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Abstract

We consider a Bayesian method for simultaneous quantile regression
on a real variable. By monotone transformation, we can make both the re-
sponse variable and the predictor variable take values in the unit interval.
A representation of quantile function is given by a convex combination
of two monotone increasing functions ξ1 and ξ2 not depending on the
prediction variables. In a Bayesian approach, a prior is put on quantile
functions by putting prior distributions on ξ1 and ξ2. The monotonicity
constraint on the curves ξ1 and ξ2 are obtained through a spline basis
expansion with coefficients increasing and lying in the unit interval. We
put a Dirichlet prior distribution on the spacings of the coefficient vector.
A finite random series based on splines obeys the shape restrictions. We
compare our approach with a Bayesian method using Gaussian process
prior through an extensive simulation study and some other Bayesian ap-
proaches proposed in the literature. An application to a data on hurricane
activities in the Atlantic region is given. We also apply our method on
region-wise population data of USA for the period 1985–2010.

1 Introduction

In a regression model, if the distribution of the response variable is highly
skewed, traditional mean regression model may fail to describe interesting aspect
of the relationship between the prediction and response variables. For instance,
if we deal with the income distribution data of a certain state or country, the
traditional mean regression will get affected by the outliers, i.e., the income of
top 1–2 % people of that region, and hence is of limited use for prediction of
income of general people. This situation arises often in business, economics,
environmental and many other fields. As an alternative to traditional linear
regression, quantile regression is one of the most popular and useful regression
technique.

Extensive research have been done on quantile regression. Most of them
were approached from the frequentist perspective ([Koenkar (2005)]).
[Koenkar and Bassett (1978)] estimated the τth regression quantile for the dataset
{(Xi, Yi)}ni=1, by minimizing the loss function

∑n
i=1(Yi− β0− β1Xi)[τ − I(Yi−
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β0 − β1Xi < 0)] with respect to β0 and β1. Due to computational conve-
nience and other theoretical properties, this method remained popular for long
time. Later on, many other methods of quantile regression were proposed both
in frequentist and Bayesian framework. [Yu and Moyeed (2001)] introduced
Bayesian quantile regression for independent data. A few generalization and
extension of quantile regression were proposed in [Kottas and Gelfand (2001)],
[Gelfand and Kottas (2003)], [Kottas and Krnjajic (2009)]. These papers
mainly focused on quantile regression for a single quantile level for censored
independent data. [Geraci and Bottai (2007)] proposed the single level quantile
regression model with subject specific random intercept term which accounts
for within group correlation. The drawback of separate quantile regression for
different quantiles is that the natural ordering among different quantiles is not
ensured. In other words, the lower quantile estimation curves might cross the
upper quantile curves which violates the ordering of quantiles of a fixed distri-
bution.

There exist a few methods addressing the crossing issue in estimating mul-
tiple quantile regression. [He (1997)] proposed a method of estimating non-
crossing quantile curves assuming a heteroskedastic model for response variable.
Under this assumption, predictors might affect the response variable via a lo-
cation and scale change. [Neocleous and Portnoy (2008)] proposed a method
of estimating the quantile curve by linear interpolation on the estimated quan-
tile curves on a grid of quantiles. [Takeuchi (2004)] and [Takeuchi et al.(2006)]
used support vector machines (SVM, [Vapnik (1995)]) for non-crossing quan-
tile regression. But, as mentioned in [Shim and Lee (2010)], a disadvantage
of using SVM for non-crossing quantile regression is that when multiple quan-
tiles are needed, every adjacent pair of conditional quantile functions should be
computed. [Shim et al.(2009)] proposed non-crossing quantile regression using
doubly penalized kernal machine (DPKM). For this method also, we need to
compute quantile curves separately for each quantile. The method proposed
in [Wu and Liu (2009)] sequentially updates the quantile curves under the con-
traint that the upper quantile curves stay above the lower ones. A drawback of
this method is that the predicted quantile curves are dependent on the grid of
quantiles for which we want to calculate the quantile curves.

Quantile regression for fixed number of levels of quantiles with monotonicity
constraint was proposed in [Dunson and Taylor (2005)] and [Liu and Wu (2011)].
The method proposed in [Bondell et al.(2010)] is sensitive to the number of pre-
diction quantile levels. For spatial quantile regression [Reich et al.(2011)] used
Bernstein polynomial to maintain the monotonicity constraint of the quantile
function. [Reich (2012)] proposed non-crossing multiple quantile regression us-
ing piece-wise Gaussian basis functions to interpolate the quantile function at
different quantile levels. [Reich and Smith (2013)] suggested the use of different
symmetric and asymmetric quantile functions for modeling based on the data.
Models based on a fixed number of quantiles do not give the estimates of all
quantiles and may also be sensitive to the number and the location of the grid
points of the quantile levels, which is not desirable.

Instead of fitting quantile curves for a fixed set of quantiles, a more in-
formative picture emerges by estimating the entire quantile curve. Suppose
Q(τ |x) = inf{q : P (Y ≤ q|X = x) ≥ τ} denote the τ -th conditional quan-
tile (0 ≤ τ ≤ 1) of a response Y at X = x, X being the predictor. A linear
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simultaneous quantile regression model for Q(τ |x) at a given τ is given by

Q(τ |x) = β0(τ) + xβ(τ)

where β0(τ) is the intercept and β(τ) is the slope smoothly varying as function
of τ . Thus estimating the quantile function involves non-parametric estimation
of the function β0(τ) and β(τ). The main challenge in fitting this kind of model
remains in complying with the monotonicity restriction of the predicted quantile
lines β0(τ) + xβ1(τ) as a function of all values of the predictor X.

[Tokdar and Kadane (2012)] obtained a very useful characterization of the
monotonicity constraint (see Equation (1) below). They used the characteriza-
tion to propose a suitable prior on the quantile function in a Bayesian approach,
and computed the posterior distribution of the quantile curves. More specifi-
cally, they used two (possibly) dependent Gaussian processes ξ1(·) and ξ2(·) to
induce prior on β0(τ) and β(τ) in such a way so that Q(τ |x) remains a mono-
tonically increasing function of τ .

Gaussian processes do not have any shape restriction. To induce monotonic-
ity property on ξ1(·) and ξ2(·), [Tokdar and Kadane (2012)] took the running
integral of the exponential transformation of two (possibly correlated) Gaus-
sian processes. To evaluate the likelihood, it requires solving the equation
Q(τ |x) = y (see Equation (6) below). Without having a convenient expression,
the solution needs to be done completely numerically which involves comput-
ing integrals of transformed Gaussian process over a very fine grid. Substantial
improvement in computing approach is possible using a finite random series
prior ([Shen and Ghoshal (2015)]). Especially using a B-spline basis, mono-
tonicity can be ensured by choosing a prior only on coefficients in increasing
order. Piece-wise polynomial representation of splines allows obtaining τx(y)
solving analytically. Thus we can reduce computation time substantially using
a random series prior based on the B-spline basis.

2 Model Assumptions

We observe n independent random samples (X1, Y1), . . . , (Xn, Yn) of an explana-
tory variable X and a response variable Y , both of which are assumed to be
univariate. By monotonic transformations, we transform both of them to the
unit interval. From Theorem 1 of [Tokdar and Kadane (2012)], it follows that
a linear specification Q(τ |x) = β0(τ) + xβ1(τ), τ ∈ [0, 1], is monotonically in-
creasing in τ for every x ∈ [0, 1] if and only if

Q(τ |x) = µ+ γx+ σ1xξ1(τ) + σ2(1− x)ξ2(τ), (1)

where σ1 and σ2 are positive constants and ξ1, ξ2 : [0, 1] 7→ [0, 1] are mono-
tonically increasing in τ∈[0, 1]. Because Y also has domain [0, 1], we have the
boundary conditions Q(0|x) = 0 and Q(1|x) = 1. Now, putting τ = 0 in
Equation (1), and using ξ1(0) = ξ2(0) = 0, we obtain

µ+ γx = 0 for all x ∈ [0, 1]

which implies µ = γ = 0 and hence (1) reduces to

Q(τ |x) = σ1xξ1(τ) + σ2(1− x)ξ2(τ). (2)
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Now putting τ = 1 and using ξ1(1) = ξ2(1) = 1, we obtain

1 = σ1x+ σ2(1− x) for all x ∈ [0, 1],

which implies σ1 = σ2 = 1. Therefore in the present context, the quantile
regression function has representation

Q(τ |x) = xξ1(τ) + (1− x)ξ2(τ) for τ ∈ [0, 1], x, y ∈ [0, 1]. (3)

Equation (3) can be re-framed as

Q(τ |x) = β0(τ) + xβ1(τ) for τ ∈ [0, 1], x, y ∈ [0, 1], (4)

where β0(τ) = ξ2(τ) and β(τ) = ξ1(τ)−ξ2(τ) denotes the slope and the intercept
of the quantile regression, which are smooth functions of τ . Provided that
Q(τ |x) is strictly increasing in τ for all x, the conditional density for Y at y
given X = x is given by

f(y|x) =

(
∂

∂τ
Q(τ |x)|τ=τx(y)

)−1
=

(
∂

∂τ
β0(τ) + x

∂

∂τ
β(τ)|τ=τx(y)

)−1
, (5)

where τx(y) solves the equation

xξ1(τ) + (1− x)ξ2(τ) = y. (6)

Then the joint conditional density of Y1, . . . , Yn given X1, . . . , Xn is given by∏n
i=1 f(Yi|Xi).

