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Abstract

A model-based clustering method is proposed to address two research aims in Alzheimer’s disease 

(AD): to evaluate the accuracy of imaging biomarkers in AD prognosis, and to integrate biomarker 

information and standard clinical test results into the diagnoses. One challenge in such biomarker 

studies is that it is often desired or necessary to conduct the evaluation without relying on clinical 

diagnoses or some other standard references. This is because (1) biomarkers may provide 

prognostic information long before any standard reference can be acquired; (2) these references 

are often based on or provide unfair advantage to standard tests. Therefore, they can mask the 

prognostic value of a useful biomarker, especially when the biomarker is much more accurate than 

the standard tests. In addition, the biomarkers and existing tests may be of mixed type and vastly 

different distributions. A model-based clustering method based on finite mixture modeling 

framework is introduced. The model allows for the inclusion of mixed typed manifest variables 

with possible differential covariates to evaluate the prognostic value of biomarkers in addition to 

standard tests without relying on potentially inaccurate reference diagnoses. Maximum likelihood 

parameter estimation is carried out via the EM algorithm. Accuracy measures and the ROC curves 

of the biomarkers are derived subsequently. Finally, the method is illustrated with a real example 

in AD.
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1. Introduction

Model-based clustering methods provide a means to study constructs that are not directly 

measurable (Goodman, 1974; Fraley and Raftery, 2002; McLachlan and Peel, 2000), and 

have significant applications in medical diagnostic studies (Hui and Zhou, 1998; Pepe and 

Janes, 2007; van Smeden et al., 2013; Collins and Huynh, 2014). Such studies aim to 

evaluate the accuracy of applying a particular test or procedure for disease diagnosis or 

prognosis. The difficulty is that disease is a complex process; one may not have a perfect 
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reference standard (the gold standard) to base upon the evaluation. On the other hand, using 

an imperfect reference standard can cause biased assessments (Zhou et al., 2009). In 

particular, standard references only represent our current understanding about the underlying 

disease process and the technique to uncover it. New discovery and technology advancement 

can introduce biomarkers that have higher accuracy than current tests. Nonetheless, because 

standard references are often developed based on existing tests, performing biomarker 

evaluation against the reference can give an unfair advantage to the existing tests and mask 

the value of a new marker. In this situation, clustering methods provide perhaps the most 

realistic view that reflects the unobservable nature of the true disease status, while adopting 

information from a reference standard to help differentiate diseased and healthy subjects. 

Many clustering methods use all observed variables indistinguishably. However, in medical 

biomarker studies, one often has a basic understanding of which variables are risk factors, 

which are biomarkers and which are covariates that may affect biomarker levels. In order to 

adopt this knowledge, finite mixture models are often used. These models have a general 

form as follows,

(1)

where πdi = P(Di = d) is the probability of group membership for the ith individual, with d = 

0, …, L − 1 denoting the L possible group memberships, such as diseased group (D = 1), 

healthy group (D = 0) or groups of different disease severity levels or subtypes; 

 is the conditional distribution of  at value , with 

being K manifest variables that reflect underlying group membership, such as new 

diagnostic biomarkers, existing reference standards or other information that help reveal the 

underlying disease status.

In many applications of the clustering methods, the focus is on πdi, i.e., to make correct 

classification, or to infer the relationship between an individual’s group membership and 

other factors Z. In the latter case, πdi becomes a function of Zi, πdi(Zi). The structure and 

modeling assumption on  are not of high priority and may be chosen for 

computational convenience as long as the model produces robust results related to group 

membership D. For example, conditional independence between Tk’s within the same group 

or strong parametric assumptions are often assumed (Vermunt and Magidson, 2002). By 

contrast, applications in medical diagnostic studies are interested in the exact form of 

, i.e., the relationship between the manifest test results and the underlying disease 

status. In such cases one may need to interpret the results in terms of diagnostic accuracy 

measures, such as sensitivity of a new biomarker Tk at cut-off value t, P(Tk ≥ t|D = 1) and 

the corresponding specificity P(Tk < t|D = 0). Many models were proposed to address these 

needs in diagnostic studies (Henkelman et al., 1990; Branscum et al., 2005; Zheng et al., 

2005; Branscum et al., 2015). Fixed effect and random effect models were adopted to relax 

the conditional independence assumption (Qu et al., 1996; Xu and Craig, 2009; Wang and 

Zhou, 2012). Different longitudinal models were proposed for repeated test measurements 
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(Cook et al., 2000; Jones et al., 2012; Wu et al., 2016). And Albert and Dodd (2004) 

investigated the influence on parameter estimates introduced by different modeling 

assumption for .

