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Abstract

The performance of multivariate kernel density estimation (KDE) depends
strongly on the choice of bandwidth matrix. The high computational cost
required for its estimation provides a big motivation to develop fast and accu-
rate methods. One of such methods is based on the Fast Fourier Transform.
However, the currently available implementation works very well only for the
univariate KDE and it’s multivariate extension suffers from a very serious lim-
itation as it can accurately operate only with diagonal bandwidth matrices.
A more general solution is presented where the above mentioned limitation is
relaxed. Moreover, the presented solution can by easily adopted also for the
task of efficient computation of integrated density derivative functionals in-
volving an arbitrary derivative order. Consequently, bandwidth selection for
kernel density derivative estimation is also supported. The practical usability
of the new solution is demonstrated by comprehensive numerical simulations.
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1. Introduction

Kernel density estimation (KDE) is a very important statistical technique
with many practical applications. It has been applied successfully to both
univariate and multivariate problems. There exists extensive literature on
this issue, including several classical monographs, see [1], [2] and [3].

A general form of the d-dimentional multivariate kernel density estimator
is

f̂(x,H) =
1

n

n
∑

i=1

KH (x−X i) , (1)

where

KH(u) = |H|−1/2K
(

H−1/2u
)

, (2)

and H is the d× d bandwidth or smoothing matrix, d is the problem dimen-
sionality, x = (x1, x2, . . . , xd)

T , and X i = (Xi1, Xi2, . . . , Xid)
T , i = 1, 2, . . . , n

is a sequence of independent identically distributed (iid) d-variate random
variables drawn from a (usually unknown) density function f . Here K and
KH are the unscaled and scaled kernels, respectively. In most cases the kernel
has the form of a standard multivariate normal density.

The univariate kernel density estimator for a random sample X1, X2, . . .Xn

drawn from a common and usually unknown density function f is given by

f̂(x, h) =
1

n

n
∑

i=1

Kh (x−Xi) , (3)

where

Kh(u) = h−1K
(

h−1u
)

, (4)

and h is the bandwidth which is a positive integer. The scaled (Kh) and
unscaled (K) kernels are related in Eq. (4). Note that the notation used in
Eq. (1) is not a direct extension of the univariate notation in Eq. (3), since in
the one-dimensional case the bandwidth is H = h2, so we are dealing with
‘squared bandwidths’ here.

It seems that both uni- and multivariate KDE techniques have reached
maturity and recent developments in this field are primarily focused on com-
putational problems. There are two main computational problems related
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to KDE: (a) the fast evaluation of the kernel density estimates f̂ , and (b)
the fast estimation (under certain criteria) of the optimal bandwidth matrix
H (or scalar h in the univariate case). As for the first problem, a number
of methods have been proposed, see for example [4] for a comprehensive re-
view. As for the second problem, relatively less attention has been paid in
the literature. An attempt of using the Message Passing Interface (MPI) was
presented in [5]. In [6] the authors give an ǫ-exact approximation algorithm,
where the constant ǫ controls the desired arbitrary accuracy. Other tech-
niques, like for example usage of Graphics Processing Units (GPUs), have
also been used [7]. In this paper we are concerned with fast estimation of the
optimal bandwidth and are interested in the multivariate case only. However,
our results can be easily adapted also to the univariate case.

It is obvious from Eq. (1) that the naive direct evaluation of the KDE
at m evaluation points for n data points requires O(mn) kernel evaluations.
Evaluation points can be of course the same as data points and then the
computational complexity is O(n2) making it very expensive, especially for
large datasets and higher dimensions.

As for finding of the optimal bandwidth, the computational problems are
even more evident. Typically, to complete all the required computations for
this task a sort of numerical optimization is needed. Usually, the compu-
tational complexity of evaluating typical objective function is O(n2). Dur-
ing the optimization process the objective function must be evaluated many
times (often more that a hundred or so), making the problem of finding the
optimal bandwidth very expensive, even for moderate data dimensionalities
and sizes.

In this paper we are concerned with an FFT-based method that was
originally described in [8]. In [3, appendix D] an interesting illustrative
toy example has been presented. From now on this method will be called
Wand’s algorithm. It can be used for the KDE evaluation as well as for
bandwidth selection problem and it works very well for the univariate case
given in Eq. (3). Unfortunately, its multivariate extension does not support
unconstrained bandwidth matrices (that is, if H ∈ F , where F is the set
of all symmetric, positive definite d × d matrices). The method supports
only more restricted constrained bandwidth matrices (that is, if H ∈ D,
where D is the set of all positive definite diagonal matrices of the form
H = diag(h21, . . . , h

2
d)). This limitation was successfully overcome by the

authors and the main results are presented in [9]. In this paper we extend
those results to the problem of fast (FFT-based) estimation of unconstrained
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bandwidth matrices.
To the best of our knowledge, our paper is the first where this problem is

presented and successfully solved using an FFT-based approach. In this work
we use excellent results presented in [10], clearly the ones which significantly
simplifies computations of integrated density derivative functionals (IDDF)
involving an arbitrary derivative order (for details see Section 5). IDDFs are
crucial elements in almost every modern bandwidth selection algorithm.

The remainder of the paper is organized as follows: in Section 3 we give
an overview of the most popular and the most frequently used bandwidth
selectors. In Section 2, based on a simple example, we demonstrate the prob-
lem. In Section 4 we give details of a complete FFT-based algorithm for fast
estimation of unconstrained bandwidth matrices. To make the presentation
of our algorithm clear, we do it on the basis of one of the simplest bandwidth
selection algorithm, namely least square cross validation (LSCV). In Section
5 we extend our results also for the IDDFs. In Section 6 we give results from
some numerical experiments based on both synthetic and real data sets. In
Section 7 we conclude our paper.

