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Abstract

Consider a set of independent random variables with specified distributions
or a set of multivariate normal random variables with a product correlation
structure. This paper shows how the distributions and moments of these ran-
dom variables can be calculated conditional on a specified ranking of their
values. This can be useful when the ordering of the variables can be deter-
mined without observing the actual values of the variables, as in ranked set
sampling, for example. Thus, prior information on the distributions and mo-
ments from their individual specified distributions can be updated to provide
improved posterior information using the known ranking. While these calcu-
lations ostensibly involve high dimensional integral expressions, it is shown
how the previously developed general recursive integration methodology can
be applied to this problem so that they can be evaluated in a straightforward
manner as a series of one-dimensional or two-dimensional integral calcula-
tions. Furthermore, the proposed methodology possesses a self-correction
mechanism in the computation that prevents any serious growth of the er-
rors. Examples illustrate how different kinds of ranking information affect
the distributions, expectations, variances, and covariances of the variables,
and how they can be employed to solve a decision making problem.
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1. Introduction

The computations of conditional probabilities and conditional moments
are often the basis for a statistical analysis in the sciences, social sciences, and
engineering. This can be particularly true with a Bayesian approach. When
updated information is in a qualitative form, the distribution of interest will
be conditioned on a polytope. In general, such a problem is intractable nu-
merically (see, for example, Khachiyan (1989)) and both theorists and prac-
titioners usually resort to Monte Carlo methods, e.g., Smith (1984), Lovász
(1999), Lovász and Vempala (2006) and Kiatsupaibul et al. (2011). However,
an efficient numerical method, when it is available, can have many advan-
tages. In this work, the envelope of numerical methods is expanded to the
computation of probability distribution and moments, that are conditioned
on the important class of polytopes that are formed by rankings.

Consider a set of independent continuous random variables Xi with spec-
ified probability density functions fi(xi), 1 ≤ i ≤ n. The moments of these
random variables are thus determined by their specified distributions. Sup-
pose that information becomes available which indicates the ordering

X1 ≤ X2 ≤ . . . ≤ Xn. (1)

The objective of this paper is to show how the information provided by this
ranking can be used to provide updated distributions and moments for the
random variables Xi.

This problem has applications to many areas where the ranking of the
variables can be determined without observing the actual values of the vari-
ables. The literature on ranked set sampling provides discussions of many
situations where this is the case (see McIntyre (1952), Patil (2002), Chen
et al. (2004) and Wolfe (2004) for example). However, in ranked set sam-
pling the information on the ordering of a set of variables is used to deter-
mine which variables to include in the sample and to subsequently observe.
In contrast, this paper considers the problem where the ordering of a set of
variables is used to augment prior information on their distributions, and the
variables may never actually be observed. While these applications of the
ranking information are different, both cases are similar in that they utilize
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information on the ranking of the variables without the full realizations of
the variables being available.

As an example, suppose that prior distributions for the levels Xi of a par-
ticular medical condition may be available for a set of n patients based upon
covariate values of the patients. While the actual levels of this condition may
be very difficult or impossible to measure, there may be an ancillary variable
that can be measured for the patients and which is sufficiently correlated
with the condition of interest so that it can be used to infer the ranking of
the Xi. It is then useful to obtain updated expectations and variances, say, of
the levels Xi of the medical condition of interest based upon the information
provided by the rankings.

Alternatively, Patil (2002) discusses a problem where a hazardous waste
site inspector may be able to reliably rank areas of soil with respect to con-
centrations of a toxic contaminant, based on features like surface staining,
discoloration, or the appearance of stressed vegetation. Thus, the actually
contaminant levels Xi may have specified prior distributions, but their mo-
ments can be updated based upon the ranking provided by the soil features.

In general, additional information on ranking may be derived from dif-
ferent sources. Besides being derived from the observation of a covariate,
rankings may be derived from conditions of economic systems, as in Top-
kis (1998), Milgrom and Roberts (1994), and Milgrom and Shannon (1994),
for example. Furthermore, rankings can also be subjectively derived from a
systematic preference aggregation process, as in Kemeny and Snell (1962),
Young (1995), and Ali and Meilă (2012), for example. The methodology
described in this paper is an important tool to directly incorporate such
ranking information into the statistical inference process, as discussed by
Chiarawongse et al. (2012), which can be applied in these various areas of
study.

Calculations of the conditional distributions and moments of the Xi os-
tensibly involve the evaluation of an n-dimensional integral expression. How-
ever, it will be seen that by employing the technique of recursive integration
(discussed in Hayter (2006)) the calculations can be performed easily as a
series of 1-dimensional integral calculations. In fact, it will be seen that the
recursive integration technique can also be employed for more general prob-
lems when the distributions and moments are conditioned on information
more complex than just a simple ranking, and when the variables Xi have a
multivariate normal distribution with a product correlation structure.

It is important that the recursive integration methodology does not suffer
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from a growth of errors that are compiled in high dimensions. In this appli-
cation of recursive integration to the particular problem of the computations
of conditional probabilities and conditional expectations, it is demonstrated
that there exists a self-correction mechanism in the computation that pre-
vents any serious growth of the errors. This condition has never been dis-
cussed before in the literature of recursive integration, and it confirms that
the recursive integration technique is useful for high dimensional computa-
tions such as these.

Some examples are provided to show how the information provided by
the ranking can affect the distributions, expectations, and variances of the
random variables Xi. In particular, a reinforcing ranking can be considered
to be one which is consistent with the rankings of the expectations of the
distributions fi(xi) (the prior expectations of the Xi), while various degrees
of opposing rankings have some discrepancies with the rankings of these prior
expectations. As illustrated in the examples, these different kinds of rankings
will have different kinds of effects on the expectations and variances of the
variables. It is also illustrated how ranking information can be useful for an
important problem in portfolio selection, and applications of the proposed
methodology to a real data set of asset returns are provided.

