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Abstract

A novel approach to fitting parabolas to scattered data is introduced by
putting special emphasis on the robustness of the approach. The robust fit
is achieved by not taking into account a proportion a of the “most out-
lying” observations, allowing the procedure to trim them off. The most
outlying observations are self-determined by the data. Procrustes analysis
techniques and a particular type of “concentration” steps are the keystone of
the proposed methodology. An application to a retinographic study is also
presented.

Keywords: Parabola fitting, Robustness, Procrustes analysis,
Retinography.

1. Introduction

The accurate fitting of conic sections to a given data set is an ongoing
prerequisite in many applications, including image analysis. For instance,
the automatic discovery of underlying conic sections in biomedical images
is frequently needed. Moreover, the presence of noisy observations in these
biomedical images is more often the rule than the exception, due, for instance,
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to the technical limitations of the tools applied to obtain these images, or
to the existence of unexpected “artifacts”. With this in mind, a method is
presented here to robustly fit parabolas in scattered and noisy data sets. The
key idea is to avoid trying to fit all the points in the data set, but only a
proportion 1 — « of them. These retained points are supposed to include
the “most informative” ones for fitting the parabola, and the existence of
outliers among them is not expected. Outlying data frequently introduces
serious problems for other (non-robust) methods.

By adopting a trimming approach, the whole data set does not have to be
approximated by a single parabola, so other “secondary” or “less interesting”
data point arrangements departing from that parabolic model are allowed in
the data. If these outlying and secondary data point arrangements are no
longer considered when determining the parabola fitting, then the robustness
obviously arises in a very natural way. Moreover, these secondary data point
arrangements may be further analyzed after they are properly detected and
isolated by the method.

The idea of trimming data by taking into account only the dataset itself
is not new in statistics. For instance, high-breakdown point methods such as
the Least Trimmed Squares (LTS), the Least Median of Squares (LMS), the
Minimum Volume Ellipsoid (MVE), and the Minimum Covariance Determi-
nant (MCD) are frequently applied (see, e.g., Rousseeuw and Leroy 1987,
Rousseeuw 1997 and Hubert et al. 2008).

The proposed trimming methodology, in this particular setting, may be
stated as follows: Given a data set {z;}?_;, C R? and P being the set of all
the possible parabolas in R? defined as

P ={(x,y) € R*: ax® +bry+cy’* +dr+ey+ f = 0 with b*> —4ac = 0}, (1)

we look for a subset of indices I C {1,2,...,n} with #I = [n(1 — a)] and a
parabola p € P such that
> Mz — 2 (2)

iel
is as small as possible, where zP stands for the closest point in the parabola
p to the point z (i.e., z° = argminge, || z —x ||).

This problem statement implies solving a double minimization problem
on the set of all possible parabolas P and on the set of all possible subsets of
indexes I of size [n(1—a)]. Of course, this is not an easy task because we need
to deal with the combinatorial space of subsets of a given size. In Section



2, we propose a feasible algorithm aimed at finding approximate solutions to
this problem.

Instead of minimizing (2), we could have considered obtaining a “direct”
robust fit of the coefficients defining the parabola in (1) through an LTS
or LMS regression. This approach has previously been applied in Wang et
al. (1997) to the case of fitting an ellipse in an optical-fiber quality control
application. In fact, they propose an LMS fit of the coefficients a,b,c,d, e
and f appearing in (1) by setting the constraint f = 1. Unfortunately, the
“geometry” in this regression approach is not easy and typical assumptions
for the regression model are far from being satisfied. Moreover, by setting
f =1, it becomes impossible to fit conics through the origin (f = 0) and rea-
sonable properties of invariance under translation, rotation and scale changes
do not hold. Without trimming, several approaches have been introduced in
the literature for fitting conics to scattered data based on minimizing

ZQ(mi,yi)Q,
i=1

with Q(zy, ;) = ax? + bxyy; + cy? + dx; + ey; + f and subject to different
constraints on the coefficients a, b, ¢, d, e and f. In a seminal paper, Bookstein
(1979) proposed a quadratic constraint on those coefficients that guarantees
the invariance under shifts, rotations and scale changes.

In subsequent works, Sampson (1982), Taubin (1991) and Joseph (1994),
among others, proposed some modifications to Bookstein’s approach, aiming
to minimize (at least approximately) the sum of the so-called “geometric

distances” given by
n
> Mz — 2
i=1

(i.e., the non-trimmed version of our target function). Gnanadesikan (1977)
had already included a justification for the appropriateness of the minimiza-
tion of a sum of squared errors measured in the direction normal to the fitted
conic. As we are using squared geometric distances in our target function,
our approach is ideally aimed at dealing with independent normally dis-
tributed orthogonal errors with the same variance for the non-contaminating
observations.