2. Problem demonstration

As was mentioned in Section 1, Wand’s algorithm does not support un-
constrained bandwidth matrices, which considerably limits its practical us-
ability. In this short demonstration we use a sample dataset Unicef presented
in more detail in Section 6.2. In Fig. 1(a) we show the reference density when
the bandwidth was obtained by direct (i.e., non-FFT-based) implementation
of the LSCV algorithm, briefly presented in Section 3. After numerical min-
imization of the resulting objective function we get the sought bandwidth.
In Fig. 1(b) one can see the behavior of Wand’s original algorithm (i.e.,
FFT-based) when the minimization of the objective function proceeds over
H ∈ F . The density is totally corrupted. In Fig. 1(c) we show the reference
density when the bandwidth was obtained by direct (i.e., non-FFT-based)
implementation of the LSCV algorithm when the minimization of the objec-
tive function now proceeds over H ∈ D. Finally, in Fig. 1(d) we show the
behavior of Wand’s original algorithm when H ∈ D. Figures 1(c) and 1(d)
are practically identical, which confirms the fact that the original version
of Wand’s algorithm is adequate only for constrained bandwidth matrices.
Some minor differences between Fig. 1(c) and 1(d) are due to the binning of
the original input data, but they are not of practical relevance.
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FFT, H unconstrained
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Direct, H diagonal
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(c)

FFT, H diagonal
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(d)

Figure 1: Demonstration of behavior of Wand’s original algorithm. (a) the
reference density, (b) the behavior of Wand’s original algorithm when the
minimization of the objective function proceeds over H ∈ F . The density
is totally corrupted, (c) the reference density when the bandwidth was ob-
tained by direct (i.e., non-FFT-based) implementation of Eq. (8) when the
minimization of the objective function now proceeds over H ∈ D, (d) the
behavior of Wand’s original algorithm when H ∈ D. Figures (c) and (d) are
in fact almost identical.
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(b)

Figure 2: Visualization of kernels KH used for computing density f̂(x,H)
for the sample dataset Unicef (marked as small filled circles): (a) kernels
generated by Ha, (b) kernels generated by Hb.

The estimated bandwidth matrices used to plot densities shown in Figs.
1(a)–1(d) are as follows:

Ha =

[

452.34 −93.96
−93.96 26.66

]

, Hb =

[

896.20 94.98
94.98 11.37

]

,

Hc =

[

197.41 0.00
0.00 11.70

]

, Hd =

[

242.42 0.00
0.00 11.97

]

. (5)

It is easy to notice that in this particular example the off-diagonal entries
in Hb are positive, while the ‘true’ entries should be negative, as in Ha.
In the context of this example, this means that individual kernels KH in
Eq. (1) used for computing the density f̂(x,H) are (incorrectly) ‘rotated’
about 90 degrees, as can be visualized in Fig. 2. The kernels generated by
Ha bandwidth follow correctly the north-west dataset orientation, while Hb

bandwidth incorrectly generates north-east oriented kernels.

3. Bandwidth selectors

The accuracy of the kernel density estimators depend very strongly on
the bandwidth. In the univariate case the bandwidth is a scalar entity which
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controls the amount of smoothing. In the multivariate case the bandwidth is
a matrix which controls both the amount and the orientation of smoothing.
This matrix can be defined on various levels of complexity. The simplest
case is when a positive constant scalar multiplies the identity matrix, that
is, H ∈ S where S = {h2Id : h > 0}. Another level of sophistication is
H ∈ D. These two forms are often called constrained. In the most general
form the bandwidth is unconstrained, that is, H ∈ F . A very important
problem before evaluating Eq. (1) is to find the optimal (under certain crite-
ria) bandwidth and many original methods have been developed so far, most
of them being automatic or data-driven bandwidth selectors.

The problem of selecting the scalar bandwidth in univariate kernel den-
sity estimation is quite well understood. A number of methods exist that
combine good theoretical properties with strong practical performance. See
for example [11], [12] and [3] where one can find a comprehensive history of
these selectors. Many of these univariate selectors can be extended to the
multivariate case in a relatively straightforward fashion if H is constrained
(see [13], [14]). However, if H is unconstrained, such generalization is not
so easy. Comprehensive analysis of unconstrained bandwidth selectors was
made mainly in the following works: [15], [16], [17], [18], [19], [20] and [10].
They provide references to all main bandwidth selectors, so here we do not
reproduce them and we recommend the reader interested in details to consult
these references.

Three major types of bandwidth selectors are: (a) methods which use very
simple and easy to compute mathematical formulas; they were developed to
cover a wide range of situations, but do not guarantee being close enough
to the optimal (under certain criteria) bandwidth; they are often called the
rules-of-thumb (see [1] and [2]), (b) methods based on cross-validation (CV)
ideas and more precise mathematical arguments (see [21] and [22]). They
require much more computational efforts, however, in reward for it, we get
bandwidths which are more accurate for a wider class of density functions.
Three classical variants of the CV methods are: least squares cross validation
(LSCV), sometimes called unbiased cross validation (UCV), see [23], biased
cross validation (BCV), see [23], and smoothed cross validation (SCV), see
[24], (c) methods based on plugging in estimates of some unknown quantities
that appear in formulas for the asymptotically optimal bandwidth. They are
often called plug-in (PI), see [25] and [26].

All CV-like selectors are based on estimating MISE or AMISE error cri-
teria and then on minimization of an objective function. In the case of the
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LSCV method such a function is defined in the following form:

LSCV (H) =

∫

Rd

f̂(x,H)2dx− 2n−1

n
∑

i=1

f̂−i(X i,H), (6)

where

f̂−i(x,H) = (n− 1)−1
n
∑

j=1
j 6=i

KH(x−Xj), (7)

is the leave-one-out estimator of f . Then, the LSCV objective function can
be expressed as follows (for details, see [3]):

LSCV (H) = n−2
n
∑

i=1

n
∑

j=1

(KH ∗KH)(X i −Xj)

− 2n−1(n− 1)−1

n
∑

i=1

n
∑

j=1
j 6=i

KH(X i −Xj), (8)

where ∗ denotes the convolution operator. For most practical implementa-
tions the normal kernels are used, i.e., K = Φ, and then we obviously have
KH ∗KH = K2H . The LSCV bandwidth matrix ĤLSCV is the minimizer of
LSCV (H), that is,

ĤLSCV = arg min
H∈F

LSCV (H). (9)

In this paper the FFT-based algorithm is presented in details on the ba-
sis of the LSCV method as it is very popular among practitioners, mainly
due to its intuitive motivation. However, this variant of the CV selector has
some serious drawbacks recalled by many authors, like many local minima
in the objective function and high variability (in the sense that for different
datasets from the same distribution, it will typically give considerably dif-
ferent answers). Extending our results also for other CV selectors, as well as
for the PI selector is also possible, see Section 5 for details.