The layout of this paper is as follows. The theoretical discussion of how
recursive integration can be used to calculate the conditional distributions
and moments is provided in section 2 for independent random variables. An
extension to random variables Xi with a multivariate normal distribution
with a product correlation structure is also provided in section 2. Section
3 contains algorithms and details of the implementation of the procedure.
A self-correction mechanism is discussed together with error rates and com-
putational times. Some illustrative examples are provided in section 4, and
finally a conclusion is provided in section 5.

2. General theory

The general theory concerning how to use recursive integration to calcu-
late quantities such as moments conditional on information such as rankings
is presented in this section, first for independent random variables and then
for random variables with a multivariate normal distribution with a product
correlation structure. Finally, some extensions are also discussed.
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2.1. Independent random variables

Consider the set S ⊆ <n of values X = (X1, . . . , Xn) defined by

S = S1,2 ∩ S2,3 ∩ . . . ∩ Sn−1,n

where the set Si,i+1 places restrictions on only Xi and Xi+1. Thus, the set S
corresponds to the simple ordering in equation (1), for example, with

Si,i+1 = {X : Xi ≤ Xi+1}

for 1 ≤ i ≤ n− 1.
For any intervals (li, ui), 1 ≤ i ≤ n, it follows that

P (li ≤ Xi ≤ ui; 1 ≤ i ≤ n |X ∈ S) =
A1

B
(2)

where

A1 =

∫
· · ·

∫
X∈S∗

n∏
i=1

fi(xi) dx1 . . . dxn

and

B = P (X ∈ S) =

∫
· · ·

∫
X∈S

n∏
i=1

fi(xi) dx1 . . . dxn

with
S∗ = S∗1,2 ∩ S∗2,3 ∩ . . . ∩ S∗n−1,n

for
S∗1,2 = S1,2 ∩ {X : l1 ≤ X1 ≤ u1, l2 ≤ X2 ≤ u2}

and
S∗i,i+1 = Si,i+1 ∩ {X : li+1 ≤ Xi+1 ≤ ui+1}

for 2 ≤ i ≤ n− 1.
Similarly, for any functions gi(xi), 1 ≤ i ≤ n, it follows that

E[g1(X1)g2(X2) . . . gn(Xn) |X ∈ S] =
A2

B
(3)

where

A2 =

∫
· · ·

∫
X∈S

n∏
i=1

(gi(xi)fi(xi)) dx1 . . . dxn.
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While A1, A2, and B are each ostensibly n-dimensional integrals, they are
each of the form of the integral in section 1 of Hayter (2006) with d = 1, and
so they can each be evaluated in a straightforward manner with a series of
1-dimensional integral computations using recursive integration, regardless
of the value of n. Thus, the probability in equation (2) and the expectation
in equation (3) can both be evaluated in a straightforward manner with a
series of 1-dimensional integral computations.

Notice that the conditional joint cumulative distribution function of the
Xi can be obtained from equation (2) with li = −∞, 1 ≤ i ≤ n, and the
conditional marginal distribution of a particular variable can be obtained
by taking li = −∞ and ui = ∞ for all of the other variables. Also, the
conditional moments of Xi can be calculated with gi(xi) = xki and with all
the other functions gj(xj) equal to one, while the conditional covariance of
Xi1 and Xi2 , say, can be calculated with gi1(xi1) = xi1 and gi2(xi2) = xi2 and
again with all the other functions gj(xj) equal to one.

2.2. Multivariate normal distribution with a product correlation structure

If the random variables Xi have a multivariate normal distribution with
means µi, variances σ2

i , and covariances ρiρj, then it is possible to write

Xi = µi + ρiM +
√
σ2
i − ρ2iZi, 1 ≤ i ≤ n, (4)

where M and the Zi are independent standard normal random variables.
Conditional on the value of M , the random variables Xi are thus independent
normal random variables.

For the evaluation of equations (2) and (3), conditioning on the value
of M requires a 1-dimensional integral computation over the values m of
M , with the integrand being the equation evaluated at each given value m.
Since the integrand can be evaluated each time as a series of 1-dimensional
integral computations, the overall computational intensity will consequently
be equivalent to a series of 2-dimensional integral computations, regardless
of the value of n.

It can also be noted that if the covariances are all equal and positive,
so that the ρi are all equal to ρ, say, then for the simple ordering given in
equation (1) the set S depends only on the Zi and not on M . In this case,
for moment calculations, the overall computational intensity may only be
that of a 1-dimensional integral computation, depending on the functions
gi(xi). This reduction in computational intensity is possible when evaluating
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the conditional expectations of the Xi, for example, since the conditional
expectations of the Xi will be equal to the conditional expectations of µi +√
σ2
i − ρ2Zi.

2.3. Extensions

In addition to the simple ordering in equation (1), the set S upon which
the expressions are conditioned can encompass other types of information,
such as the “umbrella” ordering

X1 + c1 ≤ X2 + c2 ≤ . . . ≤ Xu + cu ≥ . . . ≥ Xn−1 + cn−1 ≥ Xn + cn (5)

for example, for any constants ci, which has received considerable attention in
the statistical literature (see Hans and Dunson (2005), Singh and Liu (2006),
Nakas and Alonzo (2007), and Gaur et al. (2012), for example). Extensions
can also be made to orderings of the random variables which form a tree
structure, as discussed in section 4 of Hayter (2006).

The simplicity of the evaluations of equations (2) and (3) as a series of
1-dimensional integral computations using recursive integration is because
of two conditions. These are firstly that the set S only places restrictions
on “adjacent” variables Xi (although it should be remembered that any la-
beling of the n variables is permissable), and secondly that the integrand
factors into the product of separate terms for each of the variables. These
conditions are seen to be met for the simple ordering in equation (1) and the
umbrella ordering in equation (5), and for independent variables Xi where
the expectation is required of the product of the functions gi(xi). In fact,
conditioning on equation (1), the term B is just the probability of this sim-
ple ordering, and for independent random variables its evaluation by a series
of 1-dimensional integral computations using recursive integration was first
shown in Hayter and Liu (1996).

