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Abstract

Testing the association between a phenotype and many genetic variants from

case-control data is essential in genome-wide association study (GWAS). This is

a challenging task as many such variants are correlated or non-informative. Sim-

ilarities exist in testing the population difference between two groups of high di-

mensional data with intractable full likelihood function. Testing may be tackled

by a maximum composite likelihood (MCL) not entailing the full likelihood, but

current MCL tests are subject to power loss for involving non-informative or redun-

dant sub-likelihoods. In this paper, we develop a forward search and test method

for simultaneous powerful group difference testing and informative sub-likelihoods

composition. Our method constructs a sequence of Wald-type test statistics by

including only informative sub-likelihoods progressively so as to improve the test
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power under local sparsity alternatives. Numerical studies show that it achieves con-

siderable improvement over the available tests as the modeling complexity grows.

Our method is further validated by testing the motivating GWAS data on breast

cancer with interesting results obtained.

Keywords: Composite likelihood, Wald test, forward search, SNPs association test

1 Introduction

Testing population difference between two groups of multivariate data is common in many

fields of statistical research. Due to significant development of data acquisition technolo-

gies in recent years, more and more complex data — e.g. involving temporal or spatial

dependence among the sample units — can now be readily collected for statistical analysis.

However, this entails the use of tractable statistical models which are not easily available.

In particular, it may be difficult or even impossible to specify the full likelihood function

for testing the group difference. These challenges are common in analyzing case-control

data in genome-wide association study (GWAS), where for example we test associations

between a binary breast cancer phenotype and various genotype variants known as the

single nucleotide polymorphisms (SNPs). Note that testing genotype-phenotype associ-

ation from case-control data can be formulated as a two-sample statistical test problem.

But association testing for many genotype variants altogether entails a high-dimensional

statistical model, and makes it difficult to formulate a computationally tractable full

likelihood (Han and Pan, 2012).

These issues naturally suggests approximating the full likelihood function by a com-

putationally tractable one for constructing the test statistics for association testing. A

well-developed approximation is based on the maximum composite likelihood estimator

(MCLE), obtained by maximizing the product of low-dimensional sub-likelihood objects

instead of the full likelihood. Besag (1974) proposed composite likelihood estimation for
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spatial data while Lindsay (1988) developed composite likelihood estimation in its gener-

ality. Over the years, composite likelihood methods have proved useful in many applied

fields, including geo-statistics, spatial extremes and statistical genetics. See Varin et al.

(2011) for a comprehensive survey on methods and applications.

Like the familiar maximum likelihood estimator (MLE), the MCLE is asymptotically

unbiased and normally distributed under regularity conditions. This feature, is beneficial

for constructing Wald-type statistics for testing group differences (see Geys et al. (1999)

and Molenberghs and Verbeke (2005) among others), can also be used in MCLE based

testing. The standard approach here is to form a statistic using all the available data-

subsets (so that the MCLE is computed by combining all the feasible sub-likelihood

components). Although the resulting Wald test has known null distribution in the limit

due to the asymptotic normality of MCLE, it may exhibit unsatisfactory power when the

number of parameters in the model is moderate or large relative to the sample size.

In our view, forming a test statistic by all the available sub-likelihoods is not always

well-justified from either statistical or computational perspective. Specifically, when the

noise in the data is evident and the statistical model considered is very complex, inclusion

of sub-likelihoods that do not explain group differences will mainly be adding noise to the

Wald statistic. Clearly, this unwanted noise has the undesirable effect of deteriorating the

overall test power. A better strategy would be to choose only informative sub-likelihoods

relevant to group differences, while dropping noisy or redundant components as much as

possible.

Prompted by the above discussion, we propose a new approach — referred to as the for-

ward step-up composite likelihood (FS-CL) testing — for group difference testing. Given

a set of candidate data subsets used for constructing the sub-likelihood objects, our FS-CL

method carries out simultaneous testing and data noise reduction by selecting a best set

of sub-likelihoods so as to improve the resulting test power. Differently from the existing

approaches, we impose a sparsity requirement on our alternative hypothesis reflecting the

3



notion that only certain portion of data subsets fundamentally explains the difference

between groups. While testing the null hypothesis of no difference between groups, our

method makes efficient use of data by dropping noisy or redundant data subsets to the

maximum extent. This procedure is implemented by a forward search algorithm which,

similar to the well-established methods in variable selection, progressively includes one

more sub-likelihood at each step until no significant improvement in terms of power is

observed.

The new approach proposed can be extended to general linear hypothesis testing (cf.

chapter 7 of Lehmann and Romano (2005)) without fundamental difficulty, but will not

be pursued in detail in this paper. The remainder of the paper is organized as follows.

In Section 2, we describe the main framework for composite likelihood estimation and

overview the existing Wald-type association tests. In Section 3, we describe the new FS-

CL methodology and propose the forward search algorithm. In Section 4, we study the

finite-sample properties of our method in terms of Type I error probability and power

using simulated data. In Section 4.1, we apply our test to the case-control GWAS data

from Australian Breast Cancer Family Study. In Section 5, we conclude the paper by

providing some final remarks.

2 Composite likelihood inference

2.1 Sparse composite likelihood estimation

Consider a random sample of n observations on a d-dimensional random vector Y =

(Y1, . . . , Yd)
T following a probability density function f(y; θ), with unknown parameter

θ ∈ Θ ⊆ Rq and q = dim(Θ) ≥ 1. Let θ̂(w) be the profiled maximum composite likelihood
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estimator (MCLE) of θ, obtained by maximizing the composite likelihood function

`cl(θ;w) =

(
Ncl∑
k=1

wk

)−1 Ncl∑
k=1

wk`k(θ), (1)

where Ncl is the total number of sub-likelihood objects considered, w = (w1, . . . , wNcl
)T ∈

Ω = {0, 1}Ncl is a vector of binary weights referred to as composition rule, and `k(θ) ∝

log f(Sk; θ) is the sub-likelihood defined on the kth data subset Sk. The composite like-

lihood design is typically user-specified (Varin et al., 2011; Lindsay et al., 2011). For

example, `k can be based on all marginal events (Sk = {yk}, k = 1, . . . , d), all pair-wise

events (Sk = {yj, yl}, 1 ≤ j < l ≤ d ), or conditional events (Sk = {yk|yj, j 6= k},

k = 1, . . . , d).

