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Summary

In longitudinal studies, serial dependence of repeated outcomes must be taken into account to 

make correct inferences on covariate effects. As such, care must be taken in modeling the 

covariance matrix. However, estimation of the covariance matrix is challenging because there are 

many parameters in the matrix and the estimated covariance matrix should be positive definite. To 

overcomes these limitations, two Cholesky decomposition approaches have been proposed: 

modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky 

decomposition for moving average (MA) structure, respectively. However, the correlations of 

repeated outcomes are often not captured parsimoniously using either approach separately. In this 

paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the 

structure allowed by combining the AR and MA modeling of the covariance matrix that we denote 

as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed 

methods.
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1. Introduction

In a longitudinal study, an outcome variable is observed repeatedly over a period of time. 

Since the repeated observations are not independent, their dependence must be taken into 

account to make proper inference on covariate effects in terms of correct standard errors 

(Diggle et al., 2002). In addition, in the presence of missing data (which is common in 

longitudinal studies), correctly modelling the covariance matrix is necessary to avoid bias in 

(mean) covariate effects (Daniels and Hogan, 2008). However, estimation of the covariance 

matrix is challenging because there are many parameters and the estimated covariance 

matrix needs to be positive definite. To remove these restrictions, simple structures for the 
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covariance matrix are often assumed such as exchangeable or autoregressive order one. 

However, such statistical approaches do not permit more general forms of the correlation 

structure and cannot explain heterogeneous covariances (Pourahmadi, 1999). To overcome 

these limitations, joint mean-variance modeling approaches have been proposed for the 

covariance matrix (Pourahmadi, 1999; Chiu, Leonard, and Tsui, 1996; Zhang and Leng, 

2012, Hoff and Niu, 2012) and the correlation matrix (Daniels and Pourahmadi, 2002; 

Zhang et al., 2015). In this paper, we focus on modeling of the covariance matrix. 

Pourahmadi (1999) and Zhang and Leng (2012) proposed Cholesky-type decomposition 

approaches for modeling of covariance matrix of longitudinal data, the modified Cholesky 

decomposition and the moving average Cholesky decomposition, respectively.

In the modified Cholesky decomposition (MCD), the inverse of the covariance matrix is 

decomposed into generalized autoregressive parameters (GARPs) and innovation variances 

(IVs); the positive-definite restriction corresponds to the IVs being positive (Pourahmadi, 

1999, 2000). Bayesian modeling using the MCD was proposed in Daniels and Pourahmadi 

(2002) and Daniels and Zhao (2003). Pan and MacKenzie (2003, 2006) extended the MCD 

to deal with unbalanced longitudinal data and proposed the BIC as the optimal approach to 

identify the degree of the mean, innovation variance and GARP parameters under an 

assumption that each follows a polynomial model (with the GARP parameters also assumed 

to just depend on lag). Lee et al. (2012) and Lee (2013) used the MCD to model the random 

effects covariance matrix in GLMMs and Lee and Sung (2014) extended these to 

marginalized random effects models (Heagerty, 1999).

In the moving average Cholesky decomposition (MACD), the covariance matrix is 

decomposed into generalized moving average parameters (GMAPs) and IVs (Zhang and 

Leng, 2012). This approach uses the moving average parameterization of the covariance 

matrix as an alternative to the autoregressive one. Similar to the MCD, the covariance matrix 

is positive definite when the IVs are positive. Lee and Yoo (2014) used this decomposition 

for modeling of the random effects covariance matrix to analyze long series of longitudinal 

binary data.

When a high-order AR structure of the covariance matrix is required to capture the 

dependence structure, practitioners often consider autoregressive moving average (ARMA) 

models (Judge et al., 1980). The advantage of the ARMA models is that the models provide 

for a wide variety of structures in the covariance matrix but can be specified using a small 

number of parameters (Rochen and Helms, 1989). Rochen (1992) extended Rochen and 

Helms's (1989) model, which had a homogeneous ARMA covariance matrix, to allow for a 

heterogeneous ARMA covariance matrix. In this paper, we also consider the heterogeneous 

ARMA covariance matrix by ‘combining’ the MCD and MACD to create a more flexible 

decomposition of the covariance matrix. This new decomposition will still provide simple 

conditions for positive definiteness (in terms of the IVs) and allow flexible nonstationary 

and heteroscedastic models that can be more parsimonious than models based on either the 