If the random variables Xi are not independent, or if the conditioning
information imposes restrictions on non-adjacent Xi, then A1, A2, and B
cannot necessarily be evaluated as a series of 1-dimensional integral com-
putations. However, recursive integration of a higher order, in which the
evaluation can be performed as a series of r-dimensional integral computa-
tions (with r ≥ 2), say, may be possible depending upon the form of the
expressions for A1, A2, and B.

It is also worth noting that for any set T ⊆ <n of valuesX = (X1, . . . , Xn)
defined by

T = T1,2 ∩ T2,3 ∩ . . . ∩ Tn−1,n
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where the set Ti,i+1 places restrictions on only Xi and Xi+1, then the condi-
tional probability P (X ∈ T | X ∈ S) is also equal to A1/B with S∗i,i+1 =
Si,i+1 ∩ Ti,i+1. Thus, this conditional probability can also be evaluated as a
series of 1-dimensional integral computations using recursive integration.

The utility of the methodology that is presented here is paramount when
the random variables Xi have different distributions. This is because if the
Xi are independent and identically distributed, then for the purpose of ob-
taining the conditional distribution and moments of a specific Xi, say, the
information provided by the simple ordering in equation (1) is just equivalent
to the information that Xi is the ith order statistic (the actual ordering of the
i−1 variables less than Xi and the n−i variables larger than Xi is irrelevant).
In this case, the standard literature on order statistics (such as Arnold et al.
(1992), Harter and Balakrishnan (1996), and David and Nagaraja (2003), for
example) can be used to obtain the conditional information on Xi. However,
when the random variables Xi are not identically distributed, then the sim-
ple ordering in equation (1) provides much more information than that Xi is
simply the ith order statistic, and the methodology presented here allows all
of that information to be utilized.

It may be the case that the ranking provided to the experimenter is
incorrect, due to errors in its construction or simply perceived uncertainties.
In fact, in section 6 of Chiarawongse et al. (2012) it is pointed out with
respect to financial applications that “When an analyst offers a qualitative
view but is uncertain about its validity, it is useful for the decision maker
to be provided with a measure of confidence. This could take the form of a
probability that the view is valid.”

In this case of an “imperfect ranking”, Chiarawongse et al. (2012) pro-
posed the shrinkage model

P (X ∈ C | S = S) = κP (X ∈ C |X ∈ S) + (1− κ)P (X ∈ C) (6)

where C is any event, S is the “imperfect” ranking and S is the observed
ranking. Equation (6) simply states that the probability of an event given
an imperfect ranking is a convex combination of the probability with the
observed ranking and the prior probability. The additional parameter κ
represents the probability that the observed ranking is valid.

Notice that in this case the expectation of a variable can be expressed as
a convex combination of the expectation with the observed ranking and that
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without ranking information

E[g(X) | S = S] = κE[g(X) |X ∈ S] + (1− κ)E[g(X)]. (7)

Also, it can be seen that once the expressions under the observed ranking
are obtained, equations (6) and (7) follow readily without additional com-
putational efforts, and can be used to estimate the expressions under the
imperfect ranking. In what follows, we consider distribution and moment
computations only for the observed ranking. The computations for the case
of an imperfect ranking under this shrinkage model then follow naturally
from these computations.

3. Implementation with recursive integration

In this section first some formulas are provided for the implementation of
the methodology with recursive integration, and the algorithms are explicitly
provided. Finally, a discussion is provided of a self-correction mechanism and
computational times.

3.1. Formulas for the recursive integration

To evaluate equation (2) for the independent random variables case in sec-
tion 2.1, B and A1 can be evaluated according to the following recursive inte-
gration methodology. To evaluate B, the intermediate functions b1, . . . , bn−1
can be sequentially evaluated, each with a one-dimensional integration. Let
b0(z) = 1 and for i = 1, . . . , n− 1 evaluate for each z ∈ <

bi(z) =

∫ z

−∞
bi−1(x)fi(x) dx (8)

where fi is the density of Xi. Then

B =

∫ ∞
−∞

bn−1(z)fn(z) dz. (9)

To evaluateA1 in a similar manner, the intermediate functions a1, . . . , an−1
are sequentially evaluated. Here a0(z) = 1 and for i = 1, . . . , n− 1, evaluate
for each z ∈ <

ai(z) =

∫ max{min{z,ui},li}

li

ai−1(x)fi(x) dx. (10)
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so that

A1 =

∫ un

ln

an−1(z)fn(z) dz. (11)

To evaluate equation (3) for the independent random variables case in
section 2.1, B can be evaluated as above. To evaluate A2, the intermedi-
ate functions h1, . . . , hn−1 can be sequentially evaluated, each with a one-
dimensional integration. Let h0(z) = 1 and for i = 1, . . . , n− 1 evaluate for
each z ∈ <

hi(z) =

∫ z

−∞
hi−1(x)gi(x)fi(x) dx. (12)

Then

A2 =

∫ ∞
−∞

hn−1(z)gn(z)fn(z) dz. (13)

To evaluate equation (2) for the multivariate normal case in section 2.2,
B and A1 can be evaluated according to the following recursive integration
methodology. To evaluate B, the intermediate functions b1, . . . , bn−1 can be
sequentially evaluated, each with a two-dimensional integration complexity.
Let b0(m, z) = 1 and for i = 1, . . . , n− 1, evaluate for each m, z ∈ <

bi(m, z) =

∫ z

−∞
bi−1(m,x)φi(m,x) dx, (14)

where φi is the density of a N(µi+ρim,σ
2
i −ρ2i ) random variable. Then with

φ as the standard normal density

B =

∫ ∞
−∞

∫ ∞
−∞

φ(m)bn−1(m, z)φn(m, z) dz dm. (15)