In our parsimonious composition framework, each sub-likelihood `k(θ) is allowed to be

selected or not, depending on whether wk takes value 1 or 0, which results in an efficient

use of the data. The total number of selected sub-likelihoods, ‖w‖ =
∑Ncl

k=1wk, can be

much smaller than the total Ncl ones available. This is in contrast with the frequently used

composite likelihood setting where all the Ncl sub-likelihoods are selected. Particularly,

in the latter case w = wall = (1, . . . , 1)T , and no data noise reduction is attained.

A complication related to notations in composite likelihood is that the parameter θ

does not always have all its elements involved in each sub-likelihood `k(θ). To facilitate

presentation in the sequel, we rewrite `k(θ) as `k(θk) by using θk to represent the parameter

involved in `k(·). Thus the parameter θ is equivalently represented by (θ1, . . . , θNcl
) in

composite likelihood. This necessarily means (θ1, . . . , θNcl
) may contain common elements

or elements of known values. For example, if Y follows a d-variate normal distribution

Y ∼ Nd(µ, σ
2I) with µ = (µ1, . . . , µd−1, 0)T and I being the identity matrix, one may

define sub-likelihoods using marginal normal distributions N1(µk, σ
2
k), k = 1, . . . , d =

Ncl and equate µd with 0 and all σ2
k’s with σ2. In applying parsimonious likelihood

composition a subset of (θ1, . . . , θNcl
) indexed by the composition rule w may be adequate
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for representing θ; such a subset is denoted as θ(w) from the subspace Θw. It is easy to see

that Θw ⊆ Θ and dim(Θw) ≤ dim(Θ) although the cardinality qw = |Θw| may be greater

than q = |Θ| = dim(Θ). In the above example of Y ∼ Nd(µ, σ
2I), q = d and qw = 2(d−1)

if w = (1, . . . , 1, 0). There also exist examples where dim(Θw) < dim(Θ). The parameter

design discussed here is often used to simplify formulation and computation in complex

models (Varin et al., 2011). With this in mind we regard θ(w) as representing θ or one of

its sub-vectors in this paper, and denote the effective dimension of θ(w) as dw, dw ≤ q.

For fixed w, the MCLE θ̂(w) based on data of sample size n is a
√
n-consistent

and asymptotically normally distributed estimator of θ(w) under appropriate regular-

ity conditions (Varin et al., 2011). Specifically,
√
n(θ̂(w) − θ(w)) follows asymptoti-

cally a dw-variate normal distribution with zero mean and dw × dw covariance matrix

V (θ, w) = G−1(θ, w), where G(θ, w) = n−1H(θ, w)J(θ, w)−1H(θ, w), with H(θ, w) =

−E[∇2`cl(θ;w)] and J(θ, w) = V ar[∇`cl(θ;w)] being the Godambe information matrix

(Godambe, 1960). Next, we exploit MCLE’s asymptotic normality to derive sensible test

statistics for group difference testing.

2.2 Wald-type tests for group differences

Let Y
(g)
i ∼ f(y; θg), i = 1, . . . , ng , θg ∈ Θ ⊆ Rq, be d-vector observations in two groups

indexed by g = 0, 1 (e.g. case and control groups). As just discussed in section 2.1, we rep-

resent θg by θg(wall) = (θg1, . . . , θgNcl
), with each θgj, j = 1, . . . , Ncl, being a p-dimensional

parameter vector corresponding to the jth sub-likelihood. Note that the effective dimen-

sion of θg(wall) here still equals q thus some θgj’s given g must contain common elements

or some elements of known values. Suppose θg(wall)’s are to be estimated by MCLE.

A Wald-type statistic can be naturally constructed to test H0 : δ ≡ θ1 − θ0 = 0 vs.
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H1 : δ 6= 0, which is

TWald ≡ n δ̂T V̂ −1δ̂, (2)

where δ̂ = θ̂1(wall) − θ̂0(wall) with wall = (1, . . . , 1)T and θ̂g(wall), g = 0, 1, being the

MCLEs for the two groups; and V̂ = V̂ (wall) is a consistent estimator of the asymptotic

covariance matrix of
√
nδ̂. It is easy to see that δ̂ can be regarded as an MCLE for the

parameter difference of the two groups when no sub-likelihood selection is taken.

Under the null hypothesis H0 : δ = 0, the statistic TWald follows asymptotically a chi-

square distribution with q degrees of freedom (Molenberghs and Verbeke, 2005). Although

TWald has a known null distribution, the power of the test can be unsatisfactory when q is

relatively large. This is due to the fact that with no selection of sub-likelihood components,

pronounced noise in data subsets that does not explain the difference between groups may

deteriorate Wald test’s power as a consequence of inflating the covariance matrix V̂ .

To mitigate the above issues, Han and Pan (2012) studied modifications of the basic

Wald test. They replaced V̂ by simpler matrices resulting in two test statistics they called

TLSSB ≡ nδ̂T δ̂ and TLSSBw ≡ nδ̂Tdiag(V̂ )−1δ̂, where diag(V̂ ) denotes the diagonal matrix of

V̂ . The asymptotic null distributions for both statistics have the form
∑q

j=1 τjX
2
j , where

X2
1 , . . . , X

2
q are independent chi-square random variables with 1 degree of freedom, and

τj denotes the jth eigenvalue of V̂ and V̂ diag(V̂ )−1, for the LSSB test and LSSBw test,

respectively. Following Zhang (2005), the distribution of
∑q

j=1 τjX
2
j can be approximated

by a scaled-shifted chi-square distribution for aχ2
r + b, where χ2

r is random variable having

a chi-square distribution with r degrees of freedom, with a, b and r given by

a =

∑q
j=1 τ

3
j∑q

j=1 τ
2
j

, b =

q∑
j=1

τj −
(
∑q

j=1 τ
2
j )2∑q

j=1 τ
3
j

, r =
(
∑q

j=1 τ
2
j )3

(
∑q

j=1 τ
3
j )2

.

The LSSB and LSSBw statistics are easier to compute compared to (2). But they may
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still have low power when the sample size is not large enough. Another common test

is the UminP test with test statistic TUminP = max1≤j≤q{
√
n|δ̂|j/V̂ 1/2

jj } where V̂jj is the

jth diagonal element of V̂ (Pan, 2009). Other test statistics have been derived from the

composite likelihood ratio (CLR) test and score test reviewed in Varin et al. (2011). We

focus on Wald-type tests in this paper, but our rationale can be easily extended to CLR

and score tests.