3 Regression with Spline

Function estimation on a bounded interval through B-spline basis expansion is
one of the most convenient approaches. To construct a prior on the quantile
function Q(τ |x), or equivalently on ξ1 and ξ2, we need to ensure their monotoni-
cally increasing properties. If the coefficients in a B-spline basis expansion are in
increasing order, then the corresponding quantile function will be an increasing
function of τ ([Boor (2001)]). In fact, if the target function is strictly increas-
ing, the quality of the approximation of spline expansions is maintained when
the coefficients are restricted by increasing order ([Shen and Ghoshal (2015)]).
This motivates us to use B-splines with increasing coefficients as the basis of the
quantile function. The degree of B-spline determines the degree of smoothness,
in that quadratic splines are continuously differentiable, cubic splines are con-
tinuously twice differentiable and so on, and are able to optimally approximate
functions of smoothness index only up to the degree of splines. Thus optimal
estimation of smoother functions requires higher degree splines. On the other
hand, computational complexity increases with the degree of the B-spline basis.
Smoothness of order higher than two is typically not visually distinguishable
from smoothness of order 2, and therefore splines of degree up to 3 suffices
in most applications. In case of quadratic B-spline basis, Q(τ |x) is a linear
combination of piecewise second degree polynomials in terms of τ , and hence
restricted to an interval between two knots, Q(τ |x) is an increasing quadratic
function. Thus we can solve Q(τ |Xi) = Yi for each data points (Xi, Yi) analyti-
cally, unlike the case of Gaussian process prior, where one has to use numerically

4



integrate and apply iterative Newton-Raphson method to solve them for each
realization of the quantile process from its posterior distribution. Due to the
increasing complexity and higher computation time, results for with B-splines
of order higher than 3 have not been shown in this paper. For a cubic B-spline,
Q(τ |x) is linear combination of piecewise third degree polynomials. Hence, for
any given interval in the domain, Q(τ |x) is a monotonically increasing third
degree polynomial. Hence in this case also, τx(y) can be solved analytically.
However the analytic algorithm for solving cubic equation requires computing
all three roots even though only one root falls in the admissible interval, which
makes the cost of computing roots in a cubic equation substantial. Due to the
monotonicity of Q(τ |x), the bisection method of finding roots is an attractive
alternative. In our numerical experiments, we found that for cubic splines the
bisection method is slightly faster than the analytical approach.

Let 0 = t0 < t1 < · · · < tk = 1 be the equidistant knots on the interval [0, 1]
where ti = i/k, i = 0, 1, . . . , k. For B-spline of mth degree, the number of basis
functions is J = k+m. Let {Bj,m(t)}k+mj=1 be the basis functions of mth degree
B-splines on [0, 1] on the above mentioned equidistant knots. We consider the
following basis expansion of the quantile functions through the relations

ξ1(τ) =

k+m∑
j=1

θjBj,m(τ) where 0 = θ1 < θ2 < · · · < θk+m = 1,

ξ2(τ) =

k+m∑
j=1

φjBj,m(τ) where 0 = φ1 < φ2 < · · · < φk+m = 1. (7)

Taking θ1 = φ1 = 0 ensures ξ1(0) = ξ2(0) = 0 and θk+m = φk+m = 1 ensures
ξ1(1) = ξ2(1) = 1. The increasing values of the coefficients takes care on
monotonicity ([Boor (2001)]). Thus, ξ1 and ξ2 are monotonically increasing
functions of τ from [0, 1] onto [0, 1]. Let, {γj}k+m−1j=1 and {δj}k+m−1j=1 be defined
by

γj = θj+1 − θj , δj = φj+1 − φj , j = 1, . . . , k +m− 1. (8)

Hence

θj =

j∑
i=1

γi, φj =

j∑
i=1

δi, j = 1, . . . , k +m− 1. (9)

and the restrictions in (7) equivalently be written as

γj , δj ≥ 0, j = 1, . . . , k +m− 1, and

k+m−1∑
j=1

γj =

k+m−1∑
j=1

δj = 1. (10)

Therefore the spacings of the B-spline coefficients take value in the unit simplex.
A natural prior is thus given by the uniform distribution on the unit simplex, or
the Dirichlet prior with parameter (1, . . . , 1). The Bayesian procedures based on
quadratic splines (i.e. m = 2) will be called the Quadratic Spline Simultaneous
Quantile regression (QSSQR) and that based on cubic splines (i.e. m = 3) will
be called the Cubic Spline Simultaneous Quantile regression (CSSQR).
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3.1 Model Fitting

To compute the log-likelihood function, we proceed like [Tokdar and Kadane (2012)].
By (5), the log-likelihood is given by

n∑
i=1

log f(Yi|Xi) = −
n∑
i=1

log
∂

∂τ
Q(τXi

(Yi)|Xi)

= −
n∑
i=1

log
{
Xi

∂

∂τ
ξ1(τXi

(Yi)) + (1−Xi)
∂

∂τ
ξ2(τXi

(Yi))
}
,

(11)

where τXi
(Yi) is obtained from (6).

Due to the monotonicity of ξ1 and ξ2, any convex combination of them
will have one and only one solution on the interval [0, 1]. To evaluate the log-
likelihood we compute the derivatives of the basis splines ([Boor (2001)]),

d

dt
ξ1(t) =

k+m∑
j=2

θ̃jBj−1,m−1(t),
d

dt
ξ2(t) =

k+m∑
j=2

φ̃jBj−1,m−1(t),

where

θ̃j = (k +m)(θj − θj−1), φ̃j = (k +m)(φj − φj−1), j = 2, . . . , k +m.

The log-likelihood
∑
i

log f(Yi|Xi) thus reduces to

−
∑
i

log
{
Xi

k+m∑
j=2

θ′jBj−1,m−1(τXi
(Yi)) + (1−Xi)

k+m∑
j=2

φ′jBj−1,m−1(τXi
(Yi))

}
.

3.2 MCMC and Transition Step

In Equation (10), we note that {γj}k+m−1j=1 and {δj}k+m−1j=1 are on the unit
simplex. We shall use a Metropolis-Hastings algorithm to obtain Markov Chain
Monte Carlo (MCMC) samples from the posterior distribution. In MCMC,
to move on the simplex, we generate independent sequences Uj and Wj , j =
1, . . . , k +m− 1, from U(1/r, r) for some r > 1.

Define Vj = γjUj and Tj = δjWj for j = 1, . . . , k + m − 1. Consider the
proposal moves γj 7→ γ∗j and δj 7→ δ∗j given by

γ∗j =
Vj∑k
j=1 Vj

, δ∗j =
Tj∑k
j=1 Tj

, i = 1, . . . , k +m− 1. (12)

As shown in the appendix, the conditional distribution of {γ∗j }
k+m−1
j=1 given

{γj}k+m−1j=1 is

g(γ∗|γ) =

(
r

r2 − 1

)k+m−1( k+m−1∏
j=1

γj

)−1
(k +m− 1)−1

×
[{

min
0≤j≤k+m−1

(rγj/γ
∗
j )
}k+m−1

−
{

max
0≤j≤k+m−1

γj
rγ∗j

}k+m−1]
.
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Similarly, we can find the conditional distribution of {δ∗j }
k+m−1
j=1 . Now from the

given set of values for {γ∗j }
k+m−1
j=1 and {δ∗j }

k+m−1
j=1 the updated values {θ∗j }

k+m−1
j=1

and {φ∗j}
k+m−1
j=1 can be found using the following relation.