MCD or MACD alone. We emphasize the models proposed here are much more general 

(and flexible) than stationary ARMA models used in time series; we make connections to 

‘standard’ ARMA models to emphasize that we try to exploit structure on both 

autoregressive and moving average type parameters in a non-stationary setting.
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This paper is organized as follows. In Section 2, we propose covariance models using the 

ARMA Cholesky decomposition (ARMACD). We show that the resulting maximum 

likelihood estimator of the mean and the parameters of the covariance matrix are consistent 

and asymptotically normally distributed. In Section 3, we examine the bias of mean 

parameter estimates to misspecification of covariance matrix with and without missing data 

in simulation studies. In Section 4, we apply our proposed models to data from a recent lung 

cancer study. Finally, we summarize and propose future work in Section 5.

2. ARMA Cholesky Factor Models for Covariance Matrix

We propose a new class of models for the covariance matrix in longitudinal data that relies 

on the parameters in the new ARMACD.

2.1 Proposed model

Let yi = (yi1, ⋯, yini)
T be the longitudinal response vector of the ith subject (i = 1, ⋯, N); yit 

is the response at time git for subject i; we assume the observation times are equally spaced, 

so without loss of generality, we can set git = t. We assume that the responses for different 

subjects are independent. Let xit indicate covariates corresponding to yit. We assume the yit 

follows the linear model which is given by

(1)

where β is a p × 1 coefficients vector of xit, , ei = (ei1, ⋯, eini)
T, ei ∼ N(0, Di), 

and . The parameters ϕit,t−l, lit,t−j, and  are generalized 

autoregressive parameters (GARPs), generalized moving average parameters (GMAPs), and 

innovation variances (IVs), respectively. The GARPs and GMAPs are unconstrained. We 

implicitly assume that model (1) is well-defined.

We can rewrite (1) in matrix form as

(2)

where Ti is a unit lower triangular matrix having ones on its diagonal and −ϕi,tj at its (t, j)th 

position for j < t, and Li is a unique lower triangular matrix having ones on its diagonal and 

li,tj at its (t, j)th position for j < t, and Xi = (xi1, …, xini)
T is the design matrix. In this paper 

we assume that Xi is of full rank. From (2), we have

(3)
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where Σi is the covariance matrix for yi.

Theorem. 1. Σi in (3) is positive definite if the diagonal elements of Di (i.e., the IVs) are all 

positive.

Proof: Let x be an arbitrary nonzero vector. Since , 

. For , xTΣix = zTDiz. Therefore, Σi is positive 

definite if  for t=1, ⋯, ni.

The GARPs, GMAPs, and IVs can be modeled using time and/or subject-specific covariate 

vectors wi,tj and hi,t by setting

(4)

where α, γ, and λ are a × 1, b × 1, and c × 1 vectors of unknown parameters, respectively. 

Note that we jointly model the mean and covariance structures of responses in terms of the 

generalized linear models from (1) and (4).

The design vectors wi,tj, zi,tj, and hi,t are used to model the GARP/GMAP/IV parameters. 

These design vectors can include subject-specific covariates (so heteroscedastic regression) 

and/or to incorporate structure. For the latter, hi,t = (1, t) corresponds to the innovation 

variances change (log-)linearly with time and corresponds to a nonstationary covariance 

structure. Parsimonious higher lag models can be specified by including time lag, |t − j| in 

the design vectors wi,tj and/or zi,tj. Finally, structured nonstationary (in the GARP and 

GMAP) models can be specified; for example, a nonstationary first order moving average 

process could be specified using zi,tj = (I|t−j|=1, I(t−j)=1 × t). Overall, the covariance matrix 

with these models (4) includes heteroscedastic and nonstationary processes for Yit.

Note that the parameters in the decomposition are not identifiable without any structure of 

the covariance matrix. When there are no subject-specific covariates in the co-variance 

matrix, the matrices T and L in (2) have T(T − 1)/2 + T(T − 1)/2 parameters where T = 

max(ni). However, with a specific structure of the covariance matrix such as those based on 

the ARMA Cholesky structure, both matrices can be identified and the identifiability is 

easily assessed by checking invertibility of the Hessian matrix discussed in Section 2.3. Also 

note that our ARMACD models have the parameters of the MCD and MACD as special 

cases; so our model extends previous models and provides a unified framework for modeling 

the covariance structure of linear models in longitudinal studies.