3 Parsimonious composite likelihood testing

3.1 Optimal Wald composite test under sparse local alternatives

Recall that δ = θ1−θ0 as defined in Section 2.2 is equivalent to δ(wall) = θ1(wall)−θ0(wall)

which is a p × Ncl matrix of effective dimension q giving the group difference. Given a

composition rule w which is an Ncl-vector of 1s and 0s, let δ(w) be the same as δ(wall)

except its jth column δj(w) = 0 whenever wj = 0, j = 1, . . . , Ncl. Following the discussion

in Section 2.1, we still use dw to denote the effective dimension of δ(w) knowing that

dw ≤ q, and we want to test H0 : δ = 0 against H1 : δ 6= 0. Since some sub-likelihoods for

the data of the pooled vector variable Y = (Y (0)T , Y (1)T )T may not contain any significant

information about δ, testing these hypotheses using all candidate sub-likelihoods without

selection is unlikely to have a good power.

A plausible approach to overcoming this difficulty is to use more specific alternative

hypotheses by incorporating the composite rule information. Since models containing

redundant sub-likelihoods are unlikely to efficiently capture the group difference informa-

tion, we prefer to exclude them from consideration in our test by further adding a spar-

sity specification on the composition rule to the alternative hypothesis. Now we expect

a powerful group difference test can be achieved by sequentially testing the null hypoth-

esis against some alternatives containing a priori composition information and sparsity
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specification:

H0 : δ = 0 against H1 : δ(w) 6= 0 and ‖w‖ = N∗cl. (3)

Here w is a composition rule given a priori; and ‖w‖ = N∗cl, with N∗cl ≤ Ncl also given a pri-

ori, is regarded as a constraint on the model composition complexity. We will investigate

how to choose w and N∗cl in detail in sections 3.2 and 3.4.

Given a composition rule w of size N∗cl, we consider an MCLE of δ defined as δ̂(w) =

θ̂1(w)− θ̂0(w), where θ̂g(w), g = 0, 1, are group-specific profiled MCLEs, and test (3) by

the Wald test statistic

T (w) ≡ nδ̂(w)TV (w)−1δ̂(w), (4)

where V (w) is the asymptotic variance matrix of
√
nδ̂(w). For given N∗cl, we assume

there is an optimal composition rule, w∗ ∈ {0, 1}Ncl , typically with size ‖w∗‖ = N∗cl much

smaller than Ncl, such that the corresponding test statistic T (w∗) is most powerful among

those derived from all composition rules of size N∗cl. Namely,

w∗ = arg max
w: ‖w‖=N∗cl

P
{
χ2(dw, λ(w)) > Qα(dw)

}
, (5)

where χ2(a, b) denotes a random variable following a non-central chi-square distribution

with degree of freedom a and non-centrality parameter b, and Qα(k) is the upper α-

quantile of χ2(k, 0) with α being the significance level. The non-centrality quantity in (5)

is λ(w) = nE(δ̂(w))TV (w)−1E(δ̂(w)).

The optimal test statistic T (w∗) has a straightforward interpretation: it is determined

by the MCLE δ̂(w∗) and according to (5), gives the largest power among all Wald test

statistics of form (4) for testing (3). Under H0 : δ = 0, T (w∗) follows the chi-square

distribution with degrees of freedom dw∗ as n→∞ when w∗ is given. This null distribution
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is the same as that for the usual Wald test statistic (2), except that the degree of freedom

dw∗ may be smaller than q due to the use of the informative composition rule w∗.

3.2 Forward-search algorithm

The ideal test statistic T (w∗) outlined in the previous section is appealing from a theo-

retical viewpoint, but not very useful in practice, since it is not obvious how to compute

the optimal composition rule w∗ and the asymptotic covariance V (w∗). Such quantities

need to be carefully estimated in order to maintain T (w∗)’s power. We first proceed

to estimate the optimal composition rule w∗, which is computationally challenging even

when the number of feasible sub-likelihoods Ncl is moderate since the search space con-

tains 2Ncl − 1 possible composition rules. Assuming Ncl is given and V̂ (w) is available for

estimating V (w), we propose the following step-up forward search algorithm to efficiently

estimate w∗.

Let wA ∈ {0, 1}Ncl be a vector with its elements at index A ⊆ {1, . . . , Ncl} equal to

1, and zero elsewhere. At each iteration t = 0, 1, 2, . . . of the following algorithm, A(t)

denotes the index set of the active sub-likelihoods used in the Wald test statistic (4).

Main Algorithm: forward step-up composite likelihood (FS-CL) based test

0. Initialization. Set t = 0 (iteration counter) and A(0) = ∅ (active set of sub-

likelihoods).

1. Find a new sub-likelihood component with its index

h(t+1) = argmax
i∈A(t)

nδ̂(w
(t)
i )T{V̂ (w

(t)
i )}−1δ̂(w

(t)
i ) ≡ argmax

i∈A(t)

λ
(t)
i

where w
(t)
i = wA(t)∪{i} augmenting wA(t) , A(t)

= {1, . . . , Ncl} \ A(t) complementing
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A(t), δ̂(w) is the MCLE of δ(w) and V̂ (w) is a consistent estimate of V (w).

2. Update the active set of sub-likelihoods A(t+1) = A(t) ∪ {h(t+1)}.

3. Set t = t+ 1. Repeat 1 and 2 if t < N∗cl. Otherwise, stop the algorithm and obtain

the composition rule ŵ ≡ wA(N∗
cl

) , regarding it as an optimal estimate of w∗.

The rationale underlying the above algorithm is similar to well-established step-wise

algorithms used in the context of regression variable selection. Step 1 finds the most

promising sub-likelihood component in terms of its added signal relative to noise in the

current test statistics. Step 2 simply augments the current active set of sub-likelihoods,

A(t+1), by including the newly selected sub-likelihood. Step 3 gives a stopping criterion

in terms of the allowed maximum number of sub-likelihood components, N∗cl, which is

regarded as a complexity parameter for the overall composite likelihood function. A

separate discussion on the choice of N∗cl is given in Section 3.4.

The algorithm carries out N∗cl(Ncl− 0.5(N∗cl− 1)) evaluations of the MCLE of δ, which

is much smaller than the exponential rate in exhaustive evaluation. The final test statistic

is

Tfscl = nδ̂(ŵ)T V̂ (ŵ)−1δ̂(ŵ). (6)

Once the null distribution of (6) is determined, which will be detailed in Section 3.3, Tfscl

will be used to test (3). Note that if N∗cl = Ncl, the resulting test is then equivalent to

the classic Wald test including all the sub-likelihood components but may incur much

unnecessary computing. However, the test can be much more powerful if many sub-

likelihoods are redundant and be computationally efficient if N∗cl is not large. When

N∗cl = 1 and there is only one parameter to estimate in each sub-likelihood component

(i.e. p = 1), Tfscl will have the same form as the T 2
UminP test statistic of Pan (2009) given
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in Section 2.2.

