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Abstract

CUSUMs based on the signed sequential ranks of observations are

developed for detecting location and scale changes in symmetric dis-

tributions. The CUSUMs are distribution free and fully self-starting:

given a specified in-control median and nominal in-control average

run length, no parametric specification of the underlying distribution

is required in order to find the correct control limits. If the underly-

ing distribution is normal with unknown variance, a CUSUM based

on the Van der Waerden signed rank score produces out-of-control av-

erage run lengths that are commensurate with those produced by the

standard CUSUM for a normal distribution with known variance. For

heavier tailed distributions, use of a CUSUM based on the Wilcoxon

signed rank score is indicated. The methodology is illustrated by ap-

plication to real data from an industrial environment.

Keywords: CUSUM, distribution-free, self starting, signed sequen-

tial ranks, symmetric distributions
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1 Introduction

CUSUM procedures were developed to signal the onset of a persistent change
away from a specified product quality characteristic, such as a mean or me-
dian. In the application treated in Section 7 of the paper, the raw data
consist of a series of matched pairs (V1i, V2i), i ≥ 1, the result from two
treatments applied to the same sample of material. The process is deemed
to be in control as long as the treatment effect, defined as the mean or me-
dian of Xi = V1i − V2i, is zero. Otherwise the process is out of control. Page
(1954) developed the first CUSUM for detecting a shift in the mean of a nor-
mal distribution with known variance and in-control mean zero. However,
the normality assumption is often in doubt and it is known that a stan-
dard normal CUSUM performs poorly when the true underlying distribution
has substantially heavier tails than a normal distribution (Hawkins and Ol-
well, 1997, Section 3.7.1). It is therefore surprising that extension of the
methodology to heavier tailed, symmetric distributions has received almost
no attention in the literature. Furthermore, implementation of a normal dis-
tribution CUSUM requires a known standard deviation, σ, in the underlying
distribution. Misestimation of σ from Phase I data and subsequent use of
the estimate in the Phase II CUSUM can result in an in-control average
run length substantially different from the nominal value - see, for instance,
Hawkins and Olwell (1997, pages 159-161) and Keefe, et al. (2015). This
paper proposes CUSUM schemes that largely overcome these problems.

A natural approach towards extending a normal distribution CUSUM to
other symmetric distributions is to replace the observed data by rank-based
equivalents, which leads to distribution-free procedures. By ”distribution
free” is meant that the in-control properties of the CUSUM do not depend
on the functional form of the underlying distribution. This paper develops
distribution-free CUSUMs for single observations, the SSR (signed sequential
rank) CUSUMs. The CUSUM is based on the series of signed sequential ranks
sir

+
i , i ≥ 1, of the observations, where si = sign(Xi) and r+i is the rank of

|Xi| in the sequence |X1|, . . . , |Xi|, that is, the number among |X1|, . . . , |Xi|
less than or equal to |Xi|. When the process is in control, the r+i form a
series of independent random variables with r+i uniformly distributed on the
integers 1, . . . , i - see Barndorff-Nielsen (1963, Theorem 1.1). Since the si
are mutually independent and independent of the |Xi| series, sir+i , i ≥ 1 is
a sequence of independent random variables with sir

+
i uniformly distributed

on ±1, . . . ,±i, no matter what the common distribution of the Xi is. The
independence, distribution freeness and naturally sequential nature of the
signed sequential ranks makes them ideally suited to the construction of
CUSUMs for time ordered data. Control limits guaranteeing any specified
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in-control average run length (ARL) can be determined once and for all for
a range of reference constants and nominal in-control average run lengths.
The SSR CUSUM thus overcomes the estimation problem that besets the
standard normal CUSUM. Furthermore, its validity is not dependent upon
the existence of any moments in the underlying distribution.

Among other existing distribution-free CUSUMs for singly arriving obser-
vations are the sequential rank CUSUM of McDonald (1990) and the change-
point CUSUM of Hawkins and Deng (2010). These are based on unsigned
(sequential or ordinary) ranks of the X-data. Since unsigned ranks remain
unchanged when the data are transformed monotonically, these CUSUMs
cannot incorporate specific information about the in-control mean or sym-
metry of the in-control distribution. As a result, they are not competitive
with SSR CUSUMs when such information is available. In fact, they are
tailor made for situations in which the in-control value of the characteristic
in question, as well as the underlying distribution, is unknown and where
the current state of the process, whatever it may be, is declared to be the
in-control state. SSR CUSUMs are not applicable in such instances.

The paper is structured as follows. The SSR CUSUMs are defined in
Section 2. In Section 3, various out-of-control properties of the CUSUMs are
examined using theoretical results coupled with Monte Carlo simulations. It
is shown that the quantitative out-of-control behaviour of an SSR CUSUM,
which requires no knowledge of any parameters in the underlying distribu-
tion, can be inferred from the behaviour of a standard normal distribution
CUSUM. In Section 4 it is shown that a distribution-free CUSUM based on
the Van der Waerden rank score behaves like a standard normal CUSUM,
hence provides a simple solution to the unknown variance problem that be-
sets the latter. Section 5 demonstrates that a CUSUM based on Wilcoxon
signed rank scores can serve usefully in an omnibus role, especially when the
underlying distribution has heavier tails than the normal distribution. In
Section 6, a sequential rank CUSUM to detect a change in the dispersion
of a symmetric distribution is developed. Implementation of the proposed
methodology is illustrated in Section 7 by application to a set of data from
a coal mining operation. Section 8 gives a summary of the main results
and conclusions. The supplementary material to the paper includes tables of
control limits guaranteeing a specified in-control average run length for three
specific distribution free CUSUMs.
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2 Signed sequential rank CUSUMs