To evaluateA1 in a similar manner with the intermediate functions a1, . . . , an−1,
let a0(m, z) = 1 and for i = 1, . . . , n− 1, evaluate for each m, z ∈ <

ai(m, z) =

∫ max{min{z,ui},li}

li

ai−1(m,x)φi(m,x) dx. (16)

Then

A1 =

∫ ∞
m=−∞

∫ un

z=ln

φ(m)an−1(m, z)φn(m, z) dz dm. (17)
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To evaluate equation (3), the formulas for evaluating A2 with the inter-
mediate functions h1, . . . , hn−1 are h0(m, z) = 1, and for i = 1, . . . , n− 1

hi(m, z) =

∫ z

−∞
hi−1(m,x)gi(x)φi(m,x) dx (18)

with

A2 =

∫ ∞
m=−∞

∫ ∞
z=−∞

φ(m)hn−1(m, z)gn(z)φn(m, z) dz dm. (19)

3.2. Algorithms
The evaluations of equations (9), (11) and (13) are accomplished with

a sequence of n 1-dimensional numerical integrations, with each integration
being evaluated by a sum on a truncated-discretized real line. Algorithm 1
can be used to compute equation (13) with the integrals being performed
with a first order Newton-Cotes formula (the trapezoidal rule). To compute
equations (9) and (11), simply replace gi, i = 1, . . . , n in the algorithm with
appropriate indicator functions or with a constant function equal to one, re-
spectively. R code is available from the authors to implement this algorithm.

The evaluations of equations (15), (17) and (19), require a sequence of
2-dimensional numerical integrations. Algorithm 2 can be used to compute
(19) with the integrals being performed with the first order Newton-Cotes
formula. To compute equations (15) and (17), simply replace gi, i = 1, . . . , n
in Algorithm 2 with appropriate indicator functions or with a constant func-
tion equal to one, respectively. Again, R code is available from the authors
to implement this algorithm.

3.3. Self-correction mechanism
It is useful to point out that the conditional probability and the condi-

tional expectation computations based on the recursive integration method-
ology possess a self-correction mechanisim. To see this, observe that the
target value is of the form

f(A,B) =
A

B

where A is either A1 in equation (2) or A2 in equation (3). Let Â and B̂
denote the computed values of A and B, respectively. The computed value
of the target quantity is then f(Â, B̂), and with a first order approximation

f(Â, B̂) ≈ f(A,B) + f ′1(A,B)(Â− A) + f ′2(A,B)(B̂ − B̂)

= f(A,B) +
1

B
(Â− A)− A

B2
(B̂ − B̂) (20)
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Algorithm 1 Computation of A2 in equation (13)

1: Assume n variables with ranking X1 ≤ X2 · · · ≤ Xn.
2: Discretization grid size ∆ with lower bound x0, forming N+1 grid points

{x0, x1, . . . , xN},

where xj = xj−1 + ∆ for j = 1, . . . , N .
3: Let h0(xj) = 1 for j = 0, 1, . . . , N .
4: for i = 1 to n do
5: Let, for j = 1, . . . , N ,

hj =
hi−1(xj−1)gi(xj−1)fi(xj−1) + hi−1(xj)gi(xj)fi(xj)

2
.

6: Let, for j = 1, . . . , N ,

hi(xj) =

j∑
k=1

hk∆.

and let hi(x0) = hi(x1).
7: end for
8: return A2 = hn(xN).

where f ′1 and f ′2 are the partial derivatives of f with respect to its first and
second arguments. If we let ε, εA and εB be the computational error of the
target value, that of A and that of B, respectively, so that

f(Â, B̂) = f(A,B) + ε

Â = A+ εA

B̂ = B + εB,

then equation (20) implies that

ε ≈ 1

B
εA −

A

B2
εB. (21)

Thus, when A and both B are positive, and when εA and εB have the same
sign, the computational errors of A and B tend to cancel each other in
producing the total error of the target value. Notice that for the applications
in this paper, B is positive since it is a probability, and A is positive when
it is a probability and may be positive when it is an expectation.
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Algorithm 2 Computation of A2 in equation (19)

1: Assume n variables with ranking X1 ≤ X2 · · · ≤ Xn.
2: Discretization grid size δ with lower bound m0, forming M+1 grid points

{m0,m1, . . . ,mM},

where ml = ml−1 + δ for l = 1, . . . ,M .
3: for l = 0 to M do
4: Discretization grid size ∆ with lower bound x0, forming N + 1 grid

points
{x0, x1, . . . , xN},

where xj = xj−1 + ∆ for j = 1, . . . , N .
5: Let h0(ml, xj) = 1 for j = 0, 1, . . . , N
6: for i = 1 to n do
7: Let, for j = 1, . . . , N ,

hj =
hi−1(ml, xj−1)gi(xj−1)φi(ml, xj−1) + hi−1(ml, xj)gi(xj)φi(ml, xj)

2
.

8: Let, for j = 1, . . . , N ,

hi(ml, xj) =

j∑
k=1

hk∆.

and let hi(ml, x0) = hi(ml, x1).
9: end for

10: h̃(ml) = hn(ml, xN).
11: end for
12: Let, for l = 1, . . . ,M ,

hl =
φ(ml)h̃(ml) + φ(ml−1)h̃(ml−1)

2
.

13: return A2 =
∑M

l=1 hlδ.

This error cancellation effect or self-correction mechanism is strongest
when the values of A and B are comparable, and when the values of εA and
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εB are comparable. For the problems considered in this paper, the processes
of computing Â and B̂ share some common numerical integration sequences,
and hence εA and εB will tend to have the same sign. However, the level of
the error cancellation depends upon the relative values of A and B, and the
relative values of εA and εB. This is illustrated and further discussed in the
following numerical examples.