It is difficult to estimate the asymptotic covariance matrix V (w) based on the an-

alytical formula provided at the end of Section 2.1. Instead, the estimated asymp-

totic covariance matrix V̂ (w) in Step 1 of the algorithm can be obtained by using non-

parametric bootstrap. Specifically, we sample with replacement the observations within

each group and then compute the bootstrap replicates of the MCLE for δ(w), denoted as

δ∗1(w), . . . , δ∗B(w). We use the replicates to compute V̂ (w) as

V̂ (w) =
1

B − 1

B∑
b=1

(
δ∗b (w)− δ∗(w)

) (
δ∗b (w)− δ∗(w)

)T
,

where δ∗(w) = (1/B)
∑B

b=1 δ
∗
b (w). Our empirical study shows that the one-dimensional

Tfscl statistics is robust under non-parametric bootstrap and it is sufficient for setting

B = 1000 for most cases in practice. The Jackknife method for computing V̂ (w) may also

be used.

Figure 1 illustrates the power of the final test statistic Tfscl in a simple simulated ex-

ample where two samples of 20-dimensional normal vectors, each of size 18, are generated

to test the mean difference. The normal distribution for the first sample is N20(θ0 =0, 9I)

and that for the second sample is N20(θ1, 9I) with I being the 20 × 20 identity matrix

and θ1 = (δ0, 0, . . . , 0)T . Once the data are simulated, we ignore the parameter values

underlying the true distributions and proceed to test H0 : δ = θ1 − θ0 = 0 at signifi-

cance level α = 0.05 using the proposed forward search algorithm and the FS-CL test

statistic Tfscl together with its simulated null distribution. We set the Ncl = 20 marginal

sub-likelihoods as all the ones available and consider four specified values for N∗cl in H1

in (3), i.e. N∗cl = 1, 5, 10, or 20 (which gives the classic Wald test). The power results

based on 10,000 simulations of the two-sample data are plotted in Figure 1. We see that

the FS-CL test dominates the Wald test in terms of power for any N∗cl < 20. Clearly the

largest power gain is obtained when N∗cl = 1, which should be the case since only the first
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marginal sub-likelihood contains the information about the nonzero component in δ in

truth.
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Figure 1: Power of the FS-CL test for hypotheses given in (3) where the first sample of
size 18 come from N20(0, 9I) and the second sample of size 18 from N20(δ, 9I) with δ =
(δ0, 0, . . . , 0). The solid black curve represents the Wald test corresponding to N∗cl = 20.
Power curves are estimated using 10,000 Monte Carlo simulations.

3.3 Null distribution for the FS-CL test

The null distribution of the FS-CL test statistic Tfscl is needed for drawing a conclusion

for the test. Let’s first consider a trivial case where the MCLE δ̂ = (δ̂1, . . . , δ̂Ncl
) has

its columns independent of each other; and each of its columns has the same effective

dimension p′ and the same asymptotic distribution. Then one can deduce the asymptotic

distribution for the FS-CL test statistic under H0 : δ = 0 with given N∗cl ≤ Ncl, which is

Tfscl|N∗cl
D→

N∗cl∑
i=1

χ2
(i)(p

′) as n→∞, (7)
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where “
D→” stands for convergence in distribution and χ2

(1)(p
′) ≥ · · · ≥ χ2

(Ncl)
(p′) are

reverse order statistics from Ncl independent χ2(p′) random variables. A closed-form

expression for the probability density function of
∑N∗cl

i=1 χ
2
(i)(p

′) conditional on Ncl is re-

ported in the Appendix. From the Bayesian viewpoint, before observing the data there is

a quite large number of equally plausible test statistics Tfscl|N∗cl, corresponding to a priori

models satisfying the constraint ‖w‖ ≤ N∗cl. In the Bayesian framework, the complex-

ity parameter N∗cl is treated as a random variable with uninformative prior distribution

π(N∗cl) = (1/Ncl, . . . , 1/Ncl)
T . Its approximate posterior distribution is discussed in Sec-

tion 3.4.

Figure 2 shows the asymptotic null density fT (t|N∗cl) of Tfscl|N∗cl in (7) obtained from

formula (14) for different values of N∗cl, together with its histogram estimate at N∗cl = 1

obtained from Monte Carlo simulation. Note that the right tail of the null density becomes

lighter when N∗cl is smaller. When N∗cl takes the largest value Ncl the null density becomes

the same as that for the Wald test statistic (2). This property of the null distribution

makes it more likely for the FS-CL test than the classic Wald test to reject the null

hypothesis H0 : δ = 0 when the alternative hypothesis is true.

In general the columns of the MCLE δ̂ are correlated with each other, thus the null

distribution of Tfscl is difficult to obtain. We propose to use a random permutation method

to acquire the null distribution of the FS-CL test statistic. The main idea is to permute the

data many times and use each permutation to compute a replicate of the test statistic.

The empirical distribution of the permutation replicates is used as an estimated null

distribution of the test statistic.

Specifically, we draw all the observations together and randomly distribute them into

different groups with the sample size in each group unchanged. By doing so, each per-

mutation can be treated as generating a new data sample under the null hypothesis that

there are no characteristic differences between groups. Using each newly generated data
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Figure 2: Null distribution for the test statistic Tfscl in (7) when p′ = 5, N∗cl = 1, 2, 5,
and Ncl = 5 (so N∗cl = 5 corresponds to the Wald test). The histogram is generated by
Monte Carlo simulation using N∗cl = 1 whereas the smooth pdf curves correspond to the
analytical density (14) given in the appendix.

sample, we compute the MCLE of the difference parameter δ and the corresponding FS-

CL test statistic as a permutation replicate. Repeating this procedure for B times, we

will then acquire B permutation replicates for the test statistic, denoted (T ∗(1), . . . , T
∗
(B)).

We use the empirical distribution of (T ∗(1), . . . , T
∗
(B)) as an estimate of the null distribution,

and use the upper α-quantile as the rejection threshold of the FS-CL test.