The increasing availability and fast discovery of imaging and other biomarkers further 

promoted the application of a model-based clustering method in diagnostic studies. This is 

because the lack of gold standard is particularly prevalent in biomarker evaluation where the 

goal of the biomarker is often to facilitate early detection, to reduce cost, and/or to improve 

diagnostic accuracy, and the current diagnostic standard may not be able to provide 

conclusive or accurate evidence sufficiently quickly and may be too costly to conduct for all 

at risk individuals. For example, in the motivating project for this work, the goal is to assess 

the diagnostic ability of imaging biomarkers for early Alzheimer’s disease (AD) detection. 

Due to the long preclinical phase of AD, current diagnosis procedures, which are based on 

clinical symptoms and neuropsychological tests, detect abnormality often decades after 

initial AD pathology starts which is, unfortunately, too late for existing treatments to be 

effective. Imaging biomarkers have strong diagnostic ability and, as such, have been 

increasingly used in conjunction with other clinical tests for early AD detection (Nestor et 

al., 2004; Dubois et al., 2007; Sperling et al., 2011). However, their diagnostic performance 

has only been assessed against the imperfect clinical diagnosis because a definite AD 

diagnosis requires a brain autopsy which can only be done upon a patient’s consent and 

death and is also a costly procedure. In addition, because diagnostic studies require careful 

handling of  as explained previously, features introduced by biomarker studies 

compared to traditional diagnostic test studies need to be taken into account, including: (1) 

biomarker values can be highly influenced by subject characteristics. Instead of using a 

random effect to explain the correlation among biomarkers within a disease group, it is often 

of interest to know how covariates X affect biomarkers’ diagnostic performance so that a 

more personalized diagnosis can be given. One solution is to model  explicitly as a 

function of covariate ; (2) multiple biomarkers may be examined and used 

together with other tests, which may have vastly different distributions. In particular, existing 

tests are usually discrete while biomarkers are often continuous and skewed. This requires 

the model  to handle mixed type ti’s; (3) in contrast to traditional diagnostic tests, 

biomarkers are often proposed to be used together with, rather than to replace, existing 

procedures. Therefore, in addition to evaluate the diagnostic accuracy of the biomarkers 

alone, it is also interesting to assess the diagnostic incremental value obtained by introducing 

new biomarkers. In this paper, we propose an extension to current model-based clustering 

methods to address these common issues in biomarker diagnostic studies.

2. Methodology

2.1. Model specification

Following similar notation used above, let Tk, k = 1, …, K be K manifest variables, 

including biomarkers and tests. For the rest of the paper, we do not distinguish between 

biomarkers and tests, and refer to all of them as tests. Without loss of generality, we assume 
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that the first k1 tests are continuous, and the remaining K − k1 tests are categorical with 

values 0, …, Jk. Let D = 0, …, L − 1 be the true disease status, Xβ, Xγ and Z be the 

covariates related to continuous tests, categorical tests and disease prevalence with length p, 
q and r, respectively. These three sets of covariates can be overlapping or mutually exclusive. 

We assume that the tests are conditionally independent given true disease status and 

covariates, Tk⊥Tj | D, Xβ, Xγ, k, j = 1, …, K. In other words, we assume the dependence 

among tests are due to disease status and other covariates. The conditional distribution 

 can then be modeled by its univariate marginals γdk(tki). We specify the model in the 

finite mixture form (1) but with covariates, i.e.,

(2)

Disease group membership (or prevalence) is modeled by a multinomial regression model to 

allow for ordinal or nominal disease status and their dependence on risk factors as follows:

(3)

where D = 0 is the baseline group with parameters α0 = (α00, …, α0p) = (0, …, 0). 

Transformation regression models and cumulative link models are used for continuous and 

for categorical tests, respectively as follows:

(4)

(5)

where Hk(·, λk) is parametric function with unknown parameters λk. These transformations 

allow tests to have more flexible distributions. In the remaining derivation for this paper, we 

assume the Box–Cox transformation. However, any monotonic function can be used. 