The following generic version of CUSUM methodology will be used. Let
ξi be a function of X1, . . .Xi for which E[ξi] = 0 when the process is in
control (the data come from a symmetric distribution with zero median)
and E[ξi] > 0 when it is out-of-control. A one-sided (upper) CUSUM then
consists in computing recursively the sequence D+

i , i ≥ 1, where

D+
0 = 0; D+

i = max
[

0, D+
i−1 + ξi − ζ+

]

, i ≥ 1 (1)

and where ζ+ > 0, the reference value, is a positive constant. The CUSUM
signals a change as soon as D+

i exceeds a control limit h+ > 0, the interpre-
tation being that a change from an in-control to an out-of-control situation
has possibly occurred somewhere along the observed sequence X1, . . . , Xi.
The run length, N , is the index at which a signal first occurs. Because the
barrier at 0 forces the CUSUM to be non-negative, the CUSUM will even-
tually signal regardless of whether a change has taken place (a valid signal)
or not (a false signal). To compensate for this unit type I error, the control
limit h+ > 0 is chosen to ensure that the average in-control ARL (IC ARL)
equals a pre-specified value, denoted by ARL0.

To control for downward shifts, a second sequence

D−
0 = 0; D−

i = min
[

0, D−
i−1 + ξi + ζ−

]

, i ≥ 1

with control limit h− < 0 is computed. The CUSUM signals a shift as soon
as either D+

i > h+ or D−
i < h−. If the median of a symmetric distribution

is being monitored, one has ζ+ = ζ− = ζ and h+ = h− = h. It is customary
to exhibit the pairs (i, D+

i ) and (i, D−
i ) in a single (x, y) plot together with

horizontal lines at the control limits y = h+ and y = h− - see Figure 1
in Section 7. A ”normal CUSUM” is the special case in which ξi = Xi

and the Xi have a normal(0, 1) distribution. This CUSUM has been studied
extensively and its properties are well known - see Hawkins and Olwell (1997,
Chapter 3).

Let the score function J(u), −1 < u < 1 be odd and square-integrable

on the interval (−1, 1) with
∫ 1

0
J2(u)du = 1 and set

v2i =
1

i

∑i

j=1
J2

(

j

i+ 1

)

.

Then, under the in-control regime, the signed sequential rank statistics

ξi = J

(

sir
+
i

i+ 1

)

/νi = siJ

(

r+i
i+ 1

)

/νi, (2)
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i ≥ 1, are independently distributed with zero means and unit variances.
The proposed SSR (signed sequential rank) CUSUM consists in using ξi in
the one-sided procedure (1) or in its two-sided version. If the median shifts
from zero to a non-zero value, or if the distribution becomes asymmetric, the
expected value of ξi ceases to be zero. Consequently, the CUSUM should be
effective in detecting a shift away from zero as well as detecting the onset of
substantial asymmetry in the underlying distribution.

A Wilcoxon SSR CUSUM, abbreviated to ”W -CUSUM”, is based upon
the W -score

JW (u) =
√
3u. (3)

Here, v2i = (2i+ 1)/(2(i+ 1)), whence

ξi =

√

6

(2i+ 1)(i+ 1)
sir

+
i

is used in (1). The Wilcoxon score is well suited to practical implementation
because of its simple form. Another popular score is Φ−1((1+u)/2), the Van
der Waerden score. The corresponding CUSUM will be referred to as the
”V dW -CUSUM”.

The ”distribution-free when in control” character of SSR CUSUMs allows
fairly precise estimation by Monte Carlo simulation of the IC ARL for any
given score function J , control limit h and reference constant ζ . Tables S1
and S2 in the supplementary material give control limits for a matrix of
(ζ, ARL0) pairs for use with the W - and V dW -CUSUMs.

Regardless of the reference value actually used, the existence of Phase I
data is not a prerequisite for initiating an SSR CUSUM. Given a reference
constant ζ , any specified ARL0 is guaranteed upon use of the appropriate h.
Thus, the SSR CUSUM is fully self-starting in the sense defined by Hawkins
and Olwell (1997) and the between-practitioner variation, as defined in Saleh,
et al. (2016), is zero. The effects of using a ”wrong” ζ will become evident
only in the out-of-control ARL properties of the CUSUM. These effects will
be discussed in the sections that follow.

3 Out-of-control properties

Denote by τ the point in time (the changepoint) at which the underlying
process shifts from an in-control to an out-of-control state. The efficacy of a
CUSUM can be judged by the out-of-control average run length (OOC ARL)

E[N − τ |N ≥ τ ], (4)
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the expected time-to-signal after onset of an out-of-control state, conditional
upon no signal occurring prior to its onset. Some general insights into the
OOC ARL behaviour of SSR CUSUMs can be gained by restricting attention
to nominally ”small” shifts and ”large” changepoints τ . This criterion is in
line with the primary objective of CUSUM methodology, which is to detect
quickly relatively small persistent shifts. Furthermore, the shift δ in the
median is expressed in units of an (unknown) underlying scale parameter, σ,
which is typically a measure of dispersion in the underlying distribution. The
fact that the ranks of any set of data are scale invariant actually necessitates
such a specification. Define

θ0 = E[f0(Y )J ′ (2F0(Y )− 1)], (5)

where f0 and F0 denote the pdf and cdf of Y = X/σ, and notice that θ0 is
functionally independent of σ. Then, for i ≥ 1,

E[ξτ+i] ≈ θ0δ 6= 0, (6)

implying that the CUSUM will show a sustained upward (δ > 0) or downward
(δ < 0) drift after the changepoint, resulting in a finite OOC ARL.