The advantage of ARMA modeling in time series analysis is well known. For example, 

parsimony in parameterization makes the model interpretation easy and provides stable 

estimation of parameters. In addition, it also provides better forecasting performance than 

competing higher order AR or MA models. For example, Hansen and Lunde (2005) pointed 

out that including both AR and MA structure in the financial GARCH model leads to no 
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worse performance than other sophisticated models in forecasting. Along similar lines, we 

expect ARMACD to also enjoy many useful advantages of ARMA modeling. In addition, in 

our setting of longitudinal data, we can construct more complex (but still parsimonious) 

‘ARMA’ types models that allow nonstationary and heteroscedasticity as described above.

2.2 Maximum Likelihood Estimation

We derive the likelihood function for the model specified in Section 2.1. Let θ = (βT, αT, 

γT, λT). The likelihood function is a product of multivariate normal probability densities,

(5)

Recall from (3) that 

The log likelihood is given by

where ri = yi − Xiβ and

with 0T being 1 × a vector of zeros.

Maximizing the log-likelihood with respect to θ yields the likelihood equations

where
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(6)

(7)

(8)

(9)

with

for j = 1, ⋯, b and l = 1, ⋯, c.

From (6), we have the maximum likelihood estimator (MLE) for β which is given by

where Σ̂i = Σi(α̂,γ̂, λ̂) and (α̂, γ̂, λ̂) are the ML estimator of (α, γ, λ). From (7), we also 

have the MLE for α which is given by
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where Ŵi = Wi (β̂), L̂
i = L̂

i(γ̂), D̂
i = Di(λ̂), and r̂i = yi − Xiβ̂. Because we do not have closed 

forms of the solutions of γ and λ from (8) and (9), we use an iterative procedure to find the 

MLE.

Since the analytic forms of second derivatives of the observed data log-likelihood in (8) and 

(9) are not available in closed form, we use quasi-Newton methods to solve the likelihood 

equations. Let ω = (γT, λT). Then the (c + 1)th iteration  is updated using

where

with

(10)

having

2.3 Asymptotic properties

Since we use maximum likelihood for estimation, the resulting estimators are efficient. Let θ 

= (βT, ωT, λT)T, where ω = (α, γ), and  is the true value of θ. Also let 

I(θ0) = diag(I(β0), I(ω0), I(λ0)) where
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Finally, , 

,  and 

 is given in (10), where

To establish the theoretical properties, we assume the following regularity conditions hold.

C1 The dimensions p, a, b, and c of covariates xit, wit,j, zi,tj, and hit, and maxi ni are fixed.

C2 The true value value  is in the interior of the parameter space Θ, 

which is a compact subset of ℛp+a+b+c.

C3 The covariates xit, wit,j, zi,tj, and hit are all bounded, meaning that all elements of the 

vectors are bounded.

C4 When N → ∞, I(θ0)/N converges to a positive definite matrix ℐ(θ0).

Then we have the following results:

Theorem. 2. Under regularity conditions given in (C1)-(C4), the following three results hold 

as N → ∞:

1.

2. 2. The maximum likelihood estimator θ̂ = (β̂T, α̂T, γ̂T, λ̂T)T is strongly 

consistent for θ0 = (βT, αT, γT, λT)T;
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3. The maximum likelihood estimator is asymptotically normal

(11)

where ℐ(θ0) = diag(ℐ(β0),ℐ(ω0),ℐ(λ0)) with ℐ(β0) ∈ ℛp, ℐ(ω0) ∈ ℛa+b, ℐ(λ0) ∈ ℛc

Proof: See the Appendix.

We note that (C4) in the above theorem corresponds to parameter identifiability. (C4) will 

hold if the following three conditions hold:

1. the design matrix for the mean parameters is full column rank

2. the design matrix for the (innovation) variance parameters is full column rank

3. I(ω0) is invertible.

For the third condition, if there are just GMAP or just GARP parameters and the 

corresponding design matrix is full column rank, then I(ω0) is invertible. When the models 

include both GMAP and GARP parameters, the necessary and sufficient condition is less 

clear.