θ∗j =

j∑
i=1

γ∗i , φ
∗
j =

j∑
i=1

δ∗i j = 1, . . . , k +m− 1. (13)

While evaluating the likelihood, using the relations mentioned in Equation (8)
and (9), we can find the likelihoods at the initial and destination points respec-
tively in terms of {γj}k+m−1j=1 and {δj}k+m−1j=1 , and {γ∗j }

k+m−1
j=1 and {δ∗j }

k+m−1
j=1 .

The acceptance probability in Metropolis-Hastings algorithm is then given by

Pa = min

{
L(γ∗, δ∗)π(γ∗)π(δ∗)f(γ|γ∗)f(δ|δ∗)
L(γ, δ)π(γ)π(δ)f(γ∗|γ)f(δ∗|δ)

, 1

}
= min

{
L(γ∗, δ∗)f(γ|γ∗)f(δ|δ∗)
L(γ, δ)f(γ∗|γ)f(δ∗|δ)

, 1

}
, (14)

where L(·) denotes the likelihood and π is the uniform Dirichlet prior density
on the corresponding parameters.

3.3 Choosing value of k and Model Averaging

In the previous sections, we discussed fitting spline basis functions for fixed
number of partitions of equal length in [0, 1], the transformed domain of X. In
other words, we developed the methodology for fixed number of basis functions.
The number of basis functions k + m controls the smoothness and hence the
quality of the estimate. For smaller value of k, the bias is high but variability
is less, so there is a bias-variance trade-off. Moreover MCMC chain runs faster
with better mixing if the value of k is smaller. It is desirable to determine
the value of k based on the data to apply the right amount of smoothness. In
the Bayesian setting, it is natural to put a prior on the smoothing parameter
k and make inference based on the posterior distribution. For computational
efficiency, the range of k should be a finite collection of consecutive integers.
Once we fix the range of all possible values of k, we can either consider empirical
Bayes selection based on the marginal likelihood of k, or a Bayesian model
averaging. A common approach to posterior computation for a parameter space
of varying dimension is through the reversible jump MCMC method, but its
implementation can be challenging. An alternative approach is provided by the
method described in [Chib and Jeliazkov (2001)]. In this approach marginal
probabilities corresponding to different values of k are obtained from separate
MCMC output for each value of k. Since all these chains are run independently
of each other, parallel computing can be implemented, which can greatly offset
the cost of running separate chains for all feasible values of k. Both the empirical
Bayes approach by identifying the value of k with highest posterior probability,
and the hierarchical Bayes approach based on Bayesian model averaging, can
be implemented using this method, and they have identical computing cost.

Consider the mth degree B-spline with k many partitions of [0, 1] of equal
length. The equidistant knot sequence is given by 0 = t0 < t1 < · · · < tk = 1
such that ti = i/k for i = 0, . . . , k. Let ω = ({γj}k+m−1j=1 , {δj}k+m−1j=1 ) be the

7



parameter of interest. We denote the whole data by z, and with a slight abuse
of notation, denote the joint density of z also by f . The posterior density is
then given by

π(ω|z) ∝ π(ω)f(z|ω)

over S, a subset of R2(k+m−1), specified by the Equation (10). For any ω∗, the
logarithm of the marginal likelihood is given by

logm(z) = log f(z|ω∗) + log π(ω∗)− log π(ω∗|z). (15)

It is recommended to take ω∗ to be a point where it has high density under the
posterior. For any given value of ω∗, we can easily calculate the first two terms
of the Equation (15). Our goal is to estimate the posterior ordinate π(ω∗|y)
given the posterior sample {ω(1), ω(2), · · · , ω(M)}, where M denotes the number
of draws from the posterior sample after burn-in. Let us denote the proposal
density by q(ω, ω′|z) for the transition from ω to ω′. Suppose the probability of
move α(ω, ω′|z) is given by

α(ω, ω′|z) = min

{
1,
f(z|ω′)π(ω′)q(ω′, ω|z)
f(y|ω)π(ω)q(ω, ω′|z)

}
.

[Chib and Jeliazkov (2001)] proposed a simulation consistent estimate of the
posterior ordinate given by

π̂(ω∗|z) =
M−1

∑M
g=1 α(ω(g), ω∗|z)q(ω(g), ω∗|z)
L−1

∑L
j=1 α(ω∗, ω̃(j)|z)

, (16)

where {ω(g)} are the sampled draws from the posterior distribution and {ω̃(j)}
are the draws from q(ω∗, ω̃|z), given the fixed value ω∗. Then the estimated
logarithm of the marginal is given by

log m̂(z) = log f(z|ω∗) + log π(ω∗)− log π̂(ω∗|z). (17)

As mentioned in [Chib and Jeliazkov (2001)], the computation time of the marginal
likelihood of each of the probable model is small and is almost readily available
after the MCMC chain finishes. After finding the marginal likelihood for each
of those models, the value of k corresponding to the model with the highest
marginal likelihood can be treated as the best possible value of k. Suppose, we
fix the domain of k to be D where D is a collection of discrete natural num-
bers. Let, m̂i(y) denotes the marginal likelihood of k ∈ D. Now select the best
possible value of k by

K̂ = argmax
k∈D

log m̂k(z).

Afterwards, in this paper, we named the method of estimation with B-spline
basis functions corresponding to the k = K̂ to be the empirical Bayes (EB)
method.

Instead of choosing the value of k by the empirical Bayes method, another
possibility is to perform model averaging with respect to the posterior distribu-
tion of k over D. To find the weights of the corresponding models, we calculate
the marginal likelihood by the Metropolis-Hastings algorithm for each k follow-
ing the method described in [Chib and Jeliazkov (2001)]. After obtaining the
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marginal likelihoods for each value of k, we obtain the weighted average of the
estimated quantile curves where weights are proportional to their marginal like-
lihoods. Let, wk and m̂k(y) denote the weights and the marginal likelihoods for

k ∈ D. Let ξ̂1,k(τ) and ξ̂2,k(τ) be the posterior means of ξ1 and ξ2 respectively
for given k. Then we have

wk =
m̂k(y)∑
k∈D m̂k(y)

, k ∈ D

ξ̂1(τ) =
∑
k∈D

wk ξ̂1,k(τ) and ξ̂2(τ) =
∑
k∈D

wk ξ̂2,k(τ).

Monotonicity of ξ̂1,k(τ) for each k ∈ D ensures that ξ̂1(τ) is also monotonic.

Similarly, ξ̂2(τ) is also monotonic. We note that the estimated quantile functions
for each k is totally determined by the estimated coefficients of the correspond-
ing basis functions. Since their relation is also linear, to calculate the overall
posterior mean quantile function, it suffices to obtain the posterior mean of the
coefficients of the basis functions for each k. With the knowledge of weights
and posterior mean of basis coefficients for each k, we can derive the estimated
slope, intercept and quantile functions easily without saving the quantile func-
tion values over grid points. For the rest of this paper, we called this to be the
hierarchical Bayes (HB) method.

4 Large-sample Properties

In this section, we give arguments that indicate the posterior distribution based
on a random series of B-splines concentrates near the truth. We assume that
the true quantile regression function Q0(τ |x) (which necessarily has the linear
structure of the form β0,true(u)+βtrue(u)x is absolutely continuous with respect
to the Lebesgue measure and q0(τ |x) is the corresponding “quantile density
function”. We assume that q0 satisfies the following regularity condition:

(A) For any ε > 0, there exists δ > 0 such that for any strictly increasing,
continuous, bijection h : [0, 1] → [0, 1] such that supu |h(u) − u| < δ, we have∫

log q0(h(u)|x)q0(u|x)du < ε for all x.
We also assume that the true conditional density function f0(y|x) is pos-

itive and continuous (and hence is bounded above and below) and that the
distribution of X is G. Let F0(y|x) stand for the true conditional distribution
function.