It follows that the larger θ0 is, the better. Table 1 shows the values of
θ0 for the W - and V dW - CUSUMs in Student t-distributions with ν degrees
of freedom, standardized to unit standard deviation for ν ≥ 3 and to unit
inter-quartile range for ν = 2 and ν = 1. The t-distributions are chosen
as benchmarks because they exhibit a range of tail thicknesses that would
mimic most cases occurring in practice. Inspection of Table 1 reveals that
the W -CUSUM should be the preferred one among the two, except when the
distribution is normal (ν = ∞).

Table 1
Values of θ0 for the W - and V dW -CUSUMs
in Student tν-distributions.

ν
∞ 4 3 2 1

W -CUSUM 0.98 1.18 1.37 1.18 1.10
V dW -CUSUM 1.00 1.12 1.29 1.06 0.93

Because the distribution of partial sums of the ξi tend to normality, there
is an expectation that the SSR CUSUMs will share some of the good prop-
erties of a normal CUSUM. Indeed, Proposition 1 in the Appendix suggests
the following heuristic:
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If δ is ”small” and a shift of size δσ occurs at a ”large” n = τ ,
then an SSR CUSUM with reference value ζ and control limit h
behaves approximately like a normal CUSUM with the same

ζ and h when a shift of size δθ0 occurs at n = τ .

(7)

Some implications of this heuristic will now be explored.

3.1 Specification of a reference value

The optimal choice of reference constant to detect a target shift of size δ1 in
a standard normal distribution CUSUM is δ1/2 - see, for instance, Bagshaw
and Johnson (1974, Section 2). Thus, the heuristic (7) suggests ζ = θ0δ1/2
as an appropriate reference value in an SSR CUSUM. The variation of θ0
values seen in Table 1 is not substantial so that default values θ0 = 1 or
θ0 = 1.3 seem appropriate, depending on the anticipated tail thickness of the
underlying distribution.

An estimate of θ0 is useful when designing a CUSUM - see Section 3.2.
Such an estimate can be made if some Phase I data V1, . . . , Vm are available.
For the Wilcoxon score, for instance, (5) reduces to θ0 =

√
12E[f(Y )], which

can be estimated by

θ̂0 =
√
12

f̂0(V1/σ̂) + · · ·+ f̂0(Vm/σ̂)

m
(8)

where σ̂ is a location invariant and scale equivariant estimator of σ (such as
a sample standard deviation or inter-quartile range) and f̂0 is an estimator
of the density f0 based upon the observations Yi = Vi/σ̂, 1 ≤ i ≤ m. The
suggested reference value for use in Phase II is then ζ̂ = θ̂0δ1/2. Use of the
appropriate control limit ĥ (read from Table S1 or Table S2, for instance)
then guarantees a Phase II IC ARL equal to the nominal value. There is
again no practitioner-to-practitioner IC ARL variation.

3.2 Out of control ARL

The heuristic (7) suggests that approximations to the OOC ARL of the
SSR CUSUM can be found by pretending that the underlying distribution
is normal. Such approximations are useful in CUSUM design. The following
example illustrates this numerically. Let ζ, h and τ be given. Denote by
W(δ) andN (δ) respectively the ARL of a one sidedW -CUSUM and a normal

7



CUSUM at a persistent mean shift δ > 0 which starts at n = τ . The two
CUSUMs use the same ζ and h. An implication of the heuristic (7) is that

W(δ) ≈ N (θ0δ) (9)

when δ is ”small”. To gauge the extent to which this approximation is useful,
data were generated from two underlying distributions, a standard normal
distribution and a heavier tailed t3 distribution, both standardized to unit
variance. Various mean shifts δ were induced at τ = 50. For the normal
distribution the (ζ, h) pairs (0.1, 12.01) and (0.25, 7.25) were used and for
the t3 distribution the pairs (0.15, 9.86) and (0.35, 5.66), based on larger ζ
values to allow for tail heaviness, were used. The h values, taken from Table
S2 in the supplementary material, guarantee a W -CUSUM ARL0 = 500 in
all four cases.

W(δ) was estimated from 10, 000 Monte Carlo trials in each of the two
distributions (normal and t3), the estimates serving as nominal ”true” values
of W(δ). If an analytic formula or software for determining the exact value
N (θ0δ) were available, the quality of the approximation (9) could now be
assessed directly. However, except for τ = 0 and τ → ∞, these are not
available for arbitrarily specified τ . In their absence a ”Monte Carlo formula”
can be used. This entails estimating N (θ0δ) for θ0 = 0.98 and θ0 = 1.37 at
each of the shifts δ by 10, 000 (or more) Monte Carlo trials using normal

random numbers only.
The first column in Table 2 shows the first three in a series of shifts δ =