Regression models for γdk(tk|Xβ, Xγ) take into account the extra variation and dependence 

among the tests, and allow for quantitative examination of test accuracy in different 

subgroups to facilitate personalized diagnosis. Note that regression coefficients βkd and γkdj 

are allowed to vary with test Tk and disease status D. This permits an interaction effect 

between X and D, or differential covariate effect on test performance. However, one can also 

introduce constraints on these coefficients, such as assuming constant covariate effect across 
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disease group. Rather than having to perform a constraint maximization, the estimation 

procedure described in the next section can be easily adapted in such a situation and proceed 

as an unconstrained estimation.

Based on Eq. (4), we have 

, K = 1, …, k1, 

where ϕ is the standard normal density function, and det J(Tki, λk) is the Jacobian 

determinate of Hk(Tki, λk), det J = exp((λk − 1) log Tki). Additionally, Eq. (5) suggests 

, K = k1, + 1, …, 

K, j = 1, …, Jk. Combining the above with Eq. (2), the mixture model is,

(6)

where θ = {αd, βkd, , λk, σk | d = 0, …, L − 1; k = 1, …, K; j = 0, …, Jk}.

2.2. Estimation via the EM algorithm

The maximum likelihood estimates of parameter θ can be obtained by directly maximizing 

the likelihood function of model (6). However, the EM algorithm provides a more 

convenient way of estimating the MLE of parameters in a finite mixture model. Specifically, 

by considering the true disease status D as missing value, the complete data log likelihood 

based on model (6) is,

(7)

where I(·) is an indicator function that equals 1 if true and 0 otherwise.

Let θ(t) denote the parameter estimate updated from the tth EM iteration, with initial value 

θ(0). The following procedure describes the tth iteration.

The E step computes the expected value of I(Di = d) based on parameter estimates from the 

previous step, P(d) = E[I(Di = d)|θ(t−1), T, Xβ, Xγ, Z]:
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The M step maximizes the expected value of lc(θ) obtained by substituting I(Di = d) by 

P(t)(d) in function (7). We denote the result as function (7*) with the same arrangement of 

the three terms as in function (7). Note that the parameters in the three terms of (7*) are 

disjoint, so the maximization can be done separately. Next, we show that these terms are 

proper log likelihood functions of the weighted version of the corresponding regression 

models. Let W be a N × L by N × L diagonal matrix W(t) = diag{P(t)(0), …, P(t)(L − 1)}, 

where . Let Yk = Hk(Tk, λk). Let Z, Xβ(D) 

and Xγ (D) be the design matrices defined by models (3)–(5), with possible interactions 

between X and D. Create stacked outcome vectors and design matrices as follows:

Then the first term in function (7*) becomes . It is a log likelihood 

function of a weighted multinomial regression with N × L observations and weight W(t). 

Similarly, we can show that the second term and the third term in function (7*) are the log 

likelihood functions of a weighted Box–Cox regression model and a weighted cumulative 

link model, respectively. Therefore, maximization can be carried out by standard routines of 

these models.

Note that the creation of the stacked design matrices also makes it easy to impose constraints 

on regression coefficients. For example, to constrain some covariate effects to be the same 

across some disease status, one can simply remove the corresponding interaction terms in 

the design matrices and carry out the estimation in an unconstrained fashion. Similarly, if the 

outcome vectors and the design matrices are also stacked for each test Tk, constraints on 

covariate effects across different tests can be easily adopted.

3. Computational consideration

3.1. EM initialization

The following two procedures are used to obtain the initial values of the EM algorithm.

The first procedure is based on existing clustering methods. It first performs a crude 

clustering on all test results Tk’s ignoring the covariates. Then the initial values are obtained 
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by performing the corresponding multinomial or cumulative link regression as specified in 

models (3)–(5) using results from the clustering method as values for the unknown disease 

status. Due to tests having mixed types, clustering methods based on Euclidean distance may 

not perform well, but any clustering method that allows for mixed-type variables can be used 

here. In particular, the method does not have to provide a hard classification, a fuzzy 

clustering method can also be used. In such case, the regressions to obtain the initial values 

become a weighted one. Clustering methods described in (Kaufman and Rousseeuw, 2009) 

(which are implemented in R package “cluster”) are adopted in our program. Fuzzy 

clustering method “fanny” appears to have better performance than others based on our 

experience.