As mentioned above, robustness is a major goal for the methodology
introduced here. Netanyahu et al. (1997) also paid special attention to ro-
bustness aspects, where the aim was to fit straight lines and circular arcs (but
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not parabolas) to noisy images. We adopt here a different approach where
Procrustes analysis (see, e.g., Seber 1984, Dryden and Mardia 1998) plays
a key role. Notice that each parabola p € P can be obtained through loca-
tion and scale changes and a rotation starting from the so-called “canonical”
parabola. Taking that idea into account, the application of some “concentra-
tion” steps similarly to those applied in the fast-MCD algorithm (Rousseeuw
and van Driessen 1999) or in the fast-LTS algorithm (Rousseeuw and Van
Driessen 2006) yields the algorithm presented in this work.

The proposed algorithm is detailed and exemplified in Section 2. An
application of the proposed methodology to a retinography study is given in
Section 3. Finally, Section 4 makes concluding remarks and outlines a more
general extension of the proposed approach.

2. Algorithm

A parabola in R? is defined as the geometrical place of the points sat-
isfying (1). Let P denote the set of all possible parabolas in R%. A very
important parabola is the “canonical” parabola py defined as

po = {(z,y) € R*: y = 2°}. (3)

It can be shown that each parabola p € P may be obtained as a composition
of a translation, a scale change and a rotation starting from the canonical
parabola py and this transformation is unique; i.e., there exists a set of pa-
rameters § = {m, \,w} such that p coincides with Fy(pg) (p = Fp(po)) with

FQIZ:(x>P—>F9(Z) (ml)_i_)\(cgsw —smw)(x)
Y Mo sinw  cosw Y

= m+ ARz,

where m = (mq,my)" is the translation vector parameter, X\ is the scale

change parameter and R is the rotation matrix for the rotation angle w.
Thus, wlog, we can denote each parabola p € P by py whenever p = Fy(po).

By using this notation, we present here an algorithm aimed at minimizing
(2) on I C {1,2,...,n} and on p € P for a fixed trimming size o

1. Initialization of the iterative process: Randomly select an initial set of
parameters 0() = {m(©® \©) 1} For instance, draw at random 4 ob-
servations in general position from the whole data set and use them to
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obtain an initial parabola p. Note that any 4 points in general position
in R? determine 2 (conjugate) parabolas with complex coefficients. So
we obtain 0, 1 or 2 parabolas with real coefficients. When a parabola
with real coefficients is not found (one of the sampled points falls inside
the triangle formed by the other three), we draw another 4-points ran-
dom sample. When two parabolas with real coefficients are found, we
can consider both of them as possible initializations or we can choose
one at random. For p being any parabola with real coefficients, we take

0© such that Fy) (po) = p.

“Concentration step”: Assume that 00=D = {m(=D \0=1 (=1 g

the set of parameters in the previous iteration:

2.1. Trimming: We look for the proportion 1—« of observations closest
to the associated parabola for this set #¢~1 of parameters. To find
these points, it is preferable to transform backwards the observa-
tions, i.e., to express them in terms of the canonical parabola py.
Thus, we take z{ = I 0_01—1) (z;) and search for z;” being the closest
point on the canonical parabola py to z{. The closest point to
z¢ = (z;,y;)" has the form z;* = (¢,1*)" where t is a real zero of
the cubic polynomial 2¢3 + (1 — 2y;)t — x; = 0. If this polynomial

has more than one real zero, we consider the one with minimal

value for ||z;” — z§||. Finally, take z = Fju-1)(z;") and compute
the distance of z” to z; through d; = ||z; — z||. Sort the distances
dy < dp) < ... < dn) and take

IV = {i € {1,2,...,n} such that d; < djn(1-a)}-

Observations having indices outside 1) are those to be tentatively
trimmed off at this stage of the iterative process.

2.2. Update parameters: In order to update 6, we search for the best
possible composition of a translation, a scale change and a rotation
Fy(z) = m+ ARz, taking points { Fp(z;")},c;0) as close as possible
to {2z;},c;w. This task is done by applying Procrustes analysis:

Procrustes analysis: 1f 10 = {i, s ijn(1—a)]} are the re-
tained indices after the trimming stage, let Z = (z;,, ...,
Z;; "and Z°P = (z;7, ..., zf[’f(Fm])’ be two [n(1—a)] x

2 matrices containing the points {z;},c;0) and {z;"},c;0,

respectively, in their rows. The best possible m, R and

n(l—a)] )



A for “matching” those Z and Z“P data matrices are:
= ave(Z') — ave((Z°P)"),

(Ze»'ZZ'Zov)""* (20'Z), and,

= trace [(ﬁ/zzlﬁ) 1/2} /trace [Z\J’/Z\Cﬂ :

>y T B
I

The notation ave(A) stands for the column vector with
the row-wise means of matrix A and A for the mean-
centered A matrix. The optimal angle for the rotation is
obtained as @ = arctan(ro1/711) for

T21 T22
If det(f{) — —1, we should take R = —R.

