function.

In our simulation study, we use the numerical integration method provided in R-metrics to implement the

MDPD estimator, which seems to produce sufficiently good approximation results to estimate the parameters
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(see Section 3).

2.3 Asymptotic properties of the MDPD estimator

This subsection derives the asymptotic properties of the MDPD estimator for (5). We particularly con-

centrate on the estimator with α > 0. The following regularity conditions are required to establish the

consistency.

A1. The parameter space Θ is compact and the pseudo parameter θ∗α ∈ Θ.

A2. {Xi} is a set of p-dimensional i.i.d. random vectors with density fX and that are independent of {Ui}

and {Vi}.

A3. g(x, β) is continuous in β for all x ∈ Rp.

A4. supθ∈Θ fθ(y|x) ≤ C for some C, where C does not depend on x and y.

Theorem 2.1. Let {(Xi, Yi)}ni=1 be a random sample from (5) and suppose that assumptions A1–A3 hold.

If pseudo conditional density fθ(y|x) satisfy A4, then, for each α > 0, the MDPD estimator θ̂α,n defined by

(4) with the pseudo conditional density fθ(y|x) converges almost surely to θ∗α.

Remark 2. In the case of [NT], by the compactness of Θ, we can take some constants b, b, u, u, σ and σ

such that Θ ⊂ [b, b]q × [u, u]× [σ, σ]2, where 0 < σ < σ <∞. In what follows, without loss of generality, we

assume Θ = [b, b]q × [u, u]× [σ, σ]2 under the case of [NT]. Similarly, when the case [NE] is considered, Θ is

assumed to be [b, b]q × [σ, σ]2.

Assumptions A1–A3 are general conditions in practice, so it suffices to check whether assumption A4 holds

or not to ensure the consistency of the MDPD estimator. In the cases of [NT] and [NE], one can readily get

global upper bounds for the pseudo conditional densities. That is, when [NT] is considered, we have

fθ(y|x) ≤ 1

σ

[
1− Φ

(max(|u|, |u|)
σ

)]−1

φ(0).

When [NE] is considered, we can obtain a following upper bound:

fθ(y|x) ≤ 1

σ
eσ

2/σ2
[

sup
z>0

Φ
(
− z

σ

)
ez/σ + 1

]
.
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Using the fact that Φ(x) ≤ e−x2/2 for all x < 0, we can see that the RHS of the above inequality is finite.

In order to obtain the asymptotic normality, we impose additional assumptions. Through out this paper,

∂a and ∂2
ab denote ∂

∂a and ∂2

∂ab , respectively, and the symbol ‖·‖ denotes the l1 norm for matrices and vectors.

A5. θ∗α lies in the interior of Θ.

A6. Kα := E
[
∂θHα(X,Y ; θ∗α) ∂θTHα(X,Y ; θ∗α)

]
<∞.

A7. E sup
θ∈Θ
‖∂2
θθTHα(X,Y ; θ)‖ <∞.

A8. Jα := E
[
∂2
θθTHα(X,Y ; θ∗α)

]
is positive definite.

Then, we have the second asymptotic result of the MDPD estimator.

Theorem 2.2. Assume that assumptions A1–A8 hold. Then, for each α > 0,

√
n(θ̂α,n − θ∗α)

d−→ N(0, J−1
α KαJ

−1
α ).

Remark 3. In the case of f(y|x) = fθ0(y|x) for some θ0 ∈ Θ, we have

Jα = (1 + α)E
[
fα−2
θ0

(Y |X)∂θfθ0(Y |X)∂θT fθ0(Y |X)
]
,

Kα = (1 + α)2E
[
f2α−2
θ0

(Y |X)∂θfθ0(Y |X)∂θT fθ0(Y |X)
]
− E

[
ξξT

]
,

where ξ =
∫
fαθ0(y|X)∂θfθ0(y|X)dy.

For α > 0, assumptions A6 and A7 can be ensured by more simple conditions in the cases of [NT] and [NE].

Indeed, the following proposition provides a sufficient condition for A6 and A7.

Proposition 2.1. Assume that Θ is compact and g(x, β) is twice differentiable w.r.t. β for all x. Under

the cases of [NT] and [NE], if E
[

supθ∈Θ ‖∂βg(X,β)∂βT g(X,β)‖
]
<∞ and E

[
supθ∈Θ ‖∂ββT g(X,β)‖

]
<∞,

then A6 and A7 hold for α > 0.

Remark 4. In the case where g(x, β) is a linear function of x, i.e., g(x) = βTx, one can see that

E
[

supθ∈Θ ‖∂βg(X,β)∂βT g(X,β)‖
]

= E‖XXT ‖ and E supθ∈Θ ‖∂2
ββT g(X,β)‖ = 0. Hence, the conditions

in the proposition reduce to E‖XXT ‖ <∞. This condition is not a serious restriction in empirical analysis,
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because it is usual to regard the input variables as limited resources which implies that the input vector X

can be assumed to be finite. In other cases, E‖XXT ‖ < ∞ together with the compactness of Θ and the

continuity of ∂βg and ∂2
ββT g can be a sufficient condition for A6 and A7.

Proofs for the results in this subsection are provided in Appendix.

2.4 The influence function of the MDPD estimator

In this subsection, we discuss the influence function of the MDPD estimator to describe the effect of in-

finitesimal contamination. Letting F be the true distribution of (X,Y ), the functional T (F ) corresponding

to the MDPD estimator can be defined as

T (F ) := argmin
θ∈Θ

∫
Rp+1

Hα(x, y; θ)dF.

Note that since

∫
Rp+1

Hα(x, y; θ)dF =


E
[
dα(f(·|X), fθ(·|X))

]
− 1

α
E
[
fα(Y |X)

]
, α > 0

E
[
dα(f(·|X), fθ(·|X))

]
− E

[
log f(Y |X)

]
, α = 0

(9)

and dα(f(·|X), fθ(·|X)) has a minimum value at θ∗α almost surely, T (F ) becomes θ∗α. For ε ∈ [0, 1], denote

by Fε the contaminated distribution of the form:

Fε = (1− ε)F + εδ(x0, y0),

where δ(x0, y0) has all its mass at the point (x0, y0). Then, the functional T (Fε) satisfies the following

equation:

(1− ε)
∫
Rp+1

∂θHα

(
x, y;T (Fε)

)
dF + ε∂θHα

(
x0, y0;T (Fε)

)
= 0.
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Hence, taking the derivative of the LHS of the above equation w.r.t. ε and putting ε = 0, the influence

function of T at F is obtained as

IFα(x0, y0;T, F ) = −
{∫

Rp+1

∂2
θθTHα

(
x, y;T (F )

)
dF
}−1

∂θHα

(
x0, y0;T (F )

)
= −

{
E
(
∂2
θθTHα(X,Y ; θ∗α)

)}−1
∂θHα

(
x0, y0; θ∗α

)
.