4. FFT-based algorithm

A preliminary work on using FFT to univariate kernel density estimation
defined in (3) was that in [27]. Based on this idea, in [8] the author proposed
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a more universal method for both uni- and multivariate cases and also gave
a note on a possibility of using the FFT algorithm for computation of kernel
functional estimates as they are particularly important in bandwidth selec-
tion for KDE. Based on this note and using results given in [9] and in [10],
in this paper we present a fast method for optimal unconstrained bandwidth
selection. Below we present a complete procedure for the LSCV bandwidth
selector where the FFT-based approach is used.

From the viewpoint of the main subject of this paper, Eq. (8) has to be
rewritten in a slightly different form. Our goal is to remove the unwanted
condition j 6= i in the second double summation. For a sufficiently large n
(several tens in practical applications) it is safe to assume n ≈ n− 1. Under
this assumption, we can write the objective function in the following form

LSCV (H) = n−2

n
∑

i=1

n
∑

j=1

TH(X i −Xj) + 2n−1KH(0), (10)

where

TH(u) = (KH ∗KH)(u) − 2KH(u),

KH(0) = (2π)−d/2|H|−1/2. (11)

Now we are interested in fast computation of the following part of Eq. (10):

ψ(H) = n−2

n
∑

i=1

n
∑

j=1

TH(X i −Xj). (12)

Computational complexity of Eq. (12) is clearly O(n2). Thus, its fast and
accurate computation plays a crucial role in bandwidth selection problem.

It is also easy to notice that Eq. (12) is a zero-th order derivative func-
tional of the general r-th order form given by

ψr(H) = n−2
n
∑

i=1

n
∑

j=1

D
⊗rKH(X i −Xj). (13)

Here r is the derivative order (even number), D is the gradient operator and
the notation with ⊗ symbol is explained in details in Section 5 where the
above mentioned generalization is presented in details.

In the first step the multivariate linear binning of the input random
variables X i is required. The binning is a kind of data discretization, as
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described in [8, Section 3] and can be computed using a fast O(n) algorithm
by extending the ‘integer division’ idea of [28]. The binned approximation of
Eq. (12) is

ψ̃(H) = n−2

M1
∑

i1=1

· · ·

Md
∑

id=1

M1
∑

j1=1

· · ·

Md
∑

jd=1

TH(gi − gj)cicj

=

M1
∑

i1=1

· · ·

Md
∑

id=1

ci

(

M1
∑

j1=1

· · ·

Md
∑

jd=1

TH(gi − gj)cj

)

, (14)

where g are equally spaced grid points and c are grid counts. Grid counts
are obtained by assigning certain weights to the grid points, based on neigh-
bouring observations. In other words, each grid point is accompanied by a
corresponding grid count.

The following notation is used (taken from [8]): for k = 1, . . . , d, let
gk1 < · · · < gkMK

be an equally spaced grid in the kth coordinate directions
such that [gk1, gkMk

] contains the kth coordinate grid points. Here Mk is a
positive integer representing the grid size in direction k. Let

gj = (g1j1, . . . , gdjd), 1 ≤ jk ≤Mk, k = 1, . . . , d, (15)

denote the grid point indexed by j = (j1, . . . , jd) and the kth binwidth be
denoted by

δk =
gkMk

− gk1
Mk − 1

. (16)

In the second step, the summation inside the brackets in Eq. (14) is
rewritten so that it takes a form of the convolution

ψ̃(H) = n−2
M1
∑

i1=1

· · ·
Md
∑

id=1

ci





M1−1
∑

j1=−(M1−1)

· · ·
Md−1
∑

jd=−(Md−1)

ci−jkj





=

M1
∑

i1=1

· · ·

Md
∑

id=1

ci (c ⋆ k), (17)

where

kj = TH(δ1j1, . . . , δdjd). (18)
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In the third step, we compute the convolution between ci−j and kj using
the FFT algorithm in only O(M1 logM1 . . .Md logMd) operations compared
to the O(M2

1 . . .M
2
d ) operations required for direct computation of Eq. (14).

To compute the convolution between c and k they must first be reshaped
(zero-padded) according to precise rules which are described in detail in [9].
Here, for simplicity, only two-dimensional variant is presented as extension
to higher dimensions is straightforward. We have

kzp =

[

k 0

0 0

]

=





















k−M1,−M2
· · · k−M1,0 · · · k−M1,M2

...
. . .

...
. . .

...
k0,−M2

· · · k0,0 · · · k0,M2
0

...
. . .

...
. . .

...
kM1,−M2

· · · kM1,0 · · · kM1,M2
· · ·

0
... 0





















, (19)

and

czp =





0 0 0

0 c 0

0 0 0



 =

















0
... 0

... 0

· · · c1,1 · · · c1,M2
· · ·

0
...

. . .
... 0

· · · cM1,1 · · · cM1,M2
· · ·

0
... 0

... 0

















, (20)

where the entry c1,1 in (20) is placed in row M1 and column M2. The sizes
of the zero matrices are chosen so that after reshaping of c and k, they both
have the same dimension P1 × P2,×, . . . ,×Pd (highly composite integers;
typically, a power of 2). Pk (k = 1, . . . , d) are computed according to the
following equation

Pk = 2

⌈

log
2
(3Mk−1)

⌉

. (21)

Now, to evaluate the summations inside the brackets in Eq. (17), we can
apply the discrete convolution theorem, that is, we must do the following
operations:

C = F(czp), K = F(kzp), S = CK, s = F−1(S), (22)

11



where F stands for the Fourier transform and F−1 is its inverse. The sought
convolution (c ⋆ k) corresponds to a subset of s in Eq. (22) divided by the
product of P1, P2, . . . , Pd (the so-called normalization), that is,

(c ⋆ k) =
1

(P1 P2 . . . Pd)
s[(2M1 − 1) : (3M1 − 2), . . . , (2Md − 1) : (3Md − 2)],

(23)

where, for the two-dimensional case, s[a : b, c : d] means a subset of rows
from a to b and a subset of columns from c to d of the matrix s.