Clearly the random quantile regression function (i.e., in the model following
the B-spline basis expansion prior) Q(τ |x) is differentiable with quantile density
function q(τ |x). Let the corresponding conditional density function be denoted
by f(y|x) and the cumulative distribution function F (y|x). We assume that the
prior on k is positive for all values.

It follows from a well-known theorem of [?] that the posterior distribution of
the joint distribution of (X,Y ) is consistent with respect to the weak topology
if for every ε > 0, the prior probability of∫ ∫

f0(y|x) log
f0(y|x)

f(y|x)
dy dG(x) < ε (18)

is positive. Below we show that the condition holds at the true f0 for the
B-spline random series prior.
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We follow the line of argument given in [Hjort and Walker (2009)] although
in our case the presence of the conditioning variable X makes the situation
considerably more complicated. Define hx(u) = F (Q0(u|x)|x). Note that if U
is U(0, 1), then Q0(U |x) has conditional density f0(y|x). Hence∫ ∫

f0(y|x) log
f0(y|x)

f(y|x)
dy dG(x)

=

∫ ∫
log

p0(Q0(u|x)|x)

p(Q0(u|x)|x)
du dG(x)

=

∫ ∫
log

q(hx(u)|x)

q0(u|x)
du dG(x)

=

∫ ∫
log

q(hx(u)|x)

q0(hx(u)|x)
du dG(x)

+

∫ ∫
log

q0(hx(u)|x)

q0(u|x)
du dG(x), (19)

where we have used the relation between quantile density and probability den-
sity q(u|x) = 1/f(Q(u|x)|x) and q0(u|x) = 1/f0(Q0(u|x)|x), and equivalently
f(y|x) = 1/q(F (y|x)|x) and f0(y|x) = 1/q0(F0(y|x)|x).

Note that the assumption implies that q0(u|x) = β′0,true(u) + β′true(u)x and
β′0,true(u) and β′true(u) are continuous functions, and hence for a sufficiently large
number of knots k, both functions can be approximated by a linear combinations
of B-splines up to any desired degree of accuracy. Fixing k at a sufficiently
large value (which has positive prior probability), we find the approximating
coefficients, and then consider all vector of coefficients in a small neighborhood
around the vector of approximating coefficients. By the choice of continuous
and positive prior density on the coefficient vector in the random spline series,
it follows that the event has positive prior probability. Thus neighborhoods
of the true quantile function get positive prior probabilities. In view of the
portmanteau theorem characterizing weak convergence in terms of convergence
of quantile functions (see [van der Vaart (1998)], Lemma 21.2), it follows that
weak neighborhood of the true distribution get positive prior probabilities, and
so do uniform neighborhoods of the true distribution in view of Polya’s theorem.
This means, in view of the Condition (A) on q0, that the second term in (19)
can be arbitrarily small with positive probability.

For the first term in Equation (19), by the same arguments we find that
q is uniformly close to q0 with positive probability, and hence the integrand
log(q(hx(u)|x)/q0(hx(u|x))) is small with positive probability since q0 is assumed
to be bounded below.

Thus the prior puts positive mass in neighborhoods defined by Equation (18),
and hence by Schwartz’s theorem, the posterior probability of all conditional
distributions F (y|x) satisfying∣∣∣∣ ∫ ψ(x, y)dF (y|x)dG(x)−

∫
ψ(x, y)dF0(y|x)dG(x)

∣∣∣∣ < ε

tends to one for any continuous function ψ on [0, 1]× [0, 1] and ε > 0.
The above conclusion on posterior consistency is about the conditional dis-

tribution function in terms of the weak topology, which does not immediately
show concentration of posterior for the quantile function in neighborhoods of
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the true quantile function. To this end, we further assume that the collection
of true conditional distribution function {F0(·|x) : x ∈ [0, 1]} is equicontinuous,
i.e., given ε > 0, there exists δ > 0 such that whenever |y−y′| < δ, we have that
|F0(y|x) − F0(y′|x)| < ε for all x. Then by an easy modification of the proof
of Polya’s theorem (see Lemma 2.11 of [?]), it follows that

∫
Fn(y|x)dG(x) →

F0(y|x)dG(x) for all y implies that
∫

supy∈[0,1] |Fn(y|x) − F0(y|x)|dG(x) → 0.

Thus the posterior probability of
∫

supy∈[0,1] |F (y|x)−F0(y|x)|dG(x) < ε tends
to one for any ε > 0. Now for any τ , as F0(Q0(τ |x)|x) = τ ,∫

|τ − F0(Q(τ |x)|x)|dG(x) =

∫
|F0(Q0(τ |x)|x)− F0(Q(τ |x)|x)|dG(x).

As f0 is bounded below by a positive number, this implies that the posterior
probability of supτ∈[0,1]

∫
|Q(τ |x) − Q0(τ |x)|dG(x) < ε tends to one for any

ε > 0.

5 Simulation Study

In Section 2, we note that after some monotonic transformation, every quan-
tile regression function can be represented in the form mentioned in equation
(3). For simulation purposes, we consider two different true quantile functions
structure. For each cases, we compare the true and the estimated values of the
slope, intercept and the quantile regression function for x = 0.3, 0.5 and 0.7,
τ = 0.25, 0.5 and 0.75 for sample size n = 100 by our proposed methods, Gaus-
sian SQR (GSQR) proposed in [Tokdar and Kadane (2012)], Bernstein polyno-
mial SQR (BPSQR) proposed in [Reich et al.(2011)] and qreg and qreg spline

functions under the BSquare package in R by [Smith and Reich (2013)] (see
[Reich (2012)],[Reich and Smith (2013)] for details).

For our proposed methods, suppose 0 = t0 < t1 < . . . < tk = 1 be the
equidistant knots on the interval [0, 1] such that ti = 1/k for all i = 0, 1, . . . , k.
Since MCMC does not mix very well for large values of k, we considered only
first 8 possible values of k for either cases (D = {3, 4, . . . , 10} for QSSQR and
D = {5, 6, . . . , 12} for CSSQR). Separately, for quadratic and cubic B-spline
methods, for each of the values of k, we run 20000 iterations with 5000 burn-in.
For QSSQR, while evaluating likelihood, we can solve (6) analytically very fast.
Although CSSQR can also be solved analytically, we note that the procedure
is considerably slower than bisection method. We apply the latter method
with precision of 2−10 ≈ 10−3, after finding the interval where yi is located for
i = 1, . . . , n, by linear search.

To calculate the marginal likelihood of each model, we need to calculate the
expression given by Equation (16). To calculate the numerator of that term, we

considered the last 5000 iterations and we take ω∗ = ({γ(l)j }
k+m−1
j=1 , {δ(l)j }

k+m−1
j=1 )

for l = 15000 where β(l) denotes the l-th update of the parameter β in MCMC.
Thus the numerator term is evaluated by the end of MCMC chain. To calculate
the denominator term, we consider 5000 draws of {ω(j)} from q(ω∗, ω|y). Then
we computed the marginal likelihoods of each model. We also computed the
estimates corresponding to weighted average quadratic and cubic spline models
taking the weights proportional to the marginal likelihoods over the domain
of values of k. We used parallel computing for different values of k to obtain
posterior probabilities.
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To implement the GSQR (Gaussian process SQR) method, proposed in
[Tokdar and Kadane (2012)], we took M = 101 equidistant knots over the in-
terval [0, 1], the starting and the ending knots being at 0 and 1 respectively. At
each iteration step, we save the values of the Gaussian process at those knots and
use those values for likelihood evaluations. We ran 20000 iterations with 5000
burn-in. We evaluate the likelihood function by solving (6) for each data-points
using Newton-Raphson method, as mentioned in [Tokdar and Kadane (2012)].
We took the precision for convergence criteria to be 10−3.

While estimating the quantile regression (QRF) functions using the func-
tions qreg and qreg spline functions under the BSquare package in R by
[?], for each case we performed 50000 iterations with 10000 burn-in. For BP-
SQR (Bernstein polynomial SQR) method we performed 10000 iterations with
1000 burn-in. The function (implemented in R by [Reich et al.(2011)]) for es-
timating the quantile functions used for this method is available at the link
http://www4.stat.ncsu.edu/ reich/code/SpaceQRapprox.R.