Using (23), (25), (29) and Lemma 6.3 in Appendix, we have the following result.

Proposition 2.2. Assume that Θ is compact and g(x, β) is differentiable w.r.t. β for all x. Under the cases

of [NT] and [NE], we have that for α > 0 and θ ∈ Θ,

∥∥∂θHα

(
x, y; θ

)∥∥ ≤ C
(
1 + ‖∂βg(x, β)‖

)
,

where C is a constant free from x0, y0 and β.

The proposition states that the influence function of the MDPD estimator with α > 0 using (6) or (8)

is bounded in y0 regardless of the form of g(x, β) and the boundness in x0 is determined by the boundness

of ∂βg(x, β∗α). Hence, examining ∂βg(x, β), one can see whether the influence function of the estimator is

bounded or not. For instance, if the input vector X is assumed to be finite as mentioned in Remark 4, the

continuity of ∂βg(x, β∗α) yields

sup
(x,y)∈Rp+1

‖IFα(x, y;T, F )‖ <∞,

which means that the MDPD estimator with α > 0 has a finite gross error sensitivity. The case of g(x, β) =

βTx satisfies the condition.

On the other hand, the influence function of the QML estimator is unbounded in y0. To see this, note

that ∂θH0(x, y; θ) = −∂θfθ(y|x)/fθ(y|x). Using the notations in (17) and (20), we have that under the case

of [NT], ∥∥∂θH0

(
x, y; θ

)∥∥ = |D1,β | ‖∂βg(x, β)‖+ |D1,µ|+ |D1,v|+ |D1,u|,

and under the case of [NE],

∥∥∂θH0

(
x, y; θ

)∥∥ = |D2,β | ‖∂βg(x, β)‖+ |D2,v|+ |D2,u|.
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One can readily check that each of the above two equations contains unbounded terms. For instance, D1,µ

and D2,v include ∆1 and ξ φ(ξ)
Φ(ξ) , respectively, which are obviously unbounded in y0. Thus, we have

sup
(x,y)∈Rp+1

‖IF0(x, y;T, F )‖ =∞.

Therefore, we can conclude that the MDPD estimator with α > 0 has a robust property while the QML

estimator does not.

2.5 The choice of optimal α

Choosing an optimal α is an important issue in empirical studies. Taking a rather conservative approach, a

small α is recommended because too a large α may result in a significant loss in efficiency when the portion

of outliers is not very large, as speculated. Several studies on the problem are found in the literature.

Warwick and Jones (2005) proposed a selection rule for α that minimizes the asymptotic estimation of

the mean squared error. Fujisawa and Eguchi (2006) proposed an adaptive method based on an empirical

approximation of the Cramer-von Mises divergence. Durio and Isaia (2011) considered a data-driven method

based on the similarity measure between the MDPD estimate and the ML estimate.

In our real data analysis, we employ the procedure of Durio and Isaia (2011) to select an optimal α.

More specifically, suppose that a sample {(yi, xi)}ni=1 is observed from a regression model Y = mβ(X) + ε,

where X = (X1, · · · , Xp) and the variance of ε is σ2. Then, let T0 and T1 be two regression estimators for β.

Now, we wish to choose one of the two estimators. To do so, Durio and Isaia (2011) proposed the following

normalized index to measure the similarity between two estimates, say β̂T0
and β̂T1

. Letting

Ip = [minxi1,maxxi1]× · · · × [minxip,maxxip],

C = Ip × [min yi,max yi],

D = {(x, y) : min(mβ̂T0
(x),mβ̂T1

(x)) ≤ y ≤ max(mβ̂T0
(x),mβ̂T1

(x)), x ∈ Ip} ∩ C,

the similarity index is defined by

sim(T0, T1) :=

∫
D
dt∫

C
dt
.

If two estimates β̂T0 and β̂T1 are close, then sim(T0, T1) will be close to zero. In order to investigate

whether β̂T0
and β̂T1

are close, they used the simplified Monte Carlo significance (MCS) test based on the
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above statistics. That is, after generating m − 1 bootstrap samples of size n, sim∗(T0, T1) is calculated

for each bootstrap sample to obtain a critical value. Here, bootstrap sample {(Y ∗i , xi)}ni=1 is sampled from

Y ∗i = mβ̂T0
(xi) + ε̃i, where ε̃i is generated from a specified distribution with mean zero and variance σ̂2

T0
. If

sim(T0, T1) is less than the maximum value of sim∗(T0, T1), we accept the null hypothesis (H0) of β = β̂T0

at a significance level of 1/m, and conclude that β̂T0 and β̂T1 are close. This test can be used to check for

outliers. For example, if T0 is the ML estimator and T1 is a robust estimator, accepting H0 means that

no outlier is detected and, therefore, we select the ML estimate owing to its efficiency. Based on this, the

procedure for selecting α is as follows:

1. In order to check for the existence of outliers, conduct the simplified MCS test with the ML estimator

(T0) and the MDPD estimator with α = α∗ (T1), for some 0 < α∗ ≤ 1.

2. If the MCS test leads us to accept H0, then we decide that outliers are absent and, thus, the ML

estimate is selected.

3. If not, we again perform the MCS test with the MDPD estimators with α = a (T0) and α = α∗ (T1),

increasing a until the first time we can accept H0.

3 Simulation study

In this section, we evaluate the finite-sample performance of the MDPD estimator with α > 0 and compare

it with the ML estimator. For this task, we consider the following model:

Y = β0 + β1X + V − U, (10)

where X ∼ U(0, 1), V ∼ N(0, σ2
v) and U ∼ N+(0, σ2

u). The true parameter vector (β0, β1, σ
2
v , σ

2
u) is

considered to be (5, 5, 0.75, 1). We generate 1,000 samples of size n = 500 and, for each sample, the ML

estimates and the MDPD estimates with α ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1} are obtained. Based on 1, 000

repetitions, the mean, standard deviation (SD), and the sample mean squared error (MSE) of each estimate

are calculated. In order to assess the performance, the following figure is considered:

d :=

√( β̂0 − β0

β0

)2

+
( β̂1 − β1

β1

)2

+
( σ̂2

v − σ2
v

σ2
v

)2

+
( σ̂2

u − σ2
u

σ2
u

)2

.
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We also estimate the individual TE using the estimator proposed by Battese and Coelli (1988), which is

based on the ML estimate and the MDPD estimates. Then, we calculate the MSE of the estimated TEs.