Clustering methods work well when the influence of disease on test results is stronger than 

the influence of covariates, so that the groups are relatively separated. This may not always 

be the case, especially when biomarkers are involved. In general, it is recommended that one 

always chooses a wide range of initial values because the likelihood functions of finite 

mixture models usually have multiple local maxima (McLachlan and Peel, 2000). In our 

work, we always have 200 runs with random starting values, obtained by randomly 

assigning disease status to each individual and then performing the corresponding 

regressions. Results from all runs are then examined and the result with the highest 

likelihood value is chosen provided it is not a spurious local maximizer (more discussion are 

provided in Section 3.6).

3.2. Scaling the outcome vectors

For transformation regression, scaling the continuous test results Tk’s by the nth root of the 

Jacobian determinant det J of transformation Hk can often make computation more stable, 

especially when Tk’s have very different ranges or shapes. The scaling for the Box–Cox 

transformation is . Other than 

numerical stability, this scaling also makes the Jacobian term in the second line of Eq. (7) 

disappear: .

3.3. Unbounded likelihood

Finite mixture models may have unbounded likelihood functions. A simple example is two 

normal mixtures with heteroscedastic variances (Lehmann and Casella, 1998). This is 

because in the partial likelihood that relates to the continuous tests, the variance in the 

denominator can become very small. In our model for the continuous tests, the inclusion of 

transformation and covariates further complicated the situation. In this case, although the 

maximum likelihood estimates do not exist as a global maximizer, the work in Redner and 

Walker (1984) and Cheng and Traylor (1995) showed that there still exists a sequence of 

roots of the likelihood function corresponding to local maxima of the model, and they are 

consistent, efficient and asymptotically normal. Therefore, consistent estimates can still be 

obtained via an EM algorithm as long as we reach the consistent local maximum.

In the M step, the maximization of the second line in Eq. (7) is done by root finding of the 

corresponding gradient function so that one can reach local maximizers and avoid diverging 
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to the unbounded area of the likelihood function. Specifically, λk is obtained by solving the 

gradient function of the profile log likelihood as follows:

where , , , Uk(λk) is a L × 

N by 1 vector with element , and Sk(0) is a L × N by 1 vector with 

elements .

Substituting λk into log likelihood function and taking partial derivative with respect to β, 

we have . Similarly, 

.

It is possible to assume heteroscedastic variance in model (4), i.e., . In this 

case, the gradient function is,

where Vk(λk) is a N by 1 vector with elements , and Vk(0) is a N by 1 

vector with elements .

Then substituting λk into log likelihood function and taking partial derivatives with respect 

to β, we have , where 

. Similarly, 

where the subscript [d] indexes the corresponding dth “block” of the corresponding vector or 

matrix.
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3.4. Label switching

A finite mixture model has an inherited identifiability issue due to “label switching”. This is 

because as with most clustering methods, it only groups subjects who are similar. Group 

labels are assigned later according to the specific context. However, this causes the 

likelihood function having multiple local maxima with the same value, corresponding to 

different permutations of group labels. Model parameter estimates may appear to be 

inconsistent. On the other hand, if we can classify subjects correctly into similar groups, 

finding the correct group labels is usually straight forward in diagnostic testing studies, as it 

is often apparent which group is the diseased group and which is the healthy group. In 

particular, one can often assume the direction of association between tests and disease status 

is known. In our estimating procedure, these directions are included as input and used to 

assign disease group labels. Without loss of generality, we assume higher test results 

correspond to higher disease status all for all tests. Then, group labels are assigned 

according to the average rank of tests within each cluster. This approach also reduces the 

impact of initial values on the EM algorithm.

3.5. Acceleration and convergence

A squared polynomial extrapolation method (Varadhan and Roland, 2008) can be used to 

accelerate the convergence of the EM algorithm. The algorithm is developed for any fixed-

point iterative procedure, including the EM algorithm. It updates based only on values from 

the EM algorithm without requiring gradients. Briefly, let θ(i), θ(i+1), and θ(i+2) be three 

consecutive EM updates on previous extrapolation , then  is updated as θ(i) 

− 2α(θ(i+1) − θ(i)) − α2(θ(i+2) − 2θ(i+1) + θ(i)), where step length α = ‖θ(i+1) − θ(i) ‖/‖θ(i+2) 

− 2θ(i+1)+θ(i)‖.