Notice that result 1 in Theorem 2 implies that β̂, ω̂= (α̂T, γT̂)T, and λ̂ are asymptotically 

independent. Since β̂, α̂, γ̂, and λ̂ are consistent estimators, ℐ in the asymptotic covariance 

is consistently estimated by a block diagonal matrix with block components

However, we note that the observed information matrix is not orthogonal unless all the ni's 

are equal. In Section 3, we examine the operating characteristics of our models in the 

common scenario of dropout for longitudinal data, for which the orthogonality in Theorem 2 

between the mean and dependence parameters does not hold since the ni's are not equal 

(Daniels and Hogan, 2008). Next, we suggest a graphical approach to find a reasonable 

structured model.

2.4 Model Building and Selection

In this section we explore the covariance structure using a graphical method which extends 

that in Pourahmadi (1999) and Pourahmadi and Daniels (2002). We first assume a particular 

mean structure ( ). Then we propose a procedure to explore the covariance structure 

using the following steps.

Step 1 Compute the MLEs of β and Σ (assuming no structure), β̂ and Σ̂ respectively. 

Then compute the estimated GARPs from Σ̂ using the following formula 

(Pourahmadi, 1999):
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(12)

where Σt is the (t − 1) × (t − 1) leading principal submatrix of Σ and  is the column 

vector composed of the first t − 1 entries of the tth column of Σ. Now plot 

regressograms as in Pourahmadi (1999) and Pourahmadi and Daniels (2002) to find 

parsimonious structure. These would be plots of the GARPs vs. lag and/or plots of 

particular lag GARPs vs. time. See the implementation in the data example in Section 

4.

Step 2 Based on the structure chosen from the exploratory analysis of the GARP in 

Step 1, compute the mle of β and Σ. Here we denote the mle of Σ under this structure 

as Σ̃. Compute T̃
i from this and create transformed data, T̃

i(yi − Xiβ). Now compute 

the mle of β and the new Σ using the transformed data.

Compute the estimated GMAPs from the mle of the new Σ by calculating the new Ti 

from the mle of the new Σ and then setting  to obtain the estimated GMAPs.

Plot regressograms similar to Step 1. to explore parsimonious structures for the 

GMAPs.

Step 3 Refit the model using the parimonious structures identified for Ti and Li in 

Steps 1 and 2. Plot the diagonal elements of D vs. time to explore structure in the IVs 

(vs. time).

Note that we can pick a covariance structure heuristically using above procedure. Then we 

can more formally select the best model using likelihood ratio tests and/or penalized model 

selection criteria such as AIC and BIC. And also note that the exploratory analysis can 

‘choose’ slightly different models if Steps 1 and 2 are switched.

3. Simulation Study

We conducted several simulation studies to examine the bias, efficiency, and coverage in 

estimating the coefficients in the mean model in the settings of both true and misspecified 

structure of the covariance matrix and under both ignorable (MAR) missingness and 

complete data.

Study 1. We simulated longitudinal data under our proposed model (1) and (4) with two 

covariates, group (2 levels) and cit =(t − 10/2) + εit, εit ∼ N(0, 0.52). The model was 

specified as

(13)

for t = 1, ⋯, 10 with  Groupi + β2cit + β3Groupi × cit. The true mean parameter 

values were (β0, β1, β2, β3) = (0.1, −0.1, 0.1, 0.1); the ‘group’ covariate, Groupi equals 0 or 
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1 with probability 0.5, ϕitj = α × I|t−j|=1, litj = γ × I|t−j|=1, and  with (α, γ, λ) = (.7, .

7, .3).

We generated 500 simulated data sets each with a sample size of 200 under complete data or 

under MAR missingness. We fit 3 models. Model 1 is the true model (with ARMA(1,1) 

structure of the covariance matrix); Model 2 has an AR(1) structure of the covariance 

matrix; Model 3 has an MA(1) structure of the covariance matrix. For missingness, we 

specified the following MAR dropout model,

Based on this specification, the observed dropout rates were approximately 50 percent.

Table 2 presents the mean point estimates and the percent relative biases (RB) of the 

parameters. In the presence of MAR missingness, the estimates in Model 1 had smaller 

biases than those in Models 2 and 3. Coverage probabilities for all parameters for Model 1 

were approximately 95%. In particular, the percent relative biases and coverage probabilities 

of β0 and β2 show that the true model (Model 1) fit much better than Models 2 and 3. These 

results demonstrate that the incorrect covariance structure can induce potentially large biases 

in mean parameters. To assess the accuracy of our standard errors (cf: Section 2.2), we 

compared the sample standard deviation (SD) of the 500 parameter estimates to the sample 

average (SE) of the 500 standard errors using (11); they were very close for the true model 

which suggests the standard error in (11) is accurate. We also calculated the estimated 

covariance matrix using the mean of 500 fitted values of α, γ, and λ given in Table 2. Then 

we calculated the sum of absolute differences (SAD) between the estimated and true 

covariance matrices. The SAD for Model 1 was the smallest among the three models (as 

expected). In addition, we calculated AICs for all three models and the proportion of times 

each model had the minimum AIC (among the three models). The proportion for Model 1 

was 1.00, which demonstrates the potential utility of the AIC for model selection (at least in 

these simulation settings).