0.125 : 0.125 : 1.5 that were induced at τ = 50. The columns headed dζ show
the differences W(δ) − N (θ0δ) between the true and predicted OOC ARLs
rounded to the nearest integer, the subscript on d indicating the reference
constant. The third entry in each column shows the maximal difference over
all δ > 0.25. (An unabridged version, Table S2.1, is in the supplementary
material.) Clearly, the normal approximation is excellent at all shift sizes
that would typically be considered to be of practical relevance and would
certainly be useful for the purpose of CUSUM design. In the design phase,
given an estimate θ̂0 of θ0, the ”Monte Carlo formula” with various values
of δ, ζ, h and τ as inputs will yield corresponding outputs N (θ̂0δ). These
outputs are estimates of the unknown W (δ) and can be used to gauge the
likely Phase II behaviour of the CUSUM under various specifications of the
input parameters.
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Table 2
W -CUSUM ARL approximations in normal and t3
distributions. ARL0 = 500; changepoint τ = 50.

normal t3
δ d0.10 d0.25 d0.15 d0.35

0.125 -1 0 -1 5
0.25 1 0 1 3
>0.25 1 1 2 2

The same simulations were also run at τ = 0, an instance in which the
condition in the heuristic that τ must be large is violated. As expected,
there were consistent differences between the (estimated) true values and the
values predicted by the heuristic. In particular, the heuristic underestimated

substantially the true OOC ARL values. (Table S2.2 in the supplementary
material gives a full set of results.) This is not surprising because accumula-
tion of a non-negligible number of ξi in (1) is required to effect approximate
normality. However, the results in Table 2 suggest that τ = 50 observations
is already sufficient for this purpose even if the underlying distribution, such
as a t3, has considerably heavier tails than a normal distribution.

3.3 Behaviour under asymmetry

Since an SSR CUSUM is constructed on an assumption of symmetry in the
in-control distribution, it should have an ability to detect asymmetry. This
aspect of SSR CUSUM behaviour was assessed in a small simulation study.
The in-control distribution was a standard normal distribution. From τ =
51 onwards, data were generated from skew-normal distributions (Azzalini,
2005) with zero mean, unit variance and skewness parameters λ = 1 (lightly
skewed), λ = 3 (moderately skewed) and λ = 5 (heavily skewed). A two-
sided W -CUSUM with ARL0 = 500 was run and the OOC ARL at each
value of λ was estimated from 10, 000 simulated data sets. Table 3 shows the
estimates.

Table 3
OOC ARL of W -CUSUM in
skew-normal distributions.

ζ
0.05 0.15 0.25

λ = 1 388 421 464
λ = 3 113 119 149
λ = 5 84 82 101

9



The very large out-of-control ARLs at λ = 1 indicate that the CUSUM is
unable to detect efficiently such a small degree of asymmetry, thus implying
some robustness in that respect. On the other hand, the results at λ = 3
and λ = 5 indicate an ability to detect substantial degrees of asymmetry.
Consequently, a signal from the CUSUM is not necessarily an indication
that the mean or median has changed. The subsequent data analysis should
include an assessment of the possibility that the signal resulted from the
onset of asymmetry.

4 An efficient self-starting CUSUM for a nor-

mal distribution

Suppose the data come from a normal distribution with unknown standard
deviation σ. A naive approach consists in estimating σ from Phase I data and
pretending in Phase II that the estimate, σ̂, is error free. It is well known that
such an approach is defective because the Phase II IC ARL could differ vastly
from the nominal value - see Keefe, et al. (2015), where further references
can also be found. Saleh, et al. (2016) propose to ameliorate the effect by
estimating appropriate control limits for use in Phase II via bootstrapping
from Phase I data. If such a method is used, control limits must be generated
afresh whenever the CUSUM is applied to a new data series. A ”once and
for all” table, such as Table S1 or Table S2, is out of the question.

A result of Chernoff and Savage (1958, Theorem 3) states that if X has
finite variance and J(u) is the V dW -score Φ−1((1 + u)/2), then θ0 in (5)
satisfies θ0 ≥ 1, the minimum value θ0 = 1 being attained only if X has a
normal distribution. This fact, in conjunction with the heuristic (7), suggests
that the V dW -CUSUM offers a fully self-starting procedure that requires no
bootstrapping or parameter estimation of any kind. Since no Phase I data are
required and the CUSUM is guaranteed to achieve the specified ARL0, there
is no between-practitioner variation. The V dW -CUSUM is asymptotically
efficient: asymptotically in the sense that ARL0 should be ”large” and the
OOC target ”small”; and efficient in the sense that under these conditions
the OOC ARLs should be equal to those of a normal CUSUM with the same
IC ARL and the same OOC target. The only further restriction is that τ
must be ”large”.

To form some idea of what ”large” and ”small” would mean in the present
context, ARLs of the normal- and V dW -CUSUMs were estimated by Monte
Carlo simulation at ARL0 = 500 with typical target OOC shifts δ1 = 0.5 and
δ1 = 1.0. Shifts ranging from δ = 0.25 to δ = 1.50 were induced at τ = 0, 50
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and at 100. Denote by V(δ) and N(δ) the respective ARLs of the V dW - and
normal CUSUMs. Table 4.1 shows the differences

dδ = V (δ)−N(δ), (10)

rounded up to the nearest integer, at the various shifts δ. The boldface
entries are those where the shift is greater than or equal to the target.

The only instance in which the relevant differences could be called sub-
stantial is at τ = 0, a setting that violates the ”large τ” requirement. Results
at ARL0 = 1, 000 (Table S4.1 in the supplementary material) follow the same
pattern: a substantial difference at τ = 0 but a difference of only 1 at τ = 50
and τ = 100. Overall, the results suggest that τ ≥ 50 and δ1 ≤ 1 meet the
respective descriptions ”large” and ”small” whenever ARL0 ≥ 500.

