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Abstract

We consider the problem of multivariate location and scatter matrix es-
timation when the data contain cellwise and casewise outliers. Agostinelli
et al. (2015b) propose a two-step approach to deal with this problem: first
apply a univariate filter to remove cellwise outliers and second apply a
generalized S-estimator to downweight casewise outliers. We improve this
proposal in three main directions. First, we introduce a consistent bivariate
filter to be used in combination with the univariate filter in the first step.
Second, we propose a new fast subsampling procedure to generate starting
points for the generalized S-estimator in the second step. Third, we con-
sider a non-monotonic weight function for the generalized S-estimator to
better deal with casewise outliers in high dimension. A simulation study
and real data example show that, unlike the original two-step procedure,
the modified two-step approach performs and scales well for high dimen-
sion. Moreover, the modified procedure outperforms the original one and
other state of the art robust procedures under cellwise and casewise data
contamination.

1 Introduction

In this paper, we address the problem of robust estimation of multivariate location
and scatter matrix under cellwise and casewise contamination.

Traditional robust estimators assume a casewise contamination model for the
data where the majority of the cases are assumed to be free of contamination.
Any case that deviates from the model distribution is then flagged as an outlier.
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In situations where only a small number of cases are contaminated this approach
works well. However, if a small fraction of cells in a data table are contaminated
but in such a way that a large fraction of cases are affected, then traditional
robust estimators may fail. This problem, referred to as propagation of cellwise
outliers, has been discussed by Alqallaf et al. (2009). Moreover, as pointed out by
Agostinelli et al. (2015b) both types of data contamination, casewise and cellwise,
may occur together.

Naturally, when data contain both cellwise and casewise outliers, the prob-
lem becomes more difficult. To address this problem, Agostinelli et al. (2015b)
proposed a two-step procedure: first, apply a univariate filter (UF) to the data
matrix X and set the flagged cells to missing values, NA’s; and second, apply the
generalized S-estimator (GSE) of Danilov et al. (2012) to the incomplete data set.
Here, we call this two-step procedure UF-GSE. It was shown in Agostinelli et al.
(2015b) that UF-GSE is simultaneously robust against cellwise and casewise out-
liers. However, this procedure has three limitations, which are addressed in this
paper:

• The univariate filter does not handle well moderate-size cellwise outliers.

• The GSE procedure used in the second step loses robustness against casewise
outliers for p > 10.

• The initial estimator EMVE used in the second step does not scale well to
higher dimensions (p > 10).

Rousseeuw and Van den Bossche (2015) pointed out that to filter the vari-
ables based solely on their value may be too limiting as no correlation with other
variables is taken into account. A not-so-large contaminated cell that passes the
univariate filter could be flagged when viewed together with other correlated com-
ponents, especially for highly correlated data. To overcome this deficiency, we
introduce a consistent bivariate filter and use it in combination with UF and a
new filter developed by Rousseeuw and Van den Bossche (2016) in the first step
of the two-step procedure.

Maronna (2015) made a remark that UF-GSE, which uses a fixed loss function
ρ in the second step, cannot handle well high-dimensional casewise outliers. S-
estimators with a fixed loss function exhibit an increased Gaussian efficiency when
p increases, but at the same time lose their robustness (see Rocke, 1996). Such
curse of dimensionality has also been observed for UF-GSE in our simulation
study. To overcome this deficiency, we constructed a new robust estimator called
Generalized Rocke S-estimator or GRE to replace GSE in the second step.

The first step of filtering is generally fast, but the second step is slow due to the
computation of the extended minimum volume ellipsoid (EMVE), used as initial
estimate by the generalized S-estimator. The standard way to compute EMVE
is by subsampling, which requires an impractically large number of subsamples
when p is large, making the computation extremely slow. To reduce the high
computational cost of the two-step approach in high dimension, we introduce a
new subsampling procedure based on clustering. The initial estimator computed
in this way is called EMVE-C.
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The rest of the paper is organized as follows. In Section 2, we describe some
existing filters and introduce a new consistent bivariate filter. By consistency, we
mean that, when n tend to infinity and the data do not contain outliers, the pro-
portion of data points flagged by the filter tends to zero. We also show in Section
2 how the bivariate filter can be used in combination with the other filters in the
first step. In Section 3, we introduce the GRE to be used in place of GSE in the
second step. In Section 4, we discuss the computational issues faced by the ini-
tial estimator, EMVE, and introduce a new cluster-based-subsampling procedure
called EMVE-C. In Section 5 and 6, we compare the original and modified two-
step approaches with several state-of-the-art robust procedures in an extensive
simulation study. We also give there a real data example. Finally, we conclude in
Section 7. The Appendix contains all the proofs. We also give a separate docu-
ment called “Supplementary Material”, which contains further details, simulation
results, and other related material.

2 Univariate and Bivariate Filters

Consider a random sample of X = (XXX1, . . . ,XXXn)t, where XXX i are first generated
from a central parametric distribution, H0, and then some cells, that is, some
entries in XXX i = (Xi1, . . . , Xip)

t , may be independently contaminated. A filter F
is a procedure that flags cells in a data table and replaces them by NA’s. Let fn
be the fraction of cells in the data table flagged by the filter. A consistent filter
for a given distribution H0 is one that asymptotically will not flag any cell if the
data come from H0. That is, limn→∞fn = 0 a.s. [H0].

Remark 1. Given a collection of filters F1, ...,Fk they can be combined in several
ways: (i) they can be united to form a new filter, FU = F1 ∪ · · · ∪ Fk, so that the
resulting filter, FU , will flag all the cells flagged by at least one of them; (ii) they
can be intersected, so that the resulting filter, FI = F1 ∩ · · · ∩ Fk, will only flag
the cells identified by all of them; and (iii) a filter, F , can be conditioned to yield
a new filter, FC, so that FC will only filter the cells filtered by F which satisfy a
given condition C.

Remark 2. It is clear that FU is a consistent filter provided all the filters Fi,
i = 1, . . . , k are consistent filters. On the other hand, FI is a consistent filter
provided at least one of the filters Fi, i = 1, . . . , k is a consistent filter. Finally, it
is also clear that if F is a consistent filter, so is FC.

We describe now three basic filters, which will be later combined to obtain a
powerful consistent filter for use in the first step of our two-step procedure.

2.1 A Consistent Univariate Filter (UF)

This is the initial filter introduced in Agostinelli et al. (2015b). Let X1, . . . , Xn be
a random (univariate) sample of observations. Consider a pair of initial location
and dispersion estimators, T0n and S0n, such as the median and median absolute
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deviation (MAD) as adopted in this paper. Denote the standardized sample by
Zi = (Xi − T0n)/S0n. Let F be a chosen reference distribution for Zi. Here, we
use the standard normal distribution, F = Φ.

Let F+
n be the empirical distribution function for the absolute standardized

value, that is,

F+
n (t) =

1

n

n∑

i=1

I(|Zi| ≤ t).

The proportion of flagged outliers is defined by

dn = sup
t≥η

{
F+(t)− F+

n (t)
}+

, (1)

where {a}+ represents the positive part of a, F+ is the distribution of |Z| when Z ∼
F , and η = (F+)−1(α) is a large quantile of F+. We use α = 0.95 for univariate
filtering as the aim is to detect large outliers, but other choices could be considered.
Then, we flag bndnc observations with the largest absolute standardized value, |Zi|,
as cellwise outliers and replace them by NA’s.

The following proposition states this is a consistent filter. That is, even when
the actual distribution is unknown, asymptotically, the univariate filter will not
flag outliers when the tail of the chosen reference distribution is heavier than (or
equal to) the tail of the actual distribution.

Proposition 1 (Agostinelli et al., 2015b). Consider a random variable X ∼ F0

with F0 continuous. Also, consider a pair of location and dispersion estimators
T0n and S0n such that T0n → µ0 ∈ R and S0n → σ0 > 0 a.s. [F0]. Let F+

0 (t) =
PF0(|X−µ0σ0

| ≤ t). If the reference distribution F+ satisfies the inequality

max
t≥η

{
F+(t)− F+

0 (t)
}
≤ 0, (2)

then
n0

n
→ 0 a.s.,

where
n0 = bndnc.

We define the global univariate filter, UF, as the union of all the consistent
filters described above, applied to each variable in X. By Remarks 1 and 2, it is
clear that UF is a consistent filter.