When there were no missing data, the estimates were essentially unbiased for the three 

models. The coverage probabilities of mean parameters in Models 1 and 2 were all close to 

95% with Model 2 somewhat conservative. However, the coverage probabilities in Model 3 

show significant undercoverage. As we expected, the SAD for Model 1 was the smallest and 

the the proportion of times the AIC chose Model 1 was 1.00.

Study 2. We also generated 500 longitudinal datasets with a sample size of 200 using model 

(13) with a heteroscedastic ARM A(1,1) structure of the covariance matrix by setting ϕitj = 

α × I|t−j|=1, litj = γ × I|t−j|=1, and  Groupi with (α, γ, λ0, λ1) = (.7, .7, .2, .1).

We again fit three models. Model 1 is true model (a heteroscedastic ARMA(1,1) structure of 

the covariance matrix); Model 2 has an AR(1) structure of the covariance matrix; Model 3 

has an MA(1) structure of the covariance matrix. Table 3 shows the mean point estimates of 

the parameters for the three models as well as standard errors, relative bias, and coverage.
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Similar to Study 1, the estimates in Model 1 had smaller biases than those in Models 2 and 3 

when there were MAR missingness. Coverage probabilities for all parameters for Model 1 

were all approximately 95% whereas coverage for Models 2 and 3 had some substantial 

undercoverage. The percent relative biases of β0 and β2 in Models 2 and 3 were large. The 

SAD for Model 1 was again the smallest among the three models. In addition, proportion of 

times Model 1 had the minimum AIC was 1.00.

When there were no missing data, the estimates were essentially unbiased for the three 

models and results were similar to those in Study 1. However, there was slight overcoverage 

for Model 2 and significant undercoverage for Model 3 due to the misspecified covariance 

structure. The SAD for Model 1 was again the smallest. The proportion of times Model 1 

had the minimum AIC remained at 1.00.

We performed additional simulations to check the flexibility of ARMACD model (results are 

in the Web Appendix). We simulated data under an AR(1) structure of covariance matrix 

without MAR dropout, and then fitting an ARMA(1,1) model. We saw the average point 

estimates of the mean parameters and the GARP, GMAP, and IV parameters were very close 

to true values. Type I error for H0 : γ = 0 (AR(1) parameter is zero) was zero when AR(1) 

was the true model. We also conducted the same simulation under a MA(1) structure of 

covariance matrix and then fitting an ARMA(1,1) model. We saw similar results.

Overall, the simulation results emphasize the importance of correctly modeling the 

covariance structure on estimation of the mean parameters in the presence of ignorable 

missing data. In addition, the ARMACD models appear to have reasonable operating 

characteristics when simpler nested models are the true models. Finally, in the limited 

simulations, the LRT seems to work well (though a bit conservative) in testing nested 

ARMACD models.

4. Example

4.1 Lung cancer study

Lung cancer is a leading cause of cancer-related deaths world-wide, with a 5-year survival of 

less than 15%, because most patients are diagnosed with advanced stage disease. Recently, a 

longitudinal study on lung cancer was designed as a prospective open-label randomized non-

comparative parallel study in a single institution (Kim et al., 2012). A total of 96 patients 

with lung cancer were randomly assigned to one of two treatments (GEFITINIB or 

ERLOTINIB). The main goal of the study was to evaluate the response rate (the percentage 

of patients whose cancer shrinks or disappears after treatment) for each arm. The overall 

response rates in the GEFITINIB and ERLOTINIB arms were 47.9% (95% CI, 33.8-62.0%) 

and 39.6% (95% CI, 25.7-53.4%), respectively (Kim et al., 2012); these were not 

significantly different. Given the non-significant treatment effect on the response rate, it was 

of interest to see if there was a negative impact of treatments on a patient's quality of life 

(QOL).