Table 4.1
dδ from (10) at ARL0 = 500.

τ = 0 τ = 50 τ = 100
δ δ1 = 0.5 δ1 = 1.0 δ1 = 0.5 δ1 = 1.0 δ1 = 0.5 δ1 = 1.0

0.25 8 24 2 10 2 9
0.4 7 20 1 7 0 4
0.5 7 18 1 4 1 2
0.75 7 13 1 2 1 1
1.0 7 11 1 1 1 1
1.25 7 11 1 1 1 1
1.5 8 11 1 1 1 1

It is interesting to see what transpires when δ1 is apparently ”not small”,
say δ1 = 2. Then ζ = 1 is an optimal choice and the control limit h = 2.2
ensures ARL0 = 500 in the V dW -CUSUM. The appropriate control limit for
the normal CUSUM is h = 2.323. Table 4.2 shows the results for τ = 50 and
τ = 100.

Table 4.2
dδ from (10) at ARL0 = 500 and δ1 = 2.0.

δ
0.25 0.50 1.00 1.50 2.00 2.50 3.00

τ = 50 27 29 6 2 2 1 1
τ = 100 22 15 2 1 1 1 1

Again, the differences are practically negligible at the larger shifts δ ≥
2.0. Overall, the Van der Waerden CUSUM, which does not require any
knowledge of the unknown σ, is not in any substantive manner inferior to a
normal CUSUM, which requires a known σ.
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5 An omnibus self-starting CUSUM

From Table 1 it is clear that θ0 is larger for the Wilcoxon score than for the
Van der Waerden score, except when the underlying distribution is normal,
the difference there being almost negligible. Thus, the W -CUSUM would
be preferred in distributions with heavier than normal tails and would be
almost as good as the V dW -CUSUM in a normal distribution. This accords
with the conclusions in Hodges and Lehmann (1960, Section 5) regarding
the relative performances of the two scores in a hypothesis testing context.
The W -CUSUM can therefore be recommended as an omnibus self-starting
CUSUM that will be effective in many situations. The following are some
possible limitations of the W -CUSUM.

First, the CUSUM has |ξi| ≤
√
3. Thus, if the target δ1 exceeds 2×

√
3 =

6.92 and the default reference constant ζ = δ1/2 is used, the ARL at all
δ > 0 will be infinite because then ξi − ζ is always negative, whence D+

n = 0
for all n. However, this is not a substantive practical limitation because the
typical range of out-of-control target shifts δ1 in applications of the CUSUM
are considerably less than 6.92.

Second, given ζ < 2
√
3 and h, a W -CUSUM requires at least [h/(

√
3 −

ζ)] + 1 observations to reach the control limit. The maximum value of this
quantity over all (ζ, h) pairs in Table S1 is 5 observations. A maximum of five
possible additional observations seems a small price to pay for the simplicity
involved in applying the W -CUSUM and reaping the benefits of (i) its high
efficiency in non-normal distributions and of (ii) its bounded score function,
which inhibits transient special causes from producing signals - see Section
7 for an example.

When observations occur naturally in groups of two or more without a
time ordering, no SSR CUSUM is applicable because sequential ranks are
then not uniquely defined. In such a case the grouped signed rank CUSUM
of Bakir and Reynolds (1979), which is also distribution-free, can be used.

6 A sequential rank CUSUM for dispersion

While the in-control properties of the SSR CUSUM do not depend upon
the variability of the underlying data, its proper application does require the
variability to remain unchanged. Suppose that after τ > 0 observations there
is a change to a distribution with density g(x) = f(x/σ)/σ, σ 6= 1. Then σ
is the fraction by which the current, unknown, dispersion changes. To detect
an increase in dispersion, one can use a CUSUM based on the scores J2(u),
thus eliminating the effect of the sign of X . With the Wilcoxon score, the

12



corresponding sequential rank statistic to be used in (1) is then

ξi =
6(r+i )

2

(2i+ 1)(i+ 1)
− 1, (11)

which has zero in-control expected value. The corresponding CUSUM will be
referred to as the ”W 2-CUSUM”. Since the sequential ranks r+i are invariant
under scale changes, it is clear that a CUSUM based on them cannot detect
changes from a specified value of σ. Only changes away from the current
value of σ, whatever it may be, will be detectable, and this only if the change
occurs after a sufficiently long time lapse τ > 2. Furthermore, the effect of the
pre-change value of the scale parameter becomes negligible as observations
continue to accrue after a change to different value. Thus, the CUSUM will
eventually return to a nominally in-control state after a change has occurred.
This behaviour is similar to that of self-starting CUSUMs, and is a warning
to users of the need for corrective action as soon as a change is diagnosed -
see Hawkins and Olwell (1997, Section 7.1).

If a change from an unspecified σ to σ∆, ∆ > 0, occurs, the analogue of
(6) is,

E[ξτ+i] ≈ θ1log ∆

where
θ1 = 12E [(2F0(Y )− 1)Y f0(Y )] .

Thus, appropriate reference constants for a 100α% change up or down from
the current dispersion level would be ζ+ = θ1log (1 + α) /2 in an upper
CUSUM and ζ− = −θ1log α /2 in a lower CUSUM. Table 6 shows values of
θ1 in some tν distributions. It seems that θ1 = 1 could serve usefully as a
default value. If an estimator is required,

θ̂1 = 12
∑m

i=1

(

2
i

m+ 1
− 1

)

V(i)

σ̂
f̂

(

V(i)

σ̂

)

will do, where V(1) < · · · < V(m) denote the order statistics of the Phase I

data and where f̂ and σ̂ are as in (8). Table S6 in the supplementary material
has control limits that cover all θ1 values in Table 5 and all 0.5 < α < 1.