2.2 A Consistent Bivariate Filter (BF)

Let (XXX1, . . . ,XXXn), with XXX i = (Xi1, Xi2)t, be a random sample of bivariate obser-
vations. Consider also a pair of initial location and scatter estimators,

TTT 0n =

(
T0n,1

T0n,2

)
and CCC0n =

(
C0n,11 C0n,12

C0n,21 C0n,22

)
.
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Similar to the univariate case we use the coordinate-wise median and the bi-
variate Gnanadesikan-Kettenring estimator with MAD scale (Gnanadesikan and
Kettenring, 1972) for TTT 0n and CCC0n, respectively. More precisely, the initial scatter
estimators are defined by

C0n,jk =
1

4

(
MAD({Xij +Xik})2 −MAD({Xij −Xik})2

)
,

where MAD({Yi}) denotes the MAD of Y1, . . . , Yn. Note that C0n,jj = MAD({Xj})2,
which agrees with our choice of the coordinate-wise dispersion estimators. Now,
denote the pairwise (squared) Mahalanobis distances by Di = (XXX i−TTT 0n)tCCC−1

0n (XXX i−
TTT 0n). Let Gn be the empirical distribution for pairwise Mahalanobis distances,

Gn(t) =
1

n

n∑

i=1

I(Di ≤ t).

Finally, we filter outlying points XXX i by comparing Gn(t) with G(t), where G is a
chosen reference distribution. In this paper, we use the chi-squared distribution
with two degrees of freedom, G = χ2

2. The proportion of flagged bivariate outliers
is defined by

dn = sup
t≥η
{G(t)−Gn(t)}+ . (3)

Here, η = G−1(α), and we use α = 0.85 for bivariate filtering since we now aim for
moderate outliers, but other choices of α can be considered. Then, we flag bndnc
observations with the largest pairwise Mahalanobis distances as outlying bivariate
points. Finally, the following proposition states the consistency property of the
bivariate filter.

Proposition 2. Consider a random vector XXX = (X1, X2)t ∼ H0. Also, consider a
pair of bivariate location and scatter estimators TTT 0n and CCC0n such that TTT 0n → µµµ0 ∈
R2 and CCC0n → ΣΣΣ0 ∈ PDS(2) a.s. [H0] (PDS(q) is the set of all positive definite
symmetric matrices of size q). Let G0(t) = PH0((XXX − µµµ0)tΣΣΣ−1

0 (XXX − µµµ0) ≤ t) and
suppose that G0 is continuous. If the reference distribution G satisfies:

max
t≥η
{G(t)−G0(t)} ≤ 0, (4)

then
n0

n
→ 0 a.s.,

where
n0 = bndnc.

In the next section, we will define the global univariate-and-bivariate filter,
UBF, using UF and BF as building blocks.
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2.3 A Consistent Univariate and Bivariate Filter (UBF)

We first apply the univariate filter from Agostinelli et al. (2015b) to each vari-
able in X separately using the initial location and dispersion estimators, TTT 0n =
(T0n,1, . . . , T0n,p) and SSS0n = (S0n,1, . . . , S0n,p). Let U be the resulting auxiliary
matrix of zeros and ones with zeros indicating the filtered entries in X. We next
iterate over all pairs of variables in X to identify outlying bivariate points which
helps filtering the moderately contaminated cells.

Fix a pair of variables, (Xij, Xik) and set XXX
(jk)
i = (Xij, Xik). Let CCC

(jk)
0n be an

initial pairwise scatter matrix estimator for this pair of variables, for example, the
Gnanadesikan-Kettenring estimator. Note that pairwise scatter matrices do not
ensure positive definiteness of CCC0n, but this is not necessary in this case because
only bivariate scatter matrix, CCC

(jk)
0n , is required in each bivariate filtering. We cal-

culate the pairwise Mahalanobis distances D
(jk)
i = (XXX

(jk)
i −TTT (jk)

0n )t(CCC
(jk)
0n )−1(XXX

(jk)
i −

TTT
(jk)
0n ) and perform the bivariate filtering on the pairwise distances with no flagged

components from the univariate filtering: {D(jk)
i : Uij = 1, Uik = 1}. We apply

this procedure to all pairs of variables 1 ≤ j < k ≤ p. Let

J =
{

(i, j, k) : D
(jk)
i is flagged as bivariate outlier

}
,

be the set of triplets which identify the pairs of cells flagged by the bivariate filter
in rows i = 1, ..., n. It remains to determine which cells (i, j) in row i are to be
flagged as cellwise outliers. For each cell (i, j) in the data table, i = 1, . . . , n and
j = 1, . . . , p, we count the number of flagged pairs in the i-th row where cell (i, j)
is involved:

mij = # {k : (i, j, k) ∈ J} .
Cells with large mij are likely to correspond to univariate outliers. Suppose that
observation Xij is not contaminated by cellwise contamination. Then mij approxi-
mately follows the binomial distribution, Bin(

∑
k 6=j Uik, δ), under ICM, where δ is

the overall proportion of cellwise outliers that were not detected by the univariate
filter. We flag observation Xij if

mij > cij, (5)

where cij is the 0.99-quantile of Bin(
∑

k 6=j Uik, δ). In practice we obtained good
results (in both simulation and real data example) using the conservative choice
δ = 0.10, which is adopted in this paper.

The filter obtained as the combination of all the univariate and the bivariate
filters described above is called UBF. The following argument shows that UBF is
a consistent filter.

By Remarks 1 and 2, the union of all the bivariate consistent filters (from
Proposition 2) is a consistent filter. Next, applying the condition described in (5)
to the union of these bivariate consistent filters yields another consistent filter.
Finally, the union of this with UF results in the consistent filter, UBF.
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2.4 The DDC Filter

Recently, Rousseeuw and Van den Bossche (2016) proposed a new procedure to
filter and impute cellwise outliers, called DetectDeviatingCells (DDC). DDC is
a sophisticated procedure that uses correlations between variables to estimate
the expected value for each cell, and then flags those with an observed value
that greatly deviates from this expected value. The DDC filter exhibited a very
good performance when used in the first step in our two-step procedure in our
simulation. However, the DDC filter is not shown to be consistent, as needed to
ensure the overall consistency of our two-step estimation procedure.

In view of that, we propose a new filter made by intersecting UBF and DDC
(denoted here as UBF-DDC). By Remarks 1 and 2, UBF-DDC is consistent. More-
over, we will show in Section 5 and in B that UBF-DDC is very effective, yielding
the best overall performances when used as the first step in our two-step estimation
procedure.

3 Generalized Rocke S-estimators

The second step of the procedure introduces robustness against casewise outliers
that went undetected in the first step. Data that emerged from the first step
has missing values that correspond to potentially contaminated cells. To estimate
the multivariate location and scatter matrix from that data, we use a recently
developed estimator called GSE, briefly reviewed below.

3.1 Review of Generalized S-estimators

Related to X denote U the auxiliary matrix of zeros and ones, with zeros indicating
the corresponding missing entries. Let pi = p(UUU i) =

∑p
j=1 Uij be the actual

dimension of the observed part of XXX i. Given a p-dimensional vector of zeros and
ones uuu, a p-dimensional vector mmm and a p × p matrix AAA, we denote by mmm(uuu) and
AAA(uuu) the sub-vector of mmm and the sub-matrix of AAA, respectively, with columns and
rows corresponding to the positive entries in uuu.

Define
D(xxx,mmm,CCC) = (xxx−mmm)tCCC−1(xxx−mmm)

the squared Mahalanobis distance and

D∗(xxx,mmm,CCC) = D(xxx,mmm,CCC∗)

the normalized squared Mahalanobis distances, where CCC∗ = CCC/|CCC|1/p, so |CCC∗| = 1,
and where |A| is the determinant of A.

Let ΩΩΩ0n be a p× p positive definite initial estimator. Given the location vector
µµµ ∈ Rp and a p× p positive definite matrix ΣΣΣ, we define the generalized M-scale,
sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U), as the solution in s to the following equation:

n∑

i=1

cp(UUU i)ρ



D∗
(
XXX

(UUU i)
i ,µµµ(UUU i),ΣΣΣ(UUU i)

)

s cp(UUU i)

∣∣∣ΩΩΩ(UUU i)
0n

∣∣∣
1/p(UUU i)


 = b

n∑

i=1

cp(UUU i) (6)
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where ρ(t) is an even, non-decreasing in |t| and bounded loss function. The tuning
constants ck, 1 ≤ k ≤ p, are chosen such that

EΦ

(
ρ

( ||XXX||2
ck

))
= b, XXX ∼ Nk(000, III), (7)

to ensure consistency under the multivariate normal. A common choice of ρ is the
Tukey’s bisquare rho function, ρ(u) = min(1, 1 − (1 − u)3), and b = 0.5, as also
used in this paper.