The European Organization for Research and Treatment of Cancer Quality of Life 

Questionnaire Lung Cancer (EORTC QLQ-LC13) is considered as a standard instrument to 
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assess the quality of life of lung cancer patients. The EORTC QLQ-LC13 is a 13-item lung 

cancer-specific questionnaire module comprising both multi-item and single-item measures 

of lung cancer-associated symptoms (i.e. coughing, haemoptysis, dyspnoea and pain) and 

side-effects from conventional chemo- and radiotherapy (i.e. hair loss, neuropathy, sore 

mouth and dysphagia). Patients completed the questionnaire before receiving the first dose 

of treatment at baseline, on day 1 of each subsequent 29-day cycle (4 weeks), and at the end 

of the study. Each questionnaire was originally scored on a 4-point scale ranging from 

normal, ‘Not at All’ (1) to abnormal, ‘Very Much’ (4). In this paper, we focus on sum of the 

13-item questionnaire module (SQOL).

Covariates considered included type of treatment (ARM=1 for GEFITINIB, 0 for 

ERLOTINIB) and week number, TIME (0, 4, 8, ⋯, 92); TIME was re-scaled by dividing by 

10. We assumed the missing responses (mostly due to dropout) were MAR in these analyses. 

The Akaike Information Criteria (AIC) (Akaike, 1974) and likelihood ratio tests were used 

as the model selection criteria.

4.2 Model Fit

We explore the covariance structure using the procedure in Section 2.4. From Step 1, we 

graph the GARPs versus lag (Figure 1). We also calculated means of GARPs by lag (Table 

1). These suggest that the GARPs decreased approximately quadratically in lag. So we 

considered a quadratic structure in lag for GARPs. We also draw the plot for GMAPs from 

Step 2 (Figure 2) and calculated the means of GMAPs by lag (Table 1). These suggest that 

the GMAPs also decreased roughly quadratically in lag. Finally, we calculated IVs from 

Step 3 and examined the plot of IVs versus time (Figure 3). It suggested a quadratic trend in 

time.

Based on the exploratory analysis described in the previous paragraph, we considered 

various covariance structures. In particular, we fit the five models for Σi specified in Table 4. 

We use the following notation: ARMA-??? where the ‘?’ correspond to the polynomial in 

the GARP, GMAP, and IV respectively or the AR and MAR order, respectively. So an 

ARMA-QQQ would correspond to a quadratic in lag for the GARP and GMAP and 

quadratic in time for the IV. And an ARMA-20Q would correspond to an AR(2) model with 

a quadratic in time for the IV.

We used R version 3.1.2 to fit the models and R code is available in supplementary 

materials. We initialize the fitting algorithm by setting Σi = σ2I and using ordinary linear 

model estimation methods using R to obtain β(0). We choose α(0) = 0, γ(0) = 0, and λ(0) = 0 

(i.e., Σi = I) as starting values for α, γ, and λ, respectively. We iterate until the sum of 

absolute differences in the parameters is less than 10−4. Computational burden was not high. 

Computing time on a Intel Core i5-2450M CPU with a 2.50 GHz processor took about 20, 

60, 300 seconds for the ARMA-20Q (ARMA-02Q), the ARMA-11Q, ARMA-QQQ, 

respectively.
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4.3 Results

Maximized loglikelihoods and AICs are presented in Table 5. The model ARMA-QQQ fit 

better than ARMA-QCQ using LRTs (p-value=0.655). The AIC for the model ARMA-11Q 

was the smallest of the models considered and is the model we use for inference.

Table 6 presents maximum likelihood estimates for models ARMA-20Q, ARMA-02Q, 

ARMA-11Q, ARMA-QQQ, and ARMA-QCQ. In the model ARMA-11Q, the parameter of 

GARP was not significant (α̂
0 = −0.03, SE= 0.02, p-value= 0.134) and that of GMAP was 

significant (γ̂
0 = 0.52, SE= 0.04, p-value< 0.001). The parameters for the linear and the 

quadratic of time were significant (λ̂
1 = –0.43, SE= 0.08, p-value< 0.001; λ̂

2 = 0.05, SE= 

0.01, p-value< 0.001). It indicates that log(IV) decreased quadratically over time. The 

parameters of coefficients of covariates in the mean model were not significant. Thus 

treatment did not appear to differentially impact the mean. Note that there were fairly big 

differences in the estimated coefficients of covariates in the mean models in Table 6. The 

estimated parameters for the effect of treatment β̂1 in ARMA-02Q, ARMA-QQQ, and 

ARMA-QCQ were noticeably different from those in the other models. This is consistent 

with the simulations that show that a misspecified covariance matrix results in biased 

estimates of parameters in mean model when there is missing data.