3.4 Choice of N ∗cl and the maximum posterior test statistic

Note that choosing different N∗cl, the maximum number of allowed sub-likelihoods in the

FS-CL algorithm in Section 3.2, leads to different test statistics Tfscl defined in (6). It

is thus important to discuss how to choose an appropriate value of N∗cl. Since N∗cl can

be regarded as a model complexity parameter, it seems natural to use a well-established

model-selection criterion for choosing N∗cl. We propose to use the composite likelihood
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Bayesian information criterion (CL-BIC) studied by Gao and Song (2010). The CL-

BIC is a robust generalization of the classic Bayesian information criterion (BIC) not

requiring that the estimating equation used corresponds to the true model. For a single

group of data of sample size n, the classic CL-BIC for a composition model including all

sub-likelihoods available is defined by

CL-BIC∗ = −2`cl(θ̂all;wall) + log(n)p̂∗, (8)

where `cl(θ;w) is the weighted composite likelihood function defined in (1) with w =

(1, . . . , 1)T , and θ̂all is the corresponding MCLE. The term p̂∗ = Tr(Ĥ−1Ĵ) represents

the estimated effective degrees freedom in the parameter with Tr(·) denoting the trace

function, and Ĥ and Ĵ are estimates of the Hessian and score variance obtained as

Ĥ ≡ Ĥ(wall) = −∇2`cl(θ̂all;wall), Ĵ ≡ Ĵ(wall) = V̂ar
{
∇`cl(θ̂all;wall)

}
. (9)

CL-BIC can naturally be extended for any composition model specified by the com-

position rule w, where we just need to replace θ̂all with θ̂w, wall with w, and p̂∗ with

p̂∗w = Tr(Ĥ−1(w)Ĵ(w)). In the special case of H(θ, w) and J(θ, w) defined in Section 2.1

being equal to each other (cf. Lindsay et al. (2011)), p̂∗w should equal dw approximately.

In our two-group sequential test, the group-specific composite likelihoods are

`
(j)
cl (θj;w) =

Ncl∑
k=1

wk`
(j)
k (θj)∑Ncl

k=1wk
, j = 0, 1, (10)

where `
(j)
k denotes the kth sub-likelihood in group j. Thus, we propose to construct the

combined two-sample CL-BIC for a composition rule w as

CL-BIC(w) = −2
{
`

(0)
cl (θ̂0;w) + `

(1)
cl (θ̂1;w)

}
+ log(n)

{
p̂∗(0)
w + p̂∗(1)

w

}
(11)
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where θ̂0 and θ̂1 are group-specific MCLEs, and p̂
∗(j)
w = Tr({Ĥ(j)(w)}−1Ĵ (j)(w)) with

Ĥ(j)(w), Ĵ (j)(w) computed similarly as in (9). In the special case of H(j)(θj, w) and

J (j)(θj, w) being equal to each other, j = 0, 1, we should have p̂
∗(0)
w + p̂

∗(1)
w = 2dw approxi-

mately.

With the proposed CL-BIC(w) we choose the best value of N∗cl as

N∗cl = argmin1≤t≤Ncl
CL-BIC(ŵ(t)),

where ŵ(t) is the final composition rule obtained from the FS-CL Algorithm in Section 3.2

after t steps.

In our setting, the CL-BIC model-selection framework offers a natural interpretation

as being induced from a posterior distribution for the composition complexity parameter

N∗cl. Specifically, under the discrete uniform prior for N∗cl, πN∗cl(k) = 1/Ncl, k = 1, · · · , Ncl,

the posterior of N∗cl is

πN∗cl(k|Y1, . . . , Yn) =
exp

{
−CL-BIC(ŵ(k))

}∑Ncl

s=1 exp {−CL-BIC(ŵ(s))}
.

Then, the best N∗cl value corresponds to the maximum a posteriori (MAP) estimate of

N∗cl and the resulting test statistic Tfscl|N∗cl is referred to as maximum a posteriori test

statistic.

4 Numerical examples and simulation study

Example 1: Normally distributed MCLEs. Consider a simulated example of MCLE-

based testing for the difference of group means from two samples of 40-dimensional normal

data with known covariance matrix. This is equivalent to testing H0 :
√
nδ̂ ∼ N40(0, V )

against H1 :
√
nδ̂ ∼ N40(δ, V ), where δ̂ is the MCLE of δ having 40 elements. We set the
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considered composite likelihood function to comprise up to Ncl = 20 independent pairwise

sub-likelihoods, where each candidate sub-likelihood is for a 2-dimensional subset of the

data and contains just two elements of δ. In generating the data satisfying H1, we consider

four models (m = 1, . . . , 4) and set the elements of δ as δj = (−1)j ·0.5(m+1)·I(j ≤ 6−m),

j = 1, . . . , 40, where I(·) is the indicator function. The covariance matrix of
√
nδ̂ is set as

V = INcl
⊗

1.5 0.2

0.2 1

 ,

where INcl
is an Ncl-dimensional identity matrix and “⊗” denotes the Kronecker product.

With this setting the number of the pairwise sub-likelihoods containing nonzero elements

of δ under H1 decreases from 3 to 1 as m increases from 1 to 4, while the magnitude of

each nonzero δj increases. Using the above setting we generate 10,000 replicates of
√
nδ̂

under H0 and H1, respectively. After that we set the significance level α = 0.05, and

compute the Monte Carlo estimates of the Type I error probability and the power for

the FS-CL test, the Wald test and two of its variants LSSB and LSSBw. The results are

summarized in Table 1.

Model (m) Type I error Power

FS-CL Wald LSSB LSSBw FS-CL Wald LSSB LSSBw

1 0.0461 0.0447 0.0462 0.0467 0.2736 0.2785 0.2040 0.2159

2 0.0481 0.0466 0.0467 0.0458 0.5793 0.5436 0.4073 0.4426

3 0.0491 0.0499 0.0501 0.0495 0.7951 0.7153 0.5615 0.6015

4 0.0509 0.0506 0.0511 0.0527 0.8568 0.7423 0.5977 0.6355

Table 1: Estimated Type I error and power for the FS-CL test, the Wald test, and the
LSSB and LSSBw tests described in Section 2.2, for testing H0 vs. H1. Results are based
on 10, 000 samples generated according to the setting described in Example 1.

From Table 1, we see all the tests have similar Type I error probabilities around α.

However, although the LSSB and LSSBw tests are computationally easier than our FS-CL

test, they are inferior in terms of power. This is expected since the LSSB test sets V = I
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and the LSSBw test uses only the diagonal elements of V , leading to loss of information

on the correlation between components of δ̂ belonging to the same sub-likelihood. In

summary, the FS-CL test performs uniformly better than all the other tests in terms of

power, in all situations where the number of informative sub-likelihoods involved is sparse.

Finally, we assessed the quality of the model-selection procedure annexed to our FS-CL

algorithm by computing the Monte Carlo estimates of the Hamming distance between the

optimally estimated composition rule ŵ given by the FS-CL test and the true composition

rule w∗ informed by each of the prescribed models. In all our simulations we have found

that the Hamming distance is essentially equal to 0 up to a negligible simulation error,

which confirms the FS-CL test systematically selects only informative sub-likelihoods to

construct the test statistic Tfscl.