This yields to an updated 8¢ = {m, 2, W} set of parameters. More
information about why the previous expressions are applied can

be obtained from Section 5.6 in Seber (1984).
3. Fvaluate the objective function: Perform L iterations of the process
described in Step 2 and compute the associated value of the objective

function
LOW {2 = Y Iz = 2P,
iel(L)

where z are the projected points on the parabola defined by the final
6L set of parameters. L may be seen as a maximal number of iter-
ations. However, this iterative process may be stopped if |[vec(d®)) —
vec(0UD)|| < e (vec(-) puts all the parameters into a single vector)
and ¢ is a small enough constant to declare updating convergence.

4. Initialize several times: Draw S different random starting values (i.e.,
start from Step 1), repeat Steps 2-3, and, keep those %) and I*) which
have led to the smallest values for £(6"); {z;}7_,). These best possible
solutions are fully iterated until complete convergence so the best one
(i.e., the smallest value of the target function) can be chosen.

It may be shown that the iterative process described in Step 2 serves to
monotonically decrease the value of the objective function. For each initial-
ization, we end up in a local minimum of the target function (or close to
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one of them). Therefore, the consideration of several random starts tries to
search for the global minimum (or a close approximation to it).

Table 1 provides a summary of the notation used in the presentation of
the algorithm.

Table 1: Summary of the notation in the “concentration” steps of the algorithm.
Original space Transforming toward canonical

Data points: Z; Z;
; . . P cp
Projected pts. on parabola: zZ, Z,;

Figure 1 shows the evolution of the fitted parabolas through the iterative
process in Step 2 for two different random initializations in a simulated data
set. The data set was generated around the parabola y = 1+ x + 22 followed
by a shift of m = (—2,2)" and a rotation of w = 7/4. After generating 400
random points in the resulting parabola, we added to them some normally
distributed error terms N (0,0.15%) in a direction normal to the parabola.
Finally, 40 additional observations uniformly distributed in a rectangle, con-
taining the first 400 (non-contaminated) data points, were considered. We
can see how the number of updates L needed to get a solution close to the
underlying parabola increases when the initialization is relatively not good
(Figure 1(b) vs. Figure 1,(a)). Moreover, we can see that there exist com-
pletely useless starting values as long as they eventually end up trapped in
local minima. Therefore, the consideration of several random initializations
is needed most of the times. Note that our chances of reaching the global
minimum increase with higher L and S values, but the computational cost
also increases. With this in mind, we recommend choosing a large value for
S, but not too high a value for L. As commented in Step 4, we propose fully
iterating only a few of the most “promising” 0*) sets of parameters (i.e.,
those with the smallest values of the target function out of these S random
initializations with just L updating steps).

The proposed methodology also needs to fix in advance the trimming level
a. The example in Figure 1 was run with a trimming size o = 0.1, which al-
lows the 40 added outlying observations to be completely removed. It can be
seen that the estimation of the parabola does not necessarily change notably
when choosing a slightly higher than needed trimming level whenever enough
observations belonging to the “true” parabola are still detected. However, it
is very important that the trimming level should allow us to remove outly-



(a)

Iteration 1 Iteration 40 Iteration 80
-
]
B}
o
©
<~
o~ T
8
Iteration 160 Iteration 200
. S/
S = =
o S s
S b= S
B o o -
© © © -
~ < < -
o~ T o~ o~ T T T T T T
8 -2 o 2 a 6 8
Iteration 1 Iteration 100 Iteration 200
R 4
N — & ]
3
E ® =
w - - B
33
] A -
<« - -
Y L d
L3
o~ T T T T T T o~ T
-2 o 2 a 6 8 8
Iteration 300 Iteration 400 Iteration 500
e 8. 3 45 &
S LY S S
&
e
(= od = S A
S} S S
o — de - w - - o -
e®
© - e 3 © - © -
<
<~ - < - < -
-
o~ T T T T T T o~ T T T T T T o~ T T T T T T
-2 o 2 a 6 8 -2 o 2 a 6 8 -2 o 2 a 6 8

Figure 1: Evolution of the proposed algorithm with o = 0.1 for a simulated data set with
two different initial “random” parabolas. Trimmed points are the gray ones.