Figure 4 presents the fitted expected values and their 95% confidence intervals under the 

model ARMA-11Q. Since two confidence intervals were overlapping, there was not much 

evidence of any difference between the two arms.

5. Conclusions

We have proposed linear models with a covariance matrix that is modeled using the 

parameters of a new ARMA Cholesky decomposition (ARMACD). These models allow for 

nonstationary and heteroscedasticity and are more flexible (and potentially more 

parsimonious) than models using only the parameters of the Modified Cholesky 

decomposition or Moving Average Cholesky decomposition.

Simulation studies showed the importance of correctly modeling the covariance structure on 

mean parameters in the presence of ignorable missing data. We also confirmed that our 

proposed model worked well even when the true data were generated from models with a 

simpler structure.

Analysis of lung cancer data shows that the covariance matrix was homoscedastic with the 

ARMA(1,1) structure having innovation variance parameters quadratic in time. There was 

no significant difference of quality of life between two treatment arms. Fairly big differences 

in the estimated covariates effects in the mean models indicate that a misspecified 

covariance matrix results in biased estimates of parameters in mean model.

Future work includes exploring robustness of inference to non-Gaussian continuous 

outcomes, automated model selection with this class of models, and extensions to non-

continuous data by using this class of models for the random effects covariance matrix in 

generalized linear mixed models (GLMMs).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem

1. The derivatives of (6) with respect to α, γ, and λ, respectively, have the following forms.

The expectations of each of these is clearly zero since E[Yi − μi(β)] = 0.

To examine the other partial derivatives, we can rewrite the log likelihood as follows,

Using this form, we take a derivative with respect to γj for j = 1, ⋯, c to obtain

where  is a vector with  for t = 1, ⋯, ni. Now taking 

another derivative with respect to λj′, we obtain
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Since  consists of eik for k = 1, ⋯, t − 1, eit and  are independent. Thus, 

.

Finally, we have

Since  is a lower triangular matrix and Di is a diagonal matrix, by Theorem 1 in 

Pourahmadi (2007), .

2. Let f(yi; θ) is the normal pdf of Yi and let li = log f(yi; θ) for i = 1, ⋯, N. Then,

When θ = θ0, the mean and variance of li are respectively

where  and Σ0i = Σi(θ0). It follows from the compactness of the 

parameter space in (C2) and boundedness of the covariates in (C3) that var0(li) ≤ K for all i 
where K is a finite constant; here, we also need a fixed maxni in (C1) to satisfy Lemma 2 in 

Chiu et al. (1996). By Kolmogorov's strong law of large numbers, we have that

almost surely. Notice that the above constant K is independent of θ and that
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From the proof of Theorem 1 in Chiu et al. (1996), it is easy to show the consistency of θ̂ 

using (C2) and (C3).

3. The proof here is essentially the same as that of Theorem 2 in Chiu et al. (1996). Note that 

Theorem 2 of Chiu et al. (1996) also relies on results in Roussas (1968), and requires several 

regularity conditions for asymptotic normality. These are all satisfied from (C2)-(C4).
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Figure 1. 
GARP versus lag for the lung cancer study.
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Figure 2. 
GMAP versus lag for the lung cancer study.
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Figure 3. 
IV versus Time for the lung cancer study.
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Figure 4. 
Fitted expected values and 95% confidence intervals under the two treatment arms (Gefitinib 

(circle) and Erlotinib (dark square)).
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Table 4

Models for ϕitj, litj, and logσit in the lung cancer example.

Model GARP GMAP IV

ARMA-20Q ϕitj = α0 I(|t−j|=1) + α1I(|t−j|=2)

ARMA-02Q litj = α0I(|t−j|=1) + α1I(|t−j|=2)

ARMA-11Q ϕitj = α0I(|t−j|=1) litj = γ0I(|t−j|=1)

ARMA-QQQ ϕitj = α0 + α1|t − j| + α2|t − j|2 litj =γ0 + γ1|t − j|+γ2|t − j|2

ARMA-QCQ ϕitj = α0 + α1|t − j| + α2|t − j|2 litj = γ0 + γ1|t − j| + γ2|t − j|2 + γ3|t − j|3
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