This self-correction mechanism caused by the cancellation of the errors
from the numerator and the denominator is a useful property of the im-
plementation of the recursive integration methodology for the problems dis-
cussed in this paper. In fact, even in the case where the exact value of the
denominator B might be known, according to (21) it may be better that B̂ is
computed and employed in evaluating the ratio since the self-correction mech-
anism applies. The estimate obtained by employing B̂ can be interpreted as
an estimate that has been formed by a legitimate discrete distribution in-
duced by the discretization procedure. The resulting estimate approaches
the true value when the discretization becomes finer. In the following exam-
ples it is shown that not taking advantage of this self-correction mechanism
causes a significant increase in the error of the estimate if the discretization
is not fine enough.

Some calculations are now presented to demonstrate the errors for prob-
lems with independent identically distributed random variables where the
solutions are known. Specifically, consider the cases of n = 101 independent
uniform [0, 1] random variables or independent standard normal random vari-
ables. In both cases the cumulative distribution at three points of X70, under
the condition X1 ≤ . . . ≤ X101, was evaluated by the recursive integration
methodology for various grid sizes, and the computed values of the prob-
ability, the computational errors, and the computational times are shown
in Tables 1 and 2 (note that the true values can be obtained from the cu-
mulative distribution of a binomial distribution). The computations were
implemented in R on a 64-bit Windows machine with an Intel Core i5-2500
3.30GHz CPU.

Next, the expectations of X17 and X51, under the condition X1 ≤ . . . ≤
X101, were evaluated by the recursive integration methodology for various
grid sizes, and the computed values of the expectations, the computational
errors, and the computational times are shown in Table 3 for the case of
independent uniform [0, 1] variables and in Table 4 for the case of independent
standard normal variables. In the first case the true values of E[X17] and
E[X51] are known to be 1/6 and 0.5, while in the second case the true value
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Table 1: The numerical errors and the computational times for the cumulative distribution
function evaluated at three points for the 70th order statistic of n = 101 independent U [0, 1]
random variables.

Grid size True value Comp. value Error Comp. time Comp. value Error
(seconds) With exact denominator

0.01 0.03382186 0.09552326 6.170e-02 0.00 231.1455 � 1
0.60791267 0.65772572 4.981e-02 0.00 1591.5334 � 1
0.99628437 0.99005003 6.234e-03 0.00 2395.7061 � 1

0.001 0.03382186 0.03422536 4.035e-04 0.00 0.03739016 3.568e-03
0.60791267 0.60800312 9.045e-05 0.02 0.66422472 5.631e-02
0.99628437 0.99620053 8.385e-05 0.00 1.08831847 9.203e-02

0.0001 0.03382186 0.03382585 3.987e-06 0.06 0.03385576 3.390e-05
0.60791267 0.60791339 7.206e-07 0.07 0.60845101 5.383e-04
0.99628437 0.99628353 8.411e-07 0.08 0.99716462 8.802e-04

0.00001 0.03382186 0.03382190 3.982e-08 1.36 0.03382220 3.387e-07
0.60791267 0.60791268 7.037e-09 1.20 0.60791805 5.380e-06
0.99628437 0.99628437 8.414e-09 1.42 0.99629317 8.797e-06

Table 2: The numerical errors and the computational times for the cumulative distribution
function evaluated at three points for the 70th order statistic of n = 101 independent
standard normal random variables.

Grid size True value Comp. value Error Comp. time Comp. value Error
(seconds) With exact denominator

0.01 0.03382186 0.03766693 3.845e-03 0.05 0.08004251 4.622e-02
0.60791267 0.61814333 1.023e-02 0.05 1.31355904 7.056e-01
0.99628437 0.99663459 3.502e-04 0.03 2.11785572 1.122e+00

0.001 0.03382186 0.03367669 1.452e-04 0.39 0.03393352 1.117e-04
0.60791267 0.60697199 9.407e-04 0.36 0.61160101 3.688e-03
0.99628437 0.99632079 3.642e-05 0.39 1.00391914 7.635e-03

0.0001 0.03382186 0.03379485 2.701e-05 4.38 0.03379548 2.638e-05
0.60791267 0.60791453 1.860e-06 4.36 0.60792588 1.320e-05
0.99628437 0.99628272 1.657e-06 4.39 0.99630131 1.694e-05

0.00001 0.03382186 0.03382366 1.796e-06 38.64 0.03382172 1.365e-07
0.60791267 0.60791215 5.155e-07 36.95 0.60787742 3.525e-05
0.99628437 0.99628432 5.078e-08 38.14 0.99622740 5.697e-05

of E[X17] is unknown but is about Φ−1(1/6) ≈ 0.97, and the true value of
E[X51] is known to be zero.

In these tables the second column shows the known true values, while
the third column shows the estimates from the proposed methodology. The
fourth and fifth columns show the errors (from the true values) and the com-
putational time of the proposed methodology. Also, both for the independent
uniform [0, 1] variables and the independent standard normal variables the
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Table 3: The numerical errors and the computational times for the expectations of X(17)

and X(51) of n = 101 independent U [0, 1] random variables.

Grid size True value Comp. value Error Comp. time Comp. value Error
(seconds) With exact denominator

0.01 1/6 0.14369985 2.297e-02 0.00 347.7224 � 1
0.5 0.48606226 1.394e-02 0.00 1176.1651 � 1

0.001 1/6 0.16661772 4.894e-05 0.00 0.18202474 1.536e-02
0.5 0.49997063 2.937e-05 0.00 0.54620256 4.620e-02

0.0001 1/6 0.16666624 4.272e-07 0.05 0.16681363 1.470e-04
0.5 0.49999974 2.563e-07 0.06 0.50044193 4.419e-04

0.00001 1/6 0.16666666 4.215e-09 0.92 0.16666814 1.469e-06
0.5 0.50000000 2.529e-09 0.89 0.50000442 4.416e-06

Table 4: The numerical errors and the computational times for the expectations of X(17)

and X(51) of n = 101 independent standard normal random variables.