Table 5
Values of θ1 for the W 2-CUSUM
in tν-distributions.

ν
∞ 4 3 2 1

θ1 1.10 0.94 0.89 0.8 1.10
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7 Application

The data consist of successive pairs of determinations (V1i, V2i), 1 ≤ i ≤ 240
of the ash content of coal, reported as a percentage per unit mass, from
two nominally identical laboratories. The measurements V1i and V2i were
made on two identical coal samples extracted from a single batch of coal. If
the true value of the ash content is Ti, then the determinations by the two
laboratories may be represented as

V1i = Ti + ε1i, V2i = Ti + ε2i

where ε1i and ε2i represent the respective laboratory measurement errors.
These errors may be taken to be statistically independent since the labora-
tories operate independently of one another. Given that the laboratories are
operating to ISO or ASTM specifications, the errors should also be identi-
cally distributed with zero means and common, albeit not precisely known,
standard deviation σ. The Ti reflect the characteristics of various seams
from which the coal is extracted and are typically neither independently nor
identically distributed. Nevertheless, the differences

Xi = V1i − V2i = ε1i − ε2i,

which are the focus of interest here, do not depend upon the Ti and are
independently and symmetrically distributed around zero. A non-zero mean
or asymmetry in the distribution, or a change in the variance of X , indicates
a deviation from specifications in one or both of the laboratories. This would
typically lead to an audit of the analysis procedures used in the laboratories
to isolate the cause of the deviation.

To monitor the mean and standard deviation of X , four CUSUMs with
ARL0 = 2, 000 were run concurrently: a two-sided W -CUSUM - see (3)
- for the mean and a two-sided W 2-CUSUM - see (11) - for the standard
deviation. The overall IC ARL would then be approximately 500. In the
present instance, no formal Phase I data were available. However, based
on the operating specifications for ash analysis, the measurement error ε
in a laboratory should have a standard deviation of about 0.45 (% ash per
unit mass of coal), implying that the standard deviation, σ, of X should be
between 0.6 and 0.7. The target mean change size was specified as δ1 = 0.25.
To accommodate heavier than normal tails, θ0 = 1.18 from Table 1 was used
to arrive at a reference value ζ = 1.18 × 0.25/2 ≈ 0.15 for the CUSUM.
The corresponding control limit from Table S1 is h = 14.063. To detect a
50% increase or decrease in dispersion with the dispersion CUSUM, reference
values of ζ+ = 0.20 (≈ log 1.5 /2) and ζ− = −0.35 (≈ log 0.5 /2) are used.
The control limits from Table S6 are h+ = 10.29 and h− = −6.29.
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The CUSUMs are shown in Figure 1. The W -CUSUM (left-hand panel)
signals an increase in the mean at observation 235. The usual CUSUM-based
estimator of the changepoint after occurrence of a signal is the last index at
which the CUSUM (upper or lower) was at zero, which in this case is τ̂ = 214.
The locations of both on the time axis is indicated by vertical dotted lines.
The estimate of the new mean from observations 215 through 235 is 0.595
while the mean of the first 214 observations is −0.027. The change in the
mean from −0.027 to 0.595 is highly statistically significant (p-value = 0.0001
from a bootstrap two sample t-test on 10, 000 bootstrap samples). The time
series plot in Figure 2 shows an apparent outlier at X103 = 3.81 which, after
investigation turned out to be due to a transcription error in a spreadsheet.
That this value was not detected by either of the CUSUMs points to their
robustness against transient special cause effects. Figure 3 shows a Q-Q plot
(left panel) and kernel density estimate (right panel) made from the data
{X1, . . . , X214} after removal of the outlier. Both plots suggest a degree of
non-normality and slight asymmetry in the underlying distribution. In view
of the highly significant difference between the means, it is unlikely that
asymmetry was the cause of the CUSUM signal.
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Fig. 1. W -CUSUM (left panel) and W 2-CUSUM (right panel) CUSUMs of the
ash data. Observation index n on the horizontal axis. Horizontal dashed
lines indicate the control limits.
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Fig. 2. Time series plot of dataset X1, . . . , X240.
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Fig. 3. Q-Q plot (left panel) and density estimate (right panel)
from data X1, . . . , X214 after removal of one outlier.

The J2
W CUSUM (right-hand panel in Figure 1) signals at n = 238,

shortly after the W -CUSUM. The standard deviation estimates from the
segments {X1, . . . , X214} and {X215, . . . , X235} are very similar, namely σ̂1 =
0.61 and σ̂2 = 0.68. A bootstrap F -test for equality of variances in these
two segments yields a p-value of 0.66. Thus, on the available evidence, the
signal from the variance chart is most likely a result of the substantial mean
change. Further substantiation of this conclusion comes from a Monte Carlo
simulation in which data were generated from the density estimate in Figure
3, shifted to the right by an amount 0.027 to make the resulting density
have mean zero. Repeated sampling from this distribution ensures a constant
standard deviation. An increase of 0.622 (= 0.595+0.027) was induced in the
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median after τ = 214 observations. The estimate of the ARL E[N − τ |N >
τ ] resulting from 10, 000 such trials was 22. This is of the same order of
magnitude as the excess N − τ̂ = 235 − 214 = 21 in the observed data and
confirms the likely reaction by the dispersion CUSUM to the mean shift.