That is,

MSE[TE] :=
1

n

n∑
i=1

(
ˆTEi − TEi

)2
,

where TEi is the true TE given by e−Ui and ˆTEi is obtained by

ˆTEi :=
Φ
(
µ∗/σ∗ − σ∗

)
Φ(µ∗/σ∗)

exp
{
− µ∗ +

1

2
σ2
∗

}
, (11)

where µ∗ = −(Yi − β̂0 − β̂1Xi)σ̂
2
u/(σ̂

2
v + σ̂2

u) and σ∗ = σ̂2
vσ̂

2
u/(σ̂

2
v + σ̂2

u). Now, we compare the performance

based on the means of d and the MSE[TE].

[Table 1 about here.]

First, we deal with the case where the observations are not contaminated by outliers. The estimation

results are reported in Table 1, where the figures marked by the symbol ∗ denote the minimal MSE, d, and

MSE[TE]. It can be seen that the MDPD estimators with α = 0.05 and 0.1 slightly outperform the ML

estimator, and the MDPD estimator with α = 0.2 performs similarly to the ML estimator. This is interesting

because we had anticipated that the ML estimator would perform best. Nonetheless, we could expect that

the ML estimator would show the best performance as the sample size increases. The point is that the

performance of the MDPD estimator with α close to 0 is similar to the ML estimator, and the efficiency of

the MDPD estimator decreases with an increase in α. The results in Table 1 confirm this finding.

Next, we examine the case in which outliers are involved in the observations. For this, we generate

two types of contaminated samples. The first considers upward outliers and is generated as follows: i)

generate the uncontaminated sample {(Xi, Yi)}ni=1 from the model (10), and outliers {(Xo
i , Y

o
i )}noi=1 by Y oi =

β0 + β1X
o
i + pvσv, where Xo

i ∼ i.i.d. U(0, 1); ii) replace no observations in {(Xi, Yi)}ni=1 by {(Xo
i , Y

o
i )}noi=1

. In the second type of contamination, no observations in the uncontaminated sample are replaced by

{(Xo
i , Y

o
i )}noi=1, where Xo

i ∼ i.i.d. U(0, 1) and Y oi ∼ i.i.d. U(0.5, 1), to create downward outliers. Hence, the

first sample describes a situation in which some companies or individuals achieve a relatively high efficiency,

whereas the second considers low efficiency cases. For the simulation, no = 3 and pv = 5 are considered.

[Table 2 about here.]

[Table 3 about here.]
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[Figure 1 about here.]

Tables 2 and 3 present the estimation results for the upward and downward contamination cases, re-

spectively. The box plots of the ML and MDPD estimates are displayed in Figure 1. Here, the upper and

lower panels show the upward and downward outlier cases, respectively. In each box plot, the horizontal red

line represents the true parameter values. We first note that all the MDPD estimators under consideration

produce a smaller mean for d than that produced by the ML estimator. In particular, the estimator with

α between 0.2 and 0.5 yields quite a small mean of d relative to the mean of the ML estimator. This in-

dicates that the MDPD estimator performs better than the ML estimator does. As shown in Table 2 and

the upper panel of Figure 1, the ML estimator yields severe underestimates of β0 and σ2
u and overestimate

of σ2
v , whereas the MDPD estimator with α > 0.2 estimate the parameters properly. Here, it is important

to note that the underestimation of σ2
u leads to an overestimate of the TE values. On the other hand, the

case of the downward outlier contamination shows different results. As can be seen in Table 3 and the lower

panel of Figure 1, σ2
u and β0 are overestimated and σ2

v is underestimated by the ML estimator. In both

contamination cases, β1 does not seem to be affected by the outliers. Although not shown here, as more

data are contaminated by outliers (i.e., as no or pv increases), the MDPD estimator performs increasingly

better than the ML estimator does. From these simulation results, we confirm that the MDPD estimator

possesses much more robust properties than the ML estimator does.

4 Real data analysis

This section provides the empirical data analysis, consisting of two subsections. The first subsection describes

the data set used in the empirical study. The second subsection provides the QML and MDPD estimation

results, including the procedures for checking outliers and selecting an optimal α. Based on the results, we

then calculate and compare the estimated TEs.

4.1 Data

We investigate the distribution of TE scores for Korean manufacturing firms. To do so, we use firm-level

financial statement data taken from the Korea Information Services (KIS-VALUE) in 2007. To measure

the TE scores, we collect data on value-added (Y , output), capital stock (K, input), and labor (L, input).

Fixed assets are used as a proxy for capital stock, comprising the sum of five components such as land,

building, construction, vehicles, and machine tools. The number of employees is used for the labor variable.
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Observations with negative Y have been removed from the original data. Then, the number of firms in our

final data set is 2,031.

[Table 4 about here.]

[Figure 2 about here.]

Table 4 provides summary statistics, including means, medians, and standard deviations. For all variables,

the mean value is much larger than the median value and the skewness of the value-added, capital, and labor

variables are calculated to be 14.11, 12.27, and 12.98, respectively. This indicates that the distributions of

all variables are severely skewed to the right. Clearly, our data set has some firms that operate with large

amounts of inputs and outputs, and some firms operating with very small amounts are also included. In

particular, note that a few firms are observed to produce comparatively small output to average production,

as depicted in Figure 2, which displays the scatter plot of the pairs of log(Y/L) and log(K/L). In this study,

we emphasize that these low- or high-performing firms could be influential observations, acting like outliers.

As demonstrated in our simulation study, these are highly likely to have an undesirable effect on the ML

estimation, which also affects the TE estimate. Hence, in the next subsection, we estimate the SF model

using the QML and MDPD estimation methods. We also fit the SF model to the data set in which very low-

or high-performing firms are removed and compare the results.

4.2 Estimation results

In order to investigate the distribution of the technical efficiency scores, we employ the Cobb–Douglas

production function assuming constant returns-to-scale. Then, logs of value-added per employee and capital

stock per employee (i.e., log(Y/L) and log(K/L), respectively) are considered as augmented output and

input variables in the regression model. The production function form with random error Vi and technical

inefficiency Ui is given by

log(Yi/Li) = β0 + β1 log(Ki/Li) + Vi − Ui. (12)

In this analysis, we consider the normal and the half normal distributions as the pseudo distributions for

V and U , respectively, as in usually done in most empirical studies. That is, V ∼ N(0, σ2
v) and U ∼

N+(0, σ2
u) are assumed and thus the pseudo conditional distribution for (12) is given by (7). The parameter

θ = (β0, β1, σ
2, γ), where σ2 = σ2

v + σ2
u and γ = σu/σv, is estimated using the QML estimator and the

MDPD estimator with α between 0.05 and 1. However, we only report the results corresponding to α in
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{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} because the MDPD estimator with α greater than 0.5 produces estimates of γ

close to the boundary.