For our proposed method, we calculate the uniform 95% posterior credible
region for the quantile regression function (QRF) Q(τ |x), τ ∈ [0, 1] for three
distinct co-variate values x = 0.2, 0.5, 0.7 for τ ∈ [0, 1] for three different sizes of
sample n = 50, 100 and 200. To find the 95% posterior credible region for the
QRF for a given co-variate value using Empirical Bayes method, we calculate
the posterior mean of the estimated QRF for all τ ∈ [0, 1] for each value of
k ∈ D at that given covariate value X = x. Since we run 20000 iterations with
burn-in 5000, only last H = 15000 are used for calculating the posterior mean.
For a given k ∈ D and covariate value X = x, define REB(x,k) = {a1(x,k), . . . , a

H
(x,k)}

such that

ai(x,k) = sup
τ∈[0,1]

∣∣Q(i)(τ |x, k)− Q̂y(τ |x, k)
∣∣, i = 1, . . . , 15000

where Q(i)(τ |x, k) denotes the QRF for X = x in the i-th iteration after burn-in
for B-spline method with k partitions and Q̂y(τ |x, k) denotes the posterior mean
of the QRF for X = x for B-spline method with k partitions. After that we
calculate the 95th percentile of REB(x,k) for each k ∈ D. Thus we find the size of

the 95% posterior credible region for each value of k ∈ D. To find the coverage,
we repeat the simulation study 1000 times under different random number seeds
and count the number of times the distance of the true QRF from the estimated
EB estimate for all τ ∈ [0, 1] is not more than the size of the 95% posterior
credible region for EB approach of corresponding k.

In HB method, we again have 20000 iterations with burn-in 5000 and only
last H = 15000 are used for calculating the posterior mean. To find the 95%
posterior credible region for the QRF for a given co-variate value X = x in this
case, we calculate RHB(x) = {a1(x), . . . , a

H
(x)} such that

ai(x) = sup
τ∈[0,1]

∣∣Q(i)(τ |x)− Q̂y(τ |x)
∣∣, i = 1, . . . , 15000

where Q(i)(τ |x) denotes the QRF for X = x in the i-th iteration after burn-in
for B-spline method and Q̂y(τ |x) denotes the posterior mean of the QRF for
X = x for B-spline method. The weights corresponding to each k ∈ D to find
Q(j)(τ |x) and Q̂y(τ |x) are the same and they are derived as mentioned in section
3.3. Then we find the size of the 95% posterior credible region by calculating the
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95th percentile of RHB(x) . To find the coverage, we repeat the simulation study
1000 times under different random number seeds and count the number of times
the distance of the true QRF from the estimated HB estimate for all τ ∈ [0, 1]
is not more than the size of the 95% posterior credible region for HB approach.

It is well-known that posterior credible band of smooth functions have an un-
der coverage property (see [Cox (1993)], [Knapik et al.(2011)],[Szabo et al.(2015)],
[Yoo and Ghoshal (2016)]). To alleviate the problem, undersmoothing or mod-
ifying the credible region is needed. We inflate the obtained credible region by
blowing the radius of the region by a slowly increasing factor. We choose the
inflation factor f(n) = 0.8

√
log n in our examples. This works for all the sample

sizes n = 50, 100 and 200 under different simulation settings and different true
quantile regression functions. We report two simulation studies in this paper de-
scribed in Sub-section 5.1 and 5.2. We have also provided the posterior coverage
with and without inflation of uniform 95% posterior credible interval for three
different sample sizes under two different true quantile regression functions.

5.1 First Study

Consider Q(τ |x) = xξ1(τ) + (1− x)ξ2(τ) where

ξ1(τ) = (1−A)τ2 +Aτ, ξ2(τ) = (1−B)τ2 +Bτ

and A = 0.3, B = 0.6. We note that ξ1 and ξ2 are strictly increasing function
from [0, 1] to [0, 1] satisfying ξ1(0) = ξ2(0) = 0 and ξ1(1) = ξ2(1) = 1. Note
then the conditional quantile function is given by Q(τ |x) = a(x)τ2 + b(x)τ
where a(x) = x(1 − A) + (1 − x)(1 − B) and b(x) = xA + (1 − x)B. Observe
that since the quantile function is the inverse of the cumulative distribution
function, for U ∼ U(0, 1) the random variable Q(U |x) has conditional quantile
function Q(τ |x). We generate n values x1, · · · , xn of the predictor variable X
independently from U(0, 1). Then we simulate Y variable from the following
equation

Yi = aiU
2
i + biUi for all i = 1, . . . , n

where ai = xi(1−A) + (1− xi)(1−B), bi = xiA+ (1− xi)B and Ui’s are i.i.d.
U(0, 1), i = 1, . . . , n. We simulated n = 100 observations from the distribution
and compared the estimated results with the true ones for both Gaussian and
B-spline methods.

The comparative study of the performances in estimation of our method with
other methods under this simulation study has been provided in Figure 1. We
found that there is not much difference between the estimates given by quadratic
and cubic B-spline approaches. Hence, for convenience, we only compared the
output of our Hierarchical Bayes QSSQR method with other proposed methods
in these figures. The root mean integrated squared error (RMISE) is given by
the square root of the average of the square of the differences of the estimated
and the true values of the curves at those grid points. In Table 1, we compared
the RMISE for above mentioned estimated curves for all methods. It can be
noted that in our simulation study, the estimated slope, intercept, quantile
regression function for x = 0.3, 0.5, 0.7 and τ = 0.25, 0.5, 0.75 are curves on
the domain [0, 1]. To calculate the RMISE, we divide the interval [0, 1] using
partition (t0, t1, . . . , t100) such that 0 = t0 < t1 < · · · < t100 = 1 such that
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Methods Intercept Slope x = 0.3 x = 0.5 x = 0.7 τ = 0.25 τ = 0.50 τ = 0.75
QSSQR(HB) 0.039 0.059 0.029 0.037 0.030 0.008 0.035 0.038
QSSQR(EB) 0.097 0.088 0.071 0.081 0.037 0.025 0.076 0.066
CSSQR(HB) 0.026 0.048 0.034 0.042 0.05 0.021 0.03 0.051
CSSQR (EB) 0.033 0.069 0.034 0.041 0.051 0.051 0.051 0.014
GSQR 0.075 0.052 0.091 0.101 0.112 0.121 0.14 0.089
qreg 0.100 0.019 0.089 0.082 0.074 0.106 0.142 0.026
qreg spline 0.101 0.003 0.093 0.084 0.077 0.103 0.118 0.019
BPSQR 0.267 0.353 0.177 0.118 0.063 0.181 0.168 0.145

Table 1: (First Simulation study) Comparison of RMISE of estimation of slope,
intercept and quantile regression function at x = 0.3, 0.5, 0.7, τ = 0.25, 0.50, 0.75
and n = 100 under different methods QSSQR(HB); QSSQR(EB); CSSQR(HB);
CSSQR(EB); GSQR; qreg; qreg spline and BPSQR.

(ti−ti−1) = 0.01 for all i = 1, . . . , 100. We note that our proposed methods have
lower RMISE of estimation curves than that of GSQR. Among other methods,
qreg function from BSquare worked quite good, though our method yields lower
RMISE values for most of the cases. Among our set of proposed methods, we
do not see any noticeable improvement by using CSSQR instead of QSSQR. We
note that the HB approach has lower RMISE values than the corresponding EB
alternative.

In Table 2, we present estimation accuracy and coverage with and without in-
flation of the proposed methods for three different sample sizes n = 50, 100, 200.
We note that the posterior coverage of the inflated credible band for the Hier-
archical Bayes are typically better than that of corresponding Empirical Bayes.
No noticeable improvement is noticed by using CSSQR instead of QSSQR.

5.2 Second Study

To check the performance of the proposed Bayesian method when the quantile
function is not a polynomial, we consider,

ξ1(τ) = sin(
πτ

2
), ξ2(τ) =

log(1 + τ)

log 2

again, we note that ξ1 and ξ2 are strictly increasing function from [0, 1] to [0, 1]
satisfying ξ1(0) = ξ2(0) = 0 and ξ1(1) = ξ2(1) = 1. We generate a sample of
size n = 100 using the quantile function given by

Q(τ |x) = xξ1(τ) + (1− x)ξ2(τ).

In this case, the assumptions, precision, prior model parameter values, number
of iterations and burn-in have been taken to be the same as the previous study
for all above-mentioned models.