Example 2: Latent multivariate Gaussian model. Now we investigate the per-

formance of our new test for categorical data analysis based on a latent multivariate

Gaussian model. This model has been previously studied for analyzing single nucleotide

polymorphisms (SNPs) data (cf. Pan (2009); Han and Pan (2012)). The advantage of

using the latent multivariate Gaussian model is its ability to model correlated categorical

variables through the latent quantiles and covariance matrix.

Consider independent d-vector observations Yi = (Yi1, . . . , Yid)
T , i = 1, . . . , n, with

each element Yij being categorical taking one of C labels 1, . . . , C. For the ith d-vector

observation, we assume there is a latent vector variable Zi = (Zi1, . . . , Zid)
T that follows a

multivariate Gaussian distribution, Zi ∼ Nd(0,Σ), where Σ is a d× d correlation matrix.

We also assume the existence of C − 1 quantile constants γj1, γj2, . . . , γj(C−1) for each

j = 1, . . . , d, such that for all i = 1, . . . , n, Yij takes label k if Zij ∈ Γjk ≡ (γj(k−1), γjk],

where k = 1, . . . , C with γj0 = −∞ and γjC =∞. It is easy to see that the marginal and

joint probability distributions of (Yi1, . . . , Yid) are determined by the quantile parameters

γ = {γj1, · · · , γj(C−1); j = 1, · · · , d} and correlation matrix parameter Σ. For example,
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Pr(Yij = 2) = Pr(γj1 < Zij ≤ γj2) and Pr(Yij = 2, Yij′ = 3) = Pr(γj1 < Zij ≤ γj2, γj′2 <

Zij′ ≤ γj′3), etc. We use θ to denote the vector collecting the elements in γ and Σ.

Let f(z1, . . . , zd; Σ) denote the d-variate normal density Nd(0,Σ). Now estimating the

quantile parameters γ from the data (Y1, · · · , Yn) can be done by maximizing the weighted

one-wise marginal composite likelihood function

CL1(γ) =
n∏
i=1

d∏
j=1

 C∏
k=1

[∫
Γjk

f(zj; 1)dzj

]I(Yij=k)
wj

, (12)

where I(Yij = k) is an indicator function and (w1, · · · , wd) is the binary weight vector

(hence Ncl = d here). One can extend (12) by including pairwise likelihood components

as described in Han and Pan (2012) so that γ and Σ can be estimated simultaneously.

We consider having two groups (case and control) of d = 6 dimensional observations

each taking one of C = 3 labels (categories). The correlation structure of the latent

vector variable is set to be Σ = I where I is a d-dimensional identity matrix. The

group-specific latent parameters are then θ0 = γ0 and θ1 = γ1. For the control group we

set γ0 = (−0.3, 0.3;−0.3, 0.3;−0.3, 0.3;−0.3, 0.3;−0.3, 0.3;−0.3, 0.3) as the true values,

while for the case group we set γ1 = γ0 + δ where δ = (−ε, ε; 0, 0; 0, 0; 0, 0; 0, 0; 0, 0) and

ε = 0.3, 0.4, 0.5. We generate 1000 Monte Carlo samples of size n = 200 (100 controls

and 100 cases) using the above setting, and denote the group-specific MCLEs by γ̂0 and

γ̂1, respectively, where γ̂0 and γ̂1 are 2 × 6 dimensional vectors. For each sample, we

compute the MCLE difference δ̂ = γ̂1− γ̂0 and estimate the asymptotic covariance matrix

V of
√
nδ̂ by nonparametric bootstrap as described in Section 3.2. We then perform

the FS-CL test and the Wald, LSSB and LSSBw tests discussed in the paper for testing

H0 : δ = 0 against a sparse local alternative. We use the permutation method to simulate

the null distributions and the associated 0.05 level critical values in these tests, by which

we compute the Monte Carlo estimates of the Type I error and the power of these tests
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based on the 1000 generated samples.

FS-CL Wald LSSB LSSBw

ε \ N∗cl 1 2 3 4 5 6

0 0.045 0.052 0.048 0.047 0.046 0.045 0.056 0.053

0.3 0.614 0.585 0.543 0.518 0.501 0.496 0.203 0.181

0.4 0.873 0.840 0.812 0.776 0.755 0.752 0.380 0.328

0.5 0.979 0.972 0.950 0.938 0.927 0.924 0.653 0.584

Table 2: Monte Carlo estimates of Type I error probability (ε = 0) and power (ε > 0) of
the various tests when the data have the latent multivariate Gaussian model described in
Example 2. The tests considered are FS-CL with N∗cl ranging from 1 to 6 and the Wald
test, LSSB and LSSBw tests described in Section 2. Note that the Wald test corresponds
to N∗cl = 6 (no selection). Results are based on 1000 Monte Carlo samples.

Table 2 gives the Monte Carlo estimates of the Type I error probability (in row ε = 0)

and the power (in rows ε > 0). The table reveals the power for the FS-CL test is

considerably larger than that for all the other tests in all simulated situations of group

difference of size ε. Specifically, the power improvement is dramatic when comparing the

FS-CL test with the LSSB and LSSBw tests for values of ε closer to zero.

Also Table 3 shows the values of CL-BIC described in Section 3.4 for each N∗cl. We

see CL-BIC is minimized at N∗cl = 1 in all the scenarios of ε. This result conforms to the

true setting used in generating the Monte Carlo samples. Namely, only the first one-wise

marginal sub-likelihood contains the information about ε. Thus the power of the FS-CL

test should be the largest at selecting N∗cl = 1, which is clearly confirmed by the results

in Table 2.

Example 3: Effects of increasing the number of candidate sub-likelihoods.