[Table 5 about here.]

Table 5 presents the QML and the MDPD estimation results. The figures in parentheses denote the

standard errors. There are significant differences between the QML estimates and the MDPD estimates.

The estimates of β0, σ2, and γ show a decreasing trend as α increases, which is similar to the simulation

result in which downward outliers exist, as shown in Table 3. However, the estimates of β1 vary to some

extent according to the estimators. It is important to note that the QML estimator produces a relatively large

estimate of σ2
u. The scatter plot of observations and the estimated frontier lines are displayed in Figure 2.

The dashed and solid lines represent the frontier production function estimated by the QML estimate and

the MDPD estimate with α = 0.3, respectively. As shown in the figure, the fact that the dashed line lies over

the solid line, along with the estimation results in Table 5, presumably indicates that the data set contains

observations acting like downward outliers.

[Table 6 about here.]

For this reason, we first investigate whether outliers exist. To this end, we conduct the MCS test procedure

introduced in subsection 2.5 at a significance level of 1%, that is the case of m = 99. A bootstrap sample,

{((Y/L)∗i ,Ki/Li)}ni=1, is generated from (Y/L)∗i = β̂0,T0 + β̂1,T0 log(Ki/Li)+ Ṽi− Ũi, where Ṽ ∼ N(0, σ̂2
v,T0

)

and Ũ ∼ N+(0, σ̂2
u,T0

). First, we compare the QML estimator (T0) and the MDPD estimator with α = 0.5

(T1). In this case, the similarity index, sim(T0, T1), and the maximum value of sim∗(T0, T1) are calculated

to be 0.046 and 0.015, respectively. Since sim(T0, T1) is larger than the maximum of sim∗(T0, T1), we reject

the null hypothesis of θ = θ̂T0
, signifying that outliers do exist in the data. Next, we repeat the MCS test to

select an optimal α. The test results are summarized in Table 6 and show that the optimal value of the tuning

parameter corresponds to α = 0.3. We therefore conclude that the optimal estimate of the Cobb–Douglas

production model should be ˆlog(Y/L) = 6.929 + 0.382 log(K/L) with σ̂2
v = 0.124 and σ̂2

u = 0.126, which

corresponds to the MDPD estimate with α = 0.3, and, thus, TEs should be calculated using the MDPD

estimate.

[Figure 3 about here.]

Accordingly, we calculate the TEs based on the MDPD estimate with α = 0.3 using the Battese and Coelli

(1988) estimator. Denote by TEML and TEMD the TEs calculated using the QML and MDPD estimates,
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respectively. For comparison, we also compute the TEML (see Figure 3). Here, the left panel depicts the

estimated densities of TEML (black solid line) and TEMD,α=0.3 (red dashed line), and the right panel displays

the scatter plot of pairs (TEMD,α=0.3, TEML). Note that the QML estimate yields comparatively lower TE

scores than does the MDPD estimate, mainly owing to the large estimate of σ2
u. This result implies that if

we were to rely only on the QML estimate, most of the firms would be measured as performing worse than

they did in reality.

[Figure 4 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Figure 5 about here.]

Finally, in order to illustrate the behaviors of the QML estimator and the MDPD estimator in the

absence of very low- or high-performing firms, we additionally estimate the model (12) based on the data

set in which such observations are removed. To get the cleaned data, we run an OLS regression with

log(Yi/Li) = β0 +β1 log(Ki/Li) + εi, and then just eliminate in the original data the firms of which absolute

value of the studentized residual is larger than 3. The cleaned data and the estimated frontier lines are

depicted in Figure 4, in which we can see that a few high- and several low-performing firms are removed.

The estimation results are reported in Table 7. Compared with the figures in Table 5, it can be seen

that differences between the QML estimate and the MDPD estimates become comparatively small. This is

consistent with the results of the MCS tests shown in Table 8, where the test results indicate that all the

estimates under consideration are close and outliers are absent. The behavior of the MDPD estimates with

small α is observed to be similar to that of the QML estimates. Based on these results, the model with the

QML estimate would be optimal if one can validate that V and U follow the normal and the half-normal

distributions, respectively. For the moment, we do not, however, assert the QML estimate as the best one

because it is not easy to check out the distributional assumptions. In the present case, we emphasize that

the choice of α is not crucial because the QML estimate and the MDPD estimates show similar results in

such cases, not making a significant difference between TEML and TEMD. As can be seen in Figure 5, the

QML estimate and the MDPD estimate with α = 0.3 yield similar TEs comparing with those in Figure 3.

In summary, our data analysis strongly suggest that the MDPD estimator can be a promising estimator

for the SFA framework in the the presence of very low- or high- performing firms. As mentioned earlier, the
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choice of an optimal α is an important issue particularly when outliers are suspected in the data. While we

introduced the procedure of Durio and Isaia (2011) as the selection rule, the implementation of the procedure

could be computationally burdensome, especially when considering many explanatory variables. For other

statistical models, as mentioned in subsection 2.1, existing studies have found that the MDPD estimator

with a small α is robust enough against outliers, while maintaining efficiency, when there are no outliers.

Thus, based on previous studies and results of our simulation and empirical studies, we recommend values

of α in [0.1, 0.4] in situations in which selecting an optimal α is difficult.

5 Conclusion

This study has proposed a robust estimation method for stochastic frontier models. Our robust estimator

is constructed by minimizing the empirical version of the density power divergence introduced by Basu et

al. (1998). In particular, the conditional density of the normal–truncated normal(or exponential) SF model

is used in constructing the MDPD estimator regardless of the distributions of V and U , and its asymptotic

and robust properties are investigated. The selection rule of an optimal α is also introduced, adapting the

procedure of Durio and Isaia (2011). Our simulation results indicate that the ML estimator is severely

compromised by outliers. In contrast, the MDPD estimator with a small α shows strong robustness against

outliers, with little loss in asymptotic efficiency relative to the ML estimator. Therefore, the proposed

MDPD estimation method can be used when outliers are suspected to contaminate data. We also apply

the estimation method to a real data set having very low- or high-performing observations to illustrate the

behaviors of the QML and the MDPD estimators. Our empirical study suggests that the estimator could be

suitable for the case in which a few observations perform uniquely well or poorly, as often occurs in empirical

studies.

Although we focus on a cross-sectional model, the estimation method can be extended to general SF

models including panel models. We leave this extension as possible areas of future research.

6 Appendix

In this appendix, we provide proofs for the theorems and propositions stated in subsections 2.3 and 2.4.