Both absolute and relative tolerances can be used as convergence criteria. Absolute tolerance 

is defined as abstol = |θ(i+1) − θ(i)|, and relative tolerance is defined as reltol = (|θ(i+1) − 

θ(i)|)/(1 + |θ(i)|).

3.6. Spurious local maximizers

If the data have a group of outliers or a few data points that are overly close, the algorithm 

may fallaciously consider them as a group and results in a spurious local maximizer. This 

issue is usually eased when sample size is large. In diagnostic testing studies, since we 

usually have a good sense of group sizes for each disease group, spurious local maximizers 

can be easily identified. One can also impose constraints on group size or other parameters 

in the estimating procedure to avoid this issue. We did not choose this approach for the 

following reasons. With the relabeling procedure described in Section 3.4, the program 

mostly converges to the same place and rarely results in more than one solution. If it does 

occur, we believe it is worthwhile examining all the results since they may suggest an 

unexpected structure, incorrect modeling assumption of lack of model identifiability, rather 

than just a spurious solution. In addition, we also gain some computational simplicity.
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4. Model identifiability

When using a model-based clustering method to study unobserved structures, one should 

always check for model identifiability to avoid reaching a faulty conclusion. Due to the 

inherent “label switching” problem, a finite mixture model is not globally identifiable. As a 

result, establishing identifiability of such a model has mostly focused on local area around 

the result (Goodman, 1974; Jones et al., 2010). In particular, a model p = f (θ) is locally 

identifiable at θ0 if there exists some neighborhood  of θ0, such that f (θ) ≠ f (θ0), 

. This is equivalent to the Jacobian matrix of the modeling function f having 

full column rank. In the proposed model, one should evaluate the partial derivatives of model 

(6) at the converged value, and then check the column rank of the Jacobian matrix. Both of 

these can be done numerically.

It is worth mentioning that, our model includes covariates in both the models for mixing 

proportion πd(Z) and for component distribution γdk(X), and allows for differential 

covariate effects that vary across disease status. This flexibility does not cause much 

identifiability problem as compared with a similar model without covariates. This is because 

the covariate effects are modeled linearly on some scale in Eqs. (3)–(5). In particular, when 

the design matrices have full column rank, they may help restore model identifiability even 

when the corresponding model without covariate is not identifiable. More discussion can be 

found in Forcina (2008) and Wang (2013).

5. Simulations

We conducted various simulations to assess model performance. In all simulations, there 

were at least 3 continuous tests and 3 three-level categorical tests, denoted by . We 

simulated 3 disease groups with a binary variable Z ~ Bernoulli(0.5) that affects disease 

prevalence such that prevalence of the three disease groups  among 

subjects with Z = 0 and  among subjects with Z = 1. In other words, 

subjects with Z = 0 were most healthy, whereas risk factor Z = 1 leads to more subjects 

having mild or severe conditions. We compared the area under the ROC curve (AUC) values 

of each of the tests estimated based on the proposed model to those calculated using true 

disease group information. Mean biases and mean square error (MSE) are shown in Table 1. 

To keep the results concise, we only presented the results regarding AUC values for 

distinguishing disease level 1 versus disease level 0, denoted by AUC1vs.0, from 3 

representative tests. Results for other tests and for AUC2vs.1 are similar.

In most medical biomarker studies, as well as in our real data example, the biomarkers 

selected in the study are reflective of disease progression, i.e., they are informative 

biomarkers, with biological, in-vivo and even clinical evidence. In addition, the researchers 

usually have a good understanding of covariates that may affect the diagnostic performance 

of these biomarkers. This setting is investigated in the first two rows in Table 1. We can see 

that the AUC estimates based on the proposed model are fairly close to the AUC value 

calculated using true disease information. Both mean biases and MSEs are small, and 

decreasing with increasing sample size. In addition, we investigated settings where irrelevant 
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covariates (U1 and U2 in the table) or non-informative tests (iT1, …, iT3 in the table) were 