A generalized S-estimator is then defined by

(TTTGS,CCCGS) = arg min
µµµ,ΣΣΣ

sGS(µµµ,ΣΣΣ,ΩΩΩ0n,X,U) (8)

subject to the constraint
sGS(µµµ,ΣΣΣ,ΣΣΣ,X,U) = 1. (9)

3.2 Generalized Rocke S-estimators

Rocke (1996) showed that if the weight function W (x) = ρ′(x)/x in S-estimators
is non-increasing, the efficiency of the estimators tends to one when p → ∞.
However, this gain in efficiency is paid for by a decrease in robustness. Not sur-
prisingly, the same phenomenon has been observed for generalized S-estimators
in simulation studies. Therefore, there is a need for new generalized S-estimators
with controllable efficiency/robustness trade off.

Rocke (1996) proposed that the ρ function used to compute S-estimators should
change with the dimension to prevent loss of robustness in higher dimensions. The
Rocke-ρ function is constructed based on the fact that for large p the scaled squared
Mahalanobis distances for normal data

D(XXX,µµµ,ΣΣΣ)

σ
≈ Z

p
with Z ∼ χ2

p,

and hence that D/σ are increasingly concentrated around one. So, to have a high
enough, but not too high, efficiency, we should give a high weight to the values of
D/σ near one and downweight the cases where D/σ is far from one.

Let

γ = min

(
χ2(1− α)

p
− 1, 1

)
, (10)

where χ2(β) is the β-quantile of χ2
p. In this paper, we use a conventional choice

of α = 0.05 that gives an acceptable efficiency of the estimator. We have also
explored smaller values of α according to Maronna and Yohai (2015), but we have
seen some degree of trade-offs between efficiency and casewise robustness (see the
supplementary material). Maronna et al. (2006) proposed a modification of the
Rocke-ρ function, namely

ρ(u) =





0 for 0 ≤ u ≤ 1− γ
(
u−1
4γ

)[
3−

(
u−1
γ

)2
]

+ 1
2

for 1− γ < u < 1 + γ

1 for u ≥ 1 + γ

(11)
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Figure 1: Weight functions of the Tukey-bisquare and the Rocke for p = 40. Chi-
square density functions are also plotted in blue for comparison. All the functions
are scaled so that their maximum is 1 to facilitate comparison.

which has as derivative the desired weight function that vanishes for u 6∈ [1−γ, 1+
γ]

W (u) =
3

4γ

[
1−

(
u− 1

γ

)2
]
I(1− γ ≤ u ≤ 1 + γ).

Figure 1 compares the Rocke-weight function, WRocke(z/cp), and the Tukey-
bisquare weight function, WTukey(z/cp), for p = 40, where cp as defined in (7).
The chi-square density function is also plotted in blue for comparison. When p
is large the tail of the Tukey-bisquare weight function greatly deviates from the
tail of the chi-square density function and inappropriately assigns high weights to
large distances. On the other hand, the Rocke-weight function can resemble the
shape of the chi-square density function and is capable of assigning low weights
to large distances.

Finally, we define the generalized Rocke S-estimators or GRE by (8) and (9)
with the ρ-function in (6) replaced by the modified Rocke-ρ function in (11). We
compared GRE with GSE via simulation and found that GRE has a substantial
better performance in dealing with casewise outliers when p is large (e.g., p > 10).
Results from this simulation study are provided in the supplementary material.

4 Computational Issues

The generalized S-estimators described above are computed via iterative re-weighted
means and covariances, starting from an initial estimate. We now discuss some
computing issues associated with this iterative procedure.
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4.1 Computation of the Initial Estimator

For the initial estimate, the extended minimum volume ellipsoid (EMVE) has
been used, as suggested by Danilov et al. (2012). The EMVE is computed with a
large number of subsamples (> 500) to increase the chance that at least one clean
subsample is obtained. Let ε be the proportion of contamination in the data and
m be the subsample size. The probability of having at least one clean subsample
of size m out of M subsamples is

q = 1−
[
1−

(
n · (1− ε)

m

)
/

(
n
m

)]M
. (12)

For large p, the number of subsamples M required for a large q, say q = 0.99, can
be impractically large, dramatically slowing down the computation. For example,
suppose m = p, n = 10p, and ε = 0.50. If p = 10, then M = 7758; if p = 30, then
M = 2.48× 1010; and if p = 50, then M = 4.15× 1016. Therefore, there is a need
for a faster and more reliable starting point for large p.

Alternatively, pairwise scatter estimators could be used as fast initial estimator
(e.g., Alqallaf et al., 2002). Previous simulation studies have shown that pairwise
scatter estimators are robust against cellwise outliers, but they perform not as well
in the presence of casewise outliers and finely shaped multivariate data (Danilov
et al., 2012; Agostinelli et al., 2015b).

4.1.1 Cluster-Based Subsampling

Next, we introduce a cluster-based algorithm for faster and more reliable subsam-
pling for the computation of EMVE. The EMVE computed with the cluster-based
subsampling is called called EMVE-C throughout the paper.

High-dimensional data have several interesting geometrical properties as de-
scribed in Hall et al. (2005). One such property that motivated the Rocke-ρ func-
tion, as well as the following algorithm, is that for large p the p-variate standard
normal distribution Np(000, III) is concentrated “near” the spherical shell with radius√
p. So, if outliers have a slightly different covariance structure from clean data,

they would appear geometrically different. Therefore, we could apply a clustering
algorithm to first separate the outliers from the clean data. Subsampling from a
big cluster, which in principle is composed of mostly clean cases, should be more
reliable and require fewer number of subsamples.

Given X and U. The following steps describe our clustering-based subsampling:

1. Standardize the data X with some initial location and dispersion estimator
T0j and S0j. Common choices for T0j and S0j that are also adopted in this
paper are the coordinate-wise median and MAD. Denote the standardized
data by Z = (ZZZ1, . . . ,ZZZn)t, where ZZZi = (Zi1, . . . , Zip)

t and Zij = (Xij −
T0j)/S0j.

2. Compute a simple robust correlation matrix estimate RRR = (Rjk). Here, we
use the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kettenring,
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1972), where

Rij =
1

4
(S2

0jk+ − S2
0jk−),

and where S0jk+ is the dispersion estimate for {Zij+Zik|Uij = 1, Uik = 1} and
S0jk− the estimate for {Zij − Zik|Uij = 1, Uik = 1}. We use Qn (Rousseeuw
and Croux, 1993) for the dispersion estimate.

3. Compute the eigenvalues λ1 ≥ · · · ≥ λp and eigenvectors eee1, . . . , eeep of the
correlation matrix estimate

RRR = EEEΛΛΛEEEt,

where ΛΛΛ = diag(λ1, . . . , λp) and EEE = (eee1, . . . , eeep). Let p+ be the largest
dimension such that λj > 0 for j = 1, . . . , p+. Retain only the eigenvectors
EEE0 = (eee1, . . . , eeep+) with a positive eigenvalue.

4. Complete the standardized data Z by replacing each missing entry, as in-
dicated by U, by zero. Then, project the data onto the basis eigenvectors
Z̃ZZ = ZZZEEE0, and then standardize the columns of Z̃ZZ, or so called principal
components, using coordinate-wise median and MAD of Z̃ZZ.

5. Search for a “clean” cluster C in the standardized Z̃ZZ using a hierarchical
clustering framework by doing the following. First, compute the dissimilarity
matrix for the principal components using the Euclidean metric. Then, apply
classical hierarchical clustering (with any linkage of choice). A common
choice is the Ward’s linkage, which is adopted in this paper. Finally, define
the “clean” cluster by the smallest sub-cluster C with a size at least n/2.
This can be obtained by cutting the clustering tree at various heights from
the top until all the clusters have size less than n/2.