Proof of Theorem 2.1
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First, note that by assumption A2,

1

n

n∑
i=1

Hα(Xi, Yi; θ)
a.s.−→ E

[
Hα(X,Y ; θ)] =

∫∫
Hα(x, y; θ)f(y|x)fX(x)dydx

= E
[
dα(f(·|X), fθ(·|X))

]
−
∫∫

1

α
f1+α(y|x)fX(x)dydx

and E
[
Hα(X,Y ; θ)] has a minimum at θ∗α. In order to show the consistency of the MDPD estimator, it is

therefore necessary to derive the strong uniform convergence of the objective function. That is,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

Hα(Xi, Yi; θ)− E
[
Hα(X,Y ; θ)

]∣∣∣∣∣ a.s.−→ 0, (13)

which in turn implies that

θ̂α,n = argmin
θ∈Θ

1

n

n∑
i=1

Hα(Xi, Yi; θ)
a.s.−→ θ∗α = argmin

θ∈Θ
E
[
Hα(X,Y ; θ)].

While there are several sets of conditions to guarantee (13), we employ the following regularity conditions:

(i) Θ is compact; (ii) Hα(x, y; θ) is continuous in θ, for all x, y; and (iii) Hα(X,Y ; θ) is dominated by an

integrable random variable that is free from θ (see, for example, chapter 16 in Ferguson, 1996). Here, it is

readily to see that (ii) holds by the continuity of g(x, β). Also, in view of assumption A4, we have

|Hα(X,Y ; θ)| ≤
∫
Cαfθ(y|X)dy +

(
1 +

1

α

)
Cα ≤

(
2 +

1

α

)
Cα,

which establishes the theorem. �

Hereafter, we denote Hi(θ) := Hα(Xi, Yi; θ) and fθ := fθ(y|x) for notational convenience. Further, we

shall use the relation A . B, where A and B are nonnegative, to denote that A ≤ CB for some constant

C > 0. For example, A . 1 means that A is bounded by some constant C.

Lemma 6.1. Suppose that assumption A7 holds. If θ̃α,n converges almost surely to θ∗α, then

1

n

n∑
i=1

∂2
θθTHi(θ̃α,n)

a.s.−→ E
[
∂2
θθTHi(θ

∗
α)
]
. (14)

Proof. Since E
[
∂2
θθTHi(θ

∗
α)
]

is finite by assumption A7, following the argument similar to that used in
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Lemma A2 in Ling and McAleer (2010), for any ε > 0, we can take a ηε > 0 such that

lim
l→∞

P

(
max
n≥l

sup
θ∈V0(ηε)

1

n

∥∥∥ n∑
i=1

{
∂2
θθTHi(θ)− E

[
∂2
θθTHi(θ

∗
α)
]}∥∥∥ ≥ ε) = 0, (15)

where V0(ηε) = {θ : ‖θ − θ∗α‖ ≤ ηε}. In addition, since θ̃α,n converges almost surely to θ∗α, we also have that

for any ε > 0,

lim
l→∞

P

(
max
n≥l
‖θ̃α,n − θ∗α‖ ≥ ε

)
= 0.

Using this and (15), we have

P

(
max
n≥l

1

n

∥∥∥ n∑
i=1

{
∂2
θθTHi(θ̃α,n)− E

[
∂2
θθTHi(θ

∗
α)
]}∥∥∥ ≥ ε)

≤ P
(

max
n≥l
‖θ̃α,n − θ∗α‖ ≥ ηε

)
+ P

(
max
n≥l
‖θ̃α,n − θ∗α‖ ≤ ηε,max

n≥l

1

n

∥∥∥ n∑
i=1

{
∂2
θθTHi(θ̃α,n)− E

[
∂2
θθTHi(θ

∗
α)
]}∥∥∥ ≥ ε)

≤ P
(

max
n≥l
‖θ̃α,n − θ∗α‖ ≥ ηε

)
+ P

(
max
n≥l

sup
θ∈V0(ηε)

1

n

∥∥∥ n∑
i=1

{
∂2
θθTHi(θ)− E

[
∂2
θθTHi(θ

∗
α)
]}∥∥∥ ≥ ε)

a.s.−→ 0,

which asserts (14).

Proof of Theorem 2.2

Note that E
[
∂θH(θ∗α)

]
= E

[
∂θdα(f(·|X), fθ∗α(·|X))

]
= 0. Since E

[
∂θH(θ∗α)∂θTH(θ∗α)

]
is finite by assumption

A6 and {∂θHi(θ
∗
α)} is a sequence of i.i.d. random vectors, it follows from the multivariate central limit

theorem that

1√
n

n∑
i=1

∂θHi(θ
∗
α)

d−→ N
(
0,Kα

)
. (16)

Applying Taylor’s expansion to
∑
i ∂θHi(θ), we have

0 =
1√
n

n∑
i=1

∂θHi(θ̂α,n) =
1√
n

n∑
i=1

∂θHi(θ
∗
α) +

1

n

n∑
i=1

∂2
θθTHi(θ̃α,n)

√
n(θ̂α,n − θ0),

where θ̃α,n lies between θ̂α,n and θ∗α. Therefore, Theorem 2.2 is asserted from Lemma 6.1 and (16). �

We now present derivatives of the pseudo conditional densities stated in subsection 2.2 and some lemmas
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to verify Proposition 2.1.

• Derivatives of (6)

Letting

A := 1− Φ
(
− µ

σu

)
, ∆1 :=

y − g(x, β) + µ

σ
, and ∆2 :=

µ

σλ
− λ

σ
(y − g(x, β)),

by simple calculation, we can show that

fθ =
1

σA
φ(∆1)Φ(∆2),

∂βfθ = fθ

{ 1

σ
∆1 +

λ

σ

φ(∆2)

Φ(∆2)

}
∂βg(x, β) := fθD1,β∂βg(x, β),

∂µfθ = fθ

{
− 1

σuA
φ(− µ

σu
) +

1

σ

(
−∆1 +

1

λ

φ(∆2)

Φ(∆2)

)}
:= fθD1,µ,

∂σvfθ = fθ

{
− σv
σ2

+ ∆2
1

σv
σ2

+
φ(∆2)

Φ(∆2)
∂σv∆2

}
:= fθD1,v,

∂σufθ = fθ

{
− σu
σ2

+
1

A
φ(− µ

σu
)
µ

σ2
u

+ ∆2
1

σu
σ2

+
φ(∆2)

Φ(∆2)
∂σu∆2

}
:= fθD1,u,


(17)

where

∂σv∆2 =
µ

σ

( 1

σu
− 1

λ

σv
σ2

)
+
λ

σ
(y − g(x, β))