included in the model. We can see that including limited number of irrelevant covariates 

does not seem to affect the AUC estimates much. On the other hand, including non-

informative tests does affect AUC estimates slightly, possibly due to spurious association in 

finite samples. This is evident by two observations: first, the bias and MSE increase with 

higher number of non-informative tests; second, the bias and MSE decreases faster with 

increasing sample size, and at N = 1500 it is comparable to those in the first setting where 

there is no irrelevant covariates or non-informative tests. Nevertheless, all the 

aforementioned biases and MSEs are small, suggesting certain amount of robustness of the 

proposed model to these mis-specifications. However, one should note that including large 

number of non-informative tests can blur the clusters, as suggested by the slightly increased 

incidence of fitting errors and non-convergence in these settings. Finally, we examined 

situations where higher number of tests were included in the model. Rather than the 6 tests 

in , we added 3 to 18 additional tests in the model. The results are shown in the bottom 

part of Table 1. We can see that, with small sample size, including a large number of tests 

can cause bias; whereas with larger sample size, more tests can be included before 

increasing the bias. These results suggest that, when applying the proposed method, one 

should carefully choose a selected number of informative tests and consider increasing the 

sample size by roughly 100 for each additional test to be included.

6. Application to real data

We applied this method to a real data example concerning the clinical progression of 

Alzheimer’s disease. As clinical trials aim to begin testing therapies to reduce or eliminate 

AD pathologic lesions in participants with mild cognitive impairment (MCI) and even 

normal cognition, accurate identification of those with underlying AD pathology driving 

their cognitive decline will be critical. The inclusion of participants who do not have AD 

pathology and are unlikely to progress to dementia would reduce power to detect a positive 

effect of the drug as these participants are not “at risk” to benefit from the therapy. 

Therefore, accurate diagnosis is a necessary step in designing clinical trials to evaluate new 

therapies to treat AD.

The Clinical Dementia Rating scale (CDR) is one of the most commonly used assessment 

instrument for staging dementia severity (Morris, 1993). The CDR examines cognitive 

functioning in 6 domains: memory, orientation, judgment and problem solving, community 

affairs, home and hobbies, and personal care. CDR scores usually detect impairment long 

after the onset of pathological changes in the brain when the deterioration is sufficiently 

severe and has manifested into clinically detectable symptoms. Moreover, because the CDR 

is obtained through interviews, many factors may affect its accuracy. For example, subjects 

who are classified as having questionable, mild or even moderate impairment may be 

assessed as not impaired at later CDR assessments, suggesting possibly incorrect, or at least 

somewhat unstable, assessments. Therefore, although commonly used, the CDR is far from 

being a gold standard. On the other hand, imaging biomarkers are becoming increasingly 

available and have been used in conjunction with other clinical tests to improve diagnostic 

accuracy. This is because imaging biomarkers provide a more direct reflection of the 
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underlying pathological changes in the brain and have exhibited promising diagnostic ability 

when compared against the clinical diagnosis (Jack et al., 1999; Whitwell et al., 2008; 

Vemuri et al., 2009). It is expected that with imaging biomarkers, one can better distinguish 

subjects with true AD pathology from those who have a high CDR score due to transitory 

factors, such as depression, and therefore predict more accurately which subjects are likely 

to experience cognitive and/or functional decline at a follow-up visit. In this section, we 

apply the proposed method to assess this prognostic performance of combining Magnetic 

Resonance Imaging (MRI) biomarkers and CDR tests, to avoid biases due to imperfect 

reference standard and to estimate covariate effects on biomarkers/tests, therefore facilitating 

a personalized prognosis.