6. Take a subsample of size n0 from C.

With good clustering results, we can draw fewer subsamples, and equally im-
portant, we can use a larger subsample size. The current default choices in GSE
are M = 500 subsamples of size n0 = (p + 1)/(1 − αmis) as suggested in Danilov
et al. (2012), where αmis is the fraction of missing data (αmis = number of missing
entries /(np)). For the new clustering-based subsampling, we choose M = 50 and
n0 = 2(p+ 1)/(1− αmis) in view of their overall good performance in our simula-
tion study. However, using equation (12), a more formal procedure for the choice
of M and n0 could be considered. M and n0 could be chosen as a function of the
cluster size C, the expected remaining fraction of contamination δ, and a desired
level of confidence. In such case, n and ε in equation (12) should be replaced by
to the size of the cluster C and the value of δ, respectively. Without clustering,
ε would be chosen fairly large (e.g. ε = 0.50) for conservative reasons. However,
with clustering, ε can be made smaller (e.g., ε ≤ 0.10).

In general, p is the primary driver of computational time, but the procedure
could also be time-consuming for large n because the number of operations re-
quired by hierarchical clustering is of order n3. As an alternative, one may bypass
the hierarchical clustering step and sample directly from the data points with the
smallest Euclidean distances to the origin calculated from Z̃ZZ. This is because the
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Euclidean distances, in principle, should approximate the Mahalanobis distances
to the mean of the original data. However, our simulations show that the hierar-
chical clustering step is essential for the excellent performance of the estimates,
and that this step entails only a small increase in real computational time, even
for large n.

A recent simulation study (Maronna and Yohai, 2015) has shown that Rocke
estimator starting from the the “kurtosis plus specific direction” (KSD) estimator
(Peña and Prieto, 2001) estimator can attain high efficiency and high robustness
for large p. The KSD estimator uses a multivariate outlier detection procedure
based on finding directions that maximize or minimize the kurtosis coefficient of
the respective projections. The “clean” cases that were not flagged as outliers are
then used for estimating multivariate location and scatter matrix. Unfortunately,
KSD is not implemented for incomplete data. The study of the adaption of KSD
for incomplete data would be of interest and worth of future research.

4.2 Other Computational Issues

There is no formal proof that the recursive algorithm decreases the objective
function at each iteration for the case of generalized S-estimators with a mono-
tonic weight function (Danilov et al., 2012). This also the case for generalized
S-estimators with a non-monotonic weight function. For Rocke estimators with
complete data, Maronna et al. (2006, see Section 9.6.3) described an algorithm
that ensures attaining a local minimum. We have adapted this algorithm for the
generalized counterparts. Although we cannot provide a formal proof, we have
seen so far in our experiments that the descending property of the recursive algo-
rithms always holds.

5 Two-Step Estimation and Simulation Results

The original two-step approach for global–robust estimation under cellwise and
casewise contamination is to first flag outlying cells in the data table and to replace
them by NA’s using a univariate filter only (shortened to UF). In the second step,
the generalized S-estimator is then applied to this incomplete data. Our new
version of this is to replace UF in the first step by the proposed combination of
univariate-and-bivariate filter and DDC (shortened to UBF-DDC) and to replace
GSE in the second step by GRE-C (i.e., GRE starting from EMVE-C). We call
the new two-step procedure UBF-DDC-GRE-C. The new procedure will be made
available in the TSGS function in the R package GSE (Leung et al., 2015).

We now conduct a simulation study similar to that in Agostinelli et al. (2015b)
to compare the two-step procedures, UF-GSE as introduced in Agostinelli et al.
(2015b) and UBF-DDC-GRE-C, as well as the classical correlation estimator
(MLE) and several other robust estimators that showed a competitive performance
under

• Cellwise contamination: SnipEM (shortened to Snip) introduced in Far-
comeni (2014)
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• Casewise contamination: Rocke S-estimator as recently revisited by Maronna
and Yohai (2015) and HSD introduced by Van Aelst et al. (2012)

• Cellwise and casewise contamination: DetMCDScore (shortened to DM-
CDSc) introduced by Rousseeuw and Van den Bossche (2015)

We also considered the different variations of the two-step procedures using dif-
ferent first steps, including UBF-GRE-C and DDC-GRE-C. However, UBF-DDC-
GRE-C generally performs better in simulations than UBF-GRE-C and DDC-
GRE-C. Therefore, we present only the results of UBF-DDC-GRE-C here. The
complete results of UBF-GRE-C and DDC-GRE-C can be found in B.

We consider clean and contaminated samples from a Np(µ0µ0µ0,Σ0Σ0Σ0) distribution
with dimension p = 10, 20, 30, 40, 50 and sample size n = 10p. The simulation
mechanisms are briefly described below.

Since the contamination models and the estimators considered in our simu-
lation study are location and scale equivariant, we can assume without loss of
generality that the mean, µµµ0, is equal to 000 and the variances in diag(ΣΣΣ0) are all
equal to 111. That is, ΣΣΣ0 is a correlation matrix.

Since the cellwise contamination model and the estimators are not affine-
equivariant, we consider the two different approaches to introduce correlation
structures:

• Random correlation as described in Agostinelli et al. (2015b) and

• First order autoregressive correlation.

The random correlation structure generally has small correlations, especially with
increasing p. For example, for p = 10, the maximum correlation values have an
average of 0.49, and for p = 50, the average maximum is 0.28. So, we consider the
first order autoregressive correlation (AR1) with higher correlations, in which the
correlation matrix has entries

Σ0,jk = ρ|j−k|,

with ρ = 0.9.
We then consider the following scenarios:

• Clean data: No further changes are done to the data.

• Cellwise contamination: We randomly replace a ε of the cells in the data
matrix by Xcont

ij ∼ N(k, 0.12), where k = 1, 2, . . . , 10.

• Casewise contamination: We randomly replace a ε of the cases in the data

matrix byXXXcont
i ∼ 0.5N(cvvv, 0.12III)+0.5N(−cvvv, 0.12III), where c =

√
k(χ2)−1

p (0.99)

and k = 1, 2, . . . , 20 and vvv is the eigenvector corresponding to the smallest
eigenvalue of ΣΣΣ0 with length such that (vvv − µµµ0)tΣΣΣ−1

0 (vvv − µµµ0) = 1. Experi-
ments show that the placement of outliers in this way is the least favorable
for the proposed estimator.
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Figure 2: Average LRT distance behaviors for various contamination values, k,
of UF-GSE and UBF-DDC-GSE for random and AR1(0.9) correlations under 5%
cellwise contamination. The dimension is p = 30 and the sample size is n = 10p.
The results remain the same for larger values of k; thus, they are not included in
the figure.

We consider ε = 0.02, 0.05 for cellwise contamination, and ε = 0.10, 0.20 for case-
wise contamination. The number of replicates in our simulation study is N = 500.

The performance of a given scatter estimator ΣΣΣn is measured by the Kulback–
Leibler divergence between two Gaussian distribution with the same mean and
covariances ΣΣΣ and ΣΣΣ0:

D(ΣΣΣ,ΣΣΣ0) = trace(ΣΣΣΣΣΣ−1
0 )− log(|ΣΣΣΣΣΣ−1

0 |)− p.

This divergence also appears in the likelihood ratio test statistics for testing the
null hypothesis that a multivariate normal distribution has covariance matrix ΣΣΣ =
ΣΣΣ0. We call this divergence measure the likelihood ratio test distance (LRT).
Then, the performance of an estimator ΣΣΣn is summarized by

D(ΣΣΣn,ΣΣΣ0) =
1

N

N∑

i=1

D(Σ̂ΣΣn,i,ΣΣΣ0)

where Σ̂ΣΣn,i is the estimate at the i-th replication. Finally, the maximum average
LRT distances over all considered contamination values, k, is also calculated.

Table 1 shows the maximum average LRT distances under cellwise contam-
ination. UBF-DDC-GRE-C and UF-GSE perform similarly under random cor-
relation, but UBF-DDC-GRE-C outperforms UF-GSE under AR1(0.9). When
correlations are small, like in random correlation, the bivariate filter fails to filter
moderate cellwise outliers (e.g., k = 2) because there is not enough information
about the bivariate correlation structure in the data. Therefore, the bivariate fil-
ter gives similar results as the univariate filter. However, when correlations are
large, like in AR1(0.9), the bivariate filter can filter moderate cellwise outliers and
therefore, outperforms the univariate filter. This is demonstrated, for example,
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Table 1: Maximum average LRT distances under cellwise contamination. The
sample size is n = 10p.