(σv
σ2

+
1

σv

)
:= hv(µ, σv, σu)−

(σv
σ2

+
1

σv

)
∆2, (18)

∂σu∆2 = − µ

σλ

(σu
σ2

+
1

σu

)
+
λ

σ
(y − g(x, β))

(σu
σ2
− 1

σu

)
:= hu(µ, σv, σu)−

(σu
σ2
− 1

σu

)
∆2. (19)

• Derivatives of (8)

Denote ξ := −y − g(x, β)

σv
− σv
σu

. Then, we can express that

fθ =
1

σu
Φ(ξ) exp

(
− σv
σu
ξ − σ2

v

2σ2
u

)
,

∂βfθ = fθ

{
1

σv

φ(ξ)

Φ(ξ)
− 1

σu

}
∂βg(x, β) := fθD2,β∂βg(x, β),

∂σvfθ = fθ

{
−
( ξ
σv

+
2

σu

) φ(ξ)

Φ(ξ)
+
σv
σ2
u

}
:= fθD2,v,

∂σufθ = fθ

{
σv
σ2
u

− 1

σu
+
σv
σ2
u

φ(ξ)

Φ(ξ)

}
:= fθD2,u.


(20)
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Lemma 6.2. For all k > 0, l ≥ 0, m ≥ 0 and n ≥ 0, we have

sup
x∈R

{
Φk(x) |x|le−mx φ

n(x)

Φn(x)

}
. 1.

Proof. Using the facts that Φ(x) ≤ e− 1
2x

2

for x < 0 and φ(x)
Φ(x) = O(−x) as x→ −∞, we have

sup
x∈R

{
Φk(x) |x|le−mx φ

n(x)

Φn(x)

}
≤ sup

x<0

{
e−

1
2x

2

|x|le−mx φ
n(x)

Φn(x)

}
+ 2n sup

x≥0

{
xlφn(x)

}
. 1.

Lemma 6.3. Assume that Θ is compact and g(x, β) is two times differentiable w.r.t. β for all x. Under the

cases of [NT] and [NE], we have that for α > 0,

fα−1
θ (y|x)‖∂θfθ(y|x)‖ . 1 + sup

θ∈Θ
‖∂βg(x, β)‖ (21)

and

fα−1
θ (y|x)‖∂2

θθT fθ(y|x)‖ . 1 + sup
θ∈Θ
‖∂βg(x, β)∂βT g(x, β)‖+ sup

θ∈Θ
‖∂2
ββT g(x, β)‖. (22)

Proof. We only consider the case of [NT] because the result for the case of [NE] can be deduced by substituting

D1,· with D2,· and following essentially the same arguments below.

Due to the compactness of Θ, σα+1Aα is bounded away from zero and λ is bounded above (see, Remark

2). Thus, using Lemma 6.2, we have

fα−1
θ ‖∂βfθ‖ =

1

σα+1Aα
φα(∆1)Φα(∆2)

∣∣∣∆1 + λ
φ(∆2)

Φ(∆2)

∣∣∣‖∂βg(x, β)‖

. |∆1|φα(∆1)‖∂βg(x, β)‖+ Φα(∆2)
φ(∆2)

Φ(∆2)
‖∂βg(x, β)‖

.
{

sup
z
|z|φα(z) + sup

z
Φα(z)

φ(z)

Φ(z)

}
‖∂βg(x, β)‖ (23)

. sup
θ∈Θ
‖∂βg(x, β)‖. (24)

Since hv and hu given in (18) and (19), respectively, are continuous and Θ is compact, hv and hu are bounded
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below and above. Thus, it is readily shown that

|D1,µ|+ |D1,v|+ |D1,u| . |∆1|+ |∆1|2 + (1 + |∆2|)
φ(∆2)

Φ(∆2)
.

Using this and Lemma 6.2, we can show that

fα−1
θ

{
|∂µfθ|+ |∂σvfθ|+ |∂σufθ|

}
. 1 + sup

z
(|z|+ |z|2)φα(z) + sup

z
Φα(z)(1 + |z|) φ(z)

Φ(z)
. 1, (25)

which together with (24) implies (21).

We next derive an upper bound of the second derivatives. Since Θ is compact and

∂βD1,β =
1

σ2

{
−1 + λ2

(
−∆2

φ(∆2)

Φ(∆2)
− φ2(∆2)

Φ2(∆2)

)}
∂βg(x, β),

we have

|D1,β |+ |D2
1,β | . |∆1|+ |∆1|2 +

φ(∆2)

Φ(∆2)
+
φ2(∆2)

Φ2(∆2)

and

‖∂βD1,β‖ .
(

1 + |∆2|
φ(∆2)

Φ(∆2)
+
φ2(∆2)

Φ2(∆2)

)
‖∂βg(x, β)‖.

Hence, using these and a similar method as for (24), we have that

fα−1
θ ‖∂2

ββT fθ‖ ≤ fαθ ‖D2
1,β∂βg(x, β)∂βT g(x, β) + ∂βg(x, β)∂βTD1,β +D1,β∂

2
ββT g(x, β)‖

. sup
θ∈Θ
‖∂βg(x, β)∂βT g(x, β)‖+ sup

θ∈Θ
‖∂2
ββT g(x, β)‖. (26)

Furthermore, noting that

∂µD1,β =
1

σ2

{
1−∆2

φ(∆2)

Φ(∆2)
− φ2(∆2)

Φ2(∆2)

}
,

∂σvD1,β = −σv
σ3

(
∆1 + λ

φ(∆2)

Φ(∆2)

)
+

1

σ

{
−σv
σ2

∆1 −
σu
σ2
v

φ(∆2)

Φ(∆2)
+ λ

(
−∆2

φ(∆2)

Φ(∆2)
− φ2(∆2)

Φ2(∆2)

)
∂σv∆2

}
,

∂σuD1,β = −σu
σ3

(
∆1 + λ

φ(∆2)

Φ(∆2)

)
+

1

σ

{
−σu
σ2

∆1 +
1

σv

φ(∆2)

Φ(∆2)
+ λ

(
−∆2

φ(∆2)

Φ(∆2)
− φ2(∆2)

Φ2(∆2)

)
∂σu∆2

}
,
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we can show

fα−1
θ

{
‖∂2
βµfθ‖+ ‖∂2

βσvfθ‖+ ‖∂2
βσufθ‖

}
. fαθ

{
|D1,µD1,β + ∂µD1,β |+ |D1,vD1,β + ∂σvD1,β |+ |D1,uD1,β + ∂σuD1,β |

}
‖∂βg(x, β)‖

. sup
θ∈Θ
‖∂βg(x, β)‖ (27)

By a simple calculation, it is straightforward to show that ∂θjD1,θk , where θj , θk ∈ {µ, σv, σu}, is dominated

by a polynomial function of ∆1,∆2,
φ(∆2)
Φ(∆2) and ∆2

φ(∆2)
Φ(∆2) . Thus, in a similar fashion to the above, we can

verify that

fα−1
θ (y|x)|∂2

θjθk
fθ(y|x)| . 1. (28)

Combining (26)–(28), we establish (22).