Grid size True value Comp. value Error Comp. time Comp. value Error
(seconds) With exact denominator

0.01 NA -0.9672 NA 0.04 -2.0552 NA
0.0000 0.0000 1.397e-14 0.05 0.0000 2.970e-14

0.001 NA -0.9779 NA 0.38 -0.9854 NA
0.0000 0.0000 1.734e-16 0.39 0.0000 1.747e-16

0.0001 NA -0.9780 NA 4.33 -0.9781 NA
0.0000 0.0000 9.826e-18 4.25 0.0000 9.826e-18

0.00001 NA -0.9780 NA 38.55 -0.9780 NA
0.0000 0.0000 1.281e-17 37.22 0.0000 1.281e-17

true values of the denominators B in equations (2) and (3) are known to be
1/n!. The sixth and seventh columns then show the estimates and errors
when the true values of the denominators are employed and the recursive
integration is used only for computing the numerators A1 and A2.

First of all, it can be seen from these tables that these calculations which
involve 101 successive one-dimensional numerical integrations attain a small
error with a very reasonable computation time. In fact, with the potential
optimization of the coding on a low level computer programming language
such as C++ or Java, the computation can be expected to be accelerated
even more.

Furthermore, special attention should be given to the results in the sixth
and seventh columns. In the sixth column the estimates computed by em-
ploying the true values for the denominators do not take advantage of the
self-correction mechanism feature of the proposed methodology given in equa-
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tion (21). It can be seen that when the discretization grid sizes are not very
small, the errors can become so large that the estimates are unreasonable.
Specifically, some estimates for the conditional probabilities in Table 1 and
in Table 2 when the grid sizes are 0.01 and 0.001 are much greater than one.
Note that such unreasonable values of the estimates do not occur when the
methodology is applied appropriately to both the numerators and the de-
nominators and the self-correction mechanism applies (as shown in the third
column of each table).

In almost all cases in Table 1 and in Table 2 the errors from the pro-
posed methodology with self-correction mechanism are much smaller than
the corresponding values without the feature. The exceptions are row 4, row
7 and row 10 in Table 2. The errors with the self-correction mechanism are
not smaller than those without the feature in these cases, although they are
close. One explanation for this is that the distribution function is evaluated
at a low quantile, so that A is much smaller than B in equation (21). Further-
more, at this low quantile Â and B̂ do not share a lot of common integration
sequences, so that εA and εB may be quite different. Consequently, the error
cancellation in equation (21) does not apply substantially, although in these
exceptional cases the differences between the errors are very small.

In Table 3 the estimates with the self-correction mechanism are much
more accurate than those without the self-correction mechanism. According
to equation (21), this is because the value of A is comparable to that of
B, causing a strong error cancellation. In Table 4 when the true value of
E[X51] is known to be zero, A is zero. According to equation (21) there is
therefore no error cancellation, and consequently the errors of the estimates
with or without self-correction mechanism are quite similar. In the case where
the true value of E[X17] is unknown it can be observed that the estimate
converges to a certain value as the grid size becomes smaller. The estimate
with the self-correction mechanism seems to converge more quickly than the
estimate without this feature.

4. Examples

Three examples are presented in this section. The first is a heathcare
example where the random variables are taken to have independent gamma
distributions with equal shape parameters but different scale parameters.
The second is a soil contamination example where the random variables are
taken to have a multivariate normal distribution with different means but
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equal variances and covariances. It is shown how information on both re-
inforcing rankings and opposing rankings affects the distributions, expecta-
tions, variances, and covariances of the variables. The third example concerns
portfolio selection in finance.

4.1. Healthcare

Suppose that the levels Xi of a medical condition of n = 5 patients are
of interest, but that they cannot be directly measured. However, the levels
can be modelled with a gamma distribution

f(x; 3, θ) =
1

2θ3
x2e−x/θ

with a shape parameter k = 3 and with a scale parameter θ that depends
upon some covariate values of the patients. Specifically, suppose that the
five patients have scale parameters θi = i, 1 ≤ i ≤ 5, so that based upon
these distributions the prior expectations and variances are E(Xi) = 3i and
V ar(Xi) = 3i2, 1 ≤ i ≤ 5. It should also be noted that the variables Xi are
modelled to be independent.

Now suppose that an ancillary measurement becomes available for the
five patients that provides the information that

X1 ≤ X2 ≤ X3 ≤ X4 ≤ X5

(or equivalently, this same ranking with strict inequalities). This is a rein-
forcing ranking since it matches the ranking of the prior expectations of the
Xi. It is interesting to note that under the prior distributions this reinforcing
ranking has a probability of 0.107 (this is B in equations (2) and (3)). Using
the recursive integration techniques discussed in section 2, the conditional
expectations, standard deviations, and correlations of the Xi (conditionally
the Xi are no longer independent) are shown in Table 3.

It can first be noted that with this reinforcing ranking the conditional ex-
pectations of the Xi have maintained their ordering but are now more spread
out than the prior expectations. Furthermore, the conditional standard de-
viations are each smaller than the prior standard deviations. Also, it can be
seen that the correlations are largest for adjacent variables.

In addition, suppose that it has been decided that urgent corrective ac-
tion needs to be taken whenever the level of this deterioration condition is
less than 5. Table 3 also shows how these probabilites change under the
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Table 5: Example 1 - Medical conditions of five patients.