In the fourth step, to complete the calculations of Eq. (17), the resulting
d-dimensional array (c ⋆ k) needs to be multiplied by the corresponding grid
counts ci and summed to obtain ψ̃(H), that is,

ψ̃(H) = n−2
∑

i

(ci ⊙ (c ⋆ k)), (24)

where ⊙ means the element-wise multiplication. Finally, the sought LSCV (H)
in Eq. (10) can be easily and effectively calculated.

In practical implementations, the sum limits {M1, . . . ,Md} can be ad-
ditionally shrunk to some smaller values {L1, . . . , Ld}, which significantly
reduces the computational burden (see Section 6.3 for numerical results). In
most cases, the kernel K is the multivariate normal density function and, as
such, an effective support can be defined, i.e., the region outside which the
values of K are practically negligible. Now Eq. (17) can be rewritten as

ψ̃(H) = n−2

M1
∑

i1=1

· · ·
Md
∑

id=1

ci

(

L1
∑

j1=−L1

· · ·
Ld
∑

jd=−Ld

ci−jkj

)

. (25)

We propose to calculate Lk using the following formula (k = 1, . . . , d):

Lk = min

(

Mk − 1,

⌈

τ
√

|λ|

δk

⌉)

, (26)

where λ is the largest eigenvalue of H and δk is the mesh size from Eq. (16).
After some empirical tests we found that τ can be set to around 3.7 for
a standard two-dimensional normal kernel. Such a value of τ guarantees
that ψ̃(H) calculated by either (17) or (25) differs very little. Finally, we
can calculate sizes Pk of matrices (19) and (20) according to the following
equation

Pk = 2

⌈

(log
2
(Mk+2Lk−1)

⌉

. (27)
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5. Notes on FFT-based algorithm for integrated density derivative

functionals

We will start this section by a short introduction to some notation which
will be used in further discussion. This notation was introduced in [18] and
then used by those authors in consecutive papers, see the Reference. Let f be
a real d-variate function and its first derivative (gradient) vector is defined
as Df = ∂f/∂x = (∂f/∂x1, . . . , ∂f/∂xd) with x = (x1, . . . , xd)

T . Then
the r-th derivative of f is defined to be the vector D

⊗rf ∈ R
dr . According

to this notation D
⊗r denotes the r-th Kronecker power of the operator D,

formally understood as the r-fold product D⊗· · ·⊗D. Naturally, D⊗0f = f ,
D

⊗1f = Df . Accordingly, all the second order partial derivatives can be
organized into the Hessian matrix and the Hessian operator can be formally
written as H = DD

T and of course Hf = ∂2f/(∂x∂xT ) is the matrix of size
d × d. Then, the equivalent vectorized form is D

⊗2f = vecH f ∈ R
d2 , where

vec denotes the operator which concatenates the columns of a matrix into
a single vector, see [29]. For r ≥ 3 it is not clear how to organize the set
containing all the dr partial derivatives of order d into a matrix-like manner,
so the above presented D

⊗r notation seems to be very convenient, clear and
useful.

Many (if not the most) modern bandwidth selection algorithms involve
computing Eq. (13) for a given even number r, which can vary, depending on
a concrete algorithm. This is usually the most time and resource consuming
part of these algorithms. Thus, in this chapter, we are concerned for detailed
explanation on how the FFT-based algorithm can improve the computation
of Eq. (13).

It is easy to notice that two computational problems occur here. The
first one is how to calculate efficiently the r-th order partial derivatives of
the kernel function KH . The second problem is how to efficiently calculate
the double sums. Promising algebraic solutions of these two problems have
been recently developed in [10] where some efficient recursive algorithms were
proposed. Our FFT-based solution can be seen as a useful extension of these
developments.

Below we expand the results from Section 4 where the LSCV bandwidth
selector was analysed. This selector involves Eq. (13) in its simplest form,
that is for r = 0 (zero-th order derivative), see Eq. (12). Hence, the FFT-
based calculation of Eq. (12) is in fact a straightforward extension of our
solution presented in [9].
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However, extending our FFT-based solution for a more general case when
r > 0 is not so easy (in most practical applications r = 2, 4, 6, 8). The prob-
lem comes from the fact that such r-th derivative is the set af all its partial
derivatives of order r. Here D

⊗rKH denotes the vector containing all the
r-th partial derivatives of KH and its length is dr. The vector-like arranging
(instead of, for example, as an r-fold tensor array or as a multivariate matrix)
is preferred here as it significantly simplifies multivariate analysis. However,
the dr length of ψr(H) quickly run into computational difficulties of the
FFT-based algorithm. Fortunately, we can use excellent results presented in
[10, Chapter 6.3] where the authors show how one can rewrite the three most
often used algorithms for bandwidth selection (i.e., PI, UCV, SCV) in such
a way that they (instead of direct usage of Eq. (13)) utilize the V-statistics
of the following general form

Vmn =
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

g(xi1, xi2 , . . . , xim), (28)

where g is a symmetric kernel function. Vmn is called a V-statistics of degree
m.

In the context of bandwidth selectors the following V-statistics of degree 2
based on higher order derivatives of the Gaussian density function has the
special meaning

V2n = n−2

n
∑

i=1

n
∑

j=1

ηr,s(X i −X j;A,B,Σ), (29)

where ηr,s is a scalar function (and this fact is crucial here!) defined as

ηr,s(x;A,B,Σ) = {(vecTA)⊗r ⊗ (vecTB)⊗s}D⊗2r+2sΦΣ(x). (30)

Here A,B are d× d symmetric matrices. Based on the above, we can define
also

ηr(x;Σ) ≡ ηr,0(x; Id,Σ) = (vecTId)
⊗r
D

⊗2rΦΣ(x). (31)

Hence, what is required in the context of the paper’s main subject is the FFT-
based implementation of Eq. (29). The key for its efficient implementation
is to develop a fast algorithm to compute the ηr,s functions. The most time
consuming part in the formula for ηr,s is computation of the r-th derivative
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D
⊗2r+2sΦΣ(x) of the multivariate Gaussian density function. Hopefully, in

[10] the authors give the complete and efficient algorithm for this task. Now,
as ηr,s is a scalar function, the FFT-based implementation is a straightforward
replication of the four-step’s procedure presented in Section 4 (see also the
supplemental material for the up-to-date R source codes).