Under this simulation study, the comparative study of the performances in
estimation of our method with other methods has been provided in Figure 3.
Like the previous study, in this case also, we found that estimates given by
quadratic and cubic B-spline models are similar. So we only compared the
output of our QSSQR(HB) with other methods in the above-mentioned figures.
In Table 3, we compared the RMISE of the estimated curves for all methods.
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(a) Intercept (b) Slope

(c) Estimated QRF at x = 0.3 (d) Estimated QRF at x = 0.5

(e) Estimated QRF at x = 0.7 (f) Estimated QRF at τ = 0.25

(g) Estimated QRF at τ = 0.5 (h) Estimated QRF at τ = 0.75

Figure 1: (First Simulation study) Comparison of true and estimated intercept,
slope and estimated quantile regression functions (QRF) at x = 0.3, 0.5, 0.7,
τ = 0.25, 0.5, 0.75 and n = 100 for different methods QSSQR(HB), GSQR,
qreg, qreg spline and BPSQR.
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(a) QSSQR : ξ1(0.2) (b) CSSQR : ξ1(0.2) (c) GSQR : ξ1(0.2)

(d) QSSQR : ξ1(0.5) (e) CSSQR : ξ1(0.5) (f) GSQR : ξ1(0.5)

(g) QSSQR : ξ1(0.8) (h) CSSQR : ξ1(0.8) (i) GSQR : ξ1(0.8)

(j) QSSQR : ξ2(0.2) (k) CSSQR : ξ2(0.2) (l) GSQR : ξ2(0.2)

(m) QSSQR : ξ2(0.5) (n) CSSQR : ξ2(0.5) (o) GSQR : ξ2(0.5)

(p) QSSQR : ξ2(0.8) (q) CSSQR : ξ2(0.8) (r) GSQR : ξ2(0.8)

Figure 2: (First Simulation study) MCMC trace plots of ξ1(τ) and ξ2(τ) at
τ = 0.2, 0.5, 0.8 for QSSQR (k = 6), CSSQR (k = 9) and GSQR.
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Degree
Sample

size Type
x = 0.2 x = 0.5 x = 0.7

Size Coverage Size Coverage Size Coverage

QSSQR

n = 50
HB

0.2394
0.1513

99.7
86.1

0.1936
0.1224

99.3
77.5

0.2020
0.1277

98.3
75.1

EB
0.2327
0.1471

95.9
70.4

0.1935
0.1223

94.2
63.8

0.2210
0.1397

94.4
67.3

n = 100
HB

0.1925
0.1121

96.6
57.2

0.1734
0.1010

98.1
56.3

0.2158
0.1257

99.4
74.6

EB
0.2391
0.1393

97.2
67.1

0.2079
0.1211

97.8
66.7

0.2270
0.1322

96.6
67.4

n = 200
HB

0.2094
0.1137

98.8
61.2

0.1727
0.0938

98.1
41.7

0.2066
0.1122

99.2
58.6

EB
0.2296
0.1247

96.9
65.0

0.1803
0.0979

92.7
47.5

0.1994
0.1083

93.7
51.0

CSSQR

n = 50
HB

0.2475
0.1564

99.8
86.5

0.2109
0.1333

99.7
78.1

0.2225
0.1406

99.8
78.4

EB
0.2361
0.1492

97.7
68.7

0.1994
0.1260

95.8
60.7

0.1930
0.1220

92.1
50.7

n = 100
HB

0.2316
0.1349

98.9
68.9

0.1775
0.1034

95.9
41.0

0.1952
0.1137

95.7
49.6

EB
0.2168
0.1263

95.8
61.5

0.1768
0.1030

94.5
46.3

0.1882
0.1096

92.7
46.0

n = 200
HB

0.1978
0.1074

94.8
34.2

0.1749
0.0950

92.7
20.6

0.2088
0.1134

97.8
40.4

EB
0.1921
0.1043

92.9
38.7

0.1729
0.0939

92.2
29.2

0.1911
0.1038

93.5
37.6

Table 2: (First Simulation study) Size and posterior coverage of inflated (in
bold) and regular uniform 95% posterior credible interval of estimated quantile
regression function for x = 0.2, 0.5, 0.7 for τ ∈ [0, 1] for three different sizes
of sample n = 50, 100, 200 for QSSQR(HB), QSSQR(EB), CSSQR(HB) and
CSSQR(EB).

In Table 4, estimation performance and posterior coverage with and without
inflation using both quadratic and cubic splines are given. In this case also, the
proposed methods yield lower RMISE than other methods. Again, no noticeable
improvement on using CSSQR over QSSQR has been observed in this scenario
also. Like in the previous study, the HB method has lower RMISE values and
higher posterior coverage than the corresponding EB method.

In Figure 2, the trace plots of ξ1(τ) and ξ2(τ) have been provided at τ =
0.2, 0.5, 0.8 in the corresponding MCMC using QSSQR, CSSQR and GSQR
methods for the first simulation study. For QSSQR and CSSQR, the trace
plots have been provided for k = 6 and k = 9 respectively. In Table 5, we
compare the computation time of our proposed method with the only existing
method of simultaneous quantile regression (if we disregard other existing plug-
in type methods of non-crossing quantile regression), i.e., GSQR. For QSSQR,
the computation time for both HB and EB are same. The same is also true
for CSSQR. We note that, computation time of both QSSQR and CSSQR are
lower than that of GSQR, but the computation time of CSSQR is greater than
that of QSSQR, as expected. For simulation purposes, all these codes have been
written in MATLAB. Simulations have been performed in a cluster with DELL
R815 Quad Processor AMD Opteron 16 core 2.3 GHz machines with 512GB
RAM, each running 64Bit Fedora Core 20.
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(a) Intercept (b) Slope

(c) Estimated QRF at x = 0.3 (d) Estimated QRF at x = 0.5

(e) Estimated QRF at x = 0.7 (f) Estimated QRF at τ = 0.25

(g) Estimated QRF at τ = 0.50 (h) Estimated QRF at τ = 0.75

Figure 3: (Second Simulation study) Comparison of true and estimated in-
tercept, slope and estimated quantile regression functions (QRF) at x =
0.3, 0.5, 0.7, τ = 0.25, 0.5, 0.75 and n = 100 for different methods QSSQR(HB),
GSQR, qreg, qreg spline and BPSQR.

18



Methods Intercept Slope x = 0.3 x = 0.5 x = 0.7 τ = 0.25 τ = 0.50 τ = 0.75
QSSQR(HB) 0.020 0.053 0.024 0.040 0.040 0.039 0.040 0.044
QSSQR(EB) 0.041 0.103 0.025 0.035 0.047 0.064 0.058 0.034
CSSQR(HB) 0.021 0.079 0.036 0.050 0.064 0.048 0.062 0.063
CSSQR(EB) 0.034 0.079 0.040 0.051 0.063 0.058 0.034 0.060
GSQR 0.063 0.089 0.09 0.108 0.126 0.091 0.152 0.135
qreg 0.057 0.100 0.061 0.071 0.085 0.179 0.033 0.041
qreg spline 0.640 0.089 0.654 0.659 0.664 0.421 0.252 0.072
BPSQR 0.873 1.204 0.488 0.232 0.040 0.470 0.470 0.438

Table 3: (Second Simulation study) Comparison of RMISE of estimation
of slope, intercept and quantile regression function at x = 0.3, 0.5, 0.7,
τ = 0.25, 0.50, 0.75 and n = 100 under different methods. QSSQR(HB);
QSSQR(EB); CSSQR(HB); CSSQR(EB); GSQR; qreg; qreg spline and BP-
SQR.