The impact of the choices ζ = 0.15 and ζ = 0.20 on the CUSUMs can
be assessed if the first 50 observations, say, are treated as in-control Phase
I data. These have a standard deviation of σ̂ = 0.45, which is somewhat
less than the original estimate of 0.6. The default bandwidth for a Gaussian
kernel density estimate made on these Phase I data is b = 0.22. Then, using
(8), a computation gives θ̂0 = 1.03 so that the suggested reference constant
for a target shift of δ1 = 0.5 would be

ζ = 1.03× 0.5/2 ≈ 0.25.

For the W 2-CUSUM, analogous computations give

θ̂1 = 1.12,

which suggests ζ = 0.23 as reference constant, very close to the value that
was actually used. Running the CUSUMs on the Phase II observations
X51, X52, . . . with this new reference constant has no material effect on the
results: The W -CUSUM then signals at n = 50+180 = 230 and the change-
point is again estimated to be at n = 50 + 164 = 214.

For b = 0.44 and b = 0.11, respectively double and one half the default
bandwidth, the corresponding estimated reference values for the W -CUSUM
are ζ = 0.21 and ζ = 0.28. Again, when these are used, the CUSUM results
are almost identical to those found at ζ = 0.15. This points to the fact that
the performance of the CUSUM is not overly sensitive to misestimation of
θ0 and consequent misestimation of the ”optimal” reference value ζ = θ0δ1.

8 Summary

This paper develops CUSUMs based on signed sequential ranks to detect
changes away from a specified in-control median of an unknown symmetric
distribution. The in-control behaviour of the CUSUMs is distribution-free
while their out-of-control properties are shown to be well approximated by
those of a normal distribution CUSUM. In particular, no estimates of dis-
tribution parameters are required to initiate the CUSUMs and they exhibit
no between-practitioner variation. When the underlying distribution is nor-
mal with unknown variance, a CUSUM based on the Van der Waerden rank
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score is efficient compared to a normal distribution CUSUM. A Wilcoxon-
type CUSUM is fully self-starting and near-efficient for heavy tailed distri-
butions. A CUSUM to detect changes in dispersion is also developed. The
methodology is illustrated in an application to a set of data from an industrial
environment.
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9 Appendix

9.1 A justification for the heuristic (7)

The following result, which is a special case of Theorem 1 in Lombard (1981),
forms the basis of the heuristic and follows upon making identifications be-
tween the notation used in this paper and that used in Lombard (1981).
Alternatively, the result can be obtained from Theorem 1 of Lombard and
Mason (1985) upon making appropriate Taylor expansions.
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Proposition 1

Let h and τ ∗ be positive numbers. For every t > 0, denote the integer part
of h2t by ⌊h2t⌋ and set τ = ⌊h2τ ∗⌋. Suppose the independent observations
X1, . . . , Xτ have common cdf F (x) while Xτ+1, Xτ+2, . . . have cdf F (x −
δσ/h). With ξi from (2), set

S⌊h2t⌋ =
∑⌊h2t⌋

i=1 (ξi − ζ), t ≥ 0 (12)

where ζ = γ/h and S0 = 0. Then the continuous time process S⌊h2t⌋/h, t ≥ 0
converges in distribution as h → ∞ to the continuous time process

Θ(t) = W (t)− γt+ θδσmax{0, t− τ ∗} (13)

where W denotes a standard Brownian motion and where

θ = −
∫ 1

−1

J(u)
f ′(F−1(1+u

2
))

f(F−1(1+u
2
))
du.

Here, convergence in distribution is meant in the sense of weak convergence
of probability measures on the space D[0,∞) - see Billingsley (1999, Section
16).

Straightforward calculation involving an integration by parts gives θ =
θ0/σ for θ0 defined in (5). Then, upon evaluating (12) and (13) at t =
n/h2, 1 ≤ n ≤ τ and t = (τ + k)/h2, k ≥ 1, and using the fact that
W (n/h2) and W (n)/h, n ≥ 1, have the same joint distributions, Proposition
1 suggests that the joint distributions of the partial sums Sn, n ≥ m that
figure in the SSR CUSUM can be approximated by those of the sequence

Θ(n) = W (n)− ζn+ θ0δmax{0, n− τ}

where τ > m and m is a ”large” positive integer. Let ξ∗1 , . . . ξ
∗
τ be i.i.d.

normal(0, 1), let ξ∗τ+k, k ≥ 1 be i.i.d. normal(θ0δ, 1) and set S∗
n = ξ∗1 +

· · ·+ ξ∗n−nζ . Then the sequences S∗
n, n ≥ 1 and Θ(n), n ≥ 1 are identically

distributed. Thus, the distribution of the normal CUSUM based on ξ∗n, n ≥ 1
provide an approximation to the SSR CUSUM based on ξ∗n, n ≥ 1. This is
the content of the heuristic.
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10 Supplementary Material