The algorithm for computing ηr,s has been implemented in the ks R pack-
age [30] starting from version 1.10.0. This package contains, among others,
the function Qr.cumulant{ks} which is a very efficient implementation of
the V-statistics of the following form

Qr(Σ) = n−2
n
∑

i=1

n
∑

j=1

ηr(X i −Xj ;Σ). (32)

We use this function to make some numerical experiments. We compare
the implementation of Eq. (32) from the ks R package with our FFT-based
implementation and it seems that such a comparison is a good idea to look
at the advantages of the latter. The results are presented in Section 6.4.

Coming back to the LSCV FFT-based algorithm presented in details in
Section 4 we can rewrite appropriate equations using the ηr,s functions. Thus,
Eq. (12) can be rewritten as

ψ0(H) = n−2
n
∑

i=1

n
∑

j=1

TH(X i −Xj)

= n−2

n
∑

i=1

n
∑

j=1

{

η0,0(X i −Xj ; 2H) − 2η0,0(X i −Xj ;H)
}

, (33)

and accordingly Eq. (18) becomes

kj = η0,0(δ1j1, . . . , δdjd; 2H) − 2η0,0(δ1j1, . . . , δdjd;H). (34)

The LCSV criterion of Eq. (8) can be rewritten in the most general case, sup-
porting bandwidth selection for kernel density derivative estimation involving
an arbitrary order r, as

LSCVr(H) = (−1)r
{

n−2
n
∑

i=1

n
∑

j=1

ηr,0(X i −Xj ; 2H)

− 2n−1(n− 1)−1

n
∑

i=1

n
∑

j=1
j 6=i

ηr,0(X i −Xj ;H)
}

. (35)
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For r = 0 Eqs. (8) and (35) are obviously equivalents. Finally, the LSCV
criterion from Eq. (10) can be rewritten in the same way

LSCVr(H) = (−1)r
{

n−2
n
∑

i=1

n
∑

j=1

{

ηr,0(X i −Xj ; 2H) − 2ηr,0(X i −Xj ;H)
}

+ 2n−1KH(0)
}

, (36)

and accordingly, for r = 0 Eqs. (10) and (36) are also equivalents. Now, the
FFT-based implementation of (35) and (36) is only a straightforward usage
of the results from Section 4.

Last but not least, we have not implemented the complete procedures for
PI and SCV bandwidth selectors (covering both the case of kernel density
estimation and also kernel density derivative estimation) as this should go
beyond the scope of the paper. But we can surely expect that our FFT-
based solution should improve their performance as well. The mathematical
formulas for PI and SCV selectors shown in Section 6.3 of [10] involve double
sums with ηr,2 and ηr,0 functions, so it is obvious that our solution can be
easily adopted there, and in consequence, the selectors should work faster
then their non-FFT counterparts.

6. Experimental results

This section is divided into four parts. The first part reports a simulation
study based on synthetic data (two-dimensional mixtures of normal densi-
ties). The advantage of using such target densities is that we can compute
exact Integrated Squared Errors (ISE)

ISEf̂(H) =

∫

Rd

(

f̂(x,H) − f(x)
)2

dx (37)

between the resulting kernel density estimates and the target densities. It
was proven that the ISE of any normal mixture density has an explicit form,
see for example [15].

The second part reports a simulation study based on two real datasets.
Here, the most handy way to compare the results is to use contour plots.
We also moved away from the general multivariate case to the bivariate
case as the results and the target densities can be easily visualized on two-
dimensional plots.
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The third part reports speed results when we compare computational
times needed for estimation of the optimal bandwidth matrices for both FFT-
based and non-FFT-based (direct) algorithms. Also, usability of reducing Mk

into Lk is analyzed (see Eqs. (25) and (26)).
Finally, the fourth part reports speed results when we compare compu-

tational times needed for the V-statistics computation defined in Eq. (32).
We compare results returned by the Qr.cumulant{ks} R function and our
FFT-based implementation.

All the calculations were conducted in the R environment. Minimization
of the objective function LSCV (H) was carried out using the optim{stats}
R function. The Nelder-Mead method was used with default scaling param-
eters, that is the reflection factor α = 1.0, the contraction factor β = 0.5 and
the expansion factor γ = 2.0. This method was chosen as it is robust and
works reasonably well for nondifferentiable functions. A disadvantage of the
method is that it is relatively slow. Some numerical-like problems are also
reported.

6.1. Synthetic data

The target densities which are analyzed were taken from [31] as they cover
a very wide range of density shapes. We preserve their original names and
numbering. The shapes are shown in Fig. 3.

We took sample sizes n = {128, 256, 1024} and grid sizes (for simplicity
equal in each direction) M1 = M2 = {20, 25, 30, 35, 40, 45, 50, 150}. For each
combination of the sample size and the grid size we computed the ISE error
and these computations were repeated 50 times. In each repetition a different
random sample was drawn from the target density. Then classical boxplots
were drawn. We did not make separate simulations for Mk and Lk (see
Eq. (25) and (26)) as the results are practically the same for τ = 3.7.

Our goal was to check two things: (a) if, in general, the FFT-based al-
gorithm gives correct results (compared with a reference textual implemen-
tation based on Eq. (10)), and (b) how the binning operation may influence
the final results. In Figs. 4 and 5 we present results for sample sizes n = 128
and n = 256, respectively. Looking at the boxplots we can see that the
FFT-based solution is absolutely comparable to the direct solution. The ISE
errors differ slightly, but from a practical point of view the fluctuations can
be neglected.

However, during practical experiments, problems of numerical nature
were observed. First, we shall describe the problem, and next we shall try
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Figure 3: Contour plots for 12 target densities (normal mixtures).