Corr. p ε MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

Random 10 0 0.6 1.2 0.8 5.0 1.5 0.8 1.0
0.02 114.8 1.2 2.3 6.9 1.6 1.2 1.1
0.05 285.4 3.6 11.2 7.5 3.2 4.5 2.5

20 0 1.1 2.0 1.2 11.5 2.0 1.3 1.8
0.02 146.1 2.7 10.6 13.9 2.6 4.0 2.5
0.05 375.9 187.2 57.1 15.5 9.3 11.0 7.3

30 0 1.6 2.8 1.7 16.7 2.6 1.9 3.3
0.02 179.0 23.1 22.6 18.5 4.4 5.8 5.0
0.05 475 380.5 123.1 20.8 13.7 14.2 13.3

40 0 2.1 3.6 2.3 20.7 3.2 2.4 5.8
0.02 215.1 121.3 38.9 22.6 6.0 7.3 8.8
0.05 >500 >500 212.4 25.8 17.9 16.6 18.6

50 0 2.7 4.4 2.8 25.4 3.8 2.9 4.9
0.02 249.0 192.8 58.7 27.1 8.1 9.1 12.1
0.05 >500 >500 298.7 29.7 20.7 19.6 23.8

AR1(0.9) 10 0 0.6 1.1 0.8 4.3 1.4 0.7 1.0
0.02 149.8 1.2 0.9 4.9 1.5 0.9 1.0
0.05 383.8 2.6 2.8 7.0 3.1 2.1 1.3

20 0 1.1 1.9 1.2 7.8 2.1 1.2 1.7
0.02 311.3 2.5 3.9 10.5 2.6 2.1 1.9
0.05 >500 >500 31.3 14.3 12.3 9.3 2.5

30 0 1.6 2.8 1.8 9.4 2.7 1.7 3.2
0.02 475.9 71.1 10.7 13.9 5.4 4.0 3.3
0.05 >500 >500 103.3 19.8 22.6 20.3 3.6

40 0 2.1 3.6 2.2 10.9 3.4 2.3 5.5
0.02 >500 222.1 22.7 16.2 8.9 6.7 5.6
0.05 >500 >500 259.9 23.7 34.8 31.4 5.9

50 0 2.7 4.4 2.8 13.0 4.0 2.8 5.0
0.02 >500 >500 43.3 18.9 12.8 9.7 7.8
0.05 >500 >500 >500 28.9 46.5 42.8 8.9

in Figure 2 which shows the average LRT distance behaviors for various cellwise
contamination values, k.

Table 2 shows the maximum average LRT distances under casewise contam-
ination. Overall, UBF-DDC-GRE-C outperforms UF-GSE. This is because the
Rocke ρ function in GRE in UBF-DDC-GRE-C is more capable of downweighting
moderate casewise outliers (e.g., 10 < k < 20) than the Tukey-bisquare ρ function
in GSE in UF-GSE. Therefore, UBF-DDC-GRE-C outperforms UF-GSE under
moderate casewise contamination and gives overall better results. This is demon-
strated, for example, in Figure 3 which shows the average LRT distance behaviors
for various casewise contamination values, k.

Table 3 shows the finite sample relative efficiency under clean samples with
random correlation for the considered robust estimates, taking the MLE average
LRT distances as the baseline. The results for the AR1(0.9) correlation are very
similar and not shown here. As expected, UF-GSE show an increasing efficiency
as p increases while UBF-DDC-GRE-C have lower efficiency. Improvements can
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Table 2: Maximum average LRT distances under casewise contamination. The
sample size is n = 10p.

Corr. p ε MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

Random 10 0 0.6 1.2 0.8 5.0 1.5 0.8 1.0
0.10 43.1 2.8 3.9 44.4 4.9 9.7 7.7
0.20 89.0 4.7 21.8 110.3 123.6 91.8 23.7

20 0 1.1 2.0 1.2 11.5 2.0 1.3 1.8
0.10 77.0 3.4 13.4 76.9 37.8 29.7 9.1
0.20 146.7 5.6 95.9 166.5 187.6 291.8 17.4

30 0 1.6 2.8 1.7 16.7 2.6 1.9 3.3
0.10 100.0 4.3 26.1 82.3 118.6 75.3 9.9
0.20 200.7 7.4 297.7 220.9 268.4 415.5 16.9

40 0 2.1 3.6 2.3 20.7 3.2 2.4 5.8
0.10 125.9 5.2 46.3 101.6 130.6 140.2 16.2
0.20 252.4 9.1 >500 186.2 340.1 >500 19.5

50 0 2.7 4.4 2.8 25.4 3.8 2.9 4.9
0.10 150.3 5.9 80.0 121.9 139.5 258.1 17.6
0.20 303.1 10.0 >500 224.3 407.7 >500 23.0

AR1(0.9) 10 0 0.6 1.1 0.8 4.3 1.4 0.7 1.0
0.10 43.1 2.8 1.7 20.2 2.9 3.7 2.9
0.20 88.9 4.8 8.7 49.7 29.7 50.8 6.9

20 0 1.1 1.9 1.2 7.8 2.1 1.2 1.7
0.10 77.0 2.8 4.7 43.8 14.8 12.9 3.3
0.20 146.6 5.3 35.3 113.0 87.6 260.5 6.0

30 0 1.6 2.8 1.8 9.4 2.7 1.7 3.2
0.10 98.9 3.4 8.9 66.1 32.2 31.3 4.1
0.20 200.5 8.2 155.5 144.8 122.9 372.7 6.8

40 0 2.1 3.6 2.2 10.9 3.4 2.3 5.5
0.10 124.9 4.3 15.6 83.7 49.2 69.1 6.4
0.20 253.0 9.2 430.3 151.9 209.3 477.6 8.7

50 0 2.7 4.4 2.8 13.0 4.0 2.8 5.0
0.10 150.2 5.1 26.5 103.3 64.4 148.2 7.9
0.20 302.6 10.1 >500 188.5 276.0 >500 8.8

Table 3: Finite sample efficiency for random correlations. The sample size is
n = 10p.

p MLE Rocke HSD Snip DMCDSc UF- UBF-DDC-
GSE GRE-C

10 1.00 0.50 0.73 0.12 0.41 0.75 0.57
20 1.00 0.57 0.92 0.09 0.56 0.83 0.61
30 1.00 0.58 0.93 0.10 0.63 0.87 0.50
40 1.00 0.60 0.94 0.10 0.68 0.89 0.40
50 1.00 0.60 0.94 0.11 0.70 0.91 0.58

be achieved by using smaller α in the Rocke ρ function with some trade-off in
robustness. Results from this experiment are provided in the supplementary ma-
terial.

Finally, we compare the computing times of the two-step procedures. Table
4 shows the average computing times over all contamination settings for various
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Figure 3: Average LRT distance behaviors for various contamination values, k,
of UF-GSE and UBF-DDC-GRE-C for random correlations under 10% casewise
contamination. The dimension is p = 30 and the sample size is n = 10p.

Table 4: Average “CPU time” – in seconds of a 2.8 GHz Intel Xeon – evaluated
using the R command, system.time. The sample size is n = 10p.

p UF- UBF-DDC-
GSE GRE-C

10 0.7 0.2
20 7.7 1.7
30 34.5 6.4
40 120.5 17.1
50 278.4 37.8

dimensions and for n = 10p. The computing times for the two-step procedure
have been substantially improved with the implementation of the faster initial
estimator, EMVE-C.

6 Real data example: small-cap stock returns

data

In this section, we consider the weekly returns from 01/08/2008 to 12/28/2010 for
a portfolio of 20 small-cap stocks from Martin (2013).

The purpose of this example is fourfold: first, to show that the classical MLE
and traditional robust procedures perform poorly on data affected by propagation
of cellwise outliers; second, to show that the two-step procedures (e.g., UF-GSE)
can provide better estimates by filtering large outliers; third, that the bivariate-
filter version of the two-step procedure (e.g., UBF-GSE) provides even better
estimates by flagging additional moderate cellwise outliers; and fourth, that the
two-step procedures that use GRE-C (e.g., UBF-GRE-C) can more effectively
downweight some high-dimensional casewise outliers than those that use GSE (e.g.,
UBF-GSE), for this 20-dimensional dataset. Therefore, UBF-GRE-C provides the
best results for this dataset.
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Figure 4: Normal quantile–quantile plots of weekly returns. Weekly returns that
are three MAD’s away from the coordinatewise-median are shown in green.