Proof of Proposition 2.1

Note that

∫
‖fαθ (y|X)∂θfθ(y|X)‖dy ≤

∫
fα−1
θ (y|X)‖∂θfθ(y|X)‖fθ(y|X)dy ≤ sup

y,θ
fα−1
θ (y|X)‖∂θfθ(y|X)‖.

Then, we have

‖∂θH(θ)‖ = (1 + α)
∥∥∥∫ fαθ (y|X)∂θfθ(y|X)dy − fα−1

θ (Y |X)∂θfθ(Y |X)
∥∥∥

. sup
y,θ

fα−1
θ (y|X)‖∂θfθ(y|X)‖ (29)

and thus, by (21),

‖∂θH(θ)∂θTH(θ)‖ = ‖∂θH(θ)‖2 . 1 + sup
θ
‖∂βg(X,β)∂βT g(X,β)‖. (30)

Next, it follows from (21) that

sup
y,θ

fα−2
θ (y|X)‖∂θfθ(y|X)∂θT fθ(y|X)‖ =

(
sup
y,θ

f
α/2−1
θ (y|X)‖∂θfθ(y|X)‖

)2

. 1+sup
θ
‖∂βg(X,β)∂βT g(X,β)‖.
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Using this and (22), we have

1

1 + α
‖∂2
θθTH(θ)‖ ≤

∫ {
αfα−2

θ (y|X)‖∂θfθ(y|X)∂θT fθ(y|X)‖+ fα−1
θ (y|X)‖∂2

θθT fθ(y|X)‖
}
fθ(y|X)dy

+|α− 1|fα−2
θ (Y |X)‖∂θfθ(Y |X)∂θT fθ(Y |X)‖+ fα−1

θ (Y |X)‖∂2
θθT fθ(Y |X)‖

. sup
y,θ

fα−2
θ (y|X)‖∂θfθ(y|X)∂θT fθ(y|X)‖+ sup

y,θ
fα−1
θ (y|X)‖∂2

θθT fθ(y|X)‖

. 1 + sup
θ
‖∂βg(X,β)∂βT g(X,β)‖+ sup

θ
‖∂2
ββT g(X,β)‖. (31)

Hence, the proposition follows from (30) and (31). �
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Figure 1: The box plots for the upward (upper panel) and the downward (lower panel) contamination cases.
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Figure 2: The plot of log(Y/L) against log(K/L) and the estimated frontier lines.
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Figure 3: Density estimates of TEs (L) and the scatter plot (R) of (TEMD,α=0.3, TEML).
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Figure 5: Density estimates of TEs (L) and the scatter plot (R) of (TEMD,α=0.3, TEML) after removing
very low- or high-performing firms.
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Table 1: Mean (SD/MSE) of the estimates, mean of d, and MSE[TE] when no outliers exist.
β0 β1 σ2 γ σ2

v σ2
u d MSE[TE]

MLE 4.950 5.001 1.730 1.122 0.761 0.969 0.404 0.061

(0.257/0.069) (0.171/0.029) (0.311/0.097) (0.428/0.184) (0.158/0.025) (0.445/0.199) [1.000]

0.05 4.956 5.001 1.733 1.130 0.760 0.973 0.399 0.058∗

(0.245/0.062)∗ (0.171/0.029)∗ (0.307/0.094) (0.412/0.170)∗ (0.156/0.024)∗ (0.438/0.193) [0.986]

M 0.10 4.954 5.000 1.732 1.127 0.762 0.970 0.397 0.059

(0.248/0.064) (0.171/0.029) (0.307/0.094)∗ (0.413/0.171) (0.156/0.025) (0.438/0.192)∗ [0.983]∗

D 0.20 4.952 5.001 1.733 1.127 0.762 0.971 0.415 0.060

(0.253/0.066) (0.174/0.030) (0.317/0.101) (0.427/0.183) (0.161/0.026) (0.453/0.206) [1.026]

P 0.30 4.952 5.000 1.738 1.132 0.760 0.978 0.430 0.061

(0.263/0.071) (0.176/0.031) (0.330/0.109) (0.445/0.198) (0.166/0.028) (0.469/0.220) [1.065]

D 0.50 4.945 4.999 1.743 1.137 0.758 0.985 0.481 0.066

(0.287/0.085) (0.184/0.034) (0.370/0.137) (0.503/0.253) (0.183/0.034) (0.524/0.274) [1.191]

E 0.75 4.927 4.998 1.741 1.131 0.759 0.983 0.542 0.074

(0.323/0.109) (0.194/0.038) (0.412/0.170) (0.580/0.337) (0.204/0.042) (0.584/0.341) [1.341]

1.00 4.916 4.999 1.750 1.146 0.755 0.995 0.606 0.080

(0.344/0.125) (0.207/0.043) (0.453/0.205) (0.658/0.433) (0.224/0.050) (0.646/0.416) [1.499]

Notes: The values in square brackets show the ratios of the mean of d to that of the ML estimate
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Table 2: Mean (SD/MSE) of the estimates, mean of d and MSE[TE] when upward outliers exist: no = 3, pv = 5.
β0 β1 σ2 γ σ2

v σ2
u d MSE[TE]

MLE 4.243 5.004 1.267 0.012 1.258 0.009 1.213 0.285

(0.125/0.589) (0.177/0.031) (0.091/0.242) (0.09/1.313) (0.069/0.262) (0.08/0.988) [1.000]

0.05 4.382 5.008 1.297 0.196 1.160 0.137 1.044 0.219

(0.269/0.454) (0.173/0.030) (0.210/0.249) (0.324/1.023) (0.126/0.184) (0.279/0.823) [0.860]

M 0.10 4.548 5.009 1.384 0.436 1.044 0.340 0.814 0.165

(0.348/0.326) (0.175/0.031) (0.279/0.212) (0.458/0.727) (0.164/0.113) (0.409/0.602) [0.671]

D 0.20 4.830 5.012 1.608 0.898 0.853 0.755 0.528 0.088

(0.330/0.138) (0.173/0.030)∗ (0.340/0.136) (0.513/0.329) (0.190/0.047) (0.506/0.316) [0.435]

P 0.30 4.915 5.009 1.698 1.065 0.786 0.912 0.468 0.069

(0.292/0.093) (0.176/0.031) (0.344/0.121)∗ (0.487/0.245)∗ (0.180/0.034)∗ (0.500/0.257)∗ [0.386]∗