Reactor Expectation Standard Correlation P (Xi ≤ 5)
Deviation Matrix

Prior

1 3 1.73 1 0 0 0 0 0.876
2 6 3.46 1 0 0 0 0.456
3 9 5.20 1 0 0 0.234
4 12 6.93 1 0 0.132
5 15 8.66 1 0.080

Reinforcing ranking X1 ≤ X2 ≤ X3 ≤ X4 ≤ X5

1 2.32 1.22 1 0.36 0.17 0.08 0.03 0.968
2 4.89 2.03 1 0.49 0.24 0.10 0.578
3 8.19 3.05 1 0.52 0.23 0.132
4 12.86 4.63 1 0.45 0.010
5 21.41 8.34 1 0.000

Opposing ranking X5 ≤ X4 ≤ X3 ≤ X2 ≤ X1

1 7.99 2.18 1 0.82 0.69 0.57 0.40 0.064
2 6.68 1.86 1 0.85 0.70 0.49 0.184
3 5.64 1.69 1 0.82 0.58 0.382
4 4.58 1.56 1 0.71 0.641
5 3.24 1.45 1 0.881

knowledge provided by the reinforcing ranking. It can be seen that the prob-
abilities that urgent corrective action needs to be taken become larger for
patients 1 and 2, and become smaller for patients 3, 4 and 5.

Now consider the opposing ranking

X5 ≤ X4 ≤ X3 ≤ X2 ≤ X1

which is completely opposite to the ranking of the prior expectations of the
Xi. In fact, under the prior distributions this opposing ranking has a very
small probability of 0.00003. Under this opposing ranking the conditional
expectations, standard deviations, and correlations of the Xi are also shown
in Table 3.

It can be seen that with this opposing ranking the order of the conditional
expectations has switched to match this ranking, and that the conditional
expectations are less spread out than the prior expectations. The conditional
standard deviations are also much smaller than the prior standard deviations,
and their order also matches the opposing ranking. Again, the correlations
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are largest for the adjacent variables, and they are all much larger than the
correlations for the reinforcing ranking. Also, the probabilities that urgent
corrective action needs to be taken are now ordered to match the opposing
ranking.

In summary, this example illustrates how knowledge of the ranking can
result in important changes in the distributions and moments of the variables,
which will be important information for practitioners.

4.2. Hazardous waste sites

Suppose that based upon knowledge of polluting activities, scientists orig-
inally model the unknown toxic contamination levels Xi at n = 6 locations
with a multivariate normal distribution with means µ = (10, 10, 12, 15, 18, 20),
standard deviations all equal to 3, and correlations all equal to 0.4. Then
suppose that subsequently surface features indicate the reinforcing ranking

X1 ≤ X2 ≤ X3 ≤ X4 ≤ X5 ≤ X6.

Under the prior distribution this reinforcing ranking has a probability of
0.332. In this case the conditional expectations, standard deviations, and
correlations of the toxic contamination levels are shown in Table 4.

It can be seen that with this reinforcing ranking the conditional expec-
tations are quite similar to the prior expectations, although for location 1
the expectation has decreased from 10 to 8.21, while for location 6 the ex-
pectation has increased from 20 to 20.94. The standard deviations have all
decreased and are all fairly similar, while the correlations have increased and
are largest for the adjacent variables.

Also, suppose that it has been decided that decontamination needs to be
taken whenever the toxic contamination level is larger than 18. It can be
seen from Table 2 that the reinforcing ranking has increased the probability
that decontamination needs to be taken at location 6 from 0.748 to 0.865,
while these probabilities have fallen at the other 5 locations.

Now suppose that subsequently surface features indicate the partially
opposing ranking

X1 ≤ X2 ≤ X5 ≤ X4 ≤ X3 ≤ X6

where the ordering of the toxic contamination levels at locations 3, 4, and 5
is opposite to their prior expectations. This partially opposing ranking has
a probability of 0.007 under the prior distribution.
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Table 6: Example 2 - Toxic contamination levels at six locations.

Location Expectation Standard Correlation P (Xi ≥ 18)
Deviation Matrix

Prior

1 10 3 1 0.40 0.40 0.40 0.40 0.40 0.004
2 10 3 1 0.40 0.40 0.40 0.40 0.004
3 12 3 1 0.40 0.40 0.40 0.023
4 15 3 1 0.40 0.40 0.159
5 18 3 1 0.40 0.500
6 20 3 1 0.748

Reinforcing ranking X1 ≤ X2 ≤ X3 ≤ X4 ≤ X5 ≤ X6

1 8.21 2.59 1 0.79 0.67 0.59 0.56 0.52 0.000
2 10.28 2.45 1 0.78 0.65 0.60 0.55 0.001
3 12.47 2.45 1 0.74 0.62 0.56 0.012
4 15.12 2.50 1 0.71 0.58 0.125
5 17.97 2.54 1 0.69 0.494
6 20.95 2.71 1 0.863

Partially opposing ranking X1 ≤ X2 ≤ X5 ≤ X4 ≤ X3 ≤ X6

1 8.52 2.64 1 0.76 0.60 0.61 0.62 0.48 0.000
2 10.88 2.52 1 0.65 0.68 0.69 0.51 0.002
3 16.13 2.36 1 0.92 0.86 0.60 0.214
4 15.08 2.31 1 0.92 0.59 0.104
5 14.05 2.34 1 0.58 0.046
6 20.34 2.83 1 0.794

Table 4 shows that the conditional expectations are now ordered in the
same way as this ranking. In addition, the standard deviations have de-
creased, but now there are very high correlations of 0.92 between locations
3 and 4, and between locations 4 and 5, which are the locations where the
ranking contradicts the prior expectations. The probabilities that decontam-
ination needs to be taken are now ordered in the same way as the partially
opposing ranking, and specifically the probability at location 3 has risen from
0.023 to 0.214.

As with Example 1, this example illustrates how the different rankings
can result in important changes in the distributions and moments of the
variables, and the methodology presented in this paper allows practitioners
to calculate those changes.
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4.3. Portfolio Selection

The celebrated mean-variance portfolio selection model requires two sets
of moments (the means and the variance-covariance matrix) of the returns on
N assets in order to recommend the proportions of capital, or the portfolio
weights, to be invested in these N assets. The objective is to optimize the
risk-return trade-off of the entire portfolio.