Figure 4 shows the normal QQ-plots of the 20 small-cap stocks returns in the
portfolio. The bulk of the returns in all stocks seem roughly normal, but large
outliers are clearly present for most of these stocks. Stocks with returns lying more
than three MAD’s away from the coordinatewise-median (i.e., the large outliers)
are shown in green in the figure. There is a total of 4.8% large cellwise outliers
that propagate to 40.1% of the cases. Over 75% of these weeks correspond to the
2008 financial crisis.

Figure 5 shows the squared Mahalanobis distances of the 157 weekly obser-
vations based on four estimates: the MLE, the Rocke-S estimates, the UF-GSE,
and the UBF-GSE. Weeks that contain large cellwise outliers (asset returns with
values three MAD’s away from the coordinatewise-median) are in green. From
the figure, we see that the MLE and the Rocke-S estimates have failed to identify
many of those weeks as MD outliers (i.e., failed to flag these weeks as having
estimated full Mahalanobis distance exceeding the 99.99% quantile chi-squared
distribution with 20 degrees of freedom). The MLE misses all but seven of the 59
green cases. The Rocke-S estimate does slightly better but still misses one third
of the green cases. This is because it is severely affected by the large cellwise
outliers that propagate to 40.1% of the cases. The UF-GSE estimate also does
a relatively poor job. This may be due to the presence of several moderate cell-
wise outliers. In fact, Figure 6 shows the pairwise scatterplots for WTS versus
HTLD, HTLD versus WSBC, and WSBC versus SUR with the results from the
univariate and the bivariate filter. The points flagged by the univariate filter are
in blue, and those flagged by the bivariate filter are in orange. We see that the
bivariate filter has identified some additional cellwise outliers that are not-so-large
marginally but become more visible when viewed together with other correlated
components. These moderate cellwise outliers account for 6.9% of the cells in the
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Figure 5: Squared Mahalanobis distances of the weekly observations in the small-
cap asset returns data based on the MLE, the Rocke, the UF-GSE, and the UBF-
GSE estimates. Weeks that contain one or more asset returns with values three
MAD’s away from the coordinatewise-median are in green. Large distances are
truncated for better visualization.
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Figure 6: Pairwise scatterplots of the asset returns data for WTS versus HTLD,
HTLD versus WSBC, and WSBC versus SUR. Points with components flagged
by the univariate filter are in blue. Points with components additionally flagged
by the bivariate filter are in orange.
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Figure 7: Squared Mahalanobis distances of the weekly observations in the small-
cap asset returns data based on the UBF-GSE and the UBF-GRE-C estimates.
Weeks that contain one or more asset returns with values three MAD’s away from
the coordinatewise-median are in green.

data and propagate to 56.7% of the cases. The final median weight assigned to
these cases by UF-GSE and UBF-GSE are 0.50 and 0.65, respectively. By filtering
the moderate cellwise outliers, UBF-GSE makes a more effective use of the clean
part of these partly contaminated data points (i.e., the 56.7% of the cases). As a
result, UBF-GSE successfully flags all but five of the 59 green cases.

Figure 7 shows the squared Mahalanobis distances produced by UBF-GRE-C
and UBF-GSE, for comparison. Here, we see that UBF-GRE-C has missed only
3 of the 59 green cases, while UBF-GSE has missed 6 of the 59. UBF-GRE-C
has also clearly flagged weeks 36, 59, and 66 (with final weights 0.6, 0.0, and 0.0,
respectively) as casewise outliers. In contrast, UBF-GSE gives final weights 0.8,
0.5, and 0.5 to these cases. Consistent with our simulation results, UBF-GSE has
difficulty downweighting some high-dimensional outlying cases on datasets of high
dimension.

In this example, UBF-GRE-C makes the most effective use of the clean part
of the data and has the best outlier detecting performance among the considered
estimates.

7 Conclusions

In this paper, we overcome three serious limitations of UF-GSE. First, the esti-
mator cannot deal with moderate cellwise outliers. Second, the estimator shows
an incontrollable increase in Gaussian efficiency, which is paid off by a serious de-
crease in robustness, for larger p. Third, the initial estimator (extended minimum
volume ellipsoids, EMVE) used by GSE and UF-GSE does not scale well in higher
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dimensions because it requires an impractically large number of subsamples to
achieve a high breakdown point in larger dimensions.

To deal with also moderate cellwise outliers, we complement the univariate fil-
ter with a combination of bivariate filters (UBF-DDC). To achieve a controllable
efficiency/robustness trade off in higher dimensions, we replace the GSE in the
second step with the Rocke-type GSE which we called it GRE. Finally, to over-
come the high computational cost of the EMVE, we introduce a clustering-based
subsampling procedure. The proposed procedure is called UBF-DDC-GRE-C.

As shown by our simulation, UBF-DDC-GRE-C provides reliable results for
cellwise contamination when ε ≤ 0.05 and p ≤ 50. For larger dimensions (p > 50),
in our experience, the proposed estimator still performs well unless there is a
large fraction of small size cellwise outliers that evade the filter and propagate.
Furthermore, UBF-DDC-GRE-C exhibits high robustness against moderate and
large cellwise outliers, as well as casewise outliers in higher dimensions (e.g., p >
10). We also show via simulation studies that, in higher dimensions, estimators
using the proposed subsampling with only 50 subsamples can achieve equivalent
performance than the usual uniform subsampling with 500 subsamples.

The proposed two-step procedure still has some limitation. As pointed out in
the rejoinder in Agostinelli et al. (2015a), the GSE in the second step does not
handle well flat data sets, i.e., n ≈ 2p. In fact, when n ≤ 2p, these estimators fail
to exist (cannot be computed). This is also the case for GRE-C, and for all the
casewise robust estimators with breakdown point 1/2. Our numerical experiments
show that the proposed two-step procedure works well when n ≥ 5p but not as
well when 2p < n < 5p, depending on the amount of data filtered in the first step.
In this situation, if much data are filtered leaving a small fraction of complete
data cases, GSE and GRE may fail to converge (Danilov et al., 2012; Agostinelli
et al., 2015a). This problem could be remedied by using graphical lasso (GLASSO,
Friedman et al., 2008) to improve the conditioning of the estimates.

A Proofs of Propositions

A.1 Proof of Proposition 1

The proof was available in Agostinelli et al. (2015b), but we provide a more detailed
proof in the supplementary material for completeness.

A.2 Proof of Proposition 2

We need the following lemma for the proof.

Lemma 1. Consider a sample of p-dimensional random vectorsXXX1, . . . ,XXXn. Also,
consider a pair of multivariate location and scatter estimators TTT 0n and CCC0n. Sup-
pose that TTT 0n → µµµ0 and CCC0n → ΣΣΣ0 a.s.. Let Di = (XXX i − TTT 0n)tCCC−1

0n (XXX i − TTT 0n) and
Di = (XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0). Given K < ∞. For all i = 1, . . . , n, if D0i ≤ K ,
then:

Di → D0i a.s..
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Proof of Lemma 1. Note that

|Di −D0i| = |(XXX i − TTT 0n)tCCC−1
0n (XXX i − TTT 0n)− (XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0)|
= |((XXX i − µµµ0) + (µµµ0 − TTT 0n))t(ΣΣΣ−1

0 + (CCC−1
0n −ΣΣΣ−1

0 ))((XXX i − µµµ0) + (µµµ0 − TTT 0n))

− (XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0)|

≤ |(µµµ0 − TTT 0n)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |(µµµ0 − TTT 0n)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|+ |2(XXX i − µµµ0)t(CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

+ |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|
= An +Bn + Cn +Dn + En.

By assumption, there exists n1 such that for n ≥ n1 implies An ≤ ε/5 and
Bn ≤ ε/5.

Next, note that

|(XXX i − µµµ0)tΣΣΣ
−1/2
0 yyy| = |yyytΣΣΣ−1/2

0 (XXX i − µµµ0)|

≤ ||yyy||||ΣΣΣ−1/2
0 (XXX i − µµµ0)|| = ||yyy||

√
(XXX i − µµµ0)tΣΣΣ−1

0 (XXX i − µµµ0) ≤ ||yyy||
√
K.