18



no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0
0.005

0.010

0.015

0.020

0.025

#1 Uncorelated Normal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

0.025

0.030

#2 Corelated Normal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.010

0.015

0.020

0.025

#4 Bumbbell

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

#5 Kurtotic

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

#6 Bimodal
IS

E
 e

rr
or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

#7 Separated Bimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

0.025

#8 Asymmetric Bimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

#9 Trimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.015

0.020

0.025

0.030

0.035

0.040

#10 Fountain
IS

E
 e

rr
or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

0.020

#11 Double Fountain

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.015

0.020

0.025

0.030

0.035

0.040

#12 Asymmetric Fountain

IS
E

 e
rr

or

Figure 4: Boxplots of the ISE errors for the sample size n = 128. ‘no FFT’ is
the reference boxplot calculated without the FFT, using the direct formula
(10). Fxx means the boxplot where gridsize xx was use.

19



no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0
0.002

0.004

0.006

0.008

0.010

0.012

0.014

#1 Uncorelated Normal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.005

0.010

0.015

#2 Corelated Normal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

0.012

#4 Bumbbell

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.002

0.004

0.006

0.008

0.010

#5 Kurtotic

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

0.012

#6 Bimodal
IS

E
 e

rr
or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

0.012

0.014

#7 Separated Bimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

0.012

#8 Asymmetric Bimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.004

0.006

0.008

0.010

#9 Trimodal

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.010

0.012

0.014

0.016

0.018

0.020

0.022

#10 Fountain
IS

E
 e

rr
or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.006

0.008

0.010

0.012

0.014

#11 Double Fountain

IS
E

 e
rr

or

no
 F

F
T

F
20

F
25

F
30

F
35

F
40

F
45

F
50

F
15

0

0.015

0.020

0.025

#12 Asymmetric Fountain

IS
E

 e
rr

or

Figure 5: Boxplots of the ISE errors for the sample size n = 256. ‘no FFT’ is
the reference boxplot calculated without the FFT, using direct the formula
(10). Fxx means the boxplot where gridsize xx was use.
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Figure 6: ISE errors for Model 8 and for each of 50 experiment repetitions.
The sample size is n = 256.
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to give a plausible explanation. While preparing Figs. 4 and 5 only ‘good’
results were used while ‘bad’ results were discarded. The ‘bad’ are these
for which the derived ISE errors turned out to be extremely large, like many
thousands or more. In Fig. 6 we show every ISE error for Model 8 (Asymmet-
ric Bimodal) and for each of the 50 experiment replications. As can be easily
noticed, only direct LSCV (H) computation (based on Eq. (10), labeled ‘no
FFT’) and computations for the grid size equal to 50 yield all ISE errors on
an acceptable level. Unfortunately, after binning the data, a number of failed
optimizations occur, especially for smaller grids. In Table 1 we give exact
numbers of optimization failures (that is, where we get excessive ISE errors)
for some selected sample sizes, grid sizes and model numbers (see Fig. 3).
The criterion for classifying a particular ISE error as excessive was ISE > 1.
We can see (as expected) a pattern here that larger n, generates larger num-
ber of optimization failures. Another pattern is that increasing the grid size
decreases the number of optimization failures. Moreover, some models are
stiffer than others and it seems, e.g., that Model 3 is the most fragile and,
in fact, FFT-based approach is unacceptable here. The problem with this
particular model is caused by a specific data concentration, where most of
the probability mass is concentrated on a very small area. Accordingly, in
this case a denser griding is required.

An obvious workaround of the above mentioned numerical problems can
be increasing the grid size. Some suggestions about selection of grid sizes
can be found in [32] and are similar to our results. According to the results
given in Table 1 we can say that grid sizes of about 150×150 or more should
be adequate in most practical applications.

What is also important, direct LSCV (H) minimization (that is without
the FFT-based approach) is much more robust in the sense that there are no
optimization problems as shown above. The explanation for this phenomena
is that binning the data makes them highly discretized, even if there are no
repeated values. This may result in a nondifferentiable objective function
LSCV (H) which is much more difficult for optimization algorithms, causing
problems with finding a global minimum. Hence, more research is necessary
to develop some new or improve the existing algorithms which will be more
robust in the area of bandwidth estimation.

6.2. Real data

In this section we analyze two real datasets. The first one is the well-
known Old Faithful Geyser Data as investigated in [33] (and many others).
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Table 1: Number of abnormally large ISE errors for particular models from
Fig. 3. The criteria for classifying a particular ISE error as excessive was
ISE > 1.

n = 128

grid size #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

20 0 4 49 0 0 0 0 0 0 1 1 3
30 0 0 21 0 0 0 0 0 0 0 0 2
40 0 0 5 0 0 0 1 0 0 0 1 2
50 0 0 1 0 0 0 0 0 0 0 0 1
150 0 0 0 0 0 0 0 0 0 0 0 0

n = 256

grid size #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

20 0 44 50 0 6 0 3 1 0 5 0 10
30 0 0 48 0 0 0 6 3 0 0 0 8
40 0 0 36 0 0 0 5 1 0 0 0 5
50 0 0 15 0 0 0 4 0 0 0 0 3
150 0 0 1 0 0 0 0 0 0 0 0 0

n = 1024

grid size #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

20 0 50 50 48 50 0 29 8 0 50 19 50
30 0 47 50 4 14 0 22 8 0 25 2 48
40 0 0 50 0 1 0 38 11 0 2 0 36
50 0 0 50 0 0 0 21 9 0 0 0 30
150 0 0 4 0 0 0 1 0 0 0 1 2

It consists of pairs of waiting times between eruptions and the durations
of the eruptions for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA. A data frame consists of 272 observations on 2 variables.
The second dataset is the Unicef one available in the ks R package [30]. This
data set contains the numbers of deaths of children under 5 years per 1000
live births and the average life expectancy (in years) at birth for 73 countries
with the GNI (Gross National Income) less than 1000 US dollars per annum
per capita. A data frame consists of 73 observations on 2 variables. Each
observation corresponds to a country.

Here, the ISE criterion does not have a closed form (as opposed to any
normal mixture densities used in Section 6.1), so the only sensible way to
evaluate our FFT-based solution is to use contour plots. Before processing,
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all duplicates were discarded as all cross-validation methods are not well-
behaved in this case. When there are duplicate observations, the procedure
will tend to choose too small bandwidths. We did not make separate simu-
lations for Mk and Lk (see Eqs. (25) and (26)) as the results are practically
the same for τ = 3.7.