Degree
Sample

size Type
x = 0.2 x = 0.5 x = 0.7

Size Coverage Size Coverage Size Coverage

QSSQR

n = 50
HB

0.2755
0.1741

100
93.3

0.2149
0.1358

99.3
83.7

0.2315
0.1463

98.9
81.4

EB
0.2514
0.1589

97.6
76.9

0.2157
0.1363

96.5
69.4

0.2483
0.1569

96.2
70.4

n = 100
HB

0.2421
0.1410

99.9
83.2

0.1894
0.1103

99.1
67.3

0.2127
0.1239

98.8
70.4

EB
0.1997
0.1163

93.4
55.5

0.1815
0.1057

93.8
53.2

0.2349
0.1368

96.8
65.7

n = 200
HB

0.1701
0.0924

95.1
39.6

0.1539
0.0836

94.1
26.6

0.1926
0.1046

98.9
48.8

EB
0.1921
0.1043

93.8
51.7

0.1856
0.1008

95.1
50.5

0.2175
0.1181

96.4
58.0

CSSQR

n = 50
HB

0.2563
0.1620

100
89.5

0.1880
0.1188

98.6
59.4

0.1935
0.1223

96.4
51.4

EB
0.2609
0.1649

98.8
84.4

0.1772
0.1120

89.7
43.7

0.2025
0.1280

89.8
46.2

n = 100
HB

0.2010
0.1171

96.0
54.2

0.1636
0.0953

92.5
29.9

0.2201
0.1282

99.1
59.8

EB
0.2192
0.1277

96.4
63.0

0.1755
0.1022

92.7
42.5

0.2209
0.1287

97.6
57.9

n = 200
HB

0.1897
0.1030

94.6
33.0

0.1698
0.0922

92.3
19.6

0.2048
0.1112

96.8
40.4

EB
0.2051
0.1114

95.1
46.6

0.1777
0.0965

92.2
35.8

0.2204
0.1197

97.3
57.2

Table 4: (Second Simulation study) Size and posterior coverage of inflated (in
bold) and regular uniform 95% posterior credible interval of estimated quantile
regression function for x = 0.2, 0.5, 0.7 for τ ∈ [0, 1] for three different sizes
of sample n = 50, 100, 200 for QSSQR(HB), QSSQR(EB), CSSQR(HB) and
CSSQR(EB).

Methods QSSQR CSSQR GSQR
Study 1 672 776 1479
Study 2 666 902 1566

Table 5: Coputation time (in seconds) of QSSQR, CSSQR and GSQR for sim-
ulation study 1 and 2 with sample size n = 100.
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6 Application to Hurricane Intensity Data

[Elsner et al.(2008)] argued that the strongest hurricanes in the North Atlantic
basin have gotten stronger over the last couple of decades. We apply our method
to the hurricane intensity data in the North Atlantic basin during the period
1981–2006. We use the weighted quadratic spline procedure, i.e., QSSQR(HB).
The whole data can be found in the link http://weather.unisys.com/hurricane/

atlantic/.
To use QSSQR(HB), we first mapped the explanatory variable years to the

interval [0, 1] by change of scale and origin. In this case, we map the year 1981
to 0 and the year 2006 to 1. To map the response variable, the wind speed
of the hurricanes at their maximum to the interval [0, 1], we assumed that the
velocities of the cyclone are coming from a Pareto distribution. The form of the
power-Pareto density is given by

f(y) =
ak(y/σ)k−1

σ(1 + (y/σ)k)(a+1)
y > 0

Similar to [Tokdar and Kadane (2012)] we fix the values of the parameters as
a = 0.45, σ = 52 and k = 4.9. The distribution function is given by

F (y) = 1− 1

(1 + (y/σ)k)a
(20)

Using equation (20), we transform the hurricane wind speeds to the percentile
values. Now, transformed y-values are well in the [0, 1] interval and then apply
the QSSQR(HB) method. After we evaluate our estimated quantile functions

ξ̂1(τ) and ξ̂2(τ), we find out the slope and intercept at functions of τ .
After we evaluate them, suppose we want to estimate the wind speed of

hurricanes at any particular year of the period 1981–2006, at a given quantile.
First we transform the given year to a value well within the interval [0, 1] via
linear transformation. Then we evaluate the value of transformed wind speeds.
After that we use the inverse transformation of Equation (20) on estimated
transformed speed to find the estimated wind speed at that desired quantile of
that year.

In the data, WmaxST stands for the velocity of the cyclones. In Figure 4a, we
note that the higher velocity cyclones are more frequent in the period 1997–2006
period than 1981–1990 period. We show the estimates for different quantiles
over the period 1981–2006 in Figure 4b by using QSSQR (HB). We note that,
the the quantile regression curves (QRF) are more steeper for higher quantiles
than the lower quantiles.

In order to check whether really the strongest tropical cyclones in the North
Atlantic basin have gotten stronger over the last couple of decades (argued by
Elsner et al. (2008)), we draw the estimated velocities as a function of quantiles
for the years 1981, 1986, 1991, 1996, 2001 and 2006 in Figure 4c. We note
that, for these 6 equidistant years, the estimated WmaxST corresponding to the
lower quantiles are not pretty much different. While, at higher quantiles, the
estimated WmaxST has an increasing trend with time,i.e., more recent years has
estimated WmaxST more than the older years for higher quantiles. In Figure 4d,
we show the posterior probabilities of the slope to be negative at the higher
quantiles, i.e., for τ ∈ [0.5, 1].
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(a) Comparison of first and last 10 year
data

(b) Simultaneous Quantiles

(c) Equidistant year-wise estimation (d) Probability of negative slope

Figure 4: (a) Comparison of WmaxST during first and last 10 years : The
dotted superimposed line is assumed power-Pareto density used for transform-
ing velocities; the solid superimposed lines are approximate density of WmaxST
for corresponding decades. (b) Simultaneous Quantiles: Estimated quantile
curves of velocities over the period 1981–2006 has been shown for the quantiles
τ ∈ {0.05, 0.10, 0.20, . . . , 0.80, 0.90, 0.95}. (c) WmaxST as a function of quantiles
for the years 1981, 1986, 1991, 1996, 2001 and 2006. (d) Posterior probability
of slope being negative for τ ∈ [0.5, 1].

7 Application to US Population Data

For last few decades, the population of the states of USA are changing. But the
rate of change of population is not same over all zones of USA. We can divide the
whole USA mainly in 4 regions namely Northeast, Midwest, South and West.
Due to the current trend of globalization, the rate of change of population over
the time is different for all these regions of USA. We apply the QSSQR(HB)
method of simultaneous quantile regression on the population data of USA over
the period 1985–2010. We use the USGS data where we can found population
of each county of USA for the years 1985, 1990, 1995, 2000, 2005 and 2010. The
whole data can be found in the link http://water.usgs.gov/watuse/data/.

Before applying our method, we did a monotone transformation so that both
predictor and response variables lie in between 0 and 1. We transform the years
to the unit interval via linear transformation so that the year 1985 gets mapped
to 0 and the year 2010 gets mapped to 1. For the transformation of the popula-
tion, we considered, the county-wise population of each region follows log-normal
density. We fit log-normal density to each of these regions separately. Then for
each region, for each county, we use the cumulative distribution function of the
population according to the corresponding log-normal distribution. After trans-
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forming both explanatory and response variables into the unit interval, we did
our analysis. After our analysis we transform the results back to the original
scale via the inverse transformation.

(a) Northeast (b) Midwest

(c) South (d) West

Figure 5: Estimated quantile curves of county wise population of North-
east, Midwest, South and West regions of USA for the quantiles τ ∈
{0.05, 0.10, 0.20, . . . , 0.80, 0.90, 0.95} over the years 1985–2010.

In Figure 5, we show the simultaneous quantiles of county-wise population
for all 4 regions of USA over the period 1985–2010. In Figure 6 we plotted the
estimated quantile regression function curve of population for τ ∈ [0, 1] for the
years 1985, 1990, 1995, 2000, 2005 and 2010 for all regions.

In Figure 7 we plot the posterior probabilities of the slope of the simultane-
ous quantile regression estimates to be negative for τ ∈ [0, 1] for all 4 regions.
We note that for the South region, the posterior probability of the slope being
negative is below 0.05 for all quantiles. Therefore in this region, population of all
types of counties have increased over the time. In the West, for τ greater than
0.35, the posterior probability of slope being negative is less than 0.05. That
implies population of the more populated counties have increased at higher rate
than less populated counties. In the Midwest, we note there is a big differ-
ence between the posterior probability of the slope being negative among the
sparsely and highly populated counties. Here, the population of sparsely popu-
lated counties have decreased over years, on the other hand, the population of
highly populated counties have increased. The possible reason is that as fewer
and fewer people are now relying on agriculture for their livelihood, new jobs
in the Midwest nowadays are available almost exclusively in urban areas. In
the Northeast, the probability of the slope being negative is low for sparsely
populated counties and relatively high for the highly populated counties. Since
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(a) North-east (b) Mid-west

(c) South (d) West

Figure 6: Estimated population for τ ∈ [0, 1] of Northeast, Midwest, South and
West regions of USA for the years 1985, 1990, 1995, 2000, 2005 and 2010

there are many highly populated cities in the Northeast, and most of these
cities are over-populated and expensive, people tend to move to the outlying
areas which still have all facilities and good connection to urban centers. Most
people immigrating to USA move in urban centers where jobs are more easily
available.