So, there exists n2 such that n ≥ n2 implies

Cn = |2(XXX i − µµµ0)tΣΣΣ−1
0 (µµµ0 − TTT 0n)|

= |2(XXX i − µµµ0)tΣΣΣ
−1/2
0 ΣΣΣ

−1/2
0 (µµµ0 − TTT 0n)|

≤ 2||ΣΣΣ−1/2
0 (µµµ0 − TTT 0n)||

√
K

≤ ε/5.

Similarly, there exists n3 such that n ≥ n3 implies

Dn = |2(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(µµµ0 − TTT 0n)|
= |2(XXX i − µµµ0)tΣΣΣ

−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)|

≤ 2||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(µµµ0 − TTT 0n)||

√
K

≤ ε/5.

Also, there exists n4 such that n ≥ n4 implies

En = |(XXX i − µµµ0)t(CCC−1
0n −ΣΣΣ−1

0 )(XXX i − µµµ0)|
= |(XXX i − µµµ0)tΣΣΣ

−1/2
0 ΣΣΣ

1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)|

≤ ||ΣΣΣ1/2
0 (CCC−1

0n −ΣΣΣ−1
0 )(XXX i − µµµ0)||

√
K

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )|| ||ΣΣΣ1/2
0 (XXX i − µµµ0)||

√
K

≤ ||(CCC−1
0n −ΣΣΣ−1

0 )||K
≤ ε/5.

Finally, let n5 = max{n1, n2, n3, n4}, then for all i, n ≥ n5 implies

|Di −D0i| ≤ ε/5 + ε/5 + ε/5 + ε/5 + ε/5 = ε.
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Proof of Proposition 2. Let D0i = (XXX i − µµµ0)tΣΣΣ−1
0 (XXX i − µµµ0) and Di = (XXX i −

TTT 0n)tCCC−1
0n (XXX i − TTT 0n). Denote the empirical distributions of D01, . . . , D0n and

D1, . . . , Dn by

G0n(t) =
1

n

n∑

i=1

I (D0i ≤ t) and Gn(t) =
1

n

n∑

i=1

I (Di ≤ t) .

Note that

|Gn(t)−G0n(t)| =
∣∣∣∣∣
1

n

n∑

i=1

I (Di ≤ t)− 1

n

n∑

i=1

I (D0i ≤ t)

∣∣∣∣∣

=

∣∣∣∣∣
1

n

n∑

i=1

I (Di ≤ t) I(D0i > K) +
1

n

n∑

i=1

I (Di ≤ t) I(D0i ≤ K)

− 1

n

n∑

i=1

I (D0i ≤ t) I(D0i > K)− 1

n

n∑

i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

I (Di ≤ t) I(D0i > K)− 1

n

n∑

i=1

I (D0i ≤ t) I(D0i > K)

∣∣∣∣∣

+

∣∣∣∣∣
1

n

n∑

i=1

I (Di ≤ t) I(D0i ≤ K)− 1

n

n∑

i=1

I (D0i ≤ t) I(D0i ≤ K)

∣∣∣∣∣
= |An|+ |Bn|.

We will show that |An| → 0 and |Bn| → 0 a.s..
Choose a large K such that PG0(D0 > K) ≤ ε/8. By law of large numbers,

there exists n1 such that for n ≥ n1 implies | 1
n

∑n
i=1 I(D0i > K)−PG0(D0 > K)| ≤

ε/8 and

|An| =
∣∣∣∣∣
1

n

n∑

i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i > K)

∣∣∣∣∣

≤ 1

n

n∑

i=1

|I (Di ≤ t)− I (D0i ≤ t) |I(D0i > K)

≤ 1

n

n∑

i=1

I(D0i > K)

≤ PG0(D0 > K) + ε/8

≤ ε/8 + ε/8 = ε/4.

By assumption, we have from Lemma 1 that Di → D0i a.s. for all i where
D0i ≤ K. Let Ei = Di − D0i. So, with probability 1, there exists n2 such that
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n ≥ n2 implies that −δ ≤ Ei ≤ δ for all i. Then,

Bn =
1

n

n∑

i=1

[I (Di ≤ t)− I (D0i ≤ t)]I(D0i ≤ K)

=
1

n

∑

i:D0i≤K
[I (Di ≤ t)− I (D0i ≤ t)]

=
1

n

∑

i:D0i≤K
[I (D0i ≤ t− Ei)− I (D0i ≤ t)]

≤ 1

n

∑

i:D0i≤K
[I (D0i ≤ t+ δ)− I (D0i ≤ t)]

≤ 1

n

n∑

i=1

[I (D0i ≤ t+ δ)− I (D0i ≤ t)].

Also,

Bn =
1

n

∑

i:D0i≤K
[I (D0i ≤ t− Ei)− I (D0i ≤ t)]

≥ 1

n

∑

i:D0i≤K
[I (D0i ≤ t− δ)− I (D0i ≤ t)]

≥ 1

n

n∑

i=1

[I (D0i ≤ t− δ)− I (D0i ≤ t)]

Now, by the Gilvenko–Cantelli Theorem, with probability one there exists n3 such
that n ≥ n3 implies that supt | 1n

∑n
i=1 I (D0i ≤ t+ δ)−G0(t+ δ)| ≤ ε/16,

supt | 1n
∑n

i=1 I (D0i ≤ t− δ) − G0(t − δ)| ≤ ε/16, and supt | 1n
∑n

i=1 I (D0i ≤ t) −
G0(t)| ≤ ε/16. Also, by the uniform continuity of G0, there exists δ > 0 such that
|G0(t+ δ)−G0(t)| ≤ ε/8 and |G0(t− δ)−G0(t)| ≤ ε/8. Together,

1

n

n∑

i=1

I (D0i ≤ t− δ)− I (D0i ≤ t) ≤ Bn ≤
1

n

n∑

i=1

I (D0i ≤ t+ δ)− I (D0i ≤ t)

G0(t− δ)− ε/16−G0(t)− ε/16 ≤ Bn ≤ G0(t+ δ) + ε/16−G0(t) + ε/16

(G0(t− δ)−G(t))− ε/8 ≤ Bn ≤ (G0(t+ δ)−G0(t)) + ε/8

−ε/8− ε/8 = −ε/4 ≤ Bn ≤ ε/8 + ε/8 = ε/4.

Finally, note that

G(t)−Gn(t) = (G(t)−G0(t)) + (G0(t)−G0n(t)) + (G0n(t)−Gn(t)).

Let n4 = max{n1, n2, n3}, then n ≥ n4 implies

sup
t>η

(G(t)−Gn(t)) ≤ sup
t>η

(G(t)−G0(t)) + sup
t>η

(G0(t)−G0n(t)) + sup
t>η

(G0n(t)−Gn(t))

≤ (ε/4 + ε/4) + ε/16 + 0 ≤ ε.
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B Additional Tables from the Simulation Study

in Section 5

Table 5: Maximum average LRT distances under cellwise contamination. The
sample size is n = 10p.

Corr. p ε UBF- DDC- UBF-DDC-
GRE-C GRE-C GRE-C

Random 10 0 1.3 1.0 1.0
0.02 1.4 1.1 1.1
0.05 2.5 2.6 2.5

20 0 2.0 1.8 1.8
0.02 3.0 2.5 2.5
0.05 8.2 7.7 7.3

30 0 3.9 3.5 3.3
0.02 5.9 5.3 5.0
0.05 13.4 14.2 13.3

40 0 6.2 5.8 5.8
0.02 10.9 9.5 8.8
0.05 19.9 18.8 18.6

50 0 5.3 4.9 4.9
0.02 12.9 12.5 12.1
0.05 23.6 24.4 23.8

AR1(0.9) 10 0 1.2 1.1 1.0
0.02 1.3 1.1 1.0
0.05 1.4 1.3 1.3

20 0 1.9 1.8 1.7
0.02 2.1 2.0 1.9
0.05 2.8 2.1 2.5

30 0 3.4 3.6 3.2
0.02 3.4 3.5 3.3
0.05 5.5 3.4 3.6

40 0 5.7 5.8 5.5
0.02 5.7 6.0 5.6
0.05 12.4 6.1 5.9

50 0 5.2 4.6 5.0
0.02 6.4 6.4 7.8
0.05 20.4 7.9 8.9
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Table 6: Maximum average LRT distances under casewise contamination. The
sample size is n = 10p.