First we analyze how the binning procedure affects the accuracy of eval-
uating of the objective function LSCV (H). In Figs. 7(a) and 7(b) we
show densities of the Unicef and the Old Faithful datasets, respectively. The
optimal bandwidth was calculated based on exact solution of the objective
function given in Eq. (10). In other words, no binning was used here. In
Figs. 7(c) and 7(d) we can observe how the binning influences the resulting
densities. Now the calculations were based on Eq. (14). As one can observe,
even a moderate grid size (here M1 = 50,M2 = 50) is enough and the plots
differ very slightly comparing with Figs. 7(a) and 7(b). After application of
the FFT-based approach (this time calculations were based on Eq. (17)) the
resulting contour plots presented in Figs. 7(e) and 7(f) are identical com-
pared with those generated without the FFT-based support. This of course
confirms the fact that the FFT-based procedure finds the correct bandwidth.

6.3. Speed comparisons

In this section we analyze how our FFT-based approach reduces the to-
tal computational times. Tree different implementations are considered. The
first one is based on direct computation of the double summation in Eq. (12).
This implementation is highly vectorized (no explicit for loops; for details
see supplementary material). We do not analyze a pure for -loops-based im-
plementation as it is extremely slow and, as such, is without any practical
usability, especially for large n, like for example thousands or so. We called
this implementation direct. The second implementation utilizes the FFT and
is based on Eq. (17), where precalculation of the kernel values (see Eq. (18))
is vectorized. We called this implementation fft-M. Finally, the third imple-
mentation utilizes Eq. (25), that is a modified version of Eq. (17) where the
sum limits {M1, . . . ,Md} are replaced by some smaller values {L1, . . . , Ld}.
We called this implementation fft-L.

In this experiment we do not find in fact the minimizer ĤLSCV of Eq. (9).
This is because the different methods may require a different number of
evaluations of the objective function under minimization. Instead of that, we
measure execution times needed to calculate functionals defined in Eqs. (12),
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Direct on unbinned data, Old Faithful
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Direct on binned / unbinned data, Unicef (50x50)
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Direct on binned / unbinned data, Old Faithful, (50x50)
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FFT, Unicef (50x50)
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FFT, Old Faithful, (50x50)

 0.005 

 0.005 

 0.01 

 0.01 

 0.015 

 0.015 

 0.02 

 0.02 

 0.025 

 0.025 

 0.03 

 0.035 

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Duration of eruption

T
im

e 
un

til
 n

ex
t e

ru
pt

io
n

(f)

Figure 7: The effect of the binning and FFT procedures applied to Unicef and
Old Faithful datasets. (a), (b) – the optimal bandwidth based on Eq. (10),
that is if no binning is used, (c), (d) – the optimal bandwidth based on
Eq. (14), that is if binning is used and FFT is not used. Additionally, for
better recognizing the effect of the binning, the plots from (a) and (b) (drawn
with dotted lines) are added. (e), (f) – the optimal bandwidth based on
Eq. (17) when FFT is used.
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(17) and (25). In this experiment the time needed for binning is also included
in the results (for fft-M and fft-L methods). Binning is a necessary step and
as such should not be neglected.

To reduce the number of variants, all experiments were performed only
for two-dimensional datasets. Additionally, in this experiment the statistical
structure of the dataset is not very important, so the N (0, I) distribution
was used, varying only its size n. Using other distributions (i.e., these shown
in Fig. 3) will not change the performance for the fft-M implementation
but can slightly change the performance for the fft-L implementation. This
is because some different L1 and L2 values may be assigned (see Eq. (26))
and, consequently, some different P1 and P2 values will be generated (see
Eq. (27)).

We took sample sizes from n = 200 to n = 4000 incrementing the se-
quence by 200. Grid sizes are taken from M1 = M2 = 20 to M1 = M2 = 200
incrementing the sequence by 10 (for simplicity, grids are equal in each di-
rection, that is, M1 = M2). For the fft-M and fft-L implementations each
combination of the sample and grid sizes was used. The computations were
repeated 50 times and the mean time was calculated. For the direct imple-
mentation 50 repetitions were computed for each sample size and also the
mean time was calculated.

In Fig. 8 we show the results for the direct, fft-M and fft-L implemen-
tations. We can see that for small grid sizes (roughly up to 60 × 60) the
calculation times are more dependent on the sample size compared with the
grid sizes of about 90 × 90 and bigger. Starting from the grid sizes of about
180×180, computational times become almost constant and this behavior is
very attractive from the practical point of view. One could expect that the
FFT-based implementations should not depend on n (and this is true), but
the main portion of the computational time for those small grid sizes comes
from the binning step and not from the FFT calculations. As a consequence,
we observe a linear dependence. If we remind ourselves that the binning is
computed using a O(n) algorithm, the observed linearity is obvious.

Moreover, the fft-L implementation is always faster compared with its
fft-M equivalent. The differences becomes bigger as the grid size increases.
At the same time we can not see any significant accuracy degradation, so the
usage of Lk instead of Mk is highly recommended in practical applications.

We can also see an interesting behavior for the grid sizes 140 × 140,
150 × 150 and 160 × 160. Namely, computational times decrease as the
sample size increases. The explanation of this phenomena is simple if we
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Figure 8: Speed comparison results for the fft-M, fft-L and direct implemen-
tations. Lines marked with open circles (◦) are for the fft-M implementation,
lines marked with filled circles (•) are for the fft-L implementation. The most
lower-right plot gives result for the linear binning operation.
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Table 2: Values of P1 and P2 calculated according to Eq. (27) for some
selected grid and sample sizes.

sample size n
grid
size 200 400 600 800 1000 1200 1400 1600 1800 2000

140 × 140
512
512

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

150 × 150
512
512

512
512

256
512

256
512

256
256

256
256

256
256

256
256

256
256

256
256

160 × 160
512
512

512
512

512
512

512
512

512
512

256
512

256
512

256
512

256
512

256
512

sample size n
grid
size 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

140 × 140
256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

150 × 150
256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

160 × 160
256
512

256
512

256
256

256
256

256
256

256
256

256
256

256
256

256
256

256
256

look carefully at Eq. (26) and check for the values of Pk which are cal-
culated. Results for the three selected grid sizes are shown in Table 2.
For example, for the grid size 160 × 160 we can see that for sample sizes
n = {200, 400, 600, 800, 1000}, P1 and P2 are both equal to 512. Then,
for sample sizes n = {1200, 1400, 1600, 1800, 2000, 2200, 2400}, P1 and P2

are equal to 256 and 512, respectively. Finally, for the sample sizes n =
{2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000}, P1 and P2 are both equal to
256. The values of Pk directly affect the FFT computation time (see Eq. (22)),
which cause the three ‘levels’ in Fig. 8 for the grid size 160 × 160.