We used data from the National Alzheimer’s Coordinating Center (NACC) Uniform Data 

Set (UDS) from 2005 to present. Described previously (Beekly et al., 2007), the UDS is an 

approximately annual assessment performed at one of the 34 past and present Alzheimer’s 

Disease Centers (ADCs). At each assessment, demographic and clinical data are collected 

for subjects with normal cognition, mild cognitive impairment, AD dementia, and other 

dementias. Imaging data are available for a subset of UDS subjects who undergo imaging 

and have their images submitted voluntarily to NACC. Image summary calculations were 

performed by the IDEA lab (Director: Charles DeCarli, MD; University of California, 

Davis; http://idealab.ucdavis.edu/), following ADNI protocols (Jack et al., 2008). Only the 

first 5 domains of the CDR items are included in this analysis; personal care was excluded 

because deterioration in this domain usually happens in later stages of AD. The CDR items 

take on values of 0, 0.5, 1, 2, and 3 denoting increased impairment. We collapsed scores of 

1, 2, and 3 into one category for all tests to restrict our attention to subjects who have less 

impairment and thus more difficult to prognose. Three MRI-based biomarkers are included: 

volumes of hippocampus, white matter hyperintensities and temporal lobe gray matter. 

Many studies have suggested that these biomarkers are predictive of AD progression and 

provide possibly complementary prognostic information (Chetelat and Baron, 2003; 

Storandt et al., 2012). Covariates included in the model that relate to CDR items are age (in 

10-year unit), education (in years), and depression status within the past two years (binary). 

In the model that relates to the biomarker values, the covariates included are age and total 

brain volume (in 102 cc). Finally, in the model that relates to the prevalence, the covariates 

included are risk factors age and number of ApoE4 alleles (Blacker et al., 1997).

The analytic data set included subjects who had at least one MRI evaluation, had volumetric 

MRI biomarkers calculated, and had a UDS visit within 2 years of the MRI visit. This last 

requirement was imposed so that the CDR items were obtained at a time comparable to that 

of the MRI biomarkers. For the rest of the section, we refer to subjects’ first MRI visit and 

the corresponding UDS visit as their baseline visits. We apply the proposed method to 

evaluate the ability of MRI markers and CDR items to detect AD-related changes and 

therefore provide prognostic information, and validate the results with the subjects latest 

cognitive assessment.

A total of 359 subjects with complete information on aforementioned covariates are included 

in the analysis. Among them, there are 166 subjects with normal cognition, 29 subjects who 

are impaired but do not meet criteria for MCI, 123 subjects with MCI of any type (Roberts 
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and Knopman, 2013), and 41 subjects who have AD dementia, based on cognitive evaluation 

at the baseline visit. We consider two latent groups in our analysis defined by whether or not 

a subject has AD-related changes and thus is deteriorating towards AD. Results are shown in 

Table 2, where 95% confidence intervals (CIs) were obtained from bootstrap method with 

2000 bootstrap replicates.

These results suggest that the risk of developing AD related changes is associated with 

higher age and more ApoE4 alleles. Specifically, the odds of having AD related changes 

increases exp(0.57) = 1.77-fold (95% CI: 1.27 to 2.51) on average for every 10 years 

increase in age, and increases 2.27-fold (95% CI: 1.52 to 3.39) on average for every 

additional ApoE4 allele. The volumes of hippocampus and temporal gray are significantly 

lower in subjects with AD related changes after adjusting for total brain volume, suggesting 

possible diagnostic ability. Volume of white matter hyperintensities increase with AD related 

changes, consistent with existing studies, although this association is not significant based 

on these data. Moreover, increase in age is significantly associated with lower volume of 

hippocampus and higher volume of white matter hyperintensities among subjects in the 

same disease status group. This indicates the normal aging effect on brain structure, which 

should be taken into account when utilizing MRI biomarkers for AD diagnosis. From the 

test model, we find that AD related changes are significantly associated with lower CDR 

scores, as expected based on the validity of CDR tests. Additionally, education is 

significantly associated with higher test scores for subjects of the same disease status. Again, 

we see normal aging effect and additionally the effect of having depression within 2 years in 

lowing CDR scores, suggesting covariate effects need to be taken into consideration when 

developing threshold or other diagnostic rules regarding AD.

To have a more intuitive understanding of MRI markers’ diagnostic ability, we plot their 

receiver operating characteristic (ROC) curves based on model estimates in Fig. 1. This plot 

shows that when only a single MRI marker (adjusted by total brain volume) is used, the 

volume of hippocampus has highest diagnostic ability, followed by the volume of temporal 

gray. We can also see the clear advantage of including covariates when using these 

biomarkers as reflected by the ROC curves getting closer to the top left corner. In particular, 

the AUC is 0.71 (95% CI: 0.64 to 0.78) for hippocampal volume, without accounting for 

subjects’ characteristics; whereas the AUC increases to 0.74 (95% CI: 0.67 to 0.81) with 

covariate adjustment. Similarly, the AUC increases from 0.57 (95% CI: 0.49 to 0.63) to 0.65 

(95% CI: 0.55 to 0.73) for volume of white matter hyperintensities, and from 0.67 (95% CI: 

0.61 to 0.76) to 0.72 (95% CI: 0.62 to 0.79) for volume of temporal gray with covariate 

adjustment.