The problem can be expressed as

maxwt µ>t wt − γ
2
w>t Σtwt (22)

where µt and Σt are the mean vector and the variance-covariance matrix of
the return (in excess of risk free) at time t, γ is a parameter representing risk
aversion of the investor which we set equal to 1 in this analysis, and wt is
the vector of decision variables that represent the portfolio weights at time
t. The objective function in (22) is the certainty-equivalent return which is
a utility function interpreted as the return that is penalized by risk. The
solution to the optimization problem is

w∗t =
Σ−1t µt

1>Σ−1t µt
(23)

(see, for example, DeMiguel et al. (2009) for more details). The main differ-
ence between one portfolio selection strategy and another is how the param-
eter estimates µ̂t and Σ̂t are obtained.

In this example the estimate µ̂t is based on the rank constrained statistical
estimates proposed by Chiarawongse et al. (2012), where the estimates are
obtained by a Markov chain Monte Carlo. Here the calculations are replaced
by the recursive integration methodology presented in this paper in order to
obtain more accurate estimates. Furthermore, in Chiarawongse et al. (2012)
the authors perform their experiments based on simulated data sets, whereas
in this example a real data set is considered instead of ten industry monthly
asset returns during the period of 01/1999 - 06/2014 obtained from Kenneth
French’s web site.

Our objective is the same as that in Chiarawongse et al. (2012), which is
to demonstrate the potential benefit of adopting a rank constrained statis-
tical estimate. Two experiments are performed, one using prior parameter
estimates µ̃ and the other using rank constrained statistical estimates µ̂.
The performances of the two models are then compared.
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In the analysis that follows the rolling-sample approach appearing in
DeMiguel et al. (2009) is employed. An estimation window of length 66
months is fixed. Then, starting from t = 66 and applying the capital asset
pricing model, the data from month t − 65 to month t are used to estimate
the prior parameters (µ̃t, Σ̃t). These are then applied to (23) to obtain the
weight vector w̃t for t = 66, 67, . . . , 185. The weight at time t is applied
to the out-of-sample returns at t + 1 and summed across assets to provide
120 out-of-sample portfolio returns r̃t, t = 67, 68, . . . , 186. Subsequently, the
120 portfolio returns are then divided into 10 twelve-month periods. In each
period a certainty equivalent return is estimated as

ũi = ¯̃ri − s̃2i /2, i = 1, . . . , 10,

where ¯̃ri and s̃2i are the averages and the sample variances of the r̃t in period
i. These certainty equivalent returns are the performance measurements of
the prior model which were compared with those obtained from the following
rank constrained statistical counterpart.

The experiment was repeated with (µ̂t, Σ̃t) in (23) to obtain different
portfolio weights, where µ̂t is the rank constrained estimates based on Chiara-
wongse et al. (2012) and Σ̃t is the same as in the prior model. To estimate
µ̂t, (µ̃t, Σ̃t) are first estimated as in the prior model, and then for each
t = 66, 67, . . . , 185, µ̂t is estimated as the expectation of a multivariate nor-
mal distribution parameter (µ̃t, 0.1Σ̃t) conditioned on the ranking obtained
from that of the ten industry returns at time t+1. This can be interpreted as
a process to improve the quality of prior mean estimates by a one-step ahead
ranking. Note that in practice the ranking would usually be obtained from
another database of investor views. However, this approach affords an under-
standing of the potiential benefit of the one-step ahead ranking methodology.
As with the prior model, the portfolio returns r̂t, t = 67, 68, . . . , 186 are com-
puted for the rank constrained model, and finally the certainty equivalent
returns ûi are computed for the 10 twelve-month periods.

The certainty equivalence returns for the ten periods obtained from the
prior model and the rank constrained model are plotted against each other in
Figure 1. The certainty equivalence returns from the rank constrained model
outperform those from the prior model consistently in every period. This
analysis indicates the potential benefit of the rank constrained model and
demonstrates the advantages in this area of study available from employing
the recursive integration methodology discussed in this paper.
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Figure 1: Certainty equivalence returns of the 10 twelve-month period from the rank
constrained model (solid line) and the prior model (dashed line). The returns from the
rank constrained model consistently outperform those from the prior model.

5. Conclusion

This paper has addressed the situation where a set of variables have inde-
pendent specified prior distributions, and where some information becomes
available on the ordering of the variables. This is a common phenomenon
which has been discussed and utilized in other statistical methodologies such
as ranked set sampling. In this paper it is shown how updated distributions
and moments of the variables can be calculated conditional on the knowledge
provided by the ranking. It has been shown how the technique of recursive
integration can be used to perform these calculations in a straightforward
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manner as a series of one-dimensional integral computations regardless of
the number of variables.

For these particular problems of conditional probability and conditional
expectation computations, it has been demonstrated that the errors in the
numerators and the denominators can partially cancel each other, provid-
ing a self-correction mechanism that improves the accuracy of the recursive
integration methodology.

The methodology presented in this paper has been implemented for a
simple ordering of the variables. The methodology has also been generalized
to variables with a multivariate normal distribution with a product corre-
lation structure. In principle, the methodology can be extended to more
complicated orderings such as an umbrella ordering or tree orderings, which
are topics planned for future research.

Examples have been presented which illustrate how different kinds of
rankings, such as reinforcing rankings and opposing rankings, can have dif-
ferent and substantial effects on the distributions, expectations, standard
deviations, and correlations of the variables. This can be valuable informa-
tion for practitioners, and the methodology presented in this paper allows
this information to be obtained. Finally, the methodology has been applied
to a decision problem in portfolio selection with ranking information, where
it has been shown to provide a potential benefit. R code is available from the
authors to replicate the tables and examples in this paper, and to implement
the algorithms discussed
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