We continue by considering the latent Gaussian model underlying the case-control data

described in Example 2 to see how the FS-CL test procedure and the other discussed tests

perform as the number of candidate one-wise sub-likelihoods, Ncl, grows. In the set-up

we let Ncl = d change from 6 to 20 but let only the first one-wise sub-likelihood contain

the information of case-control difference. We continue to assume C = 3 categories for
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ε \ N∗cl 1 2 3 4 5 6

0.3 431.76 440.49 449.11 457.46 465.90 474.23

0.4 424.61 436.60 446.48 455.46 464.29 472.86

0.5 414.31 431.38 442.96 452.83 462.19 471.13

Table 3: Composite likelihood Bayesian information criterion (CL-BIC) values at different
maximum numbers of steps (N∗cl) in the forward step-up algorithm described in Section 3.2.
The values are the averages computed based on 1000 Monte Carlo samples generated
from the multivariate latent Gaussian model in Example 2 with various magnitudes of
the parameter difference under the alternative hypothesis (i.e. ε = 0.3, 0.4, 0.5).

each variable in the data. But differently from Example 2, we consider parameter vectors

γ
(m)
0 and γ

(m)
1 of length 2(m + 5), for m = 1, . . . 15 (note Ncl = m + 1). Specifically, we

set γ
(m)
0,i = 0.3× (−1)i, i = 1, · · · , 2(m+ 5), and γ

(m)
1 = γ

(m)
0 + δ(m) where δ(m) is a vector

of length 2(m+ 5) with ith element δi = 0.8× (−1)i, if i ≤ 2, and δi = 0 otherwise. The

covariance matrix Σ of the latent vector variable is set as the identity matrix. For each

model m = 1, . . . , 15, we generate 200 Monte Carlo samples of size n = 120 (60 cases and

60 controls) and estimate the test power where the significance level is set as α = 0.05.

Figure 3 displays the Monte Carlo estimates of power (represented by the dots), to-

gether with their 95% probability intervals, for the FS-CL, Wald, LSSB and LSSBw tests

as the number of candidate sub-likelihoods grows. As the number of uninformative sub-

likelihoods increases, it shows the LSSB and LSSBw tests are increasingly weak compared

to the FS-CL and Wald tests. The FS-CL and Wald tests have similar power when the

number of candidate sub-likelihoods is small. Remarkably, the Wald test’s performance

decreases dramatically when Ncl increases, while the power of the FS-CL test remains

stable regardless of the number of irrelevant sub-likelihoods considered. This behavior

can be explained by noting that, as the data dimension d (consequently the number of

candidate sub-likelihoods Ncl) increases, more noise is added to the unweighted composite

likelihood. Therefore those sub-likelihoods informative for distinguishing the alternative

hypothesis from the null will become less significant in the Wald, LSSB and LSSBw tests.
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Figure 3: Monte Carlo estimates of the power for the FS-CL test, and the Wald, LSSB and
LSSBw tests described in Section 2.2 for increasing numbers of sub-likelihoods ranging
from 6 to 20. Vertical bars denote the simulated 95% probability intervals of the power.
The results are obtained based on 200 Monte Carlo samples from the multivariate latent
Gaussian model as described in Example 3.

In contrast, the FS-CL test tends to keep such informative sub-likelihoods and to remove

the noisy ones, therefore having achieved a stable high power (always near 0.9 in Figure 3).

4.1 Analysis of the Australian Breast Cancer Family genomic

data

In this section, we apply the FS-CL procedure and the Wald, LSSB and LSSBw tests to

data from a case-control study on breast cancer. Cases are obtained from the Australian
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Breast Cancer Family (ABCF) study (McCredie et al., 2003) while controls are from the

Australian Mammographic Density Twins and Sisters Study (Odefrey et al., 2010). The

data set consists of 356 observations (284 controls and 72 cases) on 100 SNPs. SNPs are

the mutated pairs of single nucleotide (A,T,C,G) in a DNA sequence. These mutated pairs

can be categorized into three groups denoted as 0, 1 and 2 (0 and 2 are homozygous and

1 denotes heterozygous). After recommended data cleaning and quality control, the final

dataset comprises 356 vector observations on 61 SNP variables and contains no missing

data. Our objective is to test the significance of association between the SNPs and breast

cancer.

Case 1: Weakly dependent SNPs. In order to illustrate our testing procedure in

the context of weakly dependent SNPs, we select 10 SNPs (rs10082248 A, rs806645 T,

rs3765945 G, rs1056836 C, rs4148326 C, rs6717546 A, rs1845557 C, rs3775774 C, rs1651074 A,

and rs528723 C) as reported in Figure 4. These SNPs are selected by investigating sample

correlations of all the 61 SNPs and picking those SNPs with the pairwise sample correla-

tions, among the selected, being smaller than 0.1. To test the significance of association

between the selected SNPs and breast cancer, we fit a latent Gaussian model described

in Example 2 for these SNPs using the maximum composite likelihood method, and then

implement the FS-CL procedure, with various choices of N∗cl, for testing the case-control

difference between the quantile parameters involved in the latent model.

FS-CL Wald LSSB LSSBw

N∗cl 1 2 3 4 5 6 7 8 9 10

CL-BIC 676 465 573 651 653 703 750 782 821

p-value 0.12 0.04 0.08 0.08 0.09 0.10 0.10 0.10 0.09 0.09 0.50 0.27

Table 4: Composite likelihood Bayesian information criterion (CL-BIC) with respect to
N∗cl ranking from 1 to 9, as well as the p-values of the FS-CL test and the Wald type tests
described in Section 2.2, for the 10 weakly dependent SNPs. The CL-BIC values are com-
puted using (11), and the p-values of the FS-CL test are acquired from the permutation
null distribution of the test statistics as described in Section 3.3.
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Table 4 shows the p-values of the FS-CL test, as well as the CL-BIC values for N∗cl

ranking from 1 to 9. The CL-BIC values suggest that N∗cl = 2 yields the best fitted model.

When N∗cl = 2, the p-value of the FS-CL test is 0.04, while the p-value for the Wald, LSSB

and LSSBw tests are 0.09, 0.50, and 0.27 respectively. At the 0.05 significance level the

FS-CL test rejects the null hypothesis of no SNPs association with the disease, while the

other tests cannot reach the same conclusion.

When N∗cl = 2, the FS-CL procedure selects SNPs rs806645 T and rs10082248 A

as having significant association with the disease. To investigate the validity of this

selection, we conduct marginal chi-square association tests for between individual SNPs

and the disease. Figure 4 shows the correlations between the SNPs under consideration

and the p-values from the marginal association tests. From Figure 4 we see the 10 weakly

dependent SNPs considered in this case include the first SNP from the first 5 correlated

ones and the last 9 ones. The two SNPs selected by the FS-CL have very small p-values

(marked with thick lines), compared to the other SNPs.

For illustration, Figure 5 (left) displays bootstrap distributions of the MCLEs of the

latent quantile parameters for a selected SNP (rs806645 T) in the respective case and

control groups, while Figure 5 (right) displays the counterparts for an unselected SNP

(rs3765945 G). The triangles and circles represent the bootstrap replicates from the case

and control groups respectively. When comparing case and control groups for a selected

SNP, the figure implies the quantile parameters values for the two groups are well sepa-

rated, concentrating into different clusters. On the other hand, the bootstrap distributions

for an unselected SNP are overlapping and not clearly distinguishable. Both Figures 4

and 5 suggest that the SNPs selected by the FS-CL procedure are more likely to change

their values from control to case, and they appear to have significant effects on breast

cancer.