The model-based risk P(D|T, Xβ, Xγ, Z) can be obtained from the Bayes rule and model 

coefficient estimates. This risk score provides a convenient way of combining MRI markers 

and CDR items while taking into account varying prevalence and other covariate effects. As 

a partial validation, we compare the prognosis of the model based on baseline information 

with subjects’ latest cognitive status determined by clinicians. It is a partial validation 

because although the latest clinical diagnosis uses longitudinal and all available information, 

it is still far from a gold standard and may be incorrect especially if the follow-up time is 

short. Nevertheless, three prognostic scenarios are examined: among subjects who are 
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diagnosed as not normal at baseline, how well does the model distinguish those who convert 

back to normal from those who are MCI or AD at latest follow-up; among subjects who are 

diagnosed as any type of MCI, how well the model distinguishes those who improve to 

normal or impaired but not MCI from whose who deteriorate to AD; and among subjects 

who are diagnosed as normal, how well the model distinguishes those who stay normal from 

those who progress (impaired but not MCI, any MCI or AD). In this evaluation, the model-

based risk predicts that a subject will decline if the subject’s probability of being in disease 

group D = 1 is greater than 0.5, based on the estimate from the model. The results are shown 

in Table 3. The results suggest that the baseline CDR items and MRI biomarkers have 

prognostic ability for distinguishing between subjects who will deteriorate and those who 

will not. Specifically, among subjects who are diagnosed as not normal, the model correctly 

predicts 28 out of 30 subjects who revert back to normal, and 108 out of 160 subjects who 

deteriorate to MCI or AD, resulting in a specificity of 0.93 and a sensitivity of 0.67. For 

MCI subjects, the model correctly predicts 10 out of 12 subjects who improve and 36 out of 

55 subjects who decline (specificity = 0.83 and sensitivity = 0.69). The prediction is less 

optimal among normal subjects. This may be caused by the fact that long follow-ups are 

needed to examine subjects who are normal at baseline, and the prognostic performance of 

the model is masked by imperfection of latest clinical diagnosis. Similarly, we can also 

derive model-based risk without the MRI biomarkers, i.e., a personalized prognostic strategy 

based on CDR items and the subjects’ characteristics such as age. Similar results are also 

included in Table 3. This comparison allows us to see how much MRI biomarkers improve 

upon CDR items. We find that for the same specificity, introducing MRI biomarkers 

improves sensitivity slightly, although this increase is not statistically significant. The results 

also suggest that when the subjects’ characteristics are also included, the CDR items have 

good prognostic performance and can further distinguish among clinically similar subjects.

7. Discussion

A model-based clustering method for mixed type variables was introduced via the finite 

mixture modeling framework. The method represents an extension to current latent variable 

models. It was developed for two challenges in biomarker evaluations: (1) biomarkers are 

often used in combination with other tests; (2) a gold standard is often not available and 

other reference tests may be biased towards current tests and therefore mask the potential 

value of a biomarker. The proposed method allows for inclusion of possible differential 

covariate effects in both the mixture components and the mixing proportions. It also adopted 

a transformation model to relax the distributional assumption on the continuous manifest 

variables. We did not discuss the choice of number of latent classes, because research 

questions in medical studies usually make it apparent how many disease groups or subtypes 

one should consider. Otherwise, one can consider model selection criteria, such as BIC, to 

choose the number of latent classes. An R package “latentreg” has been developed for the 

proposed method. A preliminary version can be downloaded at: https://sites.google.com/site/

wangzylab/resources. Future work will involve the extension of the categorical part of the 

model to allow for a variety of link functions and possible nominal covariate effects, and the 

extension of the continuous component of the model to allow for other parametric 

transformations as well semiparametric transformation.
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Fig. 1. 
ROC curves of MRI biomarkers.
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