The last two plots in Fig. 8 confirm the O(n2) computational complexity
of the direct implementation and the O(n) computational complexity of the
binning operation. From a practical point of view, the usefulness of the direct
implementation is very controversial, especially for large data sizes.

In Table 3 we show the values of Lk calculated according to Eq. (26) for
some selected grid sizes Mk and sample sizes n. As was expected, for a given
value of the grid size, its equivalents Lk are roughly constant, independently
of the sample size.
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Table 3: Values of Lk calculated according to Eq. (26) for some selected values
of the grid and sample sizes, where τ = 3.7. Expressions in the parentheses
mean L1 and L2 determined for given grid and sample sizes.

grid size (M = M1 = M2)
sample

size 30 60 110 140 160 200

200 (14, 13) (28, 26) (52, 47) (66, 60) (75, 68) (94, 85)
600 (10, 12) (19, 24) (35, 43) (44, 55) (51, 63) (63, 78)
1000 (9, 11) (19, 21) (34, 39) (43, 50) (49, 57) (61, 71)
1400 (9, 10) (18, 20) (33, 36) (41, 46) (47, 52) (59, 65)
1800 (9, 10) (18, 19) (32, 35) (41, 45) (46, 51) (58, 64)
2200 (9, 9) (17, 18) (31, 34) (40, 43) (45, 49) (57, 61)
2600 (9, 9) (17, 18) (31, 33) (39, 42) (45, 48) (56, 60)
3000 (8, 9) (17, 18) (30, 33) (39, 41) (44, 47) (55, 59)
3400 (8, 8) (17, 16) (30, 29) (38, 37) (44, 42) (55, 53)
3800 (8, 8) (16, 16) (30, 29) (38, 37) (43, 42) (54, 52)

6.4. V-statistics speed comparisons

In this section we compare our FFT-based approach with some recent
developments presented in [10]. We have implemented the V-statistics given
in Eq. (32) using our FFT-based approach. Then we compare it with the
Qr.cumulant{ks} R function. Note that the Qr.cumulant{ks} function (and
other dependent functions, see supplementary material) has not been ex-
ported in the sense of the R environment’s meaning. They are accessible
only through the triple colon operator pkg:::name. For safe, they should
be treated as auxiliary ones. But anyway it seems that they work fine and
return correct results.

In Eq. (32) two issues should be considered separately. Firstly, how to ef-
ficiently calculate the ηr,s entity and secondly, how to efficiently calculate the
double sums there. The first issue has been successfully solved in the ks pack-
age and an efficient implementation is based on the dmvnorm.deriv.recur-

sive{ks} function. Our implementation of ηr,s (and consequently FFT-based
implementation of Eq. (29)) is based on this function. As for the second issue,
in [10] the authors also propose a method for fast calculation of the double
sums but numerical simulations show that our FFT-based implementation
is generally faster. To confirm this we have compared the Qr.cumulant{ks}
achievements with our implementation (see the supplemental material for the
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up-to-date R source codes). We called the two implementations Qr-ks and
Qr-FFT, respectively.

We took sample sizes from n = 100 to n = 10000 incrementing the
sequence by 100. Grid sizes are taken to be M1 = M2 = 50 and M1 = M2 =
100 (for simplicity, grids are equal in each direction, that is, M1 = M2).
Derivative orders are taken to be r = {0, 2, 4, 6, 8}. The computations were
repeated 50 times and the mean time was calculated. To reduce the number of
variants, all experiments were performed only for two-dimensional datasets.
Additionally, in this experiment the statistical structure of the dataset is not
very important, so the N (0, I) distribution was used, varying only its size n.

In Fig. 9 we show the results for both the Qr-ks and the Qr-FFT im-
plementations. As can be seen, the Qr-FFT implementation usually outper-
forms the Qr-ks implementation, especially for bigger n. The Qr-ks imple-
mentation is faster only for smaller n. What is also important, the Qr-FFT

implementation is practically independent of the sample size. Some small
departures from this behavior (visible mainly for grid size equals 50 and for
smaller derivative orders) are due to the binning (which is the required data
preprocessing step). As the binning takes relatively not so much time, its
influence for the total computational time for bigger n and r can be neglected.
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Figure 9: Speed comparison results for the Qr-ks and the Qr-FFT imple-
mentations. Lines marked with open symbols (like for example ◦) are for the
Qr-FFT implementation, lines marked with filled symbols (like for example
•) are for the Qr-ks implementation.31



7. Conclusion

Although nonparametric kernel density estimation is nowadays a stan-
dard technique in exploratory data analyses, there still exist some not fully
solved problems. They include among other things, the question of how to
fast compute the bandwidth, especially for the multivariate unconstrained
case. In the paper we have presented a satisfactory FFT-based algorithm
which is fast, accurate and covers unconstrained bandwidth matrices. We
have outlined a complete procedure and have made comprehensive simula-
tion studies.

Our main contributions in the paper are: (a) paying attention to a real
problem involving the FFT in the field of bandwidth selection, and (b) im-
proving the existing FFT-base algorithm by proposing a new reshaping shown
in Eqs. (19) and (20). The latter plays a crucial role in adapting the FFT-
based algorithm for supporting both constrained and unconstrained band-
width matrices. (c) pointing out how our algorithm can be used for fast
computation of integrated density derivative functionals involving an arbi-
trary derivative order. This is extremely important in implementing almost
all modern bandwidth selection algorithms, not only the LSCV one used in
the paper. Preliminary computer simulations proves the practical usability
of our approach.

In Section 6.1 we have reported some numerical-like problems which re-
main a challenging open problem.
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