Overall, we note that except in the Northeast, population of all other regions
are significantly increasing for the high-populated counties. Overall, immigra-
tion is a significant force for the population growth of USA. Due to globaliza-
tion, people from different countries move in USA. Commonly they move in high
population areas in the urban areas because offices, business organizations, uni-
versities and other places of interests are mainly located in those regions. This
explains the reason why the population of the counties with high population are
generally increasing faster over time compared with sparsely populated counties.

8 Conclusion

In this paper we have proposed a Bayesian semi-parametric method for fitting
simultaneous linear quantile regression using quadratic and cubic B-spline basis
function. In order to estimate the coefficients of the B-spline basis functions, we
use Metropolis-Hastings algorithm. Finally, to select the optimum number of
B-spline basis functions, we calculate the model marginal likelihoods and choose
the model with the highest marginal log-likelihood, which we refer as EB. An
alternative approach is to use the hierarchical Bayes approach, denoted by HB,
which is a combination of a reasonable range of numbers of B-spline basis func-
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(a) North-east (b) Mid-west

(c) South (d) West

Figure 7: Estimated probability of negative slope for τ ∈ [0, 1] of Northeast,
Midwest, South and West regions of USA for the years 1985, 1990, 1995, 2000,
2005 and 2010

tion with weights proportional to their model posterior probabilities. From the
simulation study on RMISE and posterior coverage of the credible bands, we
note somewhat higher accuracy with HB approach over the EB. Since, compu-
tation time for both of these methods are the same, HB is preferred over the
EB. Even though the use of cubic B-spline basis function is more time consum-
ing than that of the quadratic B-spline basis, we do not find any noticeable
improvement in accuracy by using the former over the latter. However the cu-
bic B-spline approach produces estimates which are second order continuously
differentiable, instead of only continuously differentiable estimates obtained by
the quadratic B-spline approach.

Unlike most of the previous works on non-crossing quantile regression, the
proposed method can estimate the slope and the intercept of the quantile re-
gression equation as continuous function of τ . Most existing methods for non-
crossing quantile regression depend on the chosen grid of τ values where the
quantile regression coefficients are estimated. Due to the use of characteriza-
tion of required monotonicity of the simultaneous linear quantile regression, it
can be avoided in our approach. Besides, estimating the quantile regression
equation simultaneously gives further insight on the dependence structure of
the predictor and the response variable instead of looking at a fixed and finite
number of quantiles.

For the B-spline basis expansion approach, in the likelihood evaluation step,
due the piece-wise polynomial structure of B-spline basis function, we can solve
the Equation (6) analytically unlike using the Gaussian process prior where only
a numerical solution can be obtained after implementing numerical integration
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based on a chosen grid. In our proposed method, dependency structure of the
slope, intercept and the quantile function of the regression equation with the
spline coefficients being linear, it is enough to track the posterior mean of the
spline coefficients for the estimation purpose. Evaluation and storage of the
estimated quantile functions at grid points over the domain of estimation is
unnecessary for our method since, those can be directly derived from the pos-
terior mean of the estimated spline coefficients. So we can unfold each and
every details of our estimation by only using posterior mean of a few number
of parameters (and model weight vector for HB). This is sharply in contrast
of using a Gaussian process prior, for which each realization of the quantile
function from its posterior distribution needs to be stored on a grid. The grid
also needs to be sufficiently fine to maintain accuracy and smoothness. Though
taking more dense grid would improve the quality of estimation, on the other
hand, it would increase the computation time and will lead to the problems of
singularity of co-variance matrix of the underlying Gaussian process. Again for
estimation, we need to evaluate the estimated quantile function at any point
by kriging or interpolation. B-spline method does not need any subsequent
kriging or interpolation step as the entire estimation is obtained from the esti-
mated coefficients. In our simulation study, we noted that the proposed method
based on B-spline basis expansion has slightly more accuracy than the Gaussian
process based method for simultaneous quantile regression and several other
non-crossing quantile regression methods.

Application of our method on the north Atlantic hurricane intensity data
reveals that the intensity of the strongest hurricanes in the north Atlantic basin
have gotten more stronger whereas we did not notice any significant increase in
the wind speeds of the hurricanes near median or lower quantiles over the time
period 1981–2006. We also applied this method to analyze the rate of change of
county level population in the 4 regions of USA, namely, the Northeast, Midwest,
South and West, based on the 5-yearly data over the period 1985–2010. It gives
us a broader look into how the county population of different regions of USA
are changing over time. We note that except sparsely populated counties of the
Midwest, the population has generally increased over time in all regions.
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9 APPENDIX

9.1 Derivation of MCMC Transition Step

We take the uniform prior on {γj}kj=1 and {δj}kj=1 (i.e., Dirichlet(1,. . . ,1)).

We generate sequences {Uj}kj=1 and {Wj}kj=1 of independent random variables

from U(1/r, r) for some r > 1. Since {γj}kj=1 and {δj}kj=1 are independent and

{Uj}kj=1 and {Wj}kj=1 are also independent, it is enough to show the results for
the first variable transition steps and following conditionals. For the second set
of variables, the results will follow similarly. Below p will stand for a generic
(joint) density.

Define Vj = γjUj , j = 1, . . . , k. So we have,

p(V1, . . . , Vk|γ1, . . . , γk) =

k∏
j=1

{
r

(r2 − 1)γj

}
I

[
γj
r
≤ Vj ≤ rγj

]

Now, define V =
k∑
j=1

Vj . After transforming the variables we get,

p(V1, . . . , Vk−1, V |γ1, . . . , γk)

=

(
r

r2 − 1

)k( k∏
j=1

γj

)−1 k−1∏
j=1

I

[
γj
r
≤ Vj ≤ rγj

]

×I
[
γk
r
≤ V −

k−1∑
j=1

Vj ≤ rγk
]
.

We define γ∗j = Vj/V, j = 1, . . . , k − 1 and set γJ = (1 −
k−1∑
j=1

γj). Then after

transformation of variables we get

p(γ∗1 , . . . , γ
∗
k−1, V |γ1, . . . , γk)

=

(
r

r2 − 1

)k
V k−1

( k∏
j=i

γj

)−1 k−1∏
j=1

I

[
γj
rV
≤ γ∗j ≤

rγj
V

]

×I
[

γk

r(1−
k−1∑
j=1

γ∗j )

≤ V ≤ rγk

(1−
k−1∑
j=1

γ∗j )

]

=

(
r

r2 − 1

)J
V k−1

( k∏
j=i

γj

)−1 k∏
j=1

I

[
γj
rV
≤ γ∗j ≤

rγj
V

]

=

(
r

r2 − 1

)k
V k−1

( k∏
j=i

γj

)−1 k∏
j=1

I

[
θj
rγ∗j
≤ V ≤ rγj

γ∗j

]

=

(
r

r2 − 1

)k
V k−1

( k∏
j=i

γj

)−1
I

[
max
0≤j≤k

γj
rγ∗j
≤ V ≤ min

0≤j≤k

rγj
γ∗j

]
.
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Hence integrating over the range of V , we get

p(γ∗1 , . . . , γ
∗
k−1|γ1, . . . , γk) =

∫ min0≤j≤k rγj/γ
∗
j

max0≤j≤k γj/rγ
∗
j

(
r

r2 − 1

)k( k∏
j=1

γj

)−1
V k−1dV

Thus we get the conditional density to be

p(γ∗|γ) =

(
r

r2 − 1

)k( k∏
j=1

γj

)−1[{
min

0≤j≤k

rγj
γ∗j

}k
−
{

max
0≤j≤k

γj
rγ∗j

}k]/
k.

Similarly, we obtain,

p(δ∗|δ) =

(
r

r2 − 1

)k( k∏
j=1

δj

)−1[{
min

0≤j≤k

rδj
δ∗j

}k
−
{

max
0≤j≤k

δj
rδ∗j

}k]/
k.
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