ing observations completely. Thus, we recommend choosing initially a rather
high « in a preventive way. Choosing « slightly higher than its required
value would result in the removal of some non-outlying observations; the
latter could be easily restored by examining their associated geometric dis-

tances ||z; —z||. If these geometric distances are “similar” to other distances

7

associated with non-trimmed data points, then these (wrongly trimmed) ob-
servations should be restored. For instance, the contamination level in the
simulated data set shown in Figure 1 was 40/440 ~ 10%. Figure 2 shows
the results of applying the proposed methodology with v = 0.2 and o = 0.35
(two trimming levels higher than the trimming level @ = 0.1 actually re-
quired). The left panels in Figure 2 show the squared geometric distances
||z; — 2z%||? sorted from lowest to highest. Therefore, the observations in the
first positions of these panels correspond to the non-trimmed ones. These
non-trimmed observations are represented by using solid-black points in the
right panels. In Figure 2, we have restored those observations with squared
geometric distances smaller than 10 times the largest geometric distance for
the non-trimmed ones. These restored observations appear as circled-red
points in the right panels of Figure 2. The squared-gray points are the ob-
servations that are finally declared as outliers. Note that the finally trimmed
data points are not excessively dependent on the initial (larger than needed)
trimming level.

Due to the application of the Procrustes analysis methods and the use of
geometric distances, we directly achieve interesting properties of invariance
under translations, scale changes and rotations.

3. Application to retinography

The vascular arch in retinal images plays an essential role in the screening
of diabetic retinopathy (DR), an important ocular disease. In the retina, the
major blood vessels arch above and below the area on the disc temporal
side, known as the posterior pole. The curved shape described by the main
vascular arcades can be approximated by a parabolic curve enclosing the
posterior pole. When DR signs appear in the posterior pole, the risk of
visual loss significantly increases. Therefore, the automatic detection of the
retinal vascular arch could be used as a coordinate system on the retina to
identify lesions that appears in the posterior pole, grading the severity of the
disease (see, e.g., Li and Chutatape 2004). See also Sanchez et al. (2008,
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Figure 2: Results of applying a = 0.2 and a = 0.35 to the same data set as in Figure
1. The left panels show the sorted squared geometric distances. In the right panels, the
solid-black points are the “initially” trimmed observations, the circled-red points are the
“restored” ones and the squared-gray points are the “finally” trimmed ones.
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2009) with more information about the type of retinal images analyzed in
this example.

In order to achieve this automatic detection, pixels belonging to major
blood vessels need to be extracted. First, the intensity variation in the back-
ground across the image is removed. This is accomplished by subtracting
an estimate of these background variations by using mean filtering of the
image green channel. We use the green component because it enhances the
contrast of the vasculature. In order to highlight the major blood vessels,
a two-dimensional Morlet wavelet transform (2D CWT) approach is applied
to the normalized image (Antoine et al. 1993). This directional wavelet is
convolved with the image varying its rotation angle from 0° to 170° at steps
of 10°. The final filtered image is obtained by taking the maximum mod-
ulus of the 2D CWT over all angles. The wavelet parameters are chosen
in order to provide stronger responses for pixels belonging to wider blood
vessels. Finally, the filtered image needs to be thresholded to extract the
pixels of interest from the major blood vessels. We apply a morphological
double threshold operator to the image (Soille 1999). This operator thresh-
olds the image for two ranges of gray values, one being included in the other.
In contrast to the simple threshold approach, the double threshold operator
obtains images less contaminated by artifacts and keeps the connectivity of
the segmented features (Soille 1999). This segmentation is finally thinned to
obtain its skeleton, which contains the pixels belonging to the major vessels
as well as some other pixels belonging to adjacent vascular branches.

After this pre-processing stage, we apply the robust parabola fitting ap-
proach presented in this work with a high trimming level, say a = 0.35,
which certainly allows most of the outlying points and the secondary vas-
cular configurations to be removed. The fitted parabola and the trimmed
observations (shown as gray points) are depicted in Figure 3.

Notice how the proposed methodology provides a sensible approximation
of the main vascular arcades by a parabola, in spite of the presence of other
“secondary” blood vessels and artifacts. Similar results have been obtained
with a large number of retinal images (see the “Supplementary Material” file
for a few more examples of the types of fit obtained by applying the proposed
methodology).
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Figure 3: (a) A retinographic image and (b) the fitted parabola using the proposed method-
ology with a = 0.35. Trimmed points are shown in gray.

4. Discussion

A new methodology has been presented to fit parabolas to scattered data
which is applicable in noisy (biomedical) images. The robustness of the
proposed approach follows from its ability to trim a proportion « of data. The
dataset itself indicates the observations that should be trimmed. Procustes
analysis plays a key role in this approach.

The proposed methodology is being adapted (as part of ongoing work)
with the aim of fitting other types of conic sections or objects, whenever
these objects may be obtained through location and scale changes combined
with rotations from a fixed “canonical object”. For that extension, we need
a procedure to compute geometric distances to the given canonical object. If
the canonical object can be summarized by a finite set of points in R?, then
those distances can be approximated by searching for the closest point in
this finite set. Trimming and Procustes analysis are later applied in a similar
fashion to that done in this work. The problem discussed here can be seen as
a slightly more complex one, since the canonical parabola is an unbounded
object.
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