D 0.50 4.940 5.011 1.733 1.124 0.763 0.970 0.487 0.066∗

(0.290/0.088)∗ (0.185/0.034) (0.368/0.136) (0.504/0.255) (0.184/0.034) (0.525/0.277) [0.401]

E 0.75 4.923 5.011 1.738 1.127 0.762 0.976 0.553 0.074

(0.323/0.110) (0.194/0.038) (0.414/0.172) (0.583/0.341) (0.205/0.042) (0.592/0.350) [0.456]

1.00 4.915 5.010 1.750 1.143 0.758 0.992 0.611 0.078

(0.344/0.126) (0.205/0.042) (0.454/0.206) (0.652/0.425) (0.223/0.050) (0.648/0.419) [0.504]

37



Table 3: Mean (SD/MSE) of the estimates, mean of d and MSE[TE] when downward outliers exist: no = 3.
β0 β1 σ2 γ σ2

v σ2
u d MSE[TE]

MLE 5.303 4.983 2.617 1.955 0.554 2.063 1.102 0.056

(0.133/0.110) (0.177/0.032) (0.260/0.819) (0.301/0.732) (0.095/0.048) (0.317/1.230) [1.000]

0.05 5.223 4.996 2.354 1.739 0.596 1.758 0.796 0.052

(0.131/0.067) (0.173/0.030) (0.238/0.421) (0.279/0.419) (0.099/0.034) (0.300/0.664) [0.723]

M 0.10 5.151 5.003 2.149 1.558 0.638 1.511 0.571 0.049∗

(0.143/0.043)∗ (0.172/0.029)∗ (0.259/0.226) (0.295/0.249) (0.110/0.025) (0.333/0.372) [0.518]

D 0.20 5.047 5.005 1.916 1.328 0.700 1.216 0.423 0.052

(0.204/0.044) (0.172/0.030) (0.312/0.125) (0.377/0.172)∗ (0.137/0.021)∗ (0.417/0.220) [0.384]

P 0.30 4.998 5.003 1.823 1.230 0.725 1.098 0.419 0.057

(0.238/0.057) (0.174/0.030) (0.341/0.121)∗ (0.424/0.185) (0.148/0.023) (0.454/0.216)∗ [0.380]∗

D 0.50 4.953 5.000 1.752 1.157 0.735 1.017 0.465 0.067

(0.286/0.084) (0.182/0.033) (0.405/0.164) (0.497/0.247) (0.171/0.029) (0.513/0.264) [0.422]

E 0.75 4.922 4.997 1.695 1.132 0.701 0.994 0.546 0.077

(0.332/0.116) (0.201/0.040) (0.539/0.294) (0.582/0.339) (0.218/0.050) (0.584/0.341) [0.496]

1.00 4.904 4.983 1.643 1.129 0.648 0.995 0.649 0.088

(0.374/0.149) (0.272/0.074) (0.687/0.482) (0.672/0.452) (0.294/0.096) (0.657/0.432) [0.590]
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Table 4: Descriptive statistics of variables used in the empirical study (n = 2, 031)

Mean Median S.D. Max Min

Y (Value-added, Thous. KRW) 19,290.4 6,303.2 75,198.1 1,756,980.8 45.0

K (Capital stock, Thous. KRW) 48,202.8 11,686.4 222,752.3 3,944,656.7 28.1

L (Number of employees) 203.6 97.0 507.6 11,156.0 3.0
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Table 5: Estimation results of Cobb-Douglas production function

β̂0 β̂1 σ̂2 γ̂ σ̂2
v σ̂2

u

QMLE 7.450(0.125) 0.354(0.010) 0.570(0.014) 1.692(0.075) 0.148 0.423

α = 0.05 7.303(0.114) 0.363(0.010) 0.463(0.011) 1.508(0.065) 0.141 0.322

α = 0.10 7.179(0.109) 0.369(0.009) 0.384(0.010) 1.345(0.065) 0.137 0.247

α = 0.20 7.022(0.107) 0.378(0.009) 0.298(0.011) 1.151(0.079) 0.128 0.170

α = 0.30 6.929(0.110) 0.382(0.009) 0.250(0.012) 1.010(0.096) 0.124 0.126

α = 0.40 6.858(0.115) 0.384(0.009) 0.213(0.014) 0.840(0.126) 0.125 0.088

α = 0.50 6.773(0.133) 0.386(0.010) 0.175(0.019) 0.552(0.233) 0.134 0.041

Notes: the figures in parentheses denote standard errors.
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Table 6: The MCS test results for selecting the optimal α

T0 sim(T0, T1) max(sim∗(T0, T1)) H0

QMLE 0.04588 0.01533 Rej.

α = 0.05 0.03808 0.02058 Rej.

α = 0.10 0.03117 0.02302 Rej.

α = 0.20 0.02233 0.01849 Rej.

α = 0.30 0.01626 0.02756 Acc.

α = 0.40 0.01007 0.01944 Acc.

α = 0.50 0 0 Acc.

Notes: T1 denotes the MDPD estimator with α = 0.5
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Table 7: Estimation results of Cobb-Douglas production function after removing very low- or high-performing firms

β̂0 β̂1 σ̂2 γ̂ σ̂2
v σ̂2

u

QMLE 7.150(0.123) 0.365(0.010) 0.303(0.020) 0.977(0.129) 0.155 0.148

α = 0.05 7.104(0.119) 0.369(0.010) 0.291(0.019) 0.980(0.122) 0.148 0.143

α = 0.10 7.059(0.115) 0.372(0.009) 0.279(0.017) 0.979(0.117) 0.142 0.137

α = 0.20 6.976(0.112) 0.378(0.009) 0.254(0.015) 0.954(0.113) 0.133 0.121

α = 0.30 6.905(0.112) 0.382(0.009) 0.227(0.014) 0.885(0.122) 0.127 0.100

α = 0.40 6.840(0.118) 0.384(0.009) 0.199(0.016) 0.753(0.152) 0.127 0.072

Notes: the figures in parentheses denote standard errors.
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Table 8: The MCS test results for selecting the optimal α after removing very low- or high-performing firms

T0 sim(T0, T1) max(sim∗(T0, T1)) H0

QMLE 0.02321 0.06078 Acc.

α = 0.05 0.02146 0.02222 Acc.

α = 0.10 0.01949 0.03080 Acc.

α = 0.20 0.01475 0.03812 Acc.

α = 0.30 0.00859 0.02283 Acc.

α = 0.40 0 0 Acc.

Notes: T1 denotes the MDPD estimator with α = 0.4
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