Case 2: Dependent SNPs. Next, we focus on clusters of dependent SNPs having

high correlations. For illustration purpose, we choose the cluster of SNPs rs806645 T,
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Figure 4: SNP plot of the 14 SNPs used in assessing the group difference in regard to their
associations with breast cancer. The first SNP and the last 9 SNPs are used in Case 1 in
Section 4.1; and the first 5 SNPs are used in Case 2 in Section 4.1. The right hand side of
the figure shows the p-values (under a negative log scale) of the association tests between
individual SNPs and breast cancer. The thick lines refer to the two selected SNPs by the
FS-CL procedure. LHS of the figure shows the correlation heat map among SNPs (light
color for small correlation).

rs2754530 T, rs2268796 A, rs4952220 C, and rs2300697 C. They are the first five SNPs

in Figure 4 which are highly correlated. Other clusters can also be analyzed which will

not be detailed here.

Table 5 shows the p-values of the FS-CL test at specified N∗cl = 1, . . . , 4. It also gives

the corresponding CL-BIC values, which suggest that the composite likelihood containing

a single sub-likelihood with N∗cl = 1 gives the best modelling. The p-value of the FS-CL

test at N∗cl = 1 equals 0.04, while the p-values for the Wald, LSSB and LSSBw tests are

0.08, 0.09, and 0.03 respectively. At significance level 0.05, the FS-CL and LSSBw tests

suggest the null hypothesis be correctly rejected, while the other tests cannot reach the

same conclusion.
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Figure 5: Bootstrap distributions for the quantile parameters estimates γ̂1 and γ̂2 for the
selected SNP rs806645 T (left) and the unselected SNPs rs3765945 G (right), obtained
from 100 bootstrap replicates. Triangles represent estimates from the case group and
the solid contour lines specify the estimated confidence regions in the case group. Small
circles represent estimates from the control group and the dashed contour lines specify
the estimated confidence regions in the control group.

5 Conclusion and discussion

Building on the well-established composite likelihood estimation framework, we have de-

veloped a method of simultaneous composition rule selection and group difference testing

in multivariate parametric models for high-dimensional data. The method is particularly

useful for multiple genotype-phenotype association testing in genome-wide association

study. It constructs sparse composite likelihood by including a small number of informa-

tively selected sub-likelihoods, while dropping redundant or noisy sub-likelihoods that do

not contribute to explaining the group difference or genomic association. The procedure

is implemented by our forward search and test algorithm which progressively includes

useful sub-likelihoods by step-up maximizations of the bootstrap estimated power. In all

our numerical experiments, the resultant FS-CL test has higher power than the composite
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FS-CL Wald LSSB LSSBw

N∗cl 1 2 3 4 5

CL-BIC 676 739 772 801

p-value 0.04 0.02 0.06 0.08 0.08 0.09 0.03

Table 5: CL-BIC values with respect to N∗cl ranking from 1 to 4, as well as the p-values
of the FS-CL test and the Wald type tests describe in Section 2.2, for the 5 dependent
SNPs. The CL-BIC values are computed using (11), and the p-values of the FS-CL test
are acquired from the permutation null distribution of the test statistics as described in
Section 3.3.

likelihood based Wald, LSSB and LSSBw tests, with remarkable power gains when the

model complexity increases.

The FS-CL method has been applied to analyze a case-control dataset for GWAS,

obtained from Australian Breast Cancer Family Study, under the multivariate latent

Gaussian framework studied by Han and Pan (2012). The FS-CL test enables us to

conclude about the significant overall association between particular SNPs and breast

cancer, while the other Wald-type tests often cannot identify any such association. Based

on the performance of the FS-CL test in our numerical experiments, we believe the FS-CL

procedure can be a valuable tool for simultaneous model selection and group difference

(or genomic association) testing.

Generalizing the FS-CL procedure is possible, which may lead to further improvements

in terms of estimation accuracy and test power. First, recall that the composite likelihood

function (1) admits only binary weights with w ∈ {0, 1}Ncl . A natural implication of this

framework is the sparsity of the resulting likelihood composition (and the induced param-

eter space). Developing a continuous weighting scheme for strengthening informativeness

of the selected sub-likelihoods may further decrease the MCLE variance and increase the

test power. So far the overall model complexity in our framework is kept under control

by running a forward step-up procedure for including informative sub-likelihoods pro-

gressively, and by limiting the maximum number of sub-likelihoods N∗cl (cf. Section 3.4).
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In using continuous and sparse weights, however, the model complexity control may be

better achieved by a sparsity-inducing smoothness penalization scheme for the weights,

in the same spirit of the well established high-dimensional variable selection procedures

in the regression literature (see e.g. Bühlmann and Van De Geer (2011)).

Appendix: Density for the sum of ordered gamma variables

Let Y1, · · · , YK be K i.i.d. Γ(2−1p′, 1) random variables. Define Sk =
∑k

j=1 Y(j), k =

1, . . . , K, with Y(1) ≥ · · · ≥ Y(K) being the reverse order statistics of Y1, · · · , YK . Let

fS(t|k) be the density of Sk. It is easy to show that the asymptotic density of the FS-CL

statistic Tfscl following (7) is fT (t|N∗cl) = 2−1fS(2−1t|k = N∗cl). Let gν(x), Gν(x) denote

the density function and distribution function of a Γ(ν, 1) distribution, respectively. Alam

and Wallenius (1979) derived an analytic form for the density of Sk which is given as

fS(t|k) =
k
(
K
k

)
Γ(2−1p′ + 1)K−k

∞∑
r=0

(−1)rdr,K−klr,k
1

r!
g2−1p′K+r(t), (13)

where lr,k =
∫∞

0
x2−1p′(K−k)+r(1−G2−1p′(x))k−1g2−1p′(x)dx; dr,s is computed recursively as

d0,s = 1, dr,1 =
p′

p′ + 2r
, dr+1,s =

p′s

2

r∑
j=0

(
r

j

)(
2−1p′ + 1 + r − j

)−1
dj,s−1, s > 1.

Thus, the asymptotic density of the test statistic Tfscl following (7) is given by

fT (t|k) =
k
(
K
k

)
2Γ(2−1p′ + 1)K−k

∞∑
r=0

(−1)rdr,K−klr,k
1

r!
g2−1p′K+r(2

−1t), (14)

which is a mixture of χ2 distributions with varying degrees of freedom.
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