10.1 Control limits for the W- and VdW-CUSUMs
(Section 2)

The computations used to obtain the control limits in Tables S1 and S2 below
were as follows. Since the partial sums of the ξi are approximately normally
distributed, it is not difficult to imagine that the control limits h of the
CUSUM will correspond closely to those of a standard normal cusum. Given
a set of reference values and nominal IC ARL values ARL0, denote by h1

the corresponding control limits from a standard normal CUSUM. The first
step of an iterative process was to estimate the IC ARL of the SSR CUSUM
on a (ζ, h1) grid using, for instance, 10, 000 independent Monte Carlo gener-
ated realizations with a uniform distribution on [−1, 1] serving as in-control
distribution. Denote the estimate by Â(ζ, h1). Cubic spline interpolation
from (ζ, Â(ζ, h1)) to (ζ, h) then yielded new estimates, h2, of the correct
control limits. A further 10, 000 independent Monte Carlo generated real-
izations using h2 produced a new estimated IC ARL Â(ζ, h2). This process
was repeated until all the differences |Â(ζ, h)−ARL0| were less than 3. For
ζ ≤ 0.25, no more that three iterations were required, while for ζ ≥ 0.25, six
iterations sufficed. Finally, the control limits were all checked independently
in 100, 000 Monte Carlo runs. The largest difference between nominal and
simulation estimated IC ARLs was 3.

Table S1
Control limits for the W - CUSUM.

ARL0

ζ 100 250 500 1, 000 2, 000
0.1 6.45 9.44 12.01 14.79 17.93
0.15 5.65 7.91 9.86 11.88 14.06
0.2 5.00 6.89 8.37 9.96 11.57
0.25 4.46 6.02 7.25 8.52 9.84
0.3 4.01 5.33 6.37 7.45 8.53
0.35 3.62 4.75 5.66 6.58 7.51
0.4 3.29 4.29 5.06 5.87 6.66
0.45 2.99 3.89 4.56 5.24 5.96
0.5 2.73 3.52 4.13 4.74 5.34
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Table S2
Control limits for the V dW -CUSUM. For ARL0 > 1000
normal distribution control limits can be used.

ARL0

ζ 100 250 500 1, 000
0.1 5.995 9.041 11.743 14.485
0.15 5.318 7.778 9.922 12.14
0.2 4.640 6.514 8.100 9.796
0.25 4.186 5.816 7.208 8.607
0.3 3.731 5.118 6.315 7.417
0.35 3.410 4.661 5.698 6.685
0.4 3.089 4.204 5.080 5.952
0.45 2.829 3.863 4.665 5.458
0.5 2.568 3.521 4.249 4.964

10.2 ARL predicted by the heuristic (Section 3.2)

Table S2.1
W -CUSUM ARL approximations in normal and t3
distributions. ARL0 = 500; changepoint τ = 100.

normal: (θ0 = 0.98) t3: (θ0 = 1.37)
(ζ, h) (0.10, 12.01) (0.25, 7.25) (0.15, 9.86) (0.35, 5.66)
δ W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ)

0.125 126 127 161 157 93 93 131 122

0.25 57 57 70 67 38 37 48 45

0.375 36 35 37 37 23 22 25 23

0.5 26 25 25 24 17 16 16 15

0.625 20 19 18 17 14 12 12 11

0.75 17 16 14 14 11 10 10 8

1.0 11 12 11 10 9 7 7 6

1.25 10 9 8 7 8 6 6 5

1.5 9 8 7 6 7 5 6 4

Table 3.2 shows the results when τ = 0, that is, when the process is out
of control from the outset and the condition in the heuristic that τ be large,
is not met. While it is clear in this instance that the CUSUM does have the
ability to detect an initial out-of-control situation, the approximation tends
to underestimate quite substantially the true OOC ARL.
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Table S2.2
W -CUSUM ARL approximations in normal and t3
distributions. ARL0 = 500; changepoint τ = 0.

normal: (θ0 = 0.98) t3: (θ0 = 1.37)
(ζ, h) (0.10, 12.01) (0.25, 7.25) (0.15, 9.86) (0.35, 5.66)
δ W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ) W (δ) N(θ0δ)

0.125 146 145 171 167 107 106 138 125

0.25 72 68 78 72 48 44 57 47

0.375 46 43 46 41 32 27 33 25

0.5 35 31 32 27 25 19 23 16

0.625 29 24 25 20 21 15 19 12

0.75 25 20 21 16 19 12 16 9

1.0 21 15 16 11 16 9 13 7

1.25 18 12 14 9 15 7 12 5

1.5 17 10 13 7 14 6 11 4

10.3 V dW -CUSUM. (Section 4)

Table S4.1
dδ at ARL0 = 1, 000

τ = 0 τ = 50 τ = 100
δ δ1 = 0.5 δ1 = 1.0 δ1 = 0.5 δ1 = 1.0 δ1 = 0.5 δ1 = 1.0

0.25 11 38 4 24 3 18
0.4 9 31 3 11 2 10
0.5 8 24 2 8 2 5
0.75 8 15 1 3 1 2
1.0 8 13 1 1 1 1
1.25 9 12 1 1 1 1
1.5 9 12 1 1 1 1
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10.4 W 2-CUSUM (Section 6)

Table S6
Control limits for the W 2-CUSUM.

ARL0

ζ 100 250 500 1, 000 2, 000
0.05 6.57 10.08 13.39 17.34 21.61
0.1 5.69 8.20 10.47 12.90 15.60
0.15 4.97 6.98 8.68 10.49 12.36
0.2 4.40 6.08 7.45 8.87 10.29
0.25 3.96 5.39 6.53 7.77 8.83
0.3 3.63 4.86 5.83 6.83 7.86
0.35 3.28 4.39 5.25 6.11 6.97
0.4 3.02 4.02 4.76 5.52 6.31
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