Corr. p ε UBF- DDC- UBF-DDC-
GRE-C GRE-C GRE-C

Random 10 0 1.3 1.0 1.0
0.10 19.1 9.4 7.7
0.20 53.0 25.3 23.7

20 0 2.0 1.8 1.8
0.10 20.9 9.5 9.1
0.20 49.3 18.0 17.4

30 0 3.9 3.5 3.3
0.10 21.8 10.6 9.9
0.20 47.6 18.7 16.9

40 0 6.2 5.8 5.8
0.10 29.5 17.7 16.2
0.20 52.3 21.2 19.5

50 0 5.3 4.9 4.9
0.10 43.4 21.2 17.6
0.20 64.8 23.7 23.0

AR1(0.9) 10 0 1.2 1.1 1.0
0.10 3.6 3.0 2.9
0.20 8.4 6.8 6.9

20 0 1.9 1.8 1.7
0.10 4.3 3.3 3.3
0.20 10.5 6.0 6.0

30 0 3.4 3.6 3.2
0.10 5.1 4.2 4.1
0.20 13.3 6.9 6.8

40 0 5.7 5.8 5.5
0.10 7.3 5.8 6.4
0.20 17.4 8.9 8.7

50 0 5.2 4.6 5.0
0.10 8.1 7.5 7.9
0.20 21.2 10.0 8.8
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C Supplementary Materials

Additional simulation results and related supplementary material referenced in
the article can be found in a separate document, “Supplementary Material”.
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Abstract

This supplementary material contains all the proofs, additional simula-
tion results, and related supplementary material referenced in the article
“Robust Estimation of Multivariate Location and Scatter in the Presence
of Cellwise and Casewise Contamination”.

1 Proof of Proposition 1

The proof was available in Agostinelli et al. (2015), but we provide a more detailed
proof here for completeness.

Proof. Without loss of generality, set µ0 = 0 and σ0 = 1. Let Z0i = Xi−µ0
σ0

= Xi

and Zi = Xi−T0n
S0n

. Denote the empirical distributions of Z01, . . . , Z0n and Z1, . . . , Zn
by

F+
0n(t) =

1

n

n∑

i=1

I (|Z0i| ≤ t) and F+
n (t) =

1

n

n∑

i=1

I (|Zi| ≤ t) .

By assumption, with probability one, there exists n1 such that n ≥ n1 implies
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0 < 1− δ ≤ S0n ≤ 1 + δ and −δ ≤ T0n ≤ δ, and we have

F+
n (t) =

1

n

n∑

i=1

I (−t ≤ Zi ≤ t) =
1

n

n∑

i=1

I

(
−t ≤ Xi − T0n

S0n

≤ t

)

=
1

n

n∑

i=1

I (−tS0n + T0n ≤ Xi ≤ tS0n + T0n)

≥ 1

n

n∑

i=1

I (−t(1− δ) + T0n ≤ Xi ≤ t(1− δ) + T0n)

≥ 1

n

n∑

i=1

I (−t(1− δ) + δ ≤ Xi ≤ t(1− δ)− δ)

=
1

n

n∑

i=1

I (|Xi| ≤ t(1− δ)− δ) = F+
0n(t(1− δ)− δ).

Now, by the Glivenko–Cantelli Theorem, with probability one there exists n2 such
that n ≥ n2 implies that supt |F+

0n(t) − F+
0 (t)| ≤ ε/2. Also, by the uniform

continuity of F+
0 , given ε > 0, there exists δ > 0 such that |F+

0 (t(1 − δ) − δ) −
F+
0 (t)| ≤ ε/2.

Finally, note that

F+
n (t) ≥ F+

0n(t(1− δ)− δ)
=
(
F+
0n(t(1− δ)− δ)− F+

0 (t(1− δ)− δ)
)

+ (F+
0 (t(1− δ)− δ)− F+

0 (t)) + (F+
0 (t)− F+(t)) + F+(t).

Let n3 = max(n1, n2), then n ≥ n3 imply

sup
t>η

(F+(t)− F+
n (t)) ≤ sup

t>η

∣∣F+
0 (t(1− δ)− δ)− F+

0n(t(1− δ)− δ)
∣∣

+ sup
t>η

∣∣F+
0 (t)− F+

0 (t(1− δ)− δ)
∣∣+ sup

t>η
(F+(t)− F+

0 (t))

≤ ε

2
+
ε

2
+ 0 = ε.

This implies that n0/n→ 0 a.s..

2 Performance comparison between GSE and GRE

We conduct a simulation study to compare the standalone performances of the sec-
ond steps (i.e., the estimation step) in the two-step S-estimators: GRE-C starting
from EMVE-C versus GSE starting from EMVE.

We consider clean and casewise contaminated samples from a Np(µ0µ0µ0,Σ0Σ0Σ0) dis-
tribution with p = 10, 20, . . . , 50 and n = 10p. The simulation mechanisms are the
same as that of Section 5, but in addition, 5% of the cells in the generated samples
are randomly selected and assigned a missing value. The number of replicates is
N = 500.
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Table 1: Maximum average LRT distances. The sample size is n = 10p.

p ε EMVE GSE EMVE-C GRE-C
10 0.10 8.7 4.6 17.3 10.9

0.20 81.4 84.8 43.4 36.1
20 0.10 20.8 24.1 9.2 8.1

0.20 123.0 156.8 13.1 14.9
30 0.10 31.2 54.8 13.4 9.4

0.20 299.1 223.2 24.3 16.0
40 0.10 77.5 80.7 21.9 12.2

0.20 511.8 287.9 43.2 17.1
50 0.10 172.5 125.1 29.4 16.5

0.20 644.3 349.8 60.2 26.3

10

20

30

40

50

2 4 6 8 10

k

LR
T

GSE GRE−C

Figure 1: Average LRT distances for various contamination sizes, k, for random
correlations under 10% casewise contamination. The dimension is p = 30 and the
sample size is n = 10p.

Table 1 shows the maximum average LRT distances from the true correlation
matrices among the considered contamination sizes and, for brevity, shows only
the values for random correlations. EMVE is capable of dealing small fraction of
outliers with 500 subsamples, but breaks down when the fraction gets larger, and
brings down the performance of GSE. EMVE-C with more refined subsampling
procedure and larger subsample sizes shows better performance than EMVE, even
for relatively larger fraction of outliers. Overall, GRE performs better than GSE.
The Rocke ρ function used in GRE is capable of giving smaller weights to points
that are moderate-to-large distances from the main mass of points (Rocke, 1996);
see, for example, Figure 1 that shows the average LRT distance behaviors for 10%
contamination for dimension 30 and sample size 300 data. In the figure, we see
that GRE outperforms GSE for moderate sizes contamination points, as expected.

Table 2 shows the finite sample relative efficiency under clean samples, taking
the classical EM estimator as the baseline. As expected, GSE shows an increasing
efficiency as p increases. GRE, overall, has lower efficiency.
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Table 2: Finite sample efficiency. The sample size is n = 10p.

p EMVE GSE EMVE-C GRE-C
10 0.24 0.89 0.26 0.54
20 0.30 0.95 0.30 0.59
30 0.34 0.98 0.33 0.58
40 0.35 0.98 0.34 0.47
50 0.37 0.99 0.35 0.48

3 Efficiency of GRE and tuning parameter α in

Rocke-ρ function

The tuning parameter α in the Rocke-ρ function in γ in (10) is chosen small to
control the efficiency. In this chapter, we used the conventional choice α = 0.05,
as seen to achieve reasonable efficiency while achieving high robustness. Here,
we explore the performance of GRE-C with smaller values of α. We repeat the
simulation study as in Section 5 for p = 10, 30, 50 and n = 10p. The number of
replicates is N = 30. Table 3 reports the finite sample efficiency and maximum
average LRT distances under 20% casewise contamination. In general, higher
efficiency can be achieved using smaller values of α, but with the cost of some loss
in robustness.

Table 3: Finite sample efficiency and maximum average LRT distances for GRE-C
with various values of α. The sample size is n = 10p.

p Efficiency, clean data Max LRT, 20% casewise

α = 0.05 α = 0.01 α = 0.001 α = 0.05 α = 0.01 α = 0.001

10 0.54 0.67 0.67 33.1 32.1 32.1
30 0.58 0.85 0.95 16.0 20.2 28.7
50 0.55 0.58 0.93 27.1 